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Two approaches for the calculation of an accoustical property of relaxing media, namely 
the bulk viscosity, are analysed. One of them is the thermodynamic relaxation theory and 
another one is the analysis of the statistical expression for the bulk viscosity. In the frame of 
the statistical method the system of hydrodynamic equations is constructed for relaxing 
media. It is shown that the discrepancy between the thermodynamic and statistical approaches 
is connected with the influence of momentum on relaxational processes which is not contained 
in the thermodynamic method. 

1. Introduction 

One of the main problems of physical acoustics is the investigation of various 
physical processes leading to the sound velocity dispersion and sound attenua- 
tion. First of all these phenomena are the various internal relaxational 
processes such as vibrational relaxational in liquids and gases, chemical 
relaxational, systems near the critical points and so on. There are two 
approaches to the problem of obtaining the acoustical characteristics of the 
system. One of them is based on the calculation of the complex thermodynamic 
derivatives such as adiabatic bulk modulus and heat capacity for harmonic 
processes [l-5]. Another one [6-81 is the approach based on the calculation of 
the complex bulk viscosity coefficient starting from its statistical expression. 
The natural problem appears concerning the identity of both approaches. It 
may turn out that they lead to different results. Firstly this problem was 
discussed by Sarid and Cannel1 [9]. In this work the velocity dispersion and the 
sound attenuation were analysed in the vicinity of the critical point. It was 
shown that at high reduced frequencies the results of both approaches are quite 
different. Further Kawasaki and Shiwa [lo] discussed this problem for the 
simplest system with a single internal relaxation process. They estimated that 
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the difference between the results of statistical and thermodynamic approaches 
is connected with a different definition of the relaxing part of the internal 
energy. 

This work is devoted to the statistical calculation of the bulk viscosity 
coefficient for the system containing the single relaxation variable. It is shown 
that the discrepancy is connected with terms containing the momentum that the 
thermodynamical relaxation theory does not include. 

The paper is organized as follows. Section 2 contains the basic equations of 
the thermodynamical relaxation theory. In section 3 a statistical approach is 
given. In section 4 and 5, the relation between both methods is discussed. 

2. Thermodynamic relaxation approach 

In the thermodynamic relaxation theory [1,3,5] the state of the system is 
described by ordinary thermodynamic parameters such as pressure p, tempera- 
ture T and by an additional relaxation variable 5. This variable is a function of 
the parameters p, T in equilibrium while for the nonequilibrium state it 
becomes an independent variable. The differential of the internal energy E 
containing the additional term connected with the relaxational variable has the 
form 

dE=-pdV+TdS+$d.$. (1) 

Here S is the entropy, V is the volume, (I/ is the force conjugate to the variable 
5 (in equilibrium 9 = 0). In the linear approximation the relaxation of 5 is 
described by the following equation: 

a 86 
-= -b($)(Q-65’)) at 

where b is the kinetic coefficient, Sg” = (ag"lav), 6V + (aye/as), &S, and 5” 
is the equilibrium value of the variable 5. The relaxation equation (2) is valid 
when 5 is an intensive variable or some value per unit of mass. When the 
internal relaxation variable h = &I refers to the unit of volume the relaxation 
equation should include an additional term connected with the mass transfer, 

a 6h 
--+h”divv= -b’ at 

Usually the relaxation equation (2) is used in the thermodynamic relaxation 
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theory. Eq. (3) can be transformed into (2) by a suitable change of the 

relaxation variable. 
From eqs. (1) and (2) the contribution of the relaxation process to the 

adiabatic bulk modulus Ak,Jw) and consequently to the sound velocity 
dispersion c’(o) - ci and the bulk viscosity coefficient AT,(W) can be found, 

c2(o) - ct = $ Re A&(w) , 

AT,(W) = - $ Im A&(W) , (4) 

where [1,3,5] 

1 

’ = b(d2Ela{2) ’ 
(5) 

co, c,, are the sound velocities at zero and infinite frequency, respectively. 

