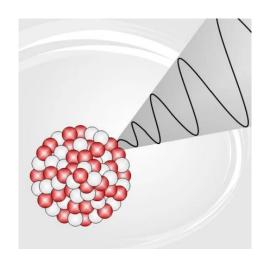
Федеральное государственное бюджетное учреждение «Петербургский институт ядерной физики им. Б. П. Константинова» Национального исследовательского центра «Курчатовский институт»

И.А. Митропольский

СТРУКТУРА АТОМНОГО ЯДРА

Учебное пособие для аспирантов



Гатчина 2019

Митропольский Иван Андреевич - доктор физико-математических наук.

Печатается по решению Учёного совета Института (протокол от 18.04.2019 №4)

Митропольский И.А. Структура атомного ядра. – Гатчина Ленинградской обл.: Изд-во НИЦ «Курчатовский институт» - ПИЯ Φ , 2019 – 112 с.

Курс лекций «Структура атомного ядра» рассчитан на аспирантов, осваивающих образовательную программу высшего образования по направлению 03.06.01 «Физика и астрономия» направленности 01.04.16 «Физика атомного ядра и элементарных частиц» в аспирантуре НИЦ «Курчатовский институт» — ПИЯФ. Курс также может быть полезен аспирантам, обучающимся по иным направленностям подготовки по данному направлению.

Курс углубляет и расширяет знания, полученные аспирантами на предыдущих уровнях обучения, в части характерных особенностей, методов описания и современных моделей структуры атомных ядер, общей методологии ядерной физики, примеров применения полученных знаний на практике.

Учебное пособие представляет собой конспект лекций: основной материал содержится в рекомендованной литературе. Задача конспекта – фиксировать основные идеи и результаты, выделяющие физику атомного ядра из непрерывного многообразия подходов к проблемам микромира.

Курс объединяет используемые автором презентации, содержащие основные тезисы и иллюстративный материал по теме «Структура атомного ядра» в форме таблиц, графиков, рисунков, формул, раскрывающих смысл отдельных теоретических положений и модельных представлений. В конспекте даны краткие personalia крупных ученых, определивших своими работами успешное развитие наших представлений о структуре ядра. Рекомендованная литература приведена в конце конспекта с разбивкой по темам.

К лекционному материалу прилагаются типовые задачи и упражнения, позволяющие закрепить содержание отдельных теоретических положений по изучаемым темам.

© НИЦ «Курчатовский институт – ПИЯФ, 2019

СОДЕРЖАНИЕ

Леі	кция 1. Основные свойства атомных ядер. Массы и энергии связи	5
	Состав атомных ядер. Стабильные ядра и радиоактивности Распространённость элементов и изотопов. Энергии связи ядер. Массовые единицы. Энергии распадов, реакций и отделения частиц. Полуэмпирическая формула масс. Магические числа.	».
Леі	кция 2. Размеры и форма ядер. Спины и чётности ядерных состояний Определение радиуса ядра. Распределение плотности заряда в ядре. Спины и чётности ядерных состояний. Ядерные магнитные и квадрупольные моменты. Зеркальные ядра.	14
Леі	кция 3. Ядерные силы. Элементарная теория дейтрона Обменное взаимодействие. Потенциал Юкавы. «Пустотное» и эффективное взаимодействие нуклонов. Условия существования связанного состояния дейтрона. Тензорные силы и квадрупольный момент дейтрона.	24
Леі	кция 4. Структура и свойства малонуклонных систем Законы сохранения и классификация ядерных состояний. Нуклонные конфигурации в легчайших ядрах. Изоспин и изобар-аналоговые состояния. Альфа-частичная модель ядра.	31
Леі	кция 5. Одночастичная структура сферических ядер Самосогласованный потенциал среднего поля. Эффективные потенциалы. Спин-орбитальное взаимодейст Магические числа. Ядерный кулоновский потенциал. Одночастичная структура в ядерных реакциях.	38 вие.
Леі	кция 6. Многочастичные конфигурации в сферических ядрах Нуклонные конфигурации, числа заполнения. Сложение угловых моментов. Коэффициенты Клебша - Гордана. Нуклонные конфигурации в околомагических ядрах.	48

Лекция 7. Адерная деформация. Структура	
деформированных ядер Квадрупольная деформация ядерной поверхности. Квантовые числа состояний деформированного ядра. Среднее поле деформированных ядер. Энергия деформации и метод оболочечной поправки.	55
Лекция 8. Парные корреляции и ядерная сверхтекучесть Экспериментальные свидетельства существования спариван Каноническое преобразование Боголюбова. Квазичастицы. Структура и свойства возбуждённых состояний ядер с развитым спариванием. Ядерные реакции передачи частиц	
Лекция 9. Коллективное движение нуклонов в ядре Колебания ядерной поверхности. Квадрупольные колебания сферических ядер. Колебания деформированных ядер. Октупольные колебания. Многофононные состояния, ангармонизм ядерных колебаний. Связь колебательного и одночастичного движений. Ядерные гигантские резонансы.	73
Лекция 10. Вращение деформированных ядер Система координат, связанная с ядром. Волновые функции вращения. Аксиальная симметрия ядра и параметризация вращательной энергии. Вращательные полосы в чётно-чётн ядрах. Особенности вращательных полос в А-нечётных и нечётно-нечётных ядрах.	82 ых
Лекция 11. Электромагнитные процессы в ядрах Взаимодействие с электромагнитным полем. Статические мультипольные моменты ядер. Вероятности ядерных электромагнитных переходов. Одночастичные оценки. Вероятности коллективизированных переходов. Ядерная изомерия. Гигантские резонансы.	90
Лекция 12. Данные о ядерной структуре, распадах и реакциях Ядерная информатика Международная сеть оценки ядерных данных. Файл ENSDF и информационная система о структуре атомных ядер. Оценка и систематика ядерных данных. Поиск новых закономерностей в систематике ядерных данных. Закон Бенфорда.	ί. 10(

Литература к курсу

ОСНОВНЫЕ СВОЙСТВА АТОМНЫХ ЯДЕР. МАССЫ И ЭНЕРГИИ СВЯЗИ.

Лекция 1

Состав атомных ядер

Идея атомизма.

Состав квантово-механической системы определяется энергией.

Низкие энергии до порога мезонообразования (<400 M₃B).

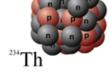
Нуклоны и нуклиды:

А – массовое число

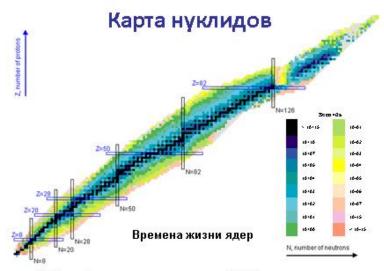
Z – зарядовый номер элемента, число протонов

N – число нейтронов

Изобары, изотопы, изотоны. A=Z+N

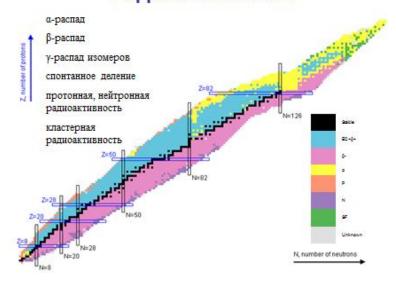


$$A = Z + N$$

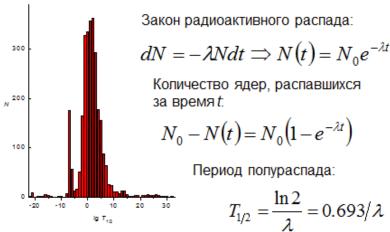


≈300 стабильных нуклидов и ≈3500 радиоактивных.

Радиоактивность



Времена жизни ядер



Основные состояния ядер.

Распространённость элементов в природе

Распространённость элементов в природе (во Вселенной, в земной коре, в атмосфере, в океане и т.п.).

Химический элемент – смесь изотопов. Атомный вес элемента:

$$M(Z) = \frac{\alpha_1 M_1 + \alpha_2 M_2 + \dots + \alpha_i M_i}{\alpha_1 + \alpha_2 + \dots + \alpha_i}$$

Распространённость изотопа (кларковое число, или кларк):

 α

Ф.У. Кларк

Frank Wigglesworth Clarke (1847-1931) — американский геохимик.

Основные труды посвящены определению состава разпичных неорганических природных образований и земной коры в целом. Кларк первым рассчитал средний состав земной коры.

Средние концентрации элементов в геохимических системах (литосфера, гидросфера и пр.) по инициативе академика А.Е.Ферсмана названы в его честь кларками.

J. W. Clarke

Стабильные изотопы и их распространённость

Моноизотопы: ⁹Be, ¹²C, ¹⁹F, ²³Na, ²⁷Al, ³¹P, ⁴⁵Sc, ⁵⁵Mn ... ²⁰⁹Bi

Элемент	Атомный вес	Изотопы и их доля в естественной смеси
Н	1.00794	¹ H - 99.985%, ² H - 0.015%
0	15.9994	¹⁸ O - 99.762%, ¹⁷ O - 0.038%, ¹⁸ O - 0.200%
Mg	24.3050	²⁴ Mg – 78.99%, ²⁵ Mg – 10.00%, ²⁶ Mg – 11.01%
Ca	40.078	⁴⁰ Ca - 96.94%, ⁴² Ca - 0.647%, ⁴³ Ca - 0.135%, ⁴⁴ Ca - 2.09%, ⁴⁶ Ca - 0.004%, ⁴⁸ Ca - 0.187%
Sn	118.710	112Sn - 0.97%, 114Sn - 0.66%, 115Sn - 0.34%, 116Sn - 14.54%, 117Sn - 7.68%, 118Sn - 24.22%, 119Sn - 8.59%, 120Sn - 32.58%, 122Sn - 4.63%, 124Sn - 5.79%,

Массы ядер и энергии связи

Масса атома:

$$M_A(A,Z) = M_N(A,Z) + Z \cdot m_e - B_e(Z)$$

 $B_e(Z) = 14.4381 \times Z^{239} + 1.55468 \cdot 10^{-6} \times Z^{535}$ 3B

Масса ядра:

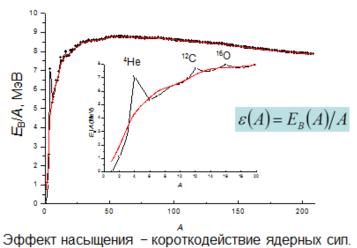
$$M_N(A, Z) = Z \times m_p + N \times m_n - \Delta(A, Z)$$

Энергия связи:

$$E_B(A,Z) = c^2 \cdot \Delta(A,Z)$$

 минимальная энергия, необходимая для разделения ядра на составляющие его нуклоны.

Удельная энергия связи ядра



Энергии распадов, реакций и отделения частиц

$$\begin{split} &Q_{\beta-} = M\left(A,Z\right) - M\left(A,Z+1\right) \qquad Q_{2\beta-} = M\left(A,Z\right) - M\left(A,Z+2\right) \\ &Q_{\alpha} = M\left(A,Z\right) - M\left(A-4,Z-2\right) - M\left(^4\operatorname{He}\right) \\ &S_n = -M\left(A,Z\right) + M\left(A-1,Z\right) + m_n \\ &S_p = -M\left(A,Z\right) + M\left(A-1,Z-1\right) + m_p \\ &S_{2n} = -M\left(A,Z\right) + M\left(A-2,Z\right) + 2 \cdot m_n \\ &S_{2p} = -M\left(A,Z\right) + M\left(A-2,Z-2\right) + 2 \cdot m_p \\ &Q(\gamma,p) = -S_p \qquad Q(p,n) = Q_{\beta-} - \left(m_n - m_p\right) \\ &Q(\gamma,n) = -S_n \qquad Q(p,d) = -S_n + E_B(d) \end{split}$$

Q-calculator: http://www.nndc.bnl.gov/qcalc/

Массовые единицы, атомные массы

$$M\binom{12}{\rm C}=12.000~{\rm u}, \quad 1~{\rm u}=931.494~{\rm MeV}/c^2$$
 $m_n=939.6~{\rm MeV}/c^2=1.008665~{\rm u}, \quad m_p=938.3~{\rm MeV}/c^2=1.007276~{\rm u}$ $M\binom{1}{\rm H}=m_p+m_e-E_e=938.8~{\rm MeV}/c^2=1.007825~{\rm u}$ $M\binom{2}{\rm H}=1875.6~{\rm MeV}/c^2=2.014102~{\rm u}$ $E_B\binom{2}{\rm H}=2.224~{\rm MeV}$ $M\binom{4}{\rm He}=3728.0~{\rm MeV}/c^2=4.002603~{\rm u}$ $E_B\binom{4}{\rm He}=28.296~{\rm MeV}$ Дефект масс: $\Delta=M\Big[{\rm in}~u\Big]-A\times u$

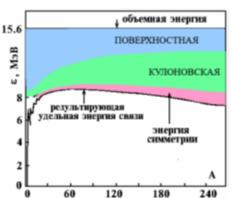
Таблицы атомных масс:

A, Z, N, Δ (M), E_B , M, Q_β , Q_α , S_n , S_p и т.д. G.Audi et al. 2012 Atomic Mass Evaluation https://www-nds.iaea.org/amdc/

Полуэмпирическая формула масс Бете-Вайцзеккера

$$E_B(A,Z) = \alpha A - \beta A^{2/3} - \gamma \frac{Z(Z-1)}{A^{1/3}} - \delta \frac{(A-2Z)^2}{A} + \zeta A^{-3/4}$$

$$\begin{split} &\alpha = 15.6 \text{ M} \text{ BB} \\ &\beta = 17.2 \text{ M} \text{ BB} \\ &\gamma = 0.72 \text{ M} \text{ BB} \\ &\delta = 23.6 \text{ M} \text{ BB} \\ &\zeta = \begin{cases} +34 \text{ M} \text{ BB} & \text{ u-u} \\ 0 & \text{ H} \\ -34 \text{ M} \text{ BB} & \text{ H-H} \end{cases} \end{split}$$



Ганс A. Бе́те

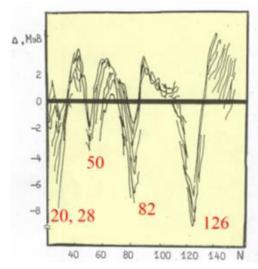
Напѕ Albrecht Bethe, 1906-2005 - лауреат Нобелевской премии по физике 1967 г. Основные работы посвящены ядерной физике и астрофизике. Открыл протон-протонный цикл термоядерных реакций (1938). Предложил шестиступенчатый углеродно-азотный цикл, позволяющий объяснить процесс протекания термоядерных реакций в массивных звёздах. Принимал участие в работах Манхэттенского проекта.

В 1947 году Бете объяснил лэмбовский сдвиг, введя в квантовую теорию радиационные поправки и положив начало теории перенормировок.

В последние 20 лет жизни работал в области физики нейтрино, в частности опубликовал серию работ, посвящённых проблеме дефицита солнечных нейтрино.

4. A. Bethe

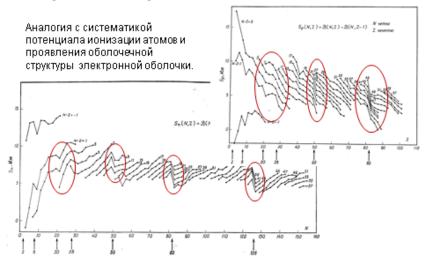
Магические числа



Д – разности между экспериментальными энергиями связи и расчётными.

Магические числа: 2, 8, 20, 28, 50, 82, 126

Систематика энергий отделения нуклонов в районе магических чисел



Выводы

- Ядра состоят из нуклонов. Изобары, изотопы, изотоны.
- Радиоактивность. Времена жизни ядер.
- Массы ядер существенно меньше суммы масс нуклонов. Энергия связи ядра.
- Насыщение удельной энергии связи.
- Энергии ядерного распада, синтеза, ядерных реакций.
- Полуэмпирическая формула масс.
- Магические числа.

Задачи

- Оценить энерговыделение при делении ядра
 ²³⁵U тепловым нейтроном на осколки ¹³⁷Cs (Z=55) и
 ⁹⁶Rb (Z=37) с испусканием 3 нейтронов. Сравнить с
 энерговыделением в реакции синтеза ²H и ³H с испусканием
 нейтрона.
- 2. Оценить среднюю энергию связи α -частицы в ядрах 12 С и 16 О. Сравнить её с энергией отделения α -частицы.
- Показать, что разность энергий связи зеркальных ядер ¹¹В и ¹¹С обусловлена кулоновским взаимодействием.
- Вычислить массы атомов нескольких элементов и сравнить их со значениями, приведёнными в таблице Менделеева. Объяснить различия.
- С помощью формулы Бете Вайцзеккера рассчитать энергии отделения нейтронов в изотопах кальция ⁴⁰Са и ⁴⁸Са.
- 6. Почему не существует стабильных ядер с А=5 и А=11?

РАЗМЕРЫ И ФОРМА ЯДЕР. СПИНЫ И ЧЁТНОСТИ ЯДЕРНЫХ СОСТОЯНИЙ

Лекция 2

Размеры и форма ядер

$$R(A) = r_0 A^{1/3}$$

 α-распад, r₀=1.34(11) фм проницаемость потенциального барьера

$$\lambda = \frac{\pi \hbar}{2mR^2} \exp \left[\frac{4e^2}{\hbar} \frac{Z - 2}{v} + \frac{8e\sqrt{m}\sqrt{(Z - 2)R}}{\hbar} \right]$$

- β -распад зеркальных ядер, r_0 =1.28(5) фм кулоновская энергия $E_c = \frac{3}{5} \frac{e^2}{R} Z(Z-1)$
- рассеяние быстрых нейтронов, r₀=1.25(5) фм эффективное сечение рассеяния быстрых нейтронов

$$\sigma = 2\pi R^2$$
 при $\lambda << R$

- спектры мюонных атомов, r₀=1.20 фм
- рассеяние быстрых электронов, r₀=1.23(2) фм

Из граничной энергии электронов бета-распада определяется полная энергия Q_{β} . Она приравнивается кулоновской энергии, после чего определяется радиус ядра. В задачах радиус ядра определяется из кулоновской энергии, полученной из сравнения энергий связи ядер.

Роберт Хофштадтер

Robert Hofstadter (1915 - 1990) — американский физик-экспериментатор, лауреат Нобелевской премии по физике 1961 г. «за основополагающие исследования по рассеянию электронов на атомных ядрах и связанных с ними открытий в области структуры нуклонов».

Работы посвящены ядерной физике и ядерной технике, физике высоких энергий. В 1950-х получил количественную информацию о распределении электрического заряда и магнитного момента внутри ядра и о размерах ядер. В 1957 г. определил зарядовый и магнитный формфакторы протона, в 1958 г. — магнитный формфактор нейтрона.

Упругое рассеяние электронов

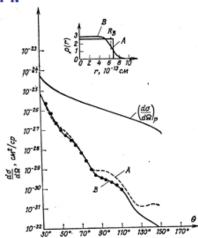
на ядрах

$$E_e \approx 200\,\mathrm{MэB}$$

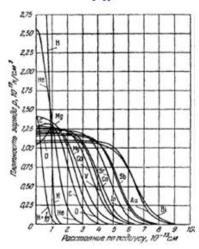
$$\hbar_e = \frac{\hbar c}{E_e} \approx 1 \, \text{фм}$$

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{R} |F(q)|^{2}$$

$$F(q) = \frac{1}{Ze} \int \rho(r) e^{i\vec{q}\cdot\vec{r}} d\vec{r}$$



Распределение плотности заряда в ядрах



Параметры фермиевского распределения заряда

$$\rho(r) = \rho_0 \left\{ 1 + \exp\left[\frac{r - R_0}{a}\right] \right\}^{-1}$$

Для ядер с А>16:

$$\rho_0 = 0.17 \, \text{фm}^{-3}, \quad a = 0.54 \, \text{фm}$$

$$R_0 \approx \left(1.12 A^{1/3} - 0.86 A^{-1/3} + \dots\right) \text{фm}$$

$$\left\langle r^2 \right\rangle \approx \frac{3}{5} \left(1.2 A^{1/3}\right)^2 \, \text{фm}^2$$

9/Po 1,0 0,3 0,5 0,7 0

 $d = (4 \ln 3)a$

Таблицы: https://www-nds.iaea.org/radii

Моменты фермиевского распределения

Нормировка: $\int \rho d\tau = \rho_0 \frac{4\pi}{3} R^3 \left[1 + \pi^2 \left(\frac{a}{R} \right)^2 \right]$

Радиальные моменты:

$$\left\langle r^{n}\right\rangle = \frac{\int \rho(r)r^{n}d\tau}{\int \rho(r)d\tau} \approx \frac{3}{n+3}R^{n}\left[1 + \frac{n(n+5)}{6}\pi^{2}\left(\frac{a}{R}\right)^{2} + O\left(\frac{a}{R}\right)^{4}\right]$$

«Кулоновский» радиус:

$$\frac{1}{R_{C}} = \frac{5}{6} \frac{\int \frac{\rho(\vec{r}_{1})\rho(\vec{r}_{2})}{|\vec{r}_{1} - \vec{r}_{2}|} d\tau_{1} d\tau_{2}}{\left(\int \rho(r) dr\right)^{2}} = \frac{1}{R} \left[1 - \frac{7}{6}\pi^{2} \left(\frac{a}{R}\right)^{2} + \dots\right]$$

Нормировка плотности может быть сделана на число нуклонов A или полную массу ядра M.

Квантовые числа ядерных состояний.

Спины и чётности

Нуклоны - фермионы!

Спин s=1/2, $s_Z=\pm 1/2$ ($\hbar=1$)

Орбитальный момент: l, l=0 (s), l=1 (p), l=2 (d), ... Момент импульса: j=l+s, jZ

Полный момент импульса: $\emph{J}=\emph{L}+\emph{S}=\Sigma\emph{j},~\emph{J}_{\textrm{Z}}$

Чётность π (инверсия координат): $P|A>=\pi_A|A>$

$$PrP^{-1}=-r$$
, $PpP^{-1}=-p$, $PsP^{-1}=s$

Внутренняя чётность нуклонов положительна. Интегралы движения:

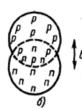
$$[H,J^2]=0$$
, $[H,J_Z]=0$, $[H,P]=0$

Спины и чётности основных состояний чётно-чётных ядер всегда равны 0⁺!

Спины и чётности основных состояний

Электрический дипольный момент ядра в основном состоянии

Если центры протонной и нейтронной систем не совпадают (δ), ядро может обладать электрическим дипольным моментом d= $eZ\delta$.



Закон сохранения чётности приводит к требованию, чтобы d=0:

Дипольный момент – $d_z = \sum_{i=1}^Z \int e z_i |\psi(r_1, r_2, ... rA)|^2 d au$.

Под интегралом z – нечётная функция, $|\psi(r_1,...r_A)|^2=|\psi(-r_1,...-r_A)|^2$ – чётная функция, следовательно, интеграл по всему объёму равен нулю.

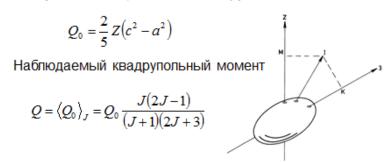
Это справедливо для всех нечётных электрических моментов квантовых систем в невырожденном состоянии!

Форма ядра



Квадрупольные моменты ядер

Ядро, имеющее форму эплипсоида вращения с полуосями $\it c$ и $\it a$, обладает квадрупольным моментом



связан с ориентацией собственной системы координат в ЛСК. В частности, Q=0 для состояний с полным спином J=0 или 1/2 при любом значении Q0.

Электрические квадрупольные моменты ядер

Ядро	J	Q ₀ , барн	Q, барн
² H	1	2.7	0.27
¹⁸ O	0	0	0
¹⁷ O	5/2	-5.0	-1.8
³³ S	3/2	-8.0	-1.6
⁸⁵ Cu	3/2	-150	-30
¹⁵⁰ Nd	0	4800	0
¹⁵³ Eu	5/2	7700	2750
¹⁸¹ Ta	7/2	6800	3180
233U	5/2	14000	5000
235∪	7/2	9000	4200

https://www-nds.iaea.org/nuclearmoments/

Ядерные магнитные моменты

Нуклоны: μ_{p} =2.7934(3) $\mu_{\mathrm{N}},~\mu_{\mathrm{n}}$ = -1.9135(3) $\mu_{\mathrm{N}},~\mu_{\mathrm{N}}$ = $e\hbar/2m_{\mathrm{p}}c$

$$\vec{\mu} = g \frac{e\hbar}{2m_p c} \vec{s}$$
 $g_p = 5.59, g_n = -3.83$

Ядро:

$$\mu = \mu_l + \mu_s$$

$$\vec{\mu}_{l} = \frac{e\hbar}{2m_{p}c} \sum_{k=1}^{Z} \vec{L}_{k} \qquad \vec{\mu}_{s} = \frac{e\hbar}{2m_{p}c} \left\{ g_{p} \sum_{k=1}^{Z} \vec{s}_{k} + g_{n} \sum_{i=1}^{N} \vec{s}_{i} \right\}$$

Полный спин ядра:
$$\vec{I} = \sum_{k=1}^A \vec{L}_k + \sum_{k=1}^A \vec{S}_i$$

$$\vec{\mu} = g \frac{e\hbar}{2m_p c} \vec{I}$$

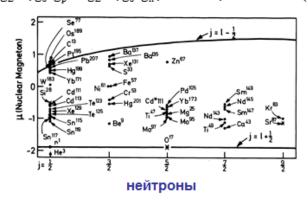
Вектор намагничения M связан с плотностью тока проводимости j(r) = c rot M(r), для которой справедливо квантово-механическое выражение через среднее от оператора импульса.

Магнитные моменты А-нечётных ядер

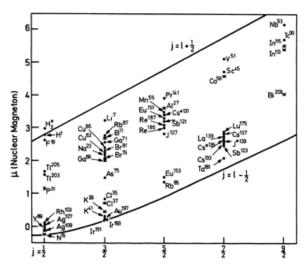
Модель Шмидта:

$$\vec{\mu} = \frac{e\hbar}{2m_p c} \left(g_L \vec{L} + g_S \vec{S} \right)$$

р: $g_{\rm L}{=}1,\,g_{\S}{=}g_{\rm p}\,$ n: $g_{\rm L}{=}0,\,g_{\S}{=}g_{\rm n}$, $L{=}I{\pm}1/2$, Чётность $\pi{=}({-}1)^L$



Z-нечётные ядра, протоны



Спектры зеркальных ядер

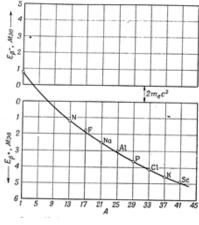
Пары ядер с одинаковым A и отличающимися на 1 числами нейтронов N и протонов Z (зеркальные ядра): ³H-³He, ⁷Li-⁷Be, ¹¹B-¹¹C, ²¹Ne-²¹Na, ⁴¹Ca-⁴¹Sc



Спектры зеркальных ядер практически не зависят от «зарядов» нуклонов.

Свойства зеркальных ядер свидетельствуют об эквивалентности pp- и nn-взаимодействий. Для сравнения всех трех типов взаимодействия нужно рассмотреть три изобарных ядра.

Энергии β-распада зеркальных ядер



Свидетельство зарядовой независимости ядерных сил - энергии β-распада зеркальных ядер «ложатся» на гладкую кривую, соответствующую эмпирической формуле масс.

Выводы

- Объём ядра пропорционален А.
- Плотность внутри ядра постоянна, толщина поверхностного слоя не зависит от *A*.
- Форма ядра.
- Квантовые числа ядерных состояний, спин и чётность.
- Магнитные и квадрупольные моменты ядер.
- Зеркальные ядра. Эквивалентность рр-, при пп-взаимодействий.

Задачи

- 1. Оценить радиус ядра 3 Не в предположении, что разность энергии связи ядер 3 Не и 3 Н обусловлена кулоновским взаимодействием. Определить параметр r_{0} для пар зеркальных ядер.
- Определить среднюю плотность нуклонов в ядре.
 Оценить долю объёма ядра, занимаемую нуклонами.
- 3. Показать, что толщина поверхностного слоя одинакова для всех ядер.
- 4. Показать, что электрический дипольный момент ядра в основном состоянии равен нулю.
- Определить спины и чётности основных состояний ядер ¹³С и ¹³N. То же для ¹⁵О и ¹⁵N. Сравнить с экспериментальными значениями.
- Оценить магнитный момент ядра трития. Сравнить с табличным значением.

ЯДЕРНЫЕ СИЛЫ. ЭЛЕМЕНТАРНАЯ ТЕОРИЯ ДЕЙТРОНА

Лекция 3

Обменное взаимодействие

Нуклоны – фермионы, значит, обмен происходит бозонами!

Оценки: Расстояние между нуклонами $d \sim 1.5 \ \varphi$ м.

Время взаимодействия $\Delta t \sim d/c \sim 5.10^{-24} \text{ c}$,

 ΔE ≥ħ/ Δt ~ 200 MэB $d \le c(\hbar/mc^2) \rightarrow mc^2$ ~ 140 MэB.

Хидэки Юкава (1907 – 1981)

Х. Юкава - японский физик-теоретик, в 1935 г. выдвинул гипотезу о существовании нового типа элементарных частиц с массой, промежуточной между массами электрона и протона. К концу 40-х эта гипотеза была подтверждена, и в 1949 г. «за предсказание существования мезонов и теоретические исследования природы ядерных сил» Х. Юкаве была присуждена Нобелевская премия по физике.

Мезонное поле

$$\begin{split} E^2 &= p^2 c^2 + m^2 c^4 \\ E &\to i \hbar \frac{\partial}{\partial t} \qquad \vec{p} \to -i \hbar \vec{\nabla} \\ &- \frac{\partial^2 \varphi}{\partial t^2} = \left(- \nabla^2 + \mu^2 \right) \! \varphi, \quad \mu = \frac{m \, c}{\hbar} \qquad \ \, \text{- уравнение Клейна-} \\ &\text{Гордона-Фока.} \end{split}$$

Нуклон – источник статического мезонного поля:

$$\frac{\partial^2}{\partial t^2} \varphi = \mathbf{0} \quad \Rightarrow \quad (\nabla^2 - \mu^2) \varphi = \mathbf{0}$$

При μ =0 это уравнение Лапласа для электромагнитного поля без источников. Если есть источник, то $\Delta \phi$ =4 πp . Аналогично для мезонов:

$$(\nabla^2 - \mu^2)\varphi = 4\pi\rho.$$

Пусть нуклон - точечный источник: $ho = g \delta(\vec{r})$

Радиальное мезонное поле -

$$\varphi(r) = -g \frac{1}{r} e^{-\mu r}$$

Энергия обменного взаимодействия нуклонов, потенциал Юкавы -

$$V(r) = -g^2 \frac{e^{-\mu r}}{r}$$

g — силовая константа, масса μ определяет «радиус» взаимодействия. Для пи-мезонов m=140 МэВ/ $c^2 \rightarrow$ 1/ μ =1.4 фм. Для более тяжелых мезонов радиус меньше. Однобозонные обменные потенциалы (ОВЕР).

Отталкивание на малых расстояниях.

Свойства ядерных сил

- Короткодействие: e-mr.
- Сила: $g^2 \sim 1 \div 10$ (e²=1/137).
- Насыщение: $V_A \sim A^2$, нужно $\sim A$!
- Нецентральность ядерных сил: Q.
- Спиновая зависимость.
- Зарядовая независимость.
- Отталкивание на малых расстояниях (отсутствие коллапса).

Нуклонное взаимодействие

$$\begin{split} &V(x)\!=\!W(r)\!+\!M(r)P_{12}(r)\!+\!B(r)P_{12}(\sigma)\!+\!H(r)P_{12}(\tau)\!+\\ &+T(r)S_{12}+T_M(r)P_{12}(r)S_{12}\\ &P_{12}(r)\!=\!-P_{12}(\sigma)P_{12}(\tau) \\ &P_{12}(\sigma)\!=\!\frac{1}{2}\!\left(\!1\!+\!\vec{\sigma}_1\!\cdot\!\vec{\sigma}_2\right) \\ &P_{12}(\tau)\!=\!\frac{1}{2}\!\left(\!1\!+\!\vec{\tau}_1\!\cdot\!\vec{\tau}_2\right) \\ &P_{12}(\tau)\!=\!\frac{1}{2}\!\left(\!1\!+\!\vec{\tau}_1\!\cdot\!\vec{\tau}_1\!\cdot\!\vec{\tau}_1\right) \\ &P_{12}(\tau)\!=\!\frac{1}{2}\!\left(\!1\!+\!\vec{\tau}_1\!\cdot\!\vec{\tau}_1\!\cdot\!\vec{\tau}_1\right) \\ &P_{12}(\tau)\!=\!\frac{1$$

Зависимость от спина (обменное взаимодействие) приводит к изменению характера взаимодействия (притяжение или отталкивание), что обеспечивает насыщение ядерного взаимодействия.

Нуклонное рассеяние

Значения	четное <i>l</i>		нечетное 1		
операторов	триплетное	синглетное	триплетное	синглетное	
M: P ₁₂ (r)	1	1	-1	-1	
B: P ₁₂ (σ)	1	-1	1	-1	
H: P ₁₂ (τ)	1	-1	-1	1	

Эффективное взаимодействие

В практических расчетах используются следующие виды радиальной зависимости нуклонного взаимодействия:

$$\begin{split} &V(r) = \begin{cases} -V_0, & r < b \\ 0, & r > b \end{cases} & \text{- прямоугольная яма} \\ &V(r) = -V_0 \exp\left(-r^2/b^2\right) & \text{- гауссовский потенциал} \\ &V(r) = -V_0 \exp\left(-2r/b\right) & \text{- экспоненциальный потенциал} \\ &V(r) = -V_0 \exp\left(-r/b\right) / (r/b) & \text{- потенциал Юкавы} \\ &V(r) = -V_0 \exp\left(-r/b\right) \left[1 - \exp\left(-r/b\right)\right]^{-1} & \text{- потенциал Хюльтена} \end{split}$$

Значения радиального параметра b в потенциалах нельзя сравнивать непосредственно. Можно использовать мощность потенциалов s.

Элементарная теория дейтрона

$$H = H(1) + H(2) + V_{12}, \qquad \mu = m/2 \qquad \qquad \mu \text{ - приведенная масса нуклона}$$

$$\left(-\frac{\hbar^2}{2\mu}\Delta + V(r) - E\right)\psi(\vec{r}) = 0, \qquad \psi(\vec{r}) = \sum_{l,m} \frac{u_l(r)}{r} Y_{lm}(\vartheta,\varphi)$$

$$\frac{d^2}{dr^2} + \frac{2\mu}{\hbar^2} \left\{ E - V(r) - \frac{\hbar^2 l(l+1)}{2\mu r^2} \right\} u_l = 0, \qquad u_l(0) = 0$$

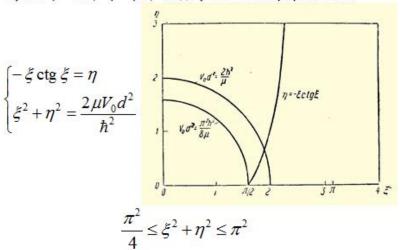
$$V(r) = \frac{-V_0, \qquad r < d}{0, \qquad r > d} \qquad \qquad \text{--модель для оценки энергии нижайшего уровня с } l = 0$$

$$r < d \quad u_{l=0} = A \sin \alpha r, \quad \alpha^2 = \frac{2\mu}{\hbar^2} [V_0 + E]$$

$$r > d \quad u_{l=0} = B \exp(-\beta r), \quad \beta^2 = -\frac{2\mu E}{\hbar^2}$$

$$r = d \quad \frac{u'_1}{u_2} = \frac{u'_2}{u_3} \quad \Rightarrow \quad \alpha \cdot \operatorname{ctg}(\alpha d) = -\beta \qquad \text{--условие непрерывности.}$$

Пусть $\xi = \alpha d$, $\eta = \beta d$, тогда условие непрерывности:



Мощность ямы s — это число, на которое нужно разделить потенциал V, чтобы уменьшить энергию связи до нуля. Т.е. эффективный потенциал V/s дает энергию связи E=0.

$$\frac{\pi^2\hbar^2}{8\mu} \leq V_0 d^2 \leq \frac{\pi^2\hbar^2}{2\mu} \qquad \text{- мощность ямы} \quad s = \frac{4}{\pi^2} \frac{m \, V_0 d^2}{\hbar^2}$$

Для d=2 фм V_0 >25 МэВ, а E~2 МэВ. Малая энергия определяется как разность больших чисел!

Для l=1 : $V_0 d^2 > \pi^2 \mathbf{h}^2 / 2\mu$, т.е. у дейтрона вообще нет возбужденных состояний!

Для объяснения наблюдаемого квадрупольного момента дейтрона необходимо привлечение тензорных сил S_{12} , которые «перемешивают» состояния 3S_1 и 3D_1 :

$$\psi_{M}^{I-1} = a_{0} \varphi_{m-0}^{I-0} \left(r\right) \chi_{M}^{S-1} + a_{2} \left\{ \varphi^{I-2} \left(r\right) \chi^{S-1} \right\}_{M}^{I-1}$$

Для Q=0.29 $e \cdot \phi M^2$ достаточно, чтобы $(a_2/a_0) \approx 3\%$.

Выводы

- Нуклонное взаимодействие сильное, короткодействующее.
- Насыщение достигается за счет знакопеременных обменных сил.
- Эффективное ядерное взаимодействие может не совпадать с «пустотным», взятым из нуклон-нуклонного рассеяния.
- Дейтрон слабосвязанная система, свойства которой слабо зависят от детального вида взаимодействия.

Задачи

- 1. Показать, что функция $\varphi = -g \frac{1}{r} e^{-mr}$ является решением уравнения мезонного поля.
- 2. Убедиться, что оператор $P_{12}(\sigma)$ оператор перестановки спинов.
- 3. Доказать, что оператор $P_{12}(r) = P_{12}(\sigma) \cdot P_{12}(\tau)$ действительно является оператором перестановки координат (воспользоваться полной антисимметричностью волновой функции).
- Выделить движение центра тяжести двухнуклонной системы.

СТРУКТУРА И СВОЙСТВА МАЛОНУКЛОННЫХ СИСТЕМ

Лекция 4

Законы сохранения

$$\begin{split} H &= \sum_{i} H \big(x_{i} \big) + \frac{1}{2} \sum_{i,k} V \big(x_{i}, x_{k} \big), \qquad x = \vec{r}, \sigma, \tau \\ \big[H, P \big] &= 0 \qquad \qquad \text{чётность} \\ \vec{I} &= \vec{L} + \vec{S} \\ \big[H, \vec{I}^{\, 2} \big] &= 0 \qquad \vec{I} = \sum_{i} \vec{J}_{i} \qquad \qquad \text{LS- и } \text{JJ-связь} \\ \text{Квантовые числа: } I, L, \pi \\ \big[H, \vec{L}^{\, 2} \big] &= 0 \qquad \vec{L} = \sum_{i} \vec{l}_{i} \\ \big[H, \vec{S}^{\, 2} \big] &= 0 \qquad \vec{S} = \sum_{i} \vec{S}_{i} \end{split}$$

Выделение движения центра тяжести, координаты Якоби, «ложные» состояния.

Юджин Вигнер

Wigner Jenő Pál (венг.); 1902 - 1995 американский физик и математик венгерского происхождения, лауреат Нобелевской премии по физике 1963 г. «за вклад в теорию атомного ядра и элементарных частиц, особенно с помощью открытия и приложения фундаментальных принципов симметрии».

Иногда Вигнера называют тихим гением, так как некоторые его современники считали его равным Эйнштейну, но не таким знаменитым. Вигнер знаменит тем, что положил основы теории симметрий в квантовой механике, своими исследованиями атомного ядра, а также некоторыми своими теоремами.