3. Statistical approach 

In the statistical approach the bulk viscosity coefficient is calculated. In such 
a case Aiji(w) is complex and this coefficient is connected with the modulus 
A&.(W) by a simple relation 

A&(o) = -iw Arl,(w) . (6) 

To find the contribution to the bulk viscosity due to the internal relaxation 
variable X we use the Fourier transform of the linear hydrodynamic equations 
in the form [ll] 

A = ( (iLaj.,)A,,_,)A:.,(t) - 7 ds (J,,$m,-,(-s))AL,,(t es) 7 
dA. (t) 

at t7) 
0 

where {a} is the set of variables including the collective variable (66) and an 
additional variable 82. In the set of variables {a} the equilibrium values are 
excluded. The symbol * means that this value is microscopical, i.e. dependable 
on the coordinates and momenta of the system’s particles. The set of 
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thermodynamic variables {St;} includes the number density S,, the energy 
density SE, and the momentum density pa,r for a one-component system. 

As 2 is the relaxation variable the equilibrium value (2) depends on the 
values aj = ( cij) from the set {k}. In the system of equations (7) the summing 
over the repeated indexes is implied, L is the Liouville operator, A,, = (1 - 
P,)iLaj,, is the stochastic force, conjugated to the variable a,,,l, PA is the 
projection operator on the set of variables {A}, 

PAPq = ( qaj,_q)(aqa_q),~la,,q, 

A,:,q = (a,k,>,;‘A,,, . 

The Fourier component is defined by 

Y, = -& 
I 

dr Y(r) e-iq.r . 

(8) 

(9) 

The microscopic expressions for the densities of the collective variables have 
the following form: 

(10) 

where Cj means summing over all particles, m and pi are the mass and 
momentum of each particle, respectively, and U, is the potential of the pair 
interaction between the particles j and 1. The conservation laws are valid if we 
introduce the densities 

-(n) 
ii, = -iquJoL,q , 

k, = -iqJt,‘, , 

A,, = -i9,7jpu,q T (11) 

where jr’,jy are the flux densities of the particles and the energy, and *ma,q 
is the pressure tensor. 

It is convenient to introduce into the hydrodynamic set {Sa} the new 
variables 8Jq and 8$?6” . instead of Sri, and 6&, by the following formulae: 
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(12) 

The new variables Q?(l) and Ss are the thermodynamic fluctuations of the 
pressure and the entropy. As before the set {Sh} includes also the momentum 
density. For this set of thermodynamic variables the following relations are 
valid: 

( sdi,q=, sGj,q=O) - sij 9 (13) 

which means that the set {SB} consists of independent variables. The formula 
(13) is a consequence of the thermodynamic theory of fluctuations [12]. 

For the variables Sgq and S@y’ analogous conservation laws are valid, 

where jy’ *(p) 
and J, are the densities of the flux conjugates to the variables 

The operatoras P, and Pz are the projection operators on the set of variables 
{M} and on 6X = (1 - P,) SX, i.e. on the part of the relaxation variable which 
is orthogonal to {S&}, 

(14) 

p_I; = (WL) s. 
* q ( ls2q1’) q . (15) 

In such a case the projection operator PA can be expressed in the form 

PA = P, + Pz . (16) 

Starting from system (7) and using relation (16) we can write the equation 
for the momentum 
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(17) 

where 

u~,~ = fipP,PImn,=o is the mass velocity. In eq. (17) we used the following 
relation: 

kT 
(A,$,,-,> = q mn,=o%s , (18) 

where k is the Boltzmann constant. From eq. (17) one can see that the 
equation for the momentum includes only the part of the relaxation variable 
orthogonal to the collective variables set (66). 

The system (7) gives us the equation for the variable S_fJt), 

sx (t) a yy) = @tJL-q) (A,&,) -‘P&q(t) - * > (19) 

where iq = iL&. Eq. (19) was written under the condition of quite rapid decay 
of the stochastic forces temporal correlator. 