Нуклонные орбитали, числа заполнения

	<i>l</i> =0,	<i>l</i> =1,	<i>l</i> =0, 2,	<i>l</i> =1, 3, π=-	·		(t)
	π=+	π=-	π=+	π=-	•	•	()
	1s _{1/2} (2)	1p _{3/2} (4)	1d _{5/2} (6)	1f _{7/2} (8)	¹H	²H	4He
		1p _{1/2} (2)	2s _{1/2} (2)	2p _{3/2} (4)		⁷ Li	¹⁶ O
			1d _{3/2} (4)	2p _{1/2} (2)			
				1f _{5/2} (6)	\oplus		(†) (†)
N	2	6	12	20	(5 ⊕ /	$\bigcirc \oplus \oplus$
Σ	2	8	20	40			+

²H: $\Pi(1s_{1/2})^1 V(1s_{1/2})^1$

³H: π(1s_{1/2})¹ v(1s_{1/2})² ³He: π(1s_{1/2})² v(1s_{1/2})¹ ⁴He: π(1s_{1/2})² v(1s_{1/2})² L=0, J=0, π =+

L=0, J=1, π=+ L=0, J=1/2, π =+

L=0, J=1/2, π =+

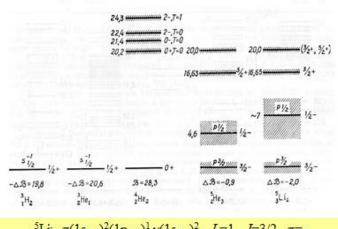
μ=0.88≈μ_p+μ_n µ=2.91≈µ₀ µ=-2.13≈µ_n

 $\mu=0$

Конфигурации легчайших ядер

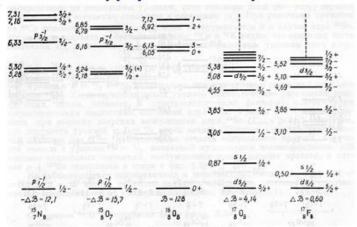
Нуклид	Конфигурация	Įπ	μ [μ _B]
² H	$\pi(1s_{1/2}) \nu(1s_{1/2})$	1+ 1+	0.88 0.86
3H	$\pi(1s_{1/2}) \nu(1s_{1/2})^2$	1/2+ 1/2+	2.79 2.98
3He	$\pi(1s_{1/2})^2 v(1s_{1/2})$	1/2+ 1/2+	-1.91 -2.13
⁴ He	$\alpha \equiv \pi (1s_{1/2})^2 v (1s_{1/2})^2$	0+ 0+	0 0
⁶ Li	$\alpha + \pi(1p_{3/2}) v(1p_{3/2})$ $\alpha + \pi(1s_{1/2}) v(1s_{1/2})$	3+ 1+ 1+ 1+	0.88 0.82
7Li	$\alpha + \pi(1p_{3/2}) \nu(1p_{3/2})^2$	3/2- 3/2-	3.26 3.07
⁹ Be	$\alpha + \pi (1p_{3/2})^2 v (1p_{3/2})^3$	3/2- 3/2-	-1.18 -1.14
¹⁰ B	$\alpha + \pi (1p_{3/2})^3 v (1p_{3/2})^3$	3+ 3+	1.80 1.88
11B	$\alpha + \pi (1p_{3/2})^3 v (1p_{3/2})^4$ $\alpha + \pi (1p_{3/2})(2s_{1/2})^2 v (1p_{3/2})^4$	3/2- 3/2-	3.79 2.69
¹² C	$^{12}C \equiv \alpha + \pi (1p_{3/2})^4 v (1p_{3/2})^4$	0+ 0+	0 0
13C	$^{12}C + v(1p_{1/2})$	1/2+ 1/2+	0.64 0.70
¹⁴ N	$^{12}C + \pi(1p_{1/2}) \nu(1p_{1/2})$	1+ 1+	-0.40 -0.40
15N	$^{12}C + \pi(1p_{1/2}) v(1p_{1/2})^2$	1/2- 1/2-	-0.28 -0.24
16O	$^{16}O \equiv ^{12}C + \pi(1p_{1/2})^2 v(1p_{1/2})^2$	0+ 0+	0 0

Возбуждённые состояния ядер



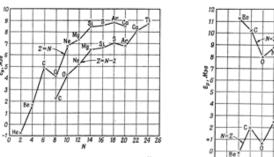
⁵Li: $\pi(1s_{1/2})^2(1p_{3/2})^1 \nu(1s_{1/2})^2$ *L*=1, *J*=3/2, π =⁵He: $\pi(1s_{1/2})^2 \nu(1s_{1/2})^2(1p_{3/2})^1$ *L*=1, *J*=3/2, π =-

Частично-дырочное сопряжение



 $\begin{array}{lll} ^{15}\mathrm{N:} & \pi (1s_{1/2})^2 (1p_{3/2})^4 (\pmb{1p_{1/2}})^{-1} \nu (1s_{1/2})^2 (1p_{3/2})^4 (1p_{1/2})^2 & \mathcal{F}=1/2^- \ \mu=-0.28 \ (-0.263) \\ ^{17}\mathrm{O:} & \pi (1s_{1/2})^2 (1p_{3/2})^4 (1p_{1/2})^2 \nu (1s_{1/2})^2 (1p_{3/2})^4 (1p_{1/2})^2 (\pmb{1d_{5/2}})^1 \\ & \mathcal{F}=5/2^+ \ \mu=-1.89 \ (-1.89) \end{array}$

Энергетические оболочки



Энергии присоединения нейтронов (слева) и протонов (справа) к ядру NEl_Z (Z и N — чётные).

Если ввести поправку на кулоновскую энергию, то кривая энергий присоединения протонов при N=Z практически совпадает с соответствующей кривой для нейтронов, что свидетельствует о зарядовой независимости ядерных сил.

Изоспин в структуре ядра

Изобарический спин нуклона T=1/2:

протон
$$T_z$$
=-1/2, нейтрон T_z =+1/2.

Изобары с A=45 с заполняющейся оболочкой $f_{7/2}$, конфигурация $v(f_{7/2})^\kappa\pi$ $(f_{7/2})^\lambda$, κ + λ =5:

45
Ca (κ=5, λ=0), 45 Sc (κ=4, λ=1), 45 Ti (κ=3, λ=2), 45 V (κ=2, λ=3), 45 Cr (κ=1, λ=4), 45 Mn (κ=0, λ=5)

$$T_z = \frac{1}{2}(N - Z) = \frac{1}{2}(\kappa - \lambda)$$

 $T_z(^{45}\text{Ca}) = 5/2$, $T_z(^{45}\text{Sc}) = 3/2$, $T_z(^{45}\text{Ti}) = 1/2$, $T_z(^{45}\text{V}) = -1/2$, $T_z(^{45}\text{Cr}) = -3/2$, $T_z(^{45}\text{Mn}) = -5/2$

$$T = T_{z\,max} = \frac{1}{2}(N-Z)_{max}$$

Основные состояния: $T(^{45}\text{Ca}, ^{45}\text{Mn})=5/2$, $T(^{45}\text{Sc}, ^{45}\text{Cr})=3/2$, $T(^{45}\text{Ti}, ^{45}\text{V})=1/2$

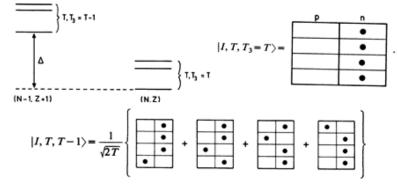
Изобар-аналоговые состояния

Для состояния $|I,T,T_3=T\rangle$ с энергией E можно определить аналоговое состояние с помощью «понижающего» оператора:

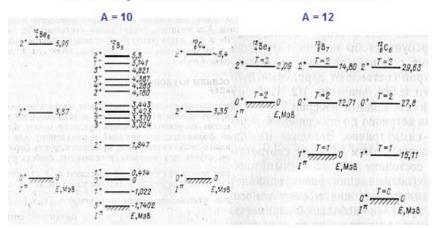
$$T^{(-)}|I,T,T3=T\rangle = \sqrt{2T}|I,T,T3=T-1\rangle$$

Оно возникает в соседнем ядре с N-1, Z+1 и имеет энергию

$$E_a = E + \Delta$$



Изобар-аналоговые состояния



В спектрах соседних ядер наблюдаются «аналоговые» состояния

Альфа-частичная модель

Ядра с *A*=4*n*: ⁸Be, ¹²C, ¹⁶O, ²⁰Ne, ²⁴Mg, ²⁸Si, ³²S. Энергия связи между α-частицами:

$$B_{\alpha}(A) = n \cdot E_{B}(^{4}\text{He}) - E_{B}(A)$$

Ядро	n	Конфигурация	Число связей	В _α , МэВ	Энергия на одну связь, МэВ
8Be	2	Гантель	1	-0.12	-
¹² C	3	Треугольник	3	7.33	2.45
¹⁶ O	4	Тетраэдр	6	14.5	2.42
²⁰ Ne	5	Пирамида	8	19.3	2.41
²⁴ Mg	6	Октаэдр	12	28.8	2.40
²⁸ Si	7	Пятиугольная бипирамида	16	37.8	2.36
³² S	8	Шестиугольная бипирамида	19	46.8	2.47

Выводы

- Нуклоны последовательно заполняют ядерные оболочки.
- Частично-дырочное сопряжение.
- Конфигурации основных состояний лёгких ядер определяются законами сохранения.
- В лёгких ядрах необходим корректный учёт движения центра тяжести.
- Возбуждённые состояния ядер связаны с изменением квантовых состояний нуклонов.
- Изоспин и аналоговые состояния.
- Альфа-частичная модель объясняет аномальные энергии связи ядер с A=4n.

Задачи

- Определить спины и чётности основных состояний ядер ¹³С и ¹³N.
- 2. Определить возможные магнитные моменты ядер ⁶Li, ¹¹B.
- Определить конфигурацию основного состояния ядра ¹⁷О, сравнить его спин, чётность и магнитный момент с экспериментальными значениями.
- 4. Нейтрон находится в p-состоянии. Найти значения полного момента j и возможные значения его проекции j_z .
- 5. На оболочке с квантовыми числами n=1, l=2 находятся нейтрон и протон. Определить их суммарный полный момент J и его проекцию J₂. Изменится ли результат, если на этой оболочке будут находиться два нейтрона?

ОДНОЧАСТИЧНАЯ СТРУКТУРА СФЕРИЧЕСКИХ ЯДЕР

Лекция 5

Самосогласованное поле

Нерелятивистское рассмотрение.

$$\begin{split} H &= \sum_{i} H(x_{i}) + \frac{1}{2} \sum_{i,k} V(x_{i}, x_{k}) + \dots \quad \Psi(x_{1}, x_{2}, \dots x_{N}) \quad x = \vec{r}, \sigma, \tau \\ & \text{min} \quad E = \langle H \rangle = \int \Psi^{*} H \Psi dx \\ \Psi &= \prod_{i} \varphi_{i} = \varphi_{1}(x_{1}) \varphi_{2}(x_{2}) \cdots \varphi_{N}(x_{N}), \quad \int \varphi_{i} *(x) \varphi_{k}(x) dx = \delta_{i,k} \\ \Psi &= \frac{1}{\sqrt{N!}} \begin{vmatrix} \varphi_{1}(x_{1}) & \varphi_{1}(x_{2}) \dots & \varphi_{1}(x_{N}) \\ \varphi_{2}(x_{1}) & \varphi_{2}(x_{2}) \dots & \varphi_{2}(x_{N}) \\ \varphi_{N}(x_{1}) & \varphi_{N}(x_{2}) \dots & \varphi_{N}(x_{N}) \end{vmatrix} \\ \delta \langle H \rangle &= \int \partial \Psi^{*} H \Psi dx + \int \Psi^{*} H \partial \Psi dx - \mathbb{E} \int (\partial \Psi^{*} \Psi + \Psi^{*} \partial \Psi) dx = 0 \\ \{ H_{i}(x) + V_{i}(x) \} \varphi_{i}(x) = E_{i} \varphi_{i}(x), \quad i = 1, 2, \dots N \\ V_{i}(x) &= \sum_{k \neq i} \int dx_{k} \varphi^{*}_{k}(x_{k}) V(x_{i}, x_{k}) \varphi(x_{k}) \end{split}$$

Разделение переменных

$$\begin{split} \left[H,\vec{L}^2\right] &= 0, \quad \left[H,\vec{S}^2\right] = 0 \\ \Psi(x) &= \psi(r)Y(\mathcal{G},\varphi)\chi(\sigma) \\ \vec{L}^2Y_{l,m} &= l(l+1)Y_{l,m}, \quad L_zY_{l,m} = mY_{l,m} \\ \vec{S}^2\chi(\sigma) &= \frac{3}{4}\chi(\sigma), \quad S_z\chi(\sigma) = \sigma\chi(\sigma), \quad \sigma = \pm 1/2 \\ &\left\{-\frac{\hbar^2}{2m}\nabla^2 + V(r)\right\}\psi_i(\vec{r}) = E_i\cdot\psi_i(\vec{r}) \\ \psi_i(\vec{r}) &= R_{n,l}(r)Y_{l,m}(\mathcal{G},\varphi) = \frac{u_{n,l}(r)}{r}Y_{l,m}(\mathcal{G},\varphi) \\ &\left\{-\frac{\hbar^2}{2m}\frac{d^2}{dr^2} + \frac{\hbar^2l(l+1)}{2mr^2} + V(r)\right\}u_{n,l}(r) = E_{n,l}\cdot u_{n,l}(r) \end{split}$$

Эффективные потенциалы

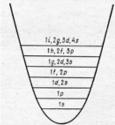
Потенциал гармонического осциллятора:

$$V(r) = -V_0 \left[1 - \frac{r^2}{R^2} \right] = -V_0 + \frac{1}{2} m\omega_0^2 r^2, \quad \omega_0^2 = \frac{2V_0}{mR^2}$$

$$\hbar \, \omega_0 \approx 41 \cdot A^{-1/3} \,$$
 МэВ

$$u_{n,l} \propto \rho^{l+1} L_n^{l+1/2} (\rho^2) \exp\left(-\frac{\rho^2}{2}\right), \qquad E_{n,l} = [2(n-1)+l+3/2]\hbar \omega_0$$

$$N = 2(n-1)+l$$



N	E_N	d_N	n, l	π
0	3/2 ħω ₀	2	1s	+
1	5/2 ħω ₀	6	1p	-
2	7/2 ħω ₀	12	1d, 2s	+
3	9/2 ħω ₀	20	1f, 2p	-

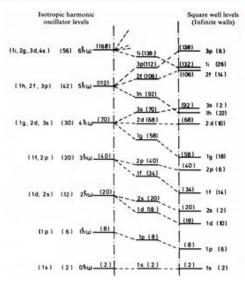
Прямоугольная яма:
$$V(r)\!=\!\begin{cases} -V_0, & r\leq R_0\\ \infty, & r>R_0 \end{cases}$$

$$\psi(r)\!=\!\frac{1}{\sqrt{kr}}J_{l+1/2}(kr)$$

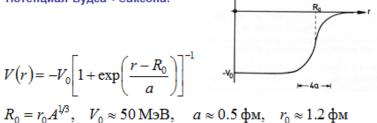
 $J_{i+1/2}(x)$ - сферическая функция Бесселя первого рода. Энергия $E_{n,i}$ =($\mathbf{h}^2/2m$) k^2 определяется из граничного условия $J_{i+1/2}(kR_0)$ =0, n — номер корня для заданного l.

n	1	2	3	1	2	3	1	2	3
l	0	0	0	1	1	1	2	2	2
kR ₀	π	2π	3π	4.50	7.72	10.9	5.77	9.10	12.3

Сравнение спектров в осцилляторной и прямоугольной ямах



Потенциал Вудса - Саксона:



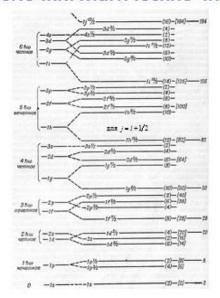
Одночастичные волновые функции определяются численным интегрированием радиального уравнения или разложением по осцилляторным функциям:

$$u_{n,l,j}^{(WS)}(r) = \sum_{n} a_{n'}(nlj)u_{n',l}^{(osc)}(r), \quad \sum_{n=1}^{N} a_{n}^{2} = 1$$

Спин-орбитальное взаимодействие

$$\begin{split} \vec{j} &= \vec{l} + \vec{s}, \quad 2(\vec{l} \cdot \vec{s}) = \hbar^2 \big\{ j \big(j + 1 \big) - l \big(l + 1 \big) - 3/4 \big\} \\ V_{LS}(x) &= -f(r) (\vec{l} \cdot \vec{s}), \quad f(r) = \lambda \frac{1}{r} \frac{dV}{dr} \\ \Big\langle n, l, j \big| V_{LS} \big| n, l, j \Big\rangle &= f(r) \Big\langle (\vec{l} \cdot \vec{s}) \Big\rangle_{n, l, j} = \begin{cases} -\frac{l}{2} \big\langle f(r) \big\rangle_{n, l} & \text{для } j = l + 1/2 \\ \frac{l+1}{2} \big\langle f(r) \big\rangle_{n, l} & \text{для } j = l - 1/2 \end{cases} \\ \Delta E_{l, \tau} &\approx -12 \big(l + 1 \big) A^{-2/3} \quad \text{M3B} \end{split}$$

Оболочки. Магические числа



Мария Гёпперт-Майер

Магіа Göppert-Mayer (1906 - 1972) — американский (нем.) физик, одна из двух женщин-лауреатов Нобелевской премии по физике: половина премии за 1963 г., совместно с Х. Иенсеном, «за открытия, касающиеся оболочечной структуры ядра»; вторую половину премии получил Ю. Вигнер.

Модель Гёпперт-Майер объясняла существование магических чисел в физике ядра – того факта, что ядра с числами нуклонов 2, 8, 20, 28, 50, 82 и 126 были чрезвычайно стабильными. Суть объяснения состоит в спин-орбитальном взаимодействии нуклонов, в результате чего в ядре образуются оболочки. При заполнении оболочки получается чрезвычайно стабильная конфигурация ядра.

Man Goppen Mage

Иоханнес Г. Д. Йенсен

Johannes Hans Daniel Jensen (1907 - 1973)

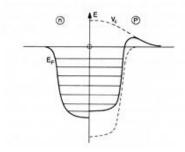
– немецкий физик, лауреат
Нобелевской премии по физике 1963 г.
совместно с М. Гёпперт-Майер «за
открытия, касающиеся оболочечной
структуры ядра». Вторую половину
премии получил Ю. Вигнер.

Первые работы Йенсена были посвящены уточнению статистической модели Томаса - Ферми. В 1939 г., основываясь на эмпирическом анализе свойств ядер, их энергий связи и распространённости в природе, он высказывает идею об оболочечной структуре ядра, однако в самых общих словах.

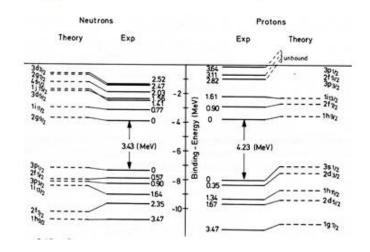
В результате интенсивного обмена идеями между Йенсеном и Гёпперт-Майер появилось почти полное понимание свойств лёгких ядер.

Кулоновский потенциал для протонов

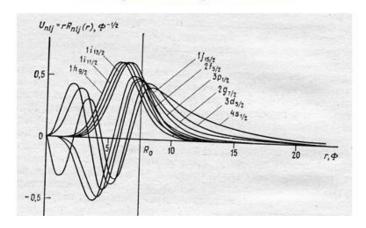
$$V_{C}(r) = \begin{cases} \frac{Ze^{2}}{R_{C}} \frac{1}{2} \left(3 - \frac{r^{2}}{R_{C}^{2}} \right), & r \leq R_{C} \\ \frac{Ze^{2}}{r}, & r > R_{C} \end{cases}$$



Одночастичные спектры ²⁰⁸Pb



Радиальные волновые функции нейтронов при A=208



Магнитные моменты

$$\mathbf{\mu}_{j} = \mathbf{\mu}_{l} + \mathbf{\mu}_{z} = g_{l}\mathbf{l} + g_{z}\mathbf{s} = g_{j}\mathbf{j}$$

Нуклоны	8 !	g ₂
р	1	5.586
n	0	-3.826

$$\mu_N = \frac{e\hbar}{2Mc}$$

$$\begin{split} \boldsymbol{g}_{j} = & \left\langle \frac{\boldsymbol{g}_{i} \big(\mathbf{l} \cdot \mathbf{j} \big) + \boldsymbol{g}_{s} \big(\mathbf{s} \cdot \mathbf{j} \big)}{\mathbf{j}^{2}} \right\rangle \\ 2 \big(\mathbf{l} \cdot \mathbf{j} \big) = \mathbf{j}^{2} + \mathbf{l}^{2} - \mathbf{s}^{2} & 2 \big(\mathbf{s} \cdot \mathbf{j} \big) = \mathbf{j}^{2} + \mathbf{s}^{2} - \mathbf{l}^{2} \\ \boldsymbol{g}_{j} = & \begin{cases} \left(l \boldsymbol{g}_{l} + \frac{1}{2} \boldsymbol{g}_{s} \right) \left(l + \frac{1}{2} \right)^{-1}, & \text{если } j = l + \frac{1}{2} \\ \left[\left(l + 1 \right) \boldsymbol{g}_{l} - \frac{1}{2} \boldsymbol{g}_{s} \right] \left(l + \frac{1}{2} \right)^{-1}, & \text{если } j = l - \frac{1}{2} \end{cases} \end{split}$$

$$\mu_j = \begin{cases} lg_i + \frac{1}{2}\,g_{\scriptscriptstyle S}, & \text{если } j = l + \frac{1}{2} \\ \left[(l+1)g_l - \frac{1}{2}\,g_{\scriptscriptstyle S} \right] \frac{2l-1}{2l+1}, & \text{если } j = l - \frac{1}{2} \end{cases}$$

	Р-нечётн	ые ядра		N-нечётные ядра				
j=H	<i>j=l</i> +1/2		<i>j=l-</i> 1/2		<i>j=l</i> +1/2		1/2	
s1/2	2.793			s1/2	-1.913			
p3/2	3.793	p1/2	-0.264	p3/2	-1.913	p1/2	0.638	
d5/2	4.793	d3/2	0.124	d5/2	-1.913	d3/2	1.148	
<i>f71</i> 2	5.793	<i>f</i> 5/2	0.862	<i>f71</i> 2	-1.913	<i>f</i> 5/2	1.366	
g9/2	6.793	g7/2	1.713	g9/2	-1.913	g7/2	1.488	
h11/2	7.793	h9/2	2.624	h11/2	-1.913	h9/2	1.565	

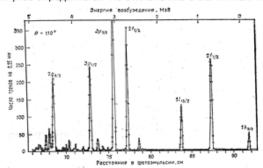
Исследование одночастичных состояний с помощью реакций передачи

Протонный спектр.

Реакции ²⁰⁸Pb(³He,d)²⁰⁹Bi (срыв) или ²⁰⁸Pb(³He,α)²⁰⁷Pb (подхват).

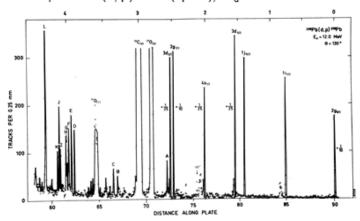
$$E_{d}\approx E_{\rm 3Hs}-E_{\rm N}^{*}-E_{\rm R}$$

В фотоэмульсии по длине трека идентифицируются частицы и измеряется их энергия. Импульс определяется по отклонению в магнитном поле.



Нейтронный спектр.

Реакция 208 Pb(d, p) 209 Pb (срыв), $E_{\rm d}$ = 12.0 MэB



Интенсивность пиков связана с угловым распределением. Измерения при разных углах однозначно позволяют установить квантовые числа состояний.

Выводы

- Среднее поле со спин-орбитальной связью объясняет существование магических чисел.
- Оболочечная модель воспроизводит экспериментальные значения спинов и чётностей основных состояний А-нечётных ядер и одночастичных возбуждений околомагических ядер.
- В основе среднего поля лежит ядерное самосогласованное поле, учитывающее антисимметризацию волновых функций нуклонов.
- Реакции передачи дают информацию об одночастичной структуре ядер.

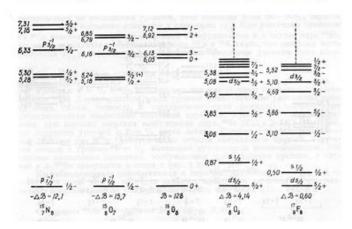
Задачи

- Показать, что «угловая часть» оператора Лапласа пропорциональна оператору квадрата момента количества движения L².
- 2. Рассчитать расстояния между уровнями 1s, 2s и 3s ядра 90 Zr для прямоугольной потенциальной ямы бесконечной глубины и в потенциале гармонического осциллятора $V(r) = -V_0 + \frac{m\omega^2 r^2}{2}$ при $V_0 = 40$ МэВ.
- Как изменится вид ядерного одночастичного спектра, если изменить знак у спин-орбитального взаимодействия? Сохранятся ли ядерные оболочки?
- Найти среднее значение магнитного момента нуклона в ядре в состоянии | j/sm>.

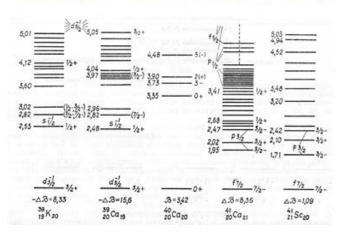
МНОГОЧАСТИЧНЫЕ КОНФИГУРАЦИИ В СФЕРИЧЕСКИХ ЯДРАХ

Лекция 6

Спектры ¹⁶О и соседних ядер



Спектры ⁴⁰Са и соседних ядер



Кроме одночастичных (дырочных) состояний в спектрах наблюдаются более сложные состояния, являющиеся комбинацией частичных и дырочных возбуждений.

Нуклонные конфигурации.

Оператор Лапласа в сферических координатах

Одночастичное уравнение Шрёдингера:

$$\begin{split} &H(x) = -\frac{\hbar^2}{2m} \nabla^2 + V(x), \quad H\psi_i(x) = E_i \psi_i(x) \\ &\nabla^2 = \Delta = \frac{1}{r^2} \cdot \frac{\partial}{\partial r} \left\{ r^2 \frac{\partial}{\partial r} \right\} + \frac{1}{r^2 \sin \mathcal{G}} \cdot \frac{\partial}{\partial \mathcal{G}} \left\{ \sin \mathcal{G} \frac{\partial}{\partial \mathcal{G}} \right\} + \frac{1}{r^2 \sin^2 \mathcal{G}} \cdot \frac{\partial^2}{\partial \varphi^2} \\ &\Delta = \frac{1}{r^2} \cdot \frac{\partial}{\partial r} \left\{ r^2 \frac{\partial}{\partial r} \right\} + \frac{1}{r^2} \Delta_{\Omega} \\ &\Delta_{\Omega} = -\tilde{L}^2 \end{split}$$

Разделение переменных:

$$\psi(x) = f_{n,l}(r)Y_{l,m}(\vartheta,\varphi)\chi_s$$

Оператор орбитального момента. Сферические функции

$$\begin{split} \vec{L} &= [\vec{r} \times \vec{p}], \quad \vec{r} \to \vec{r}, \quad \vec{p} \to -i\hbar \vec{\nabla} \implies \vec{L} = -i\hbar [\vec{r} \times \vec{\nabla}] \quad \hbar = 1 \\ \\ L_z &= -i \bigg(y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \bigg), \quad L_y = -i \bigg(z \frac{\partial}{\partial x} - x \frac{\partial}{\partial z} \bigg), \quad L_z = -i \bigg(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \bigg) \\ \\ L_r &= 0, \quad L_\theta = \frac{i}{\sin \vartheta} \frac{\partial}{\partial \varphi}, \quad L_\varphi = -i \frac{\partial}{\partial \vartheta} \end{split}$$

$$\bar{L}^{2}Y_{im}(\vartheta,\varphi) = l(l+1)Y_{im}(\vartheta,\varphi)
L_{2}Y_{im}(\vartheta,\varphi) = mY_{im}(\vartheta,\varphi)$$

$$\int_{0}^{2\pi} d\varphi \int_{0}^{\pi} Y_{l,m}^{*}(\vartheta,\varphi) Y_{l,m'}(\vartheta,\varphi) \sin \vartheta d\vartheta = \delta_{ll} \delta_{mm'}$$

Сложение угловых моментов

Две подсистемы: H = H(1) + H(2)

$$|j_1, m_1\rangle$$
, $|j_2, m_2\rangle$: $j_i^2|j_i, m_i\rangle = j_i(j_i + 1)|j_i, m_i\rangle$, $j_{z,i}|j_i, m_i\rangle = m_i|j_i, m_i\rangle$

- 1. Имеем $(2j_1+1)\times(2j_2+1)$ состояний $|j_1,m_1;j_2,m_2\rangle$ для полного набора коммутирующих операторов $H,\ j_1^2,\ j_21,\ j_2^2,\ j_22.$
- 2. Оператор полного углового момента **J**: $J_i = j_{i,1} + j_{i,2}$, i = x, y, z. Его собственные функции:

$$J^{2}|JM, j_{1}j_{2}\rangle = J(J+1)|JM, j_{1}j_{2}\rangle$$

 $J_{z}|JM, j_{1}j_{2}\rangle = M|JM, j_{1}j_{2}\rangle$

Они являются собственными для полного набора H, j_1^2 , j_2^2 , J^2 , J_2 . Оба представления связаны унитарным преобразованием

$$\left|JM,j_1j_2\right> = \sum_{m_1,m_2} C \left(j_1m_1,j_2m_2 \mid JM\right) \left|j_1m_1\right> \left|j_2m_2\right>,$$

коэффициенты которого называются коэффициентами Клебша - Гордана.

Коэффициенты Клебша - Гордана

$$\begin{split} &C(a\alpha,b\beta\mid c\gamma) = \delta_{\gamma,\alpha+\beta} \frac{\Delta(abc)}{(c+a-b)(c-a+b)!} \left[\frac{(a-\alpha)(b-\beta)!(c+\gamma)(c-\gamma)!(2c+1)}{(a+\alpha)(b+\beta)} \right]^{t/2} \times \\ &\times \sum_{z} \frac{(-1)^{z-\alpha+z}(a+\alpha+z)(c+b-\alpha-z)!}{z!(a-\alpha-z)(c-\gamma-z)(b-c+\alpha+z)!} \\ &\Delta(abc) = \left[\frac{(a+b-c)(a-b+c)(-a+b+c)}{(a+b+c+1)!} \right]^{t/2} \end{split}$$

Пример с b=1/2:

$C(lm,1/2s j\mu)$	s=1/2	s=-1/2
$\mu=m+s$		
j=l+1/2	$[(j+\mu+1/2)/(2j+1)]^{1/2}$	$[(j-\mu+1/2)/(2j+1)]^{1/2}$
j=l-1/2	-[(j-µ+1/2)/(2j+1)] ^{1/2}	[(j+\mu+1/2)/(2j+1)] ^{1/2}

Коэффициенты КГ автоматически учитывают антисимметризацию волновых функций!

Частные случаи для $C(a\alpha,b\beta/c\gamma)$

$$c$$
=0 или b =0: $Cig(alpha,beta\,|\,00ig)=ig(-1ig)^{a-lpha}\,rac{\mathcal{S}_{alpha}\mathcal{S}_{a,-eta}}{\sqrt{2a+1}}$ $Cig(alpha,00\,|\,c\gammaig)=\mathcal{S}_{a\!c}\,\mathcal{S}_{a\!c}$

c=a+b:

$$C(a\alpha, b\beta \mid a+b, \alpha+\beta) = \left\{ \frac{(2a)!(2b)!(a+b+\alpha+\beta)!(a+b-\alpha-\beta)!}{(2a+2b)!(a+\alpha)!(a-\alpha)!(b+\beta)!(b-\beta)!} \right\}^{1/2}$$

в частности,
$$C(aa,bb \mid a+b,a+b)=1$$

$$C(aa,b-b \mid a+b,a-b)=\sqrt{\frac{(2a)(2b)!}{(2a+2b)!}}$$

3ј-символы Вигнера

$$\begin{split} & \begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 m_2 m_3 \end{pmatrix} = \left(-1\right)^{j_3 + m_3 + 2 \, j_1} \frac{1}{\sqrt{2 \, j_3 + 1}} \, C \left(j_1 - m_1, \, j_2 - m_2 \mid j_3 \, m_3 \right) \\ & C \left(j_1 m_1, \, j_2 m_2 \mid j_3 m_3 \right) = \left(-1\right)^{j_1 - j_2 + m_{31}} \, \sqrt{2 \, j_3 + 1} \begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 - m_3 \end{pmatrix} \end{split}$$

3j-символ — амплитуда вероятности того, что три угловых момента, j_1,j_2,j_3 , с проекциями m_1,m_2,m_3 , соответственно, складываются в **нулевой** полный угловой момент:

$$\begin{pmatrix} j_1 j_2 j_3 \\ m_1 m_2 m_3 \end{pmatrix} = (-1)^{j_1 - j_2 + j_3} \sum_{j'm'} C(j_1 m_1, j_2 m_2 \mid j'm') C(j'm', j_3 m_3 \mid 0 \mid 0)$$

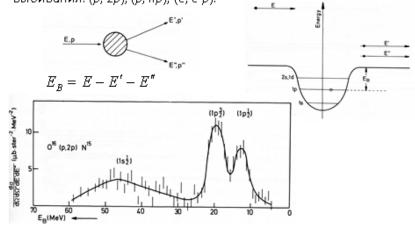
Циклическая перестановка моментов j_1, j_2, j_3 не изменяет значение 3j-символа.

Возможные угловые моменты J для конфигураций $(j)^k$

<i>j</i> =1/2	k=1	1/2
j=3/2	k=1	3/2
	k=2	0, 2
j=5/2	k=1	5/2
	k=2	0, 2, 4
	k=3	3/2, 5/2, 9/2
j=7/2	k=1	7/2
	k=2	0, 2, 4, 6
	k=3	3/2, 5/2, 7/2, 9/2, 11/2, 15/2
	k=4	0, 2 (2), 4 (2), 5, 6, 8
<i>j</i> =9/2	k=1	9/2
	k=2	0, 2, 4, 6, 8
	k=3	3/2, 5/2, 7/2, 9/2 (2), 11/2, 15/2, 17/2, 21/2
	k=4	0 (2), 2 (2), 3, 4 (3), 5, 6 (3), 7, 8 (2), 9, 10, 12
	k=5	1/2, 3/2, 5/2 (2), 7/2 (2), 9/2 (3), 11/2 (2),13/3 (2), 15/2 (2), 17/2 (2), 19/2, 21/2, 25/2

Исследования одночастичной структуры в ядерных реакциях

Реакции срыва (d,p) и подхвата (p,d), прямые реакции выбивания: (p,2p), (p,np), (e,e'p).



53

Выводы

- Одночастичные состояния околомагических ядер описываются частично-дырочными конфигурациями.
- Правила сложения угловых моментов определяют возможные спины многочастичных конфигураций.
- Многочастичные конфигурации не дают адекватного базиса для описания структуры ядер с незаполненными оболочками.
- Спектроскопический фактор реакций передач определяет меру одночастичности состояния.

Задачи

- Почему два одинаковых нуклона на орбитали с j = 3/2 не образуют состояний с полными моментами J = 1 и 3?
- Сколько одинаковых нуклонов можно разместить на орбитали с j = 5/2? Какой максимальный угловой момент можно при этом получить?
- 3. Доказать, что

$$C(a\alpha, b\beta \mid c\gamma) = (-1)^{a+b-c} C(a-\alpha, b-\beta \mid c-\gamma).$$

ЯДЕРНАЯ ДЕФОРМАЦИЯ. СТРУКТУРА ДЕФОРМИРОВАННЫХ ЯДЕР

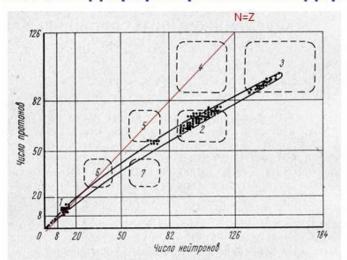
Лекция 7

Деформация ядерной поверхности

$$R(\mathcal{G}, \varphi) = R_0 \left(1 + \sum_{l,m} a_l Y_{l,m} (\mathcal{G}, \varphi) \right)$$

- 1. Существование вращательных полос в ядерных спектрах.
- 2. Большие квадрупольные моменты.
- 3. Коллективизированные Е2-переходы.
- 4. Одночастичная структура ядер, удаленных от магических.
- 5. Изомеры деления.

Области деформированных ядер



Потенциал Нильссона

$$V(r, \mathcal{G}, \varphi) = -V_0 \left[1 + \exp\left(\frac{r - R(\mathcal{G}, \varphi)}{a(\mathcal{G}, \varphi)}\right) \right]^{-1}$$

$$\begin{split} H_0 &= -\frac{\hbar^2}{2m}\Delta + \frac{m}{2}\left(\omega_x^2 x^2 + \omega_y^2 y^2 + \omega_z^2 z^2\right) \\ \omega_x \omega_y \omega_z &= \text{Const} = \omega_0^3, \qquad \hbar \omega_0 = 41 A^{-1/3} \text{ M3B} \\ E(n_x, n_y, n_z) &= \hbar \omega_x \left(n_x + \frac{1}{2}\right) + \hbar \omega_y \left(n_y + \frac{1}{2}\right) + \hbar \omega_z \left(n_z + \frac{1}{2}\right) \end{split}$$

Аксиальная $\omega_{\perp}^2 = \omega_{x}^2 = \omega_{y}^2 = \omega_{0}^2 \left(1 + \frac{2}{3}\,\delta\right), \qquad \omega_{z}^2 = \omega_{0}^2 \left(1 - \frac{4}{3}\,\delta\right)$

$$\vec{r}' = \vec{r} \left(\frac{\hbar}{m\omega_0}\right)^{-\frac{1}{2}}, \quad r' \propto \left(1 + \beta Y_{20}(\beta', \varphi')\right), \quad \beta = \frac{1}{3}\sqrt{\frac{16\pi}{5}}\delta \approx 1.057\delta$$

Одночастичный гамильтониан

$$H = H_0 + C_N \vec{l}_t \cdot \vec{s} + D_N \left(\vec{l}_t^2 - \left\langle \vec{l}_t^2 \right\rangle \right)$$

«модифицированный» оператор углового момента:

$$\begin{split} & \left(\vec{l}_t \right)_x = -i \left(\sqrt{\frac{\omega_\perp}{\omega_z}} y \, \frac{\partial}{\partial z} - \sqrt{\frac{\omega_z}{\omega_\perp}} z \, \frac{\partial}{\partial y} \right), \quad \left(\vec{l}_t \right)_y, \quad \left(\vec{l}_t \right)_z \\ & \vec{l}_t \underset{\beta \to 0}{\longrightarrow} \vec{l} \qquad \left\langle \vec{l}_t^{\, 2} \right\rangle_N = \frac{1}{2} \, N \big(N + 3 \big) \end{split}$$

$$H|N\Omega^{\pi}\alpha\rangle = E_{N\Omega^{\pi}\alpha}|N\Omega^{\pi}\alpha\rangle$$

Выбор представления

Изотропный гармонический осциллятор со спин-орбитальной опидента.

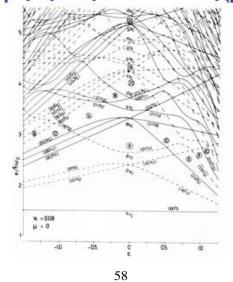
$$\begin{split} & \left. \begin{matrix} H_0 \\ \vec{l}^2 \\ \vec{j}^2 \\ j_z \end{matrix} \right\} |Nlj\Omega\rangle = \frac{E_{Nlj\Omega}^{(0)}}{j(j+1)} |Nlj\Omega\rangle, \\ & \left. \begin{matrix} I(l+1) \\ j(j+1) \\ \Omega \end{matrix} \right\} |Nlj\Omega\rangle, \\ & \left. \begin{matrix} E_{Nlj\Omega}^{(0)} = \left(N + \frac{3}{2}\right) \hbar \omega_0 + \left[(2D_N - C_N)l(l+1) + C_N j(j+1) - 3C_N/4\right]/2 \\ |N\Omega^\pi \alpha\rangle = \sum_{l,j} A_{l,j}^{N,\Omega} |Nlj\Omega\rangle \end{split}$$

Используется в области малых деформаций.