Here we introduced the relaxation time 

(IS&l”) 
rq = 

b,T ’ (20) 

and the kinetic coefficient 

(21) 

For the variable SXJt) the analogous equation may be written with the help of 
relation (15) in the following form: 
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a syt) = ~~~q~e,-q)(~~,q~~,-q)-lP~,q(f) - sxq<t> - pa SXq(O 
. r (22) 

4 

To transform the first term in the right hand side of eq. (22) we rewrite the 
correlator ( S~q~ol,_q) with the help of the relation 

(8~q&-q) = -(s~q~,_q>. (23) 

Here we used the well-known fact that the operator L is Hermitian. Using the 
conservation law (11) we find 

@~qA-q) <A,,~,,-,> -‘pp,,(O = -iq,@~q7jya,-q) (A,q~p,-q)-‘P~,q(t) . 
(24) 

After substitution (18) in (24) in the lowest approximation on q we have 

(~~q@a,-q) (~a,,~p,-q) -‘P/d) = - (25) 

Here we take into account the expression for pressure 

(26) 

Substituting expression (25) into eq. (22) and using the equation of continuity 
in the lowest order of q we have 

a SX,=o@) + wq=, sfi,=,> a W,=,(t) SX,=&) - Pa SX,=&) 
at kTV at =- rq=o 

. (27) 

with help of the following expressions [13]: 

(S&?, S?q6=o) = -kTV(g)s , 

(s.$,,, S?q=o) = kTV(G)p , 

we may rewrite the term P, 8X,=,(t) in the next form: 

p, SXq=,(t> = ($), SV,=,(t) + (g)” ss,=,(t> = sx;,,(t> , 

(28) 

(29) 

(30) 



534 V.P. Romanov, S.V. Ul’yanov I Bulk viscosity in relaxing media 

where X” = (2). 
The relation (27) is the relaxation equation for the internal variable obtained 

by the method of statistical mechanics. It is important to compare it with the 
relaxation equation (2) which is used in the thermodynamic relaxation theory. 

4. Comparison of the two methods 

First of all we may see that the relaxation times are equal in both methods 
since [13] 

(Is2q=,12> = kTv/($$) 
and 

(lS5&l’) = kTv/(%) . 

(31) 

(32) 

Here d, = ~(JJ, T, X) is the Gibbs thermodynamic potential. The validity of the 
expression (32) is proved in the appendix. It should be noted that the 
thermodynamic potential 4 is the function of variables p, T, X while the 
potential E is the function of variables V, S, X. It is necessary to have the 
relation between the thermodynamic derivatives d’EIdX* and 8*+/aX*. Such 
an expression is given by formulae (A.2), (A.6) in the appendix, 

g-l = (g$’ + (g)f(gs - (~)~(g,, . (33) 

If we take the variable 
the condition 

is of the same form as 

t instead of X then the relaxation equation (27) under 

eq. (2). 

(34) 

For the variable h the analogue takes place under the condition 

(Sf;,=,, 6&=,) = kTh” . (35) 
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It is important to note that a priori there are no reasons for the validity of 
these relations. Furthermore the statistical mechanics calculations show that 
eqs. (22) and (27) for the variable X includes the term describing the 

dependence of X on the momentum. 
The validity of the relations (34) and (35) is supposed in the thermodynamic 
relaxation theory. Hence the dependence on the momentum is not considered 
in this approach. 

Using the space-time Fourier transform and substituting the variable 8X&o) 
to (17) from (19) we obtain the following equation for the momentum: 

So for the longitudinal component of the momentum we have 

(37) 

where Yh = qaqs/q2Yp. 

The expression in large parentheses in the right-hand side of eq. (37) is the 
longitudinal viscosity coefficient n:(w). The second term in brackets is con- 
nected with the relaxing variable. From eq. (36) one can see that the transverse 
viscosity coefficient n:(w) has not a contribution from variable X. When q = 0 

the coefficients nfr and ne are connected with the coefficients of the bulk 
viscosity 7, and shear viscosity 77, by the relations 

One can see that the relaxation process contributes to the coefficient of bulk 
viscosity only. So we have 
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1 (6X&&J)2 7 
A%(w) = k~ 

((6X+12) 1 - iWr 

1 (6X&6@,=, - S$lJ>’ 7 
=- 

kT 
(lS-%J2) 

l-iwr 

1 [(Skq=, S&=o) + k7’%W-W),]’ T 
=- 

kT 
m%=ol”> 

l-io7’ (38) 

As to the thermodynamics relaxation theory, the substitution of the expres- 
sion for Aks from (5) into expression (6) gives us the formula (38) without 
correlator ( 8Xqz0 S$,=,) . 

If we use eq. (27) instead of (2) in the thermodynamics relaxation theory we 
get the expression (38), i.e. the same results as in statistical approach. 

5. Discussion 

The main difference between the two approaches is the form of the 
relaxation equation for the additional variable. The general system of the 
linear hydrodynamic equations (7) leads to the relaxation equation in the form 
(22). This equation has the following structure: 

88X 
- = 

at 
P therm Sk + P, SX ) (39) 

where the first term in the right-hand side has the form -(8X - SX’)/r as in 
the thermodynamic approach. This term describes the relaxation of the 
additional variable in the space-homogeneous media with the thermodynamic 
parameters which can vary with time. As to the second term, it is the 
projection of sk on the momentum. This term describes the reaction of the 
additional variable caused by the space-inhomogeneous distribution of the 
momentum in the system. This term arises already in the linear approximation 
and a priori its magnitude may be of the same order as the thermodynamic 
one. It is necessary to have a microscopic model of the additional variable for 
its calculation. 

It follows from the comparison of eqs. (5) and (6) with eq. (38) that the 
term connected with the projection on the momentum leads to a correction of 
the thermodynamic value for the complex coefficient of the bulk viscosity, but 
does not violate its frequency dependence. So in acoustical measurements the 
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full sound velocity dispersion as well as the total alteration of the bulk viscosity 
q"(O) -q"(m) contains not only the thermodynamic contribution but also the 
kinetical contribution connected with the space-inhomogeneous distribution of 
the momentum. 

Now it can be noted that the result of the statistical approach may be 
obtained directly from the statistical expression of the bulk viscosity coefficient, 

;i,(o> =& i * eiws((S@q=o - S~~2,)(S@,=, - S@g20)(-s)) , 
0 

where S@,=, - S&i.!o is the fluctuation of the nonthermodynamic part of the 
pressure. To obtain the contribution connected withAthe additional variable X 
we may project the fluctuation S@s=o - S$6i?o on SX,=,. It can be noted that 
we must project the nonthermodynamic -part of the pressure only 
nonthermodynamic part of the additional variable. Thus we have 

on the 

A{“(W) = & 7 d.r eios 
0 

Using the solution of eq. (19) for q = 0, 

S&=,(t) = e-I” SXq=,(0) , 

we obtain after a simple calculation the previous result (38). 
To illustrate these results we consider the system near the second order 

phase transition point. To obtain the sound velocity dispersion and attenuation 
of sound caused by the relaxation of the order parameter average value 
(Landau-Khalatnikov mechanism [14]) we can write the Helmholz free energy 
of the system in the following form: 

F(X) = F, + +AX* + (1/4!)CX4 . 

From this relation we can obtain the expression for the pressure depending on 
the order parameter, 
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where we put (KldV), = 0 for simplicity. In the Gaussian approximation in 
lowest order in X” it can be obtained for the correlator (8X,=, a~,,,) that 

(SX,~, Sp,=,) = - (gTxe( ISXJ) = -k,Tv(gy ($),X’ . 

After substitution of this expression in eq. (38) we have 

(40) 

To approximate the numerical values of the terms in brackets we use the 
parameters of the nematic liquid crystal MBBA near the phase transition point 
to the isotropic phase. The coefficient A has the structure A = A,(T - T*(p)) 
where A, - 1.5 X 1O-6 erg cme3 K-’ [15]. The thermodynamic derivative (dAl 
dp& can be rewritten as follows: 

where Y = C,,,IC,,, - 1.2, c-l.5 x 105cms-‘, dT*ldp -4 x 
lo-* K cm3 erg-’ [16]. The magnitude of the order parameter X” is a function 
of the argument T - T*(p). In this case we may transform the last term in (40) 
as 

where C, 0 is the regular part of the heat capacity under the constant pressure 
per unit ‘mass, C,,, - 2 x 10’ erg g-’ K-‘, czr is the coefficient of the heat 
expansion, (or -7.3 x lop4 K-’ [17]. The values X”, (dXe/dT),, (r32+/dX2) 
variate with T, and for T* - T- 1 K they are X” -0.4, (dXe/dT), - 
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-0.04 K-‘, (a*$/aX*) - 8 x lo6 erg cm-3; for T* - T- 10 K they are X” - 

0.6, @X%T), - -0.01 K-‘, (cJ*I$/~X*) - 4 x lo7 erg cmm3 [18]. So we have 
for T* - T- 1 K, 

ax" 
p ( > - -30, ap s 

(g)-1p($)Tx'--25, 

and for T* - T- 10 K, 

ax" 
p ( 1 - - 10) ap s (g$-‘p(g)Txe- -7.5. 