Цилиндрические координаты. Асимптотическое представление

$$\begin{split} H_0 \\ l_z \\ s_z \end{bmatrix} |NN_z \Lambda \Sigma\rangle &= \prod_{\Delta} E_{NN_z}^{(0)} \\ \sum_{S_z} |NN_z \Lambda \Sigma\rangle &= \prod_{\Delta} |NN_z \Lambda \Sigma\rangle, \quad N = N_z + N_\perp \\ E_{NN_z}^{(0)} &= \hbar \omega_0 \left\{ \left(N + \frac{3}{2} \right) \left(1 + \frac{\varepsilon^2}{9} \right) + \left(N - 3N_z \right) \left(1 - \frac{\varepsilon}{6} \right) \varepsilon / 3 \right\} \\ |NN_z \Lambda \Sigma\rangle &= |n\Lambda\rangle |N_z\rangle |\Lambda\rangle |\Sigma\rangle \\ |\Lambda\rangle &= (2\pi)^{-1/2} e^{i\Lambda \cdot \varphi} \\ |N_z\rangle &= \left[2^{N_z} (N_z) \sqrt{\pi} \right]^{-1/2} e^{-\varepsilon^2 \frac{1}{2}} H_{N_z}(\zeta) \\ |n\Lambda\rangle &= [n!(n + |\Lambda|) / 2]^{-1/2} e^{-\varepsilon^2 \frac{1}{2}} \rho^{|\Lambda|} L_n^{|\Lambda|}(\rho^2) \\ n &= (N - N_z - |\Lambda|) / 2 \\ |N\Omega^\pi \alpha\rangle &= \sum_{N_z} C_{N_z \Lambda \Sigma}^{N\Omega} |NN_z \Lambda \Sigma\rangle \\ \pi &= (-1)^N = (-1)^{N_z + \Lambda} \end{split}$$

Одночастичная схема уровней деформированного ядра

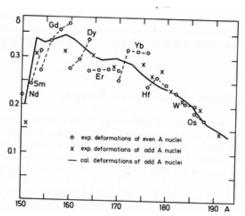


Параметры деформации и спины основных состояний нечетных ядер

	δ	I _{o theo}	Io exp		δ	I _{o theo}	Io exp
₆₃ Eu ¹⁵¹	0.16	3/2 [±] ,5/2 [±] , 1/2 ⁻	5/2	Gd ₉₁ ¹⁵⁵	0.31	5/2*,3/2-	3/2
63Eu153	0.30	5/2+,3/2+	5/2	Gd ₉₃ ¹⁵⁷	0.31	3/2-,5/2+	3/2
65Tb159	0.31	3/2+,5/2+	3/2	Dy95	0.31	5/2-	
67Ho165	0.30	7/2-,1/2+	7/2	Er167	0.29	1/2-,7/2+,11/2-	7/2
69Tm ¹⁶⁹	0.28	1/2+,7/2-	1/2	Yb171	0.29	7/2+,1/2-,11/2-	1/2
71Lu175	0.28	7/2+,5/2+	7/2	Yb173	0.29	5/2-	5/2
73Ta ¹⁸¹	0.23	5/2+,7/2+	7/2	Hf177	0.26	7/2-	7/2
75Re ¹⁸³	0.19	9/2-,(5/2+)	5/2	Hf179	0.27	9/2+	9/2
75Re187	0.19	9/2-,(5/2+)	5/2	W183	0.21	1/2-,7/2-,3/2-	1/2
77Ir ¹⁹¹	0.14	3/2+,1/2+, 11/2-	3/2	Os187	0.18	1/2-,3/2-,9/2-	1/2
77 Ir 193	0.12	3/2 ⁺ , 1/2 ⁺ , 11/2 ⁻	3/2	Os189	0.15	1/2 ⁻ ,3/2 ⁻ ,11/2 ⁺ , (9/2 ⁻)	3/2

Энергия деформации ядра

$$H = \sum_{i=1}^{A} t_i + \frac{1}{2} \sum_{i,j} v_{ij} \Rightarrow H = \frac{1}{2} \sum_{i=1}^{A} h_i + \frac{1}{2} \sum_{i=1}^{A} t_i, \quad h_i = t_i + V_i, \quad V_i = \sum_{i,j} v_{ij}$$



Вириальная теорема:

$$\begin{split} \left\langle t_{i}\right\rangle &=\left\langle V_{i}\right\rangle =\frac{1}{2}\left\langle h_{i}\right\rangle \\ E_{0}(\delta) &=\left\langle H\right\rangle =\frac{3}{4}\sum_{i=1}^{A}\left\langle h_{i}\right\rangle =\\ &=\frac{3}{4}\sum_{i=1}^{A}E_{i}(\delta)\\ \left. \mathcal{S}_{eq}:\frac{dE_{0}}{d\delta}\right|_{\delta_{eq}}=0 \end{split}$$

Выводы

- Ядра, удаленные от магических, не являются сферически симметричными и обладают статической деформацией.
- Для описания свойств большинства деформированных ядер достаточно квадрупольной деформации.
- Основные состояния нечётных деформированных ядер являются одночастичными.
- Потенциал Нильссона даёт адекватный базис для описания свойств деформированных ядер.

Задачи

- 1. Почему энергия нижайшего уровня $s_{1/2}$ не зависит от деформации?
- 2. Сохраняются ли магические числа при деформации?
- 3. Почему в деформированном среднем поле для протонов не учитывается кулоновское взаимодействие?
- Пользуясь схемой уровней деформированного ядра, определить спин и чётность основного состояния ²⁵Mg, имеющего деформацию є≈0.4.

ПАРНЫЕ КОРРЕЛЯЦИИ И ЯДЕРНАЯ СВЕРХТЕКУЧЕСТЬ

Лекция 8

Экспериментальные указания на существование спаривания

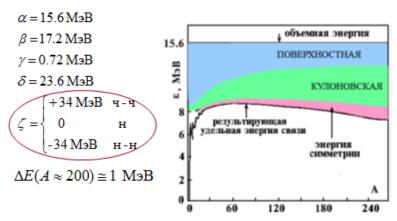
- Симметрия 0⁺ основных состояний чётно-чётных ядер.
- Энергетическая щель в спектрах возбуждения чётночётных ядер и плотность состояний.
- Чётно-нечётный эффект в энергиях связи ядер

$$E_B(A - \text{odd}) < (E_B(A - 1) + E_B(A + 1))/2.$$

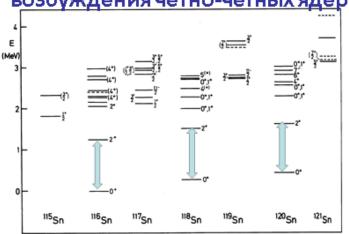
- Моменты инерции деформированных ядер.
- Границы областей деформации.

Энергия симметрии

$$E_{B}(A,Z) = \alpha A - \beta A^{2/3} - \gamma \frac{Z(Z-1)}{A^{1/3}} - \delta \frac{(A-2Z)^{2}}{A} + \zeta A^{-3/4}$$



Энергетическая щель в спектрах возбуждения чётно-чётных ядер



Энергетическая щель в спектрах возбуждения чётночётных изотопов олова.

Остаточное взаимодействие

$$H = \sum_{i} h(x_{i}) + \frac{1}{2} \sum_{i,j} V(x_{i}, x_{j})$$

$$H = \sum_{i} e_{i} a_{i}^{+} a_{i} + \frac{1}{2} \sum_{i,j,k,l} V_{ij,kl} a_{i}^{+} a_{j}^{+} a_{k} a_{l}$$

Два типа остаточного взаимодействия: дальнодействующее в канале «частица-дырка» (малый переданный импульс $q=p_1-p_2$)

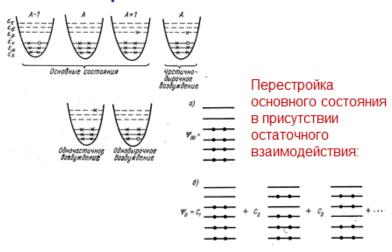
$$V = (Q^+ \cdot Q), \quad Q = \sum_{k,l} q_k a_k^+ a_l$$

 $V=:\mathcal{Q}^+\cdot\mathcal{Q}:,\quad \mathcal{Q}=\sum_{kl}q_ka_k^+a_l$ и короткодействующее в канале «частица-частица» (малый суммарный импульс $p\!\!=\!\!\!p_1\!\!+\!\!p_2$)

$$V = P^+ \cdot P, \quad P^+ = \frac{1}{2} \sum_{k,l} p_{kl} a_k^+ a_l^+$$

Эти взаимодействия параметризуются независимо!

Представление чисел заполнения – вторичное квантование



Операторы a^+ , a рождения и уничтожения фермионов в состояниях i, k:

$$\begin{aligned} & \left[a_{i}, a_{k}^{+} \right]_{+} = \left\{ a_{i}, a_{k}^{+} \right\} = a_{i} a_{k}^{+} + a_{k}^{+} a_{i}^{-} = \delta_{ik}, \\ & \left\{ a_{i}, a_{k} \right\} = \left\{ a_{i}^{+}, a_{k}^{+} \right\} = 0 \end{aligned}$$

Вакуумное состояние $|0>: a_i|0>=0$

Многочастичные состояния:

$$|i\rangle = a_i^+|0\rangle, \quad |i,k,...m\rangle = a_i^+a_k^+ \cdots a_m^+|0\rangle$$
$$\langle i|k\rangle = \langle 0|a_ia_k^+|0\rangle = \langle 0|(\delta_{ik} - a_k^+a_i)0\rangle = \delta_{ik}$$

Оператор числа частиц: $\hat{N} = \sum_i a_i^+ a_i$

Матрица плотности: $\rho(i,k) = \left\langle \left| a_i^+ a_k \right| \right\rangle, \quad \rho*(i,k) = \rho(k,i)$

Коррепяционная функция: $\Delta(i,k) = \langle |a_i a_k| \rangle$, $\Delta(i,k) = -\Delta(k,i)$

Каноническое преобразование Боголюбова, квазичастицы

$$\alpha_{\lambda}^{+} \longrightarrow \alpha_{i}^{+}$$

$$\alpha_{i}^{+} = \sum_{\lambda} \left(u_{i\lambda} a_{\lambda}^{+} + v_{i\lambda} a_{\lambda} \right)$$

$$\alpha_{i}^{-} = \sum_{\lambda} \left(u_{i\lambda}^{*} a_{\lambda}^{+} + v_{i\lambda}^{*} a_{\lambda}^{+} \right).$$

$$\begin{aligned} &\left\{\alpha_{i}^{+},\alpha_{k}\right\} = \delta_{ik} \\ &\left\{\alpha_{i},\alpha_{k}\right\} = \left\{\alpha_{i}^{+},\alpha_{k}^{+}\right\} = 0 \end{aligned}$$

Основное состояние чётно-чётного ядра определяется как вакуум квазичастиц: $|lpha_i|0
angle
angle=0$

$$\begin{split} H &= H_{00} + H_{11} + H_{20} + H_{02} + H_{22} + H_{31} + H_{13} + H_{40} + H_{04} \\ H_{00} &= \sum_{\lambda \lambda'} \left[\left(T_{\lambda \lambda'} + \frac{1}{2} U_{\lambda \lambda'} \right) \beta_{\lambda \lambda'} + \frac{1}{2} \Delta_{\lambda \lambda'} \chi_{\lambda' \lambda}^{*} \right] \\ \beta_{\lambda \lambda'} &= \sum_{k} \nu_{k \lambda} \nu_{k \lambda'}, \qquad \chi_{\lambda \lambda'} = \frac{1}{2} \sum_{k} \left(u_{k \lambda} \nu_{k \lambda'} - \nu_{k \lambda} u_{k \lambda'} \right) \\ H_{11} &= \sum_{i k} \sum_{\lambda \lambda'} \left[h_{\lambda \lambda'} \left(u_{i \lambda}^{*} u_{k \lambda'} - \nu_{k \lambda} \nu_{i \lambda'}^{*} \right) + \Delta_{\lambda \lambda'} u_{i \lambda'}^{*} \nu_{k \lambda'} + \Delta_{\lambda \lambda'}^{*} u_{i \lambda'} \nu_{k \lambda'}^{*} \right] \alpha_{i}^{*} \alpha_{k}^{*} \\ H_{20} &= \sum_{i k} \sum_{\lambda \lambda'} \left[h_{\lambda \lambda'} u_{i \lambda'}^{*} \nu_{k \lambda'}^{*} + \frac{1}{2} \left(\Delta_{\lambda \lambda'} u_{i \lambda'}^{*} u_{k \lambda'}^{*} - \Delta_{\lambda \lambda'}^{*} \nu_{i \lambda'}^{*} \nu_{k \lambda'}^{*} \right) \right] \alpha_{i}^{*} \alpha_{k}^{*} \\ H_{02} &= \sum_{i k} \sum_{\lambda \lambda'} \left[h_{\lambda \lambda'} \nu_{i \lambda} u_{k \lambda'} + \frac{1}{2} \left(\Delta_{\lambda \lambda'} \nu_{i \lambda} \nu_{k \lambda'} - \Delta_{\lambda \lambda'}^{*} u_{i \lambda} u_{k \lambda'} \right) \right] \alpha_{i} \alpha_{k} \\ \Delta_{\lambda \lambda'} &= -\frac{1}{4} \sum_{\nu \nu'} \Gamma_{\lambda \lambda'}^{\xi} \rho_{\nu \nu'} \sum_{k} \left(u_{k \nu} \nu_{k \nu'} - \nu_{k \nu} u_{k \nu'} \right) \end{split}$$

- корреляционная функция, или поле спаривания.

$$\left[H,lpha_{n}^{+}
ight]\!=\!E_{n}lpha_{n}^{+}$$
 - линеаризованное уравнение движения:

$$\begin{split} E_k u_{k\lambda} &= \sum_{\lambda'} \left\{ (h_{\lambda\lambda'} - \mu \delta_{\lambda\lambda'}) u_{k\lambda'} + \Delta_{\lambda\lambda'} v_{k\lambda'} \right\} \\ &- E_k v_{k\lambda} = \sum_{\lambda'} \left\{ (h_{\lambda\lambda'} - \mu \delta_{\lambda\lambda'}) v_{k\lambda'} + \Delta_{\lambda\lambda'} u_{k\lambda'} \right\}. \end{split}$$

$$N=\left<\hat{N}\right>=\sum_k\sum_{\it k} v_{\it k\it k\it k}^2$$
 - уравнение для определения химпотенциала μ , N - число частиц.

$$h_{\lambda\lambda'}=e_{\lambda}\,\mathcal{S}_{\lambda\lambda'},$$
 - выбор представления (среднее поле). $\left(j_{z}\right)_{22}=\Omega_{\lambda}\,\mathcal{S}_{\lambda\lambda'}.$

Уравнения БКШ

$$\Gamma_{\lambda\lambda',\nu\nu'}^{\xi} = -G\delta_{\iota'\bar{\iota}}\delta_{\nu'\bar{\nu}}$$

Подобно среднему полю, парные корреляции рассматриваются для каждого сорта частиц независимо - G: G_N , G_P

$$\begin{split} 2(e_{\lambda} - \mu)u_{\lambda}v_{\lambda} - \Delta\left(u_{\lambda}^{2} - v_{\lambda}^{2}\right) &= 0 \\ u_{\lambda}^{2} &= \frac{1}{2}\left(1 + \frac{e_{\lambda} - \mu}{E_{\lambda}}\right), \\ v_{\lambda}^{2} &= \frac{1}{2}\left(1 - \frac{e_{\lambda} - \mu}{E_{\lambda}}\right), \\ E_{\lambda} &= \sqrt{\left(e_{\lambda} - \mu\right)^{2} + \Delta^{2}} \end{split} \qquad \Delta = G\sum_{\lambda} u_{\lambda}v_{\lambda} \end{split}$$

 - квазичастичные энергии Е и корреляционная функция ∆ (поле спаривания).

Джон Бардин (1908 - 1991)

Американский физик, один из четырёх учёных, получивших сразу две Нобелевские премии, единственный учёный в истории, получивший две Нобелевские премии по физике: в 1956 г. за транзистор, совместно с У. Б. Шокли и У. Браттейном, и в 1972 г. за основополагающую теорию обычных сверхпроводников совместно с Л. Н. Купером и Дж. Р. Шриффером.

John Bardeen

Леон Нил Купер, 1930

Американский физик, пауреат Нобелевской премии по физике 1972 г., совместно с Дж. Бардиным и Дж. Шриффером, «за создание теории сверхпроводимости, обычно называемой БКШ-теорией». Его именем названы электронные пары Купера.

Leon Neil Cooper

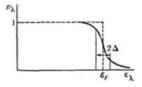
Л. Н. Купер является также директором института по мозговым и нейронным системам. Автор нестандартного учебника по физике, первоначально выпущенного под названием «Введение в сущность и структуру физики».

Джон Роберт Шриффер, 1931

В 1956 г. Бардин , Купер и Шриффер разработали теорию сверхпроводимости кристаллических твёрдых тел, основанную на представлении о сверхтекучести куперовских пар электронов. В 1964 Дж. Шриффер публикует свою книгу о теории БКШ «Theory of Superconductivity». В 1972 г. Бардину, Куперу и Шрифферу была присуждена Нобелевская премия по физике «за созданную их совместными усилиями теорию сверхпроводимости, обычно называемую теорией БКШ».

John Robert Schrieffer

Ядерная сверхтекучесть и парные энергии ядер

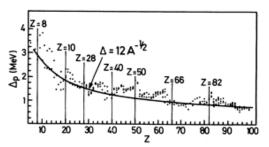


$$P_{n} = \{3E_{0}(Z,N-1) + E_{0}(Z,N+1) - 3E_{0}(Z,N) - E_{0}(Z,N-2)\}/4$$

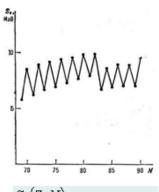
Полная энергия ядра:

$$E_0(Z, N) = \langle H \rangle =$$

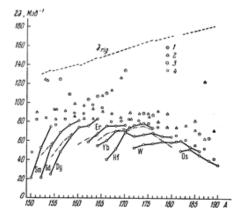
$$= \sum_{n, p} \left\{ \sum_i 2E_i v_i^2 - \Delta^2 / G \right\}$$



Парные корреляции объясняют чётно-нечётные колебания в энергиях связи ядер $E_B(A,Z)$ и энергиях отделения нуклонов и отличие ядерных моментов инерции от «твердотельных»:

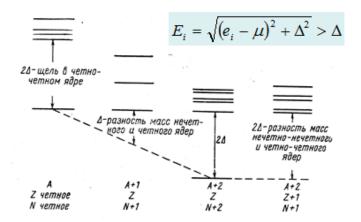


 $S_{n}(Z, N) =$ = $E_{0}(Z, N) - E_{0}(Z, N-1)$



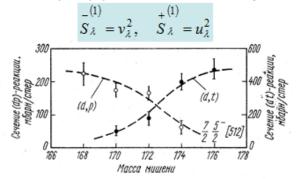
1 - чётно-чётные ядра, 2,3 - А-нечётные ядра, 4 - нечётно-нечётные ядра.

Спектры нижайших возбуждений соседних ядер



Реакции срыва и подхвата

Спектроскопические факторы реакций срыва, (d, p) например, или подхвата — (p, d) или (d, t), нуклона в состоянии λ пропорциональны u-, v- амплитудам:



Сечения (d,p) и (d,t) реакций на изотопах Yb для нейтронного состояния 5/2[512].

Спектроскопические факторы реакций срыва и подхвата нейтрона

Состояние		168Yb	170Yb	172Yb	174Yb	176Yb
1/2[521]	1/2[521] S*(1)		0.54	0.28	0.18	0.12
	S(d,p)	0.76	0.53	0.28	0.08	-
1/2[521]	$S^{(1)}$	0.32	0.46	0.72	0.82	0.88
	S(d,t)	0.26	0.41	0.76	0.81	0.87
5/2[512]	S*(1)	0.85	0.75	0.60	0.38	0.23
	S(d,p)	0.97	0.70	0.68	0.24	-
5/2[512]	$S^{(1)}$	0.15	0.25	0.40	0.62	0.77
	S(d,t)	-	0.17	0.30	0.66	0.86

Двухнуклонные передачи

Наибольший интерес представляют реакции (t,p) и (p,t) или $({}^3\mathrm{He},n)$ и $(n,{}^3\mathrm{He})$, когда передается нуклонная пара в синглетном состоянии, на четно-четных ядрах с развитым спариванием.