As is seen from this rough estimate there is no a priori reason for neglecting 
the dependence on the momentum in the relaxation equation (39). 

It should be noted that the phase transition between nematic and isotropic 
phase is the so-called “weak first order” phase transition. For the pure second 
order phase transition the influence of the momentum term may be somewhat 
smaller because of the vanishing of the order parameter X” when T* - T+ 0. 

In some similar situation the correlator with momentum (23) may be 
accurately calculated. This calculation is provided for the gas-liquid critical 
point or for the binary mixture separation point. The additional variables here 
are the Fourier components of density or concentration fluctuations, 62, &_,. 
In this case the correlator (b,,, &_, I%_,) is calculated precisely, 

The time dependence of fluctuations is described by the diffusion equation 

k,(t) = epacq) q2r SC,(O) = emriT9 SC,(O) , 

where 5@(q) is the diffusion coefficient. Hence for the bulk viscosity coefficient 
we have 

44=gc [(~P((2kl*~)s,c 
k 

By the pure thermodynamic calculations we obtain in brackets only the terms 
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The additional contribution is quite small [19]. 

6. Summary 

For the system with the internal relaxation process the bulk viscosity 
coefficient is calculated in a linear approximation in two approaches, namely 
thermodynamic and statistical. These approaches lead to different results due 
to the following reason. In the thermodynamic approach, the contribution to 
the bulk viscosity is taken into account, caused only by the variation of the 
thermodynamic variables during the relaxation process. In the statistical 
approach the variation of the momentum in the relaxation process is consid- 
ered, along with the variation of the thermodynamic variables. This additional 
nonthermodynamic contribution conserves the frequency dependence but can 
vary the magnitude of the effect. 

The numerical simulation for the system near the phase transition point with 
the parameters of the nematic liquid crystal MBBA shows that the thermo- 
dynamic and nonthermodynamic contributions to the bulk viscosity are of a 
same order. 

An analogous nonthermodynamic contribution which is arisen due to 
relaxation of the order parameter fluctuations in a critical region, may be 
somewhat smaller. In particular, it follows from calculations in the vicinity of 
liquid-gas and liquid-liquid critical points. 

In general, the problem of the correct calculation of the nonthermodynamic 
input into the bulk viscosity reduces to computation of the correlator 

(A&,, S&+,> f or an arbitrary relaxation variable X. 

Appendix 

In this appendix starting from the expression 

(A.11 

we prove the validity of the relation 
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(Is~q,=o12> = kTv/($) . 64.2) 

Here the thermodynamic potentials 4 and E are considered as the functions of 
its intrinsic variables, i.e. 4 = +(p, T, X), E = E(V, S, X). We can write the 
expressions for the thermodynamic potential differentials similar to eq. (l), 

d4=-SdT+Vdp+$dx, (A.3 

dE=TdS-pdV 

Using the definition 

+*dX. 

6$,=, = (1 - P,) &%q=O, one can write 

(A.4) 

- (sitq,, 6~*,=,)*( 16~q,=oj*) -’ . (A-5) 

Substituting the correlation function in the right-hand side of (AS) by the 
thermodynamic derivatives with the help of (A.l), (28) and (29) we get 

Using the relation 

we obtain 

644 

We express the thermodynamic derivatives in (A.8) through the partial 
derivatives of the internal energy E(V, S, X). Using the notation A,, = a2Al 
ax ay we have 
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aT c-1 EL 
as p,~ 

=&S-E’ 
vv 

E 
Gx _- 

XX E ) 
vv 

E2, _- 
E,, ’ 

E vx Z-P 
E ’ xx 

GX 
=-Evv+E, 

xx 

ax c-1 (4x - &x&s’ 4,) 
aT .D.* = (Es, - -‘%x&s&d2 - (Es, - EkJ-hWxx - E2,x&w) ’ 

(A.91 

Substitution of the expressions (A.9) in (A.8) after some simple algebraic 
transformations leads to the formula (A.2). 
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