Дифференциальные сечения в максимуме реакций (р,†) (заштриховано) и (t,p), идущих на основное состояние изотопов Sm.

Роль парных корреляций в альфа-распаде ядер

Подобно реакциям передачи, альфа-распад связан с переходом между состояниями ядер, отличающихся на пару частиц в каждой подсистеме (протоны и нейтроны). По сравнению с моделью независимых частиц учёт парных корреляций приводит к увеличению рассчитанных вероятностей α-переходов между основными состояниями чётно-чётных ядер на фактор

$$\left(\sum_{n} u_n (N-2) v_n(N)\right)^2 \left(\sum_{p} u_p (Z-2) v_p(Z)\right)^2 \approx 10^3.$$

Этот эффект объясняет значительный «запрет» α-распадов нечётных и нечётно-нечётных ядер.

Коэффициенты запрета альфараспада нечётно-нечётных ядер

Мат	ерин	нское ядро	Дочернее ядро				Фактор запрета	
Ядро	Кπ	Конфигурация	Ядро	К⊤	Конфигурация	Энергия кэВ	Экспери- мент	Расчёт
²⁵⁴ Es	7+	p633+,n613+	²⁵⁰ Bk	2- 4+ 7+ 5-	p521+,n620+ p633+,n620+ p633+,n613+ p521+,n613+	0 36 86 99	>1.3·10 ⁵ 1300 2.8 140	7·10 ⁵ 4·10 ³ 2.6 180
²⁴² Am	5-	p523-,n622+	²³⁸ Np	2+ 3- 5- 6+	p642+,n631- p523-,n631- p523-,n622+ p523-,n743+	0 136 342 462	>6·10 ⁴ 2200 1.6 200	3·10 ⁶ 4·10 ³ 2.6 220

Выводы

- Два типа остаточного взаимодействия: короткодействующее в канале частица-частица и дальнодействующее в канале частица-дырка.
- Учёт взаимодействия в канале частица-частица ведёт к появлению «сверхтекучести» и перестройке спектра одноквазичастичных возбуждений ядер.
- Энергетическая щель в спектре чётно-чётных ядер связана с парной энергией.
- Реакции одно- и двухчастичных передач на чётночётных ядрах с развитым спариванием.
- Альфа-распад.

Задачи

- 1. Почему парные корреляции уменьшают момент инерции ядра?
- 2. Что такое химический потенциал?
- 3. Какое количество квазичастиц в основном состоянии чётно-чётного ядра с развитым спариванием?
- 4. Какие факторы разрушают спаривание в ядре?
- 5. Может ли возникнуть парное поле, когда частицы находятся на изолированном уровне с большим угловым моментом?

КОЛЛЕКТИВНОЕ ДВИЖЕНИЕ НУКЛОНОВ В ЯДРЕ

Лекция 9

Колебания ядерной поверхности

$$\Delta R(\boldsymbol{\mathcal{S}}, \boldsymbol{\varphi}, t) = R(\boldsymbol{\mathcal{S}}, \boldsymbol{\varphi}, t) - R_0 = R_0 \sum_{\lambda\mu} \alpha_{\lambda\mu}(t) Y_{\lambda\mu}(\boldsymbol{\mathcal{S}}, \boldsymbol{\varphi})$$

$$A \neq 1$$
, $A < A^{1/3}$

Вещественность функции Я:

$$\alpha_{\lambda,\mu} = \left(-1\right)^{\mu} \alpha_{\lambda,-\mu}^*$$

Сохранение объёма ядра:

$$\int dV = \frac{1}{3} \int R^3(\vartheta, \varphi) d\Omega = \frac{4\pi}{3} R_0^3 \Rightarrow \int \Delta R(\vartheta, \varphi) d\Omega = 0 \Rightarrow \alpha_{00} = 0.$$

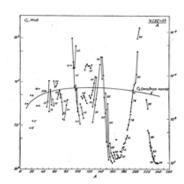
Гармоническое приближение

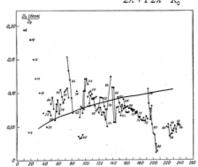
$$E = \sum_{\lambda \mu} B_{\lambda} \frac{\left| \alpha_{\lambda \mu} \right|^2}{2} + \sum_{\lambda \mu} C_{\lambda} \frac{\left| \alpha_{\lambda \mu} \right|^2}{2}$$

Для жидкой заряженной капли:

$$B_{\lambda}^{(kydr)} = \frac{1}{\lambda} \frac{3}{4\pi} Am R_0^2$$

$$C_{\lambda}^{(k_3dr)} = (\lambda-1)(\lambda+2)R_0^2 \sigma - \frac{\lambda-1}{2\lambda+1}\frac{3}{2\pi}\frac{Z^2e^2}{R_0}$$





Квадрупольные колебания

$$\lambda = 2: \quad \pi_{\mu} = B_2 \alpha_{\mu} \Rightarrow H = \frac{1}{2B_2} \sum_{\mu} \left| \pi_{\mu} \right|^2 + \frac{C_2}{2} \sum_{\mu} \left| \alpha_{\mu} \right|^2, \quad \omega_2 = \sqrt{\frac{C_2}{B_2}}$$

Квантование:

$$\alpha_{\mu}\alpha_{\nu} - \alpha_{\nu}\alpha_{\mu} = 0$$

Квантование:
$$lpha_{\mu}lpha_{
u}-lpha_{
u}lpha_{\mu}=0$$
 $\pi_{\mu}\pi_{
u}-\pi_{
u}\pi_{\mu}=0$ \hbar

$$\alpha_{\mu}\pi_{\nu} - \pi_{\nu}\alpha_{\mu} = \frac{\hbar}{i}\delta_{\mu\nu}$$

$$\alpha_{\mu} = \sqrt{\frac{\hbar}{2B_2\omega_2}} \left[b_{\mu} + (-1)^{\mu} b_{-\mu}^+ \right]$$

$$\sigma_{\mu} = \sqrt{\frac{\hbar}{\hbar} b_2\omega_2} \left[b_{\mu}^+ - (-1)^{\mu} b_{\mu}^+ \right]$$

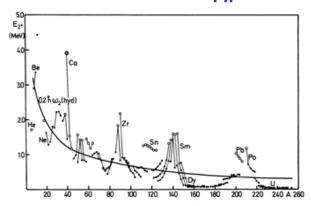
$$\begin{split} \pi_{\,\mu} &= i \sqrt{\frac{\hbar B_2 \omega_2}{2}} \Big[b_{\mu}^+ - (-1)^{\mu} b_{-\mu} \Big] \\ b_{\mu} b_{\nu}^+ - b_{\nu}^+ b_{\mu} &= \Big[b_{\mu}, b_{\nu}^+ \Big] = \delta_{\mu\nu} \end{split}$$

Операторы $b^+(b)$ описывают рождение (уничтожение) квадрупольных фононов с проекцией спина µ:

$$b^{+}|n\rangle = (n+1)^{1/2}|n+1\rangle$$

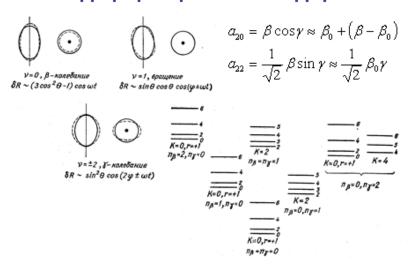
$$\left|n\right\rangle = \left(n!\right)^{-1/2} \left(b^{+}\right)^{n} \left|n=0\right\rangle, \quad E_{n} = \left(n + \frac{1}{2}\right) \hbar \omega_{2}$$

Энергии нижайших уровней 2⁺ в чётно-чётных ядрах

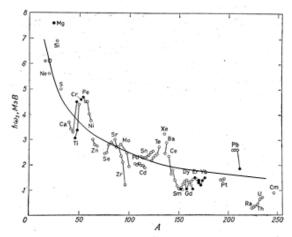


В области сильно деформированных ядер с 150<A<190 и A>220 уровень 2+ вращательный!

Колебания поверхности деформированных ядер

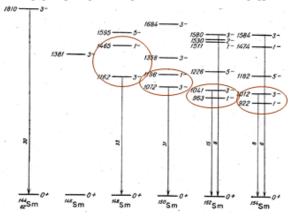


Октупольные колебания λ =3



Энергии первых 3- уровней в чётно-чётных ядрах.

Состояния отрицательной чётности в деформированных ядрах



Деформация смягчает октупольную моду и расщепляет фононное состояние 3° по проекции K на ось симметрии.

Многофононные состояния

Гамильтониан невзаимодействующих осцилляторов:

$$H = \sum_{\lambda\mu} \hbar \omega_{\lambda} \left\{ b_{\lambda\mu}^{+} b_{\lambda\mu} + \frac{1}{2} \right\}$$

$$\begin{array}{c} 3\hbar\omega_{1} - -\sigma_{X}x_{1}x_{2} \\ 2\hbar\omega_{2} - -\sigma_{X}x_{3}x_{4} \\ \hbar\omega_{2} - -\sigma_{3}x_{4} \end{array}$$

$$\begin{array}{c} 5\hbar\omega_{1} - -\sigma_{X}x_{2}x_{3} \\ \hbar\omega_{2} - -\sigma_{3}x_{4} \\ \hbar\omega_{3} - -\sigma_{3}x_{4} \end{array}$$

Уравнение движения:
$$b^+=rac{i}{\hbar}\Big[H,b^+\Big]^{-0} \frac{1}{\lambda \cdot 2}$$

Энергия:
$$E(n_{\hat{\mathbf{\lambda}}}) = E(n_{\hat{\mathbf{\lambda}}} = 0) + n_{\hat{\mathbf{\lambda}}} \hbar \, \omega_{\hat{\mathbf{\lambda}}}, \qquad n_{\hat{\mathbf{\lambda}}} = \sum_{\mu} n_{\hat{\mathbf{\lambda}}\mu}$$

Угловой момент:
$$I_{\mu} = \sqrt{\frac{1}{3}\,\hat{\lambda}\big(\hat{\lambda}+1\big)\big(2\,\hat{\lambda}+1\big)} \sum_{\mu\mu} C\big(\hat{\lambda}\mu',\,\hat{\lambda}\mu''\,|\,I\mu\big)b_{\lambda\mu}^{+}b_{\lambda\mu}$$

Чётность:
$$\pi = (-1)^{i}$$
.

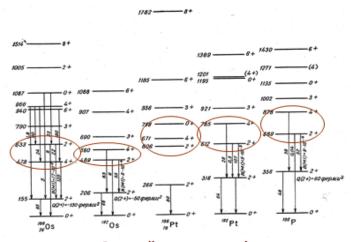
Число состояний с n_2 квадрупольными фононами и полным угловым моментом I

n_2	I								
	0	1	2	3	4	5	6	7	8
0	1	-	-	-	-	-	-	-	-
1	0	0	1	-	-	-	-	-	-
2	1	0	1	0	1	-	-	-	-
3	1	0	1	1	1	0	1	-	-
4	1	0	2	0	2	1	1	0	1

Для двухфононных состояний $n_{\lambda}=2$ полный момент $I=0, 2, 4, ... 2\lambda$. Спин I можно найти пересчитывая число состояний с разными значениями проекции:

$$M = \sum_{\mu} \mu n_{\lambda\mu}$$
.

Спектры двухфононных возбуждений

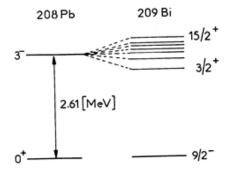


Сильный ангармонизм!

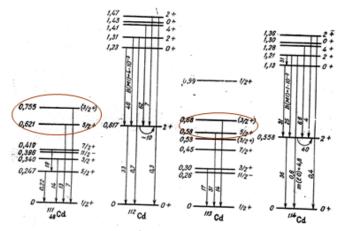
Связь колебательного и одночастичного движений в нечётных ядрах

Мультиплеты:

$$I = |J - R|, |J - R| + 1, ...J + R$$

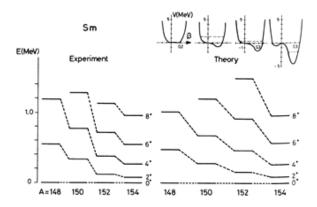


Схемы уровней соседних сферических ядер



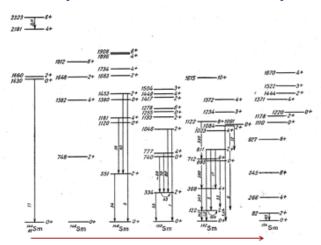
Квадрупольные однофононные мультиплеты соединены сильными электромагнитными переходами с основным состоянием.

Переход к статической деформации



С изменением числа нуклонов характер спектра меняется от колебательного к вращательному, возникает статическая деформация.

Экспериментальные спектры



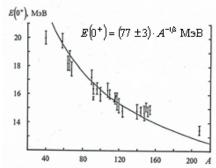
Добавление нейтронов к N=82 приводит к появлению вращательных полос, т.е. статической деформации.

Объёмные колебания – гигантские резонансы

Монопольный резонанс, или «дыхательная мода», связан с коэффициентом сжимаемости ядерной материи K_{ω} :

$$E(0^+) = \frac{\pi}{3} \frac{\hbar}{r_0} \sqrt{\frac{K_\infty}{m}} A^{-1/3}$$

$$K_{\infty} = (190 \pm 20) \,\mathrm{Mag}$$



Выводы

- В ядерных спектрах возбуждений проявляются колебания ядерной поверхности.
- Основную роль играют квадрупольные и октупольные колебания.
- Для многофононных состояний характерен ангармонизм.
- Спектр нечётных ядер определяется связью колебательного и одночастичного движения.
- При увеличении числа фононов происходит фазовый переход к статической деформации.
- Гигантские резонансы.

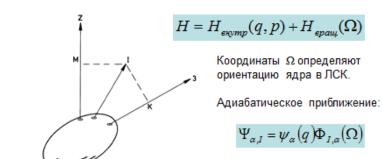
Задачи

- Почему не наблюдаются дипольные колебания ядерной поверхности?
- Почему среди квадрупольных двухфононных состояний сферических ядер с /^п=0⁺,2⁺,4⁺ нет состояний со спинами 1 и 3?
- 3. Какими спинами характеризуется вращательная полоса, построенная на двухфононном состоянии $\{(n_B=1)+(n_V=1)\}$?
- Какой чётностью будут характеризоваться состояния А-нечётного ядра, являющиеся суперпозицией октупольных колебаний и одночастичного состояния p_{3/2}?

ВРАЩЕНИЕ ДЕФОРМИРОВАННЫХ ЯДЕР

Лекция 10

Система координат, связанная с ядром



Полный спин I, его проекция K на ось «внутренней» системы координат, связанной с ядром. Проекция M спина на ось ЛСК.

Волновые функции вращения

Коммутирующий набор угловых моментов:

$$\begin{split} I^{2}, \quad I_{Z}, \quad I_{3} \\ \Phi_{I,M,K}(\Omega) = \sqrt{\frac{2I+1}{8\pi^{2}}} \, \mathcal{D}_{MK}^{I}(\Omega) \end{split} \qquad \begin{split} I^{2} \mathcal{D}_{M,K}^{I} &= I(I+1) \mathcal{D}_{M,K}^{I} \\ I_{Z} \mathcal{D}_{M,K}^{I} &= M \mathcal{D}_{M,K}^{I} \\ I_{3} \mathcal{D}_{M,K}^{I} &= K \mathcal{D}_{M,K}^{I} \end{split}$$

- матрицы поворота к внутренней системе координат, D-функции Вигнера

$$\Phi_{I,M,K=0}(\Omega) = \frac{1}{\sqrt{2\pi}} Y_{I,M}(\vartheta,\varphi)$$

В общем случае (отсутствие аксиальной симметрии) I и M – всегда интегралы движения:

$$\Phi_{IM}(\Omega) = \sqrt{\frac{2I+1}{8\pi^2}} \sum_{F} c_{IK} D_{MK}^{I}(\Omega)$$

Аксиальная симметрия

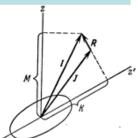
Симметрия отражения или поворота $R_2(\pi)$ на 180° вокруг оси, перпендикулярной оси симметрии, приводит к вырождению по знаку K:

$$\Psi_{IMK} = \sqrt{\frac{2I+1}{16\pi^2}} [\psi_K(q)D_{M,K}^I(\Omega) + (-1)^{I+K}\psi_{-K}(q)D_{M,-K}^I(\Omega)]$$

Принято считать, что К≥0.

В принципе, для установления симметрии волновой функции могут быть использованы операторы обращения времени и чётности.

Для K=0 I=0, 2, 4 и т.д. — основные вращательные полосы ч-ч ядер.



Вращательная энергия

Попный спин: I = j + R $H_{rot} = \sum_i \frac{R_i^2}{2J_i}, \quad J_1 = J_2 = J, \quad R_3 = 0$ $H_{rot} = \frac{1}{2J} \Big(I^2 + j^2 - 2I \cdot j \Big), \quad 2I \cdot j = \Big(I_+ j_- + I_- j_+ \Big) + 2I_3 j_3$ $E_{rot} = \Big\langle H_{rot} \Big\rangle = \frac{I(I+1) - K^2}{2J} - \frac{1}{2J} \Big\langle \Big(I_+ j_- + I_- j_+ \Big) \Big\rangle + \frac{1}{2J} \Big\langle \Big(j^2 \Big\rangle - \Big\langle I_3 j_3 - j_3^2 \Big\rangle \Big\}$ $E_{rot}(I) = A \Big(I(I+1) - K^2 \Big) + B \Big(I(I+1) - K^2 \Big)^2 + \dots$

Параметры *А, В,...* «подгоночные». Момент инерции: $J=1/2\,A$

Лео Джеймс Рейнуотер

Американский физик, лауреат Нобелевской премии по физике 1975 г. «за открытие взаимосвязи между коллективным движением и движением отдельной частицы в атомном ядре и развитие теории строения атомного ядра, базирующейся на этой взаимосвязи» (совместно с О. Бором и Б. Моттельсоном).

Во время Второй мировой войны он работал в атомном проекте. В 1949 г. приступил к разработке теории, согласно которой не все атомные ядра обладают сферической симметрией.

Leo James Rainwater (1917 - 1986)

Оге Бор

Сын Нильса Бора. Как его ассистент, участвовал в работе над атомным проектом, в 1944 - 1945 гг. являлся сотрудником Лос-Аламосской национальной лаборатории. В августе 1945 г. вернулся в Данию. В 1946 г. он стал сотрудником Института теоретической физики (Институт Нильса Бора), проходил стажировку в Принстонском и Колумбийском университетах. Там он познакомился с Дж. Рейнуотером и Б. Моттельсоном. Их совместная работа позволила развить в начале 1950-х так называемую коллективную (обобщенную) модель ядра.

В 1958 г. вместе Д. Пайнсом они предложили так называемую сверхтекучую модель ядра, рассмотрев возможность существования сверхтекучести нуклонов в ядрах.

Бенджамин Моттельсон

Датский физик, родившийся в США, Чикаго, 9 июля 1926 г., пауреат Нобелевской премии по физике 1975 г., совместно с О. Бором и Л. Дж. Рейнуотером, «за открытие взаимосвязи между коллективным движением и движением отдельной частицы в атомном ядре и развитие теории строения атомного ядра, базирующейся на этой взаимосвязи».

Benjamin Roy Mottelson

Вращательные полосы в чётно-чётных ядрах 120 1140 100 80 80 80 80 80 100 120 126 126 126 184 184 184

Области существования вращательных полос совпадают с областями деформированных ядер.

Основная вращательная полоса,

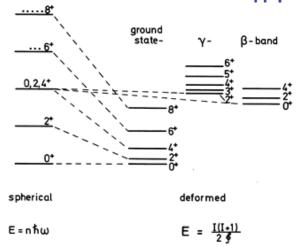
Модель переменного момента инерции учитывает неадиабатичность вращения:

$$E_{I} = \frac{I(I+1)}{2J_{I}} + \frac{C}{2}(J_{I} - J_{0})^{2}$$
$$\frac{\partial E_{I}}{\partial J_{I}} = 0$$

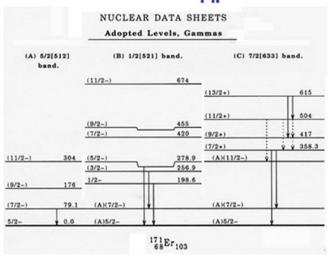
Два параметра модели, J_0 и C>0, определяются по энергиям вращательных уровней. Момент инерции:

$$J_{\scriptscriptstyle 0} pprox rac{1}{3} J_{\scriptscriptstyle rig} pprox 5 J_{\scriptscriptstyle hydr}, \quad J_{\scriptscriptstyle rig} = rac{2}{5} M R^2, \quad J_{\scriptscriptstyle hydr} = rac{9}{8\pi} M R^2 eta^2$$

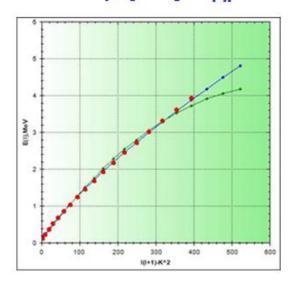
Вращательные полосы на возбуждённых состояниях чётно-чётных ядер



Вращательные полосы в нечётных ядрах



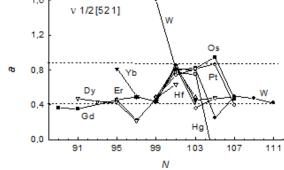
Полоса В: 5/2[402] в ядре ¹⁷³Re



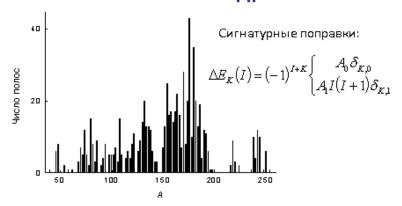
Эффект развязывания

Для состояний с K=1/2 кориолисово взаимодействие даёт вклад во вращательную энергию:

$$\Delta E_{\rm spany} = \left(-1\right)^{I+1/2} A_1 \frac{\left(I+1/2\right)}{\left(I-1/2\right)}, \quad A_1 = \frac{\hbar^2}{2J} a, \quad a = -\left\langle K = \frac{1}{2} \left| j_+ \right| \overline{K = \frac{1}{2}} \right\rangle$$



Вращательные полосы в нечётнонечётных ядрах



Распределение вращательных полос по массовому числу в нечётно-нечётных ядрах.

Выводы

- Деформированные ядра способны вращаться как целое.
- Вращательные полосы возникают на каждом «внутреннем» состоянии ядра.
- Вращательные спектры подчиняются квадратичному закону *I*(*I*+1).
- Наблюдаемые моменты инерции существенно меньше «твердотельных», что связано с парными корреляциями.
- Связь вращения с внутренним движением приводит к неадиабатическим эффектам во вращательных спектрах.

ЭЛЕКТРОМАГНИТНЫЕ ПРОЦЕССЫ В ЯДРАХ

Лекция 11

Изучение взаимодействия с электромагнитным полем – основной канал получения информации о структуре ядра:

- Электромагнитные переходы при разрядке возбуждённых ядерных состояний (у-распад).
- Ядерная изомерия.
- Ядерные реакции с кулоновским возбуждением.
- Фотоядерные реакции.

Взаимодействие с электромагнитным полем

$$H = H_{nucl} + H_{field} + H_{inf}$$

$$H_{nucl} \Psi_i (1...A) = E_i \Psi_i (1...A)$$

$$i - \text{стационарные состояния ядра}$$

$$H_{field} = \frac{1}{8\pi} \int d^3r \Big(\mathbf{E}^2(\vec{r},t) + \mathbf{B}^2(\vec{r},t) \Big)$$

$$H_{int} = -\frac{1}{c} \int d^3r j_\mu \mathbf{A}^\mu = \int d^3r \Big(\rho(\vec{r},t) \Phi(\vec{r},t) - \frac{1}{c} \vec{j}(\vec{r},t) \cdot A(\vec{r},t) \Big)$$
Плотность заряда в ядре -
$$\rho(\vec{r},t) = \sum_{i=1}^A e \Big(\frac{1}{2} - t_3^{(i)} \Big) \delta(\vec{r} - \vec{r}_i(t))$$
Плотность тока -
$$\vec{j}(\vec{r},t) = c \vec{\nabla} \times p(\vec{r},t)$$

Плотность тока разбивается на две части:

орбитальная -
$$j^o(\vec{r},t) = \sum_{i=1}^A e \left(\frac{1}{2} - t_3^{(i)}\right) \frac{1}{2} \left(\frac{\vec{p}_i}{m} \delta(\vec{r} - \vec{r_i}(t)) + H.C.\right)$$
 и спиновая - $\vec{\mu}^i(\vec{r},t) = \sum_{i=1}^A \delta(\vec{r} - \vec{r_i}(t)) \frac{e\hbar}{2mc} \left\{ \left(\frac{1}{2} - t_3^{(i)}\right) g_p + \left(\frac{1}{2} + t_3^{(i)}\right) g_n \right\} \vec{s}_i$

Скалярный Ф и векторный потенциал А определяются решением уравнений электродинамики при заданных р и j:

$$\Delta\Phi-rac{1}{c^2}rac{\partial^2\Phi}{\partial t^2}=-4\pi
ho$$
 - уравнения Максвелла.
$$\Delta\vec{A}-rac{1}{c^2}rac{\partial^2\vec{A}}{\partial t^2}=-rac{4\pi}{c}\vec{j}$$

Статические мультипольные моменты ядер

Для статического (стационарного) взаимодействия:

$$\begin{split} &\Phi(\mathbf{r}) = \sum_{\boldsymbol{\lambda}\boldsymbol{\mu}} \Phi_{\boldsymbol{\lambda}\boldsymbol{\mu}}^{+}(\mathbf{r}) \mathbf{V}_{\boldsymbol{\lambda}\boldsymbol{\mu}}(\boldsymbol{\mathcal{G}},\boldsymbol{\varphi}) \\ &\mathbf{A}(\mathbf{r}) = \sum_{\boldsymbol{\lambda}\boldsymbol{\mu}} A_{\boldsymbol{\lambda}\boldsymbol{\mu}}^{+}(\mathbf{r}) \mathbf{V}_{\boldsymbol{\lambda}\boldsymbol{\mu}}(\boldsymbol{\mathcal{G}},\boldsymbol{\varphi}) \end{split}$$

$$H_{\text{int}} = \sum_{i} a_{\lambda\mu} \mathbf{Q}_{\lambda\mu} + b_{\lambda\mu} \mathbf{M}_{\lambda\mu}$$

 $H_{\mathrm{int}} = \sum_{\lambda\mu} a_{\lambda\mu} \mathbf{Q}_{\lambda\mu} + b_{\lambda\mu} \mathbf{M}_{\lambda\mu}$ Q и M – сферические тензоры

$$\mathbf{Q}_{\lambda\mu} = \int \rho(r)^{r\lambda} Y_{\lambda\mu}(\mathcal{G},\varphi) d^3r = e \sum_{i=1}^A \left(\frac{1}{2} - t_3^{(i)}\right)_{r}{}^{\lambda} Y_{\lambda\mu}(\mathcal{G}_i,\varphi_i)$$

$$\mathbf{M}_{\lambda\mu} = \int \mu(r) \cdot \nabla \left(r^{\lambda} Y_{\lambda\mu}(\mathcal{Q}, \varphi) \right) d^3r = \mu_N \sum_{i=1}^A \left\{ g_s^{(i)} \vec{z}_i + \frac{2}{\lambda+1} g_i^{(i)} \vec{l}_i \right\} \cdot \nabla \left(r_i^{\lambda} Y_{\lambda\mu}(\mathcal{Q}_i, \varphi_i) \right)$$

Сохранение чётности:

$$Q_{\lambda\mu} = \langle \Psi | \mathbf{Q}_{\lambda\mu} | \Psi \rangle = 0, \quad \lambda = 1,3,5...$$

 $M_{\lambda\mu} = \langle \Psi | \mathbf{M}_{\lambda\mu} | \Psi \rangle = 0, \quad \lambda = 0,2,4...$

Теорема Вигнера - Эккарта (интегрирование по углам):

$$\begin{split} \Psi &= \left| IM \right\rangle \\ Q_{\lambda\mu} &= \left\langle IM \left| \mathbf{Q}_{\lambda\mu} \right| IM \right\rangle = \frac{1}{\sqrt{2I+1}} C(IM, \lambda - \mu | IM) \left\langle I \| \mathbf{Q}_{\lambda} \| I \right\rangle \\ M_{\lambda\mu} &= \left\langle IM \left| \mathbf{M}_{\lambda\mu} \right| IM \right\rangle = \frac{1}{\sqrt{2I+1}} C(IM, \lambda - \mu | IM) \left\langle I \| \mathbf{M}_{\lambda} \| I \right\rangle \end{split}$$

Q и M ≠ 0 только для µ=0 и 0≤λ≤2I

$$\mu = \sqrt{\frac{4\pi}{3}} \langle IM = I | \mathbf{M}_{10} | IM = I \rangle$$

$$Q = \sqrt{\frac{16\pi}{5}} \langle IM = I | \mathbf{Q}_{20} | IM = I \rangle$$

Квадрупольные моменты одночастичных состояний

$$Q_{20} = \int \rho(r)r^2 \left(3\cos^2\theta - 1\right)d^3r$$

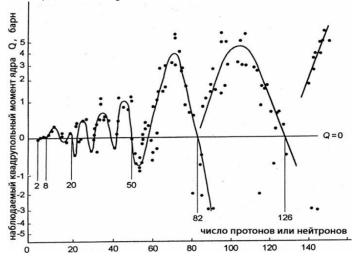
Для протона на орбите *nlj* :

$$Q_{sp} = \langle j, m = j | r^2 \left(3\cos^2 \theta - 1 \right) j, m = j \rangle = -\frac{2j-1}{2j+2} \langle j | r^2 | j \rangle$$

Для протонной дырки квадрупольный момент равен $-Q_{sp}$!

Ядро	l,j	$Q_{ m sp}$, бн	<i>Q</i> (эксп.), бн	е _{эфф} /е
¹⁷ O	d _{5/2}	-0.066	-0.026	0.4
³⁹ K	(d _{3/2})-1	0.052	0.09	1.8
²⁰⁹ Bi	h _{9/2}	-0.26	-0.4	1.6

В таблице протонные состояния только у 39 К и 209 Ві. В 17 О — нейтронное состояние, его одночастичный квадрупольный момент должен быть равен 0. Оценка матричного элемента для волновых функций, постоянных внутри ядра: $<\!\!j|r^2|j\!\!>\approx 0.0086$ А $^{2/3}$ бн. Для 39 К это дает Q ≈ 0.040 бн, для 209 Ві — Q ≈ -0.22 бн.



Квадрупольные моменты А-нечётных ядер.

Вероятность электромагнитного перехода

$$W_{fi} = \frac{2\pi}{\hbar} \sum \int |\langle f|H_{int}|i\rangle|^2 \rho(E_f)$$

суммирование по всем состояниям поляризации гамма-кванта, интегрирование — по всем направлениям вылета,

$$hoig(E_fig)=rac{k^2}{8\pi^3c\hbar}d\Omega$$
 плотность конечных состояний, $\hbar ck=E_i-E_f$ k - волновой вектор.

Для процесса испускания гамма-кванта вектор-потенциал:

$$\vec{A}_{\delta=\pm 1}(\vec{r}) = \sqrt{\frac{2\pi^3}{\hbar ck}} \sum_{k=1}^{\infty} \sum_{\mu=-k}^{k} i^{k} (2\lambda + 1) D_{\mu\delta}^{k} \left\{ \vec{A}_{M}(\lambda\mu) + i \delta \vec{A}_{E}(\lambda\mu) \right\}$$

Вектор-потенциал магнитного (M) или электрического (E) излучения мультипольности 2^{λ} :

$$\begin{split} \vec{A}_{M}(\lambda\mu) &= \sqrt{\frac{2}{\pi}} J_{\lambda}(kr) \frac{-ir \times \nabla}{\sqrt{\lambda(\lambda+1)}} Y_{\lambda\mu} \\ \vec{A}_{E}(\lambda\mu) &= \frac{1}{k} \sqrt{\frac{2}{\pi}} J_{\lambda}(kr) \frac{\cot(-ir \times \nabla)}{\sqrt{\lambda(\lambda+1)}} Y_{\lambda\mu} \end{split}$$

Правила отбора при переходах с испусканием гамма-квантов:

$$\left|I_i - I_f\right| \le \lambda \le I_i + I_f, \quad \mu = M_f - M_i$$

Четность: $\pi_i \pi_f \pi_{\nu} = 1$ \Rightarrow

Для магнитного излучения $\pi_{\gamma}=\pi_{M}=(-1)^{\lambda+1}, \quad \pi_{i}\pi_{f}=(-1)^{\lambda+1}$

Для электрического - $\pi_{\gamma}=\pi_{E}=\left(-1\right)^{\lambda},\quad \pi_{i}\pi_{f}=\left(-1\right)^{\lambda}$

Длинноволновое приближение

$$\begin{split} (kr)^2 <<&1\colon \quad J_I(kr) \propto \frac{(kr)^I}{(2I+1)!!} \Biggl(1 - \frac{1}{2} \frac{(kr)^2}{2I+3} + \ldots \Biggr) \\ (kR)^2 \approx \frac{A^{\frac{2}{3}} E_{\gamma}^{\ 2}(\mathrm{M} \ni \mathrm{B})}{2 \cdot 10^4} \qquad \qquad \text{And } E \approx 10 \ \mathrm{M} \ni \mathrm{B} \ \mathrm{id} \ A \approx 250 \\ (kR)^2 \approx 0.2 < 1 \end{split}$$

$$W_{fi}(E\lambda) = 8\pi \frac{e^2}{\hbar} \frac{\lambda + 1}{\lambda [(2\lambda + 1)!]^2} k^{2\lambda + 1} B(E\lambda)$$

$$B(E\lambda) = \sum_{\mu, m_f} \left| \langle f | \frac{1}{e} \int \rho r^{\lambda} Y_{\lambda \mu} d^3 r | i \rangle \right|^2 \\ W_{fi}(M\lambda) = 8\pi \frac{e^2}{\hbar} \frac{\lambda + 1}{\lambda [(2\lambda + 1)!!]^2} k^{2\lambda + 1} B(M\lambda)$$

$$B(M\lambda) = \sum_{\mu, m_f} \left| \langle f | \frac{-i}{ec(\lambda + 1)} \int r^{\lambda} (r \times \nabla Y_{\lambda \mu} \cdot \vec{\jmath}) d^3 r | i \rangle \right|^2$$

Одночастичные оценки

Пусть волновая функция постоянна внутри ядра и равна 0 вне ядра,

$$\left\langle r^{\lambda}\right\rangle \approx \frac{3}{\lambda+3}\,R_{0}^{\;\;\lambda}$$
 $B_{W}\left(E\lambda\right) \approx \frac{e^{2}}{4\pi} \left(\frac{3}{3+\lambda}\right)^{2}R_{0}^{2\lambda}$ единицы Вайскопфа
$$B_{W}\left(M\lambda\right) \approx \frac{10}{\pi}\,\mu_{N}^{2} \left(\frac{3}{3+\lambda}\right)^{2}R_{0}^{2\lambda-2}$$

$$B(E\lambda) \approx e^2 A^{2\lambda/3}, \ \Phi M^{2\lambda}$$

 $B(M\lambda) \approx e^2 A^{2(\lambda-1)/3} \cdot 10^{-2}, \ \Phi M^{2\lambda}$
 $\delta = \frac{W(M\lambda)}{W(E(\lambda+1))} \approx 100 \cdot A^{-2/3} \cdot E_{\gamma}^{-2} [MbB]$

Эта оценка для $< r^2 >$ использовалась при рассмотрении одночастичных квадрупольных моментов.

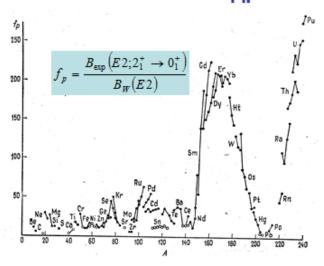
Вероятности переходов

Тип и мультипольность перехода Хі.	Вероятность <i>W(XX)</i> , с ⁻¹	Одночастичная оценка <i>В_W(XX)</i>
<i>E</i> 1	$1.587 \cdot 10^{15} \cdot E^3 \cdot B(E1)$	$6.446 \cdot 10^{-2} \cdot A^{2/3}$
E2	$1.223 \cdot 10^9 \cdot E^5 \cdot B(E2)$	$5.940 \cdot 10^{-2} \cdot A^{4/3}$
<i>E</i> 3	$5.698 \cdot 10^2 \cdot E^7 \cdot B(E3)$	$5.940 \cdot 10^{-2} \cdot A^2$
<i>E</i> 4	1.694·10 ⁻⁴ · <i>E</i> ⁹ · <i>B</i> (E4)	6.285·10 ⁻² ·A ^{8/3}
<i>M</i> 1	$1.779 \cdot 10^{13} \cdot E^3 \cdot B(M1)$	1.790
<i>M</i> 2	$1.371 \cdot 10^7 \cdot E^5 \cdot B(M2)$	$1.650 \cdot A^{2/3}$
<i>M</i> 3	$6.387 \cdot 10^{0} \cdot E^{7} \cdot B(M3)$	$1.650 \cdot A^{4/3}$
<i>M</i> 4	$1.899 \cdot 10^{-6} \cdot E^9 \cdot B(M4)$	$1.746 \cdot A^2$

Сравнение с экспериментальными данными

Ядро	E_{γ} , МэВ	I^{π}_{i}	$I^{\pi}_{\mathbf{f}}$	XL	Время жизни, с	
					теория	экспер.
¹³ N	2.38	1/2+	1/2-	E1	7-10-17	1.10-15
¹¹¹ Cd	0.247	5/2+	1/2+	E2	1.10-8	8-10-8
¹¹⁴ In	0.192	5+	1+	E4	3·10 ⁴	4·10 ⁶
¹⁸⁶ Os	0.137	2+	0+	E2	5·10-8	8-10-10
²⁰⁴ Pb	0.905	9-	4+	E5	3·10 ⁴	4·10³
⁷ Li	0.478	1/2-	3/2-	M1	2·10-13	8·10-14
¹¹³ In	0.39	1/2-	9/2+	M4	2.104	6·10 ³
¹³¹ Xe	0.163	11/2-	3/2+	M4	2·106	1.107
¹³⁷ Ba	0.663	11/2-	3/2+	M4	2.102	1.102

Коллективизированные E2-переходы в чётно-чётных ядрах

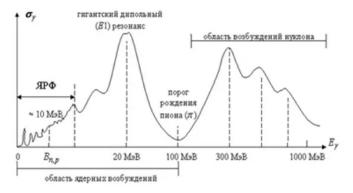


Ядерная изомерия

Изомер	$T_{1/2}$	I^{π}	Е*, кэВ	Реакция
⁹³ Nb	16.1 y	1/2-	31	⁹³ Nb(γ,γ')
102 Rh	2.9 y	6+	141	$^{103}Rh(\gamma,n)$
¹⁰⁸ Ag	418 y	6+	109	107 Ag(n, γ)
¹¹³ Cd	14.1 y	11/2-	264	¹¹² Cd(n,γ)
¹²¹ Sn	55 y	11/2-	6.3	¹²⁰ Sn(n,γ)
¹⁶⁶ Ho	1200 y	7-	6	¹⁶⁵ Ho(n,γ)
¹⁷⁸ Hf	31 y	16 ⁺	2446	¹⁸¹ Ta(p,α)
¹⁸⁰ Ta	>10 ¹⁵ y	9-	75	стабилен
¹⁸⁶ Re	2·10 ⁵ y	8+	149	¹⁸⁵ Re(n,γ)
¹⁹² Ir	241 y	9	155	191 Ir(n, γ)
¹⁹³ Ir	10.5 y	11/2-	80	¹⁹² Os(d,n)
²⁴² Am	152 y	5-	49	$^{241}Am(n,\gamma)$

Фотоядерные реакции

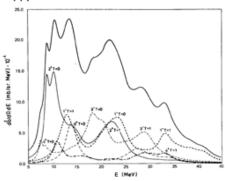
Ядерные реакции под действием γ -квантов, например 2 H+ γ - $\rangle n$ +p,



Исследование гигантских резонансов дало мощный импульс развитию теории ядра: эффективное взаимодействие, правила сумм, ядерная вязкость.

Гигантские резонансы

Спектр неупругого рассеяния (e, e') электронов с энергией 90 МэВ под углом 75° на ²⁰⁸Pb :



Эти состояния – пример когерентных состояний (квантовая механика):

- Вероятности электромагнитных переходов на два порядка превышают одночастичные оценки.
- Они регулярно присутствуют в спектрах возбуждения всех ядер.

Выводы

- Электромагнитное поле рассматривается классически в длинноволновом приближении.
- Ядра обладают статическими магнитными и квадрупольными моментами.
- Электромагнитное поле вызывает переходы между ядерными состояниями магнитного и электрического типа.
- Тип и мультипольность перехода определяются правилами отбора.
- Одночастичное приближение даёт масштаб для оценки интенсивностей ядерных электромагнитных переходов.
- Ядерная изомерия связана с большой разницей характеристик состояний.
- Гигантские резонансы.

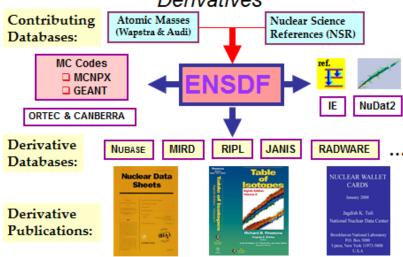
Задачи

- 1. Часто смешиваются E2- и M1-переходы, почему не смешиваются E1- и M1-переходы?
- Какими переходами преимущественно разряжаются «захватные» состояния при поглощении тепловых нейтронов? Почему в этой реакции трудно изучать высокоспиновые состояния?
- 3. Как происходит разрядка высоковозбуждённых состояний с большими спинами в реакциях с тяжёлыми ионами?
- 4. Почему состояние ²²⁹Th с энергией ~3.5 эВ и спином 3/2⁺ называется изомером, хотя основное состояние имеет спин 5/2⁺?

ДАННЫЕ О ЯДЕРНОЙ СТРУКТУРЕ, РАСПАДАХ И РЕАКЦИЯХ. ЯДЕРНАЯ ИНФОРМАТИКА

Лекция 12

ENSDF: Major Data Sources and Derivatives



https://www-nds.iaea.org/

Файл ENSDF

```
131 H TYP=FUL$AUT=YU. KHAZOV, I. MITROPOLSKY, A. RODIONOV$
131 2 H CIT=NDS 107, 2715 (2006)$CUT=17-Jul-2006$
131 C ABST$Nuclear spectroscopic information for known nuclides of mass
131 2c number 131 (Cd,ln,Sn,Sb,Te,I,Xe,Cs,Ba,La,Ce,Pr,Nd,Pm,Sm,Eu) with
131 3C Z=49 to 63 and N=82 to 68 have been evaluated and presented together
131 4C with adopted energies and JPI of levels in these nuclei.
131 C CUT$Literature available up to July 17, 2006,
131CS ADOPTED LEVELS, GAMMAS
                                                     06NDS 200612
131CS Q -1376 5 9231 105467 5 -1502 6 2003AU03
131CS c Isotope shift is measured by 1975UI02, 1978Hu08, 1981Th06
131CS c Charge radii are measured by 1975Ul02, 1978Hu08, 1981Th06
131CS CL BAND(A)$Band based on configuration=|ph{-11/2}, |a=-1/2
131CS2cL; signature partner of band B; (|D=30 keV)
131CS CL BAND(B)$Band based on configuration=|ph{-11/2}, |a=+1/2
131CS2cL; signature partner of band A; (|D=26 keV).
131CS XA131BAEC DECAY
131CS XB124SN(10B,3NG), 124SN(11B,4NG)
131CS XC133CS(P,T)
131CS L 0.0
                5/2+
                           9.689 D 16
131CS2 L %EC=100
131CS3 L MOMM1=+3.543 2 $ MOME2=-0.575 6 (1989RA17)
131CS L78.730 47/2+
                            9.4 NS 2
131CSX L XREF=ABC
131CS G 78.733 4 100 M1+E2 0.060 11
131CSB G BM1W=0.00170 5$BE2W=0.64 24
131CS L 123.804 31/2+
131CSX L XREF=A
                             3.75 NS 5
131CS G 123.805 3 100 E2
                                          0.89
131CSB G BE2W=69.5 14
131CS L 133.615 45/2+ 8.6 NS 3
131CS2 L MOMM1=+1.86 8 (1989RA17)$ MOME2=0.022 2 (2000DE13)
131CS G 54.889 5 4.8711E2(+M1) 4 GE 16.4 4
131CSB G BM1W<2.1E-5$BE2W>62
131CS G 133.609 7 100.011 M1+E2 +0.51 2
131CS cG M$possible admixture E0, B(E0)/B(E2)=0.015 {I5} (1978Vo11)
131CSB G BM1W=0.000369 17$BE2W=3.5 3
```

http://www.nndc.bnl.gov/nndc/ensdf/

Анализ размещения переходов в схемах уровней

Для каждого из всех размещенных в схемах переходов вычисляются:

$$\Delta = E_G + E_{rec} - \left(E_{L,top} - E_{L,bot}\right)$$

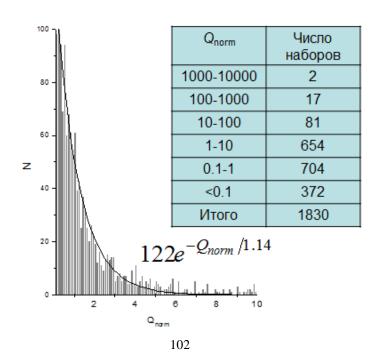
$$\delta = \Delta/dE_G$$

Дпя каждой схемы уровней - $Q = \sum_{i=1}^{N_{G}} \mathcal{S}_{i}^{2}$

$$Q_{norm} = Q/N$$

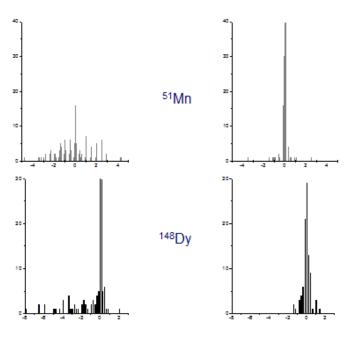
Критерий Романовского: *N* – число степеней свободы

$$R = (Q - N) / \sqrt{2N}$$

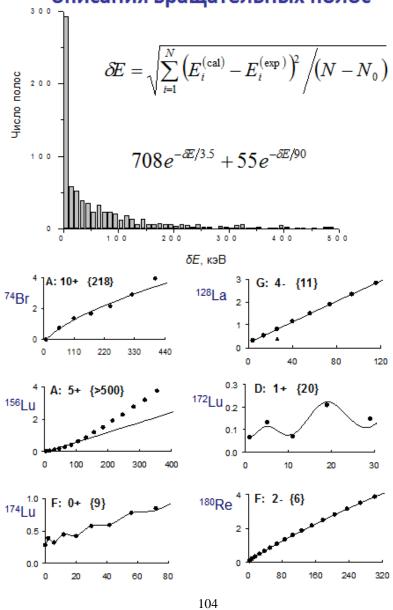


Анализ оптимальности значений энергии уровней в схемах и их коррекция

Нуклид	N _G	N _L	Q _{norm}	R	Q _{norm}	R
²⁷ Mg	114	56	9.5	55	0.05	-6.1
⁵¹ Mn	148	141	3.1	14	0.13	-5.9
¹⁰⁹ Cd	257	135	20	154	0.67	-2.6
113	208	168	17	103	1.35	2.3
¹¹⁶ Te	102	85	66	196	1.60	1.8
¹⁴¹ Sm	123	84	1.1	11	0.10	-3.0
¹⁴⁷ Sm	116	94	585	3250	2.86	10
¹⁴⁸ Dy	93	57	12	48	0.47	-2.3
¹⁷¹ Hf	247	155	39	259	3.11	14



Оценка качества модельного описания вращательных полос

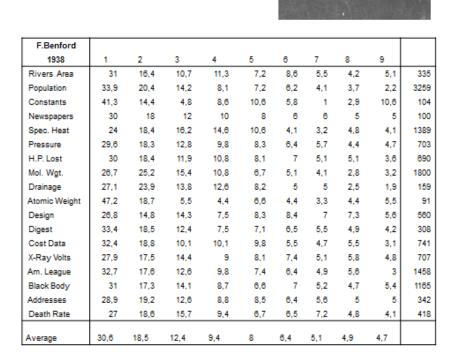


Поиск новых закономерностей в больших массивах ядерных данных

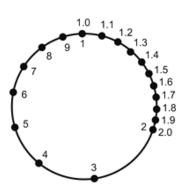
Информация Шеннона и распределение физических величин (данные измерений) по частотности появления значащих цифр.

Закон Ньюкома - Бенфорда:

«Луж больше, чем озер; озер больше, чем морей; морей больше, чем океанов»



Закон Ньюкома - Бенфорда



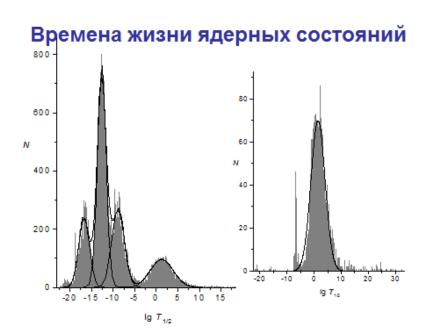
$$W(k) = \lg \frac{k+1}{k}$$
$$k = 1, 2, \dots 9$$

$$W(k,n) = \sum_{i=10^{n-2}}^{9\cdot10^{n-2}} \lg \frac{10i + k + 1}{10i + k}$$

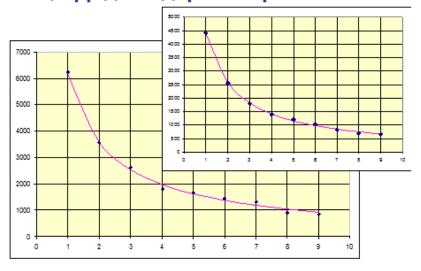
$$k = 0,1,...9; n \ge 2$$

Математические последовательности

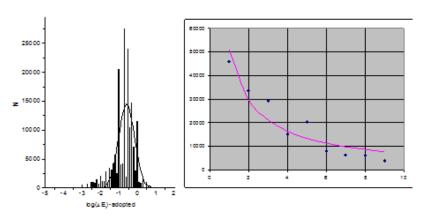
Data Set	Series	No of	χ2	Prob
		Terms		
1	$t_{n+1} = t_n + t_{n-1}$ (Fibonacci)	1476	0.0470	1.00000
2	$t_{n+1} = t_n \times (1 + \sqrt{5})/2$	1475	0.0423	1.00000
3	$t_{n+1} = t_n \times (1 + \sqrt{3})/2$	2276	0.436	0.99992
4	$t_{n+1} = t_n \times e/2$	2314	1.56	0.99153
5	$t_{n+1} = t_n \times (1 + \sqrt{3})/3$	7934	0.0519	1.00000
6	$t_{n+1} = t_n \times e/3$	7530	0.0318	1.00000
7	$t_{n+1} = t_n \times \sqrt{2}$	2048	0.0725	1.00000
8	$t_{n+1} = t_n \times \sqrt{3}$	1293	0.0466	1.00000
9	$t_{n+1} = t_n \times \sqrt{5}$	883	0.100	1.00000
10	$t_{n+1} = t_n \times \sqrt{6}$	793	0.246	0.99999
11	$t_{n+1} = t_n \times \sqrt{7}$	730	0.403	0.99994
12	$t_{n+1} = t_n \times \sqrt{8}$	683	0.732	0.9994
13	$t_{n+1} = t_n \times 2$	1001	0.161	1.0000
14	$t_{n+1} = t_n \times 5$	5000	0.0930	1.0000
15	$t_{n+1} = t_n \times 9$	5000	0.026	1.000
16	$t_{n+1} = t_n \times 9.9$	5000	0.766	0.999
17	$t_{n+1} = t_n \times 9.99$	5000	137	0.0000
18	$t_{n+1} = t_n \times 9.999$	5000	17561	0.0000
19	$t_{n+1} = t_n \times 10$	5000	11609	0.0000
20	$t_{n+1} = t_n \times \sqrt{10}$	5000	18315	0.0000



Распределение первых значащих цифр для ядерных времен жизни



Анализ погрешностей измерений



Погрешности измерения энергий ядерных переходов

Выводы

Ядерная информатика:

компиляция, оценка, систематика и анализ больших массивов, выявление в них ошибок и новых закономерностей.

Инструментарий:

ядерные модели, статистические методы, базы данных и семантический анализ, новые физические и математические идеи.

Специфика ядерных данных:

большие массивы однородных величин, принципиальная роль неопределенности в результатах измерений и обработки.

ЛИТЕРАТУРА к курсу «Структура атомного ядра»

Общие свойства атомных ядер.

Массы ядер. Размеры и форма ядер. Спины и чётности ядерных состояний. Изоспин в ядерной физике.

Блатт Дж., Вайскопф В. Теоретическая ядерная физика. М.: Иностранная литература, 1954 – 660 с.

Бор О., Моттельсон Б. Структура атомного ядра, т. 1. М.: Мир, 1971 – 456 с.

Давыдов А.С. Теория атомного ядра. М.: Физматгиз, 1958 – 612 с.

Кравцов В.А. Массы атомов и энергии связи ядер. М.: Атомиздат, 1965 – 376 с

Михайлов В.М., Крафт О.Е. Ядерная физика. Л.: Изд-во ЛГУ, 1988 – 328 с

Мухин К.Н. Экспериментальная ядерная физика, т. 1. Физика атомного ядра. СПб.: Изд-во Лань, 2009 – 384 с.

Престон М. Физика ядра. М.: Мир, 1964 – 6 с.

Ядерные силы.

Элементарная теория дейтрона. Эффективное взаимодействие. Структура и свойства малонуклонных систем.

Айзенберг И., Грайнер В. Микроскопическая теория ядра. М.: Атомиздат, 1976 - 488 с.

Айзенбуд Л., Вигнер Е. Структура ядра. М.: Изд-во иностранной литературы, 1959 - 178 с.

Блатт Дж., **Вайскопф В.** Теоретическая ядерная физика. М.: Иностранная литература, 1954-660 с.

Валантэн Л. Субатомная физика: ядра и частицы, т. 1. Элементарный подход. М.: Мир, 1986 – 272 с.

Вильсон Р. Нуклон-нуклонные взаимодействия. М.: Мир, 1965 – 304 с. **Давыдов А.С.** Теория атомного ядра. М.: Физматгиз, 1958 – 612 с.

Михайлов В.М., Крафт О.Е. Ядерная физика. Л.: Изд-во ЛГУ, 1988 – 328 с.

Мухин К.Н. Экспериментальная ядерная физика, т. 1. Физика атомного ядра. СПб.: Изд-во Лань, 2009 - 384 с.

Престон М. Физика ядра. М.: Мир, 1964 – 6 с.

Среднее поле сферических ядер.

Самосогласованное поле. Эффективные потенциалы. Спинорбитальное взаимодействие. Кулоновский потенциал. Многочастичные конфигурации в сферических ядрах.

Айзенберг И., Грайнер В. Микроскопическая теория ядра. М.: Атомиздат, 1976 – 488 с.

Бор О., Моттельсон Б. Структура атомного ядра, т. 1. М.: Мир, 1971 – 456 с.

Валантэн Л. Субатомная физика: Ядра и частицы, т. 2. М.: Мир, 1986 - 330 с.

Варшалович Д.А., Москалев А.Н., Херсонский В.К. Квантовая теория углового момента. Л.: Наука, 1975 – 439 с.

Гепперт-Майер М., Иенсен И.Г.Д. Элементарная теория ядерных оболочек. М.: Изд-во иностранной литературы, 1958 – 320 с.

Престон М. Физика ядра. М.: Мир, 1964 – 6 с.

Соловьев В.Г. Теория сложных ядер. М.: Наука, 1971 – 560 с.

Среднее поле деформированных ядер.

Статическая деформация ядерной поверхности. Потенциал Нильссона. Параметры деформации, спины и чётности основных состояний деформированных ядер. Энергия деформации ядра.

Бор О., Моттельсон Б. Структура атомного ядра, т. 1. М.: Мир, 1971 – 456 с.

Бор О., Моттельсон Б. Структура атомного ядра, т. 2. М:, Мир, 1977 – 664 с

Давыдов А.С. Возбуждённые состояния атомных ядер. М.: Атомиздат, 1967 – 264 с.

Давыдов А.С. Теория атомного ядра. М.: Физматлит, 1958 - 611 с.

Соловьев В.Г. Теория сложных ядер. М.: Наука, 1971 – 560 с.

Парные корреляции и ядерная сверхтекучесть.

Квазичастицы Боголюбова. Уравнения БКШ. Структура и спектры нижайших возбуждений соседних ядер, реакции передачи пары частиц.

Березин Ф.А. Метод вторичного квантования. М.: Наука, 1965 - 236 с. **Валантэн Л.** Субатомная физика: Ядра и частицы, т. 2. М.: Мир, 1986 - 336 с

Нгуен Ван Хьеу. Основы метода вторичного квантования. М.: Энергоатомиздат, 1984 - 208 с.

Соловьев В.Г. Теория сложных ядер. М.: Наука, 1971 – 560 с.

Коллективное движение нуклонов в ядре.

Колебания ядерной поверхности. Многофононные состояния. Ангармонизм ядерных колебаний. Связь одночастичного и колебательного движений. Ядерные гигантские резонансы.

Бор О., Моттельсон Б. Структура атомного ядра, т. 2. М:, Мир, 1977 – 664 с

Давыдов А.С. Возбуждённые состояния атомных ядер. М.: Атомиздат, 1967 – 264 с.

Вращение деформированных ядер.

Волновые функции вращения ядра как целого. Аксиальная симметрия. Вращательные полосы. Эффекты связи вращательного и одночастичного движений.

Бор О., Моттельсон Б. Структура атомного ядра, т. 2. М:, Мир, 1977 – 664 с.

Давыдов А.С. Возбуждённые состояния атомных ядер. М.: Атомиздат, 1967 – 264 с.

Электромагнитные процессы в ядрах.

Взаимодействие с электромагнитным полем. Вероятности ядерных переходов. Ядерная изомерия.

Ахиезер А.И., Ситенко А.Г., Тартаковский В.К. Электродинамика ядер. Киев: Наукова думка, 1989 – 432 с.

Бор О., Моттельсон Б. Структура атомного ядра, т. 1. М.: Мир, 1971 – 456 с.

Бор О., Моттельсон Б. Структура атомного ядра, т. 2. М:, Мир, 1977 – 664 с.

Давыдов А.С. Теория атомного ядра. М.: Физматгиз, 1958 – 612 с.

Левон А.И., Немец О.Ф. Электромагнитные моменты возбужденных и радиоактивных ядер. Киев: Наукова думка, 1989 – 504 с.

Михайлов В.М., Крафт О.Е. Ядерная физика. Л.: Изд-во ЛГУ, 1988 – 328 с.

Ядерные данные.

Таблицы ядерных масс. Данные по структуре ядра. Данные по ядерным реакциям.

Кравцов В.А. Массы атомов и энергии связи ядер. М.: Атомиздат, 1965 – 376 с

Atomic Mass Evaluation 2016. https://www-nds.iaea.org/amdc/

IAEA Nuclear Data Services. https://www-nds.iaea.org

National Nuclear Data Center. BNL, USA. http://www.nndc.bnl.gov