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We study the manifestation of the Nernst effect in the Corbino disk
subjected to the normal external magnetic field and to the radial tem-
perature gradient. The Corbino geometry offers a precious opportu-
nity for the direct measurement of the magnetization currents that
are masked by kinetic contributions to the Nernst current in the con-
ventional geometry. The magnetization currents, also referred to as
the edge currents, are independent on the conductivity of the sam-
ple which is why they can be conveniently described within the ther-
modynamic approach. They can be related to the Landau thermody-
namic potential for an infinite system. We demonstrate that the ob-
servable manifestation of this, purely thermodynamic, Nernst effect
consists in the strong oscillations of the magnetic field measured
in the center of the disk as a function of the external field. The os-
cillations depend on the temperature difference at the edges of the
disk. Dirac fermions and 2D electrons with a parabolic spectrum are
characterized by oscillations of different phase and frequency. We
predict qualitatively different power dependencies of the magnitude
of the Nernst signal on the chemical potential for normal and Dirac
carriers.
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A Corbino disk represents one of the most important exper-1

imental designs for studies of transport effects in solids2

(1). In contrast to the Hall bar geometry (2), in a Corbino3

disk the Lorentz force induced by a magnetic field normal to4

the plane of the structure is not compensated by the induced5

electrostatic force. The Lorentz force gives rise to circular6

edge currents that can be studied through the magnetization7

generated by them (3). These currents are usually referred8

to as magnetization or diamagnetic currents (4). They are9

governed by the gradient of the magnetisation in a sample and10

are formally independent of the electric conductivity hence-11

forth. In classical language they arise because of the reflection12

of carriers circulating on their cyclotron orbits from the in-13

ner and the outer edges of the disk (5, 6). In the range of14

classically strong magnetic fields, the magnetization currents15

exhibit oscillations with a periodicity governed by the reso-16

nances between Fermi and Landau energy levels (7). These17

oscillations can be studied e.g. by measuring the magnetic18

field induced by edge currents in the center of the disk.19

The Hall effect in the Corbino geometry has been studied20

both in classical (8) and quantum (9) limits. In contrast, the21

most important thermomagnetic effect, namely the Nernst ef-22

fect, remains poorly explored in the disk geometry. The Nernst23

effect (10) consists in the induction of an electric current by24

a combined action of the crossed external magnetic field and25

the temperature gradient. It may be considered as a heat26

counterpart of the Hall effect. Recently, the giant Nernst or27

Nernst-Ettingshausen effects have been observed in graphene28

(11, 12), in pseudogap phase of quasi-two dimensional high29

temperature superconductors (13–16), in conventional super-30

conducting films being in the fluctuation regime (17, 18). 31

Generally speaking, the Nernst signal consists of two con- 32

tributions: the kinetic one and the thermodynamic one. The 33

former is governed by the conductivity of the sample and the 34

derivative of chemical potential of the carriers over tempera- 35

ture. The latter is related to the stationary magnetization cur- 36

rents induced by the temperature gradient: IthN = c
(
∂mz
∂T

)
∆T 37

(where mz(T ) is the magnetization per square of the disk). 38

This relation was initially obtained by Obraztsov for the Hall 39

bar geometry more than 50 years ago (4). It is worthwhile 40

to mention that this problem has been readdressed in almost 41

every decade (19–24) due to its importance for the quantum 42

Hall effect, Nernst-Ettinghausen effect in fluctuating super- 43

conductors, anomalous thermospin effect in the low-buckled 44

Dirac materials, etc. The existence of magnetization currents 45

is crucial for validity of such fundamental properties of ther- 46

momagnetic coefficients as the Onsager relations as well as the 47

Third law of thermodynamics (4, 24, 25). Yet, their existence 48

and importance for the Nernst effect often have been neglected 49

(see for instance (26) and discussion in (27)) or even denied 50

(see (28–30)). 51

The Corbino geometry offers a unique opportunity for the 52

observation of the purely thermodynamic contribution to the 53

Nernst effect generated exclusively by magnetization currents. 54

Indeed, in the regime of classically strong magnetic fields, 55

if the chemical potential of the electron gas in the disk lies 56

between the Landau quantization levels, the electric current 57

does not propagate between the inner and outer edges of the 58

disk, and one can safely neglect the kinetic part of the Nernst 59

response. In the same regime, in the presence of the magnetic 60

field and temperature gradient, the contribution of the edge 61

currents remains significant, so that the total circular current 62
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in the sample is dominated by magnetization currents.63

Below we calculate the magnetization currents of carriers64

characterized by parabolic or Dirac energy dispersion relations65

(31) in a Corbino disk subjected to a radial temperature gra-66

dient and a strong magnetic field B applied normally to the67

plane. Specifically, we analyze the magnetic field Bind induced68

by these currents in the center of the disk that can be experi-69

mentally measured e.g. by a SQUID magnetometer (32, 33).70

We show that this field experiences pronounced unharmonic71

oscillations as a function of the external field B. These oscilla-72

tions are dominated by an interplay of two competing factors.73

The background contribution to the induced magnetic field74

that exists at zero temperature gradient is proportional to the75

second (for normal carriers) or third (for Dirac fermions) power76

of the chemical potential. At low temperatures, the chem-77

ical potential exhibits a characteristic saw-tooth oscillatory78

dependence on the magnetic field that is well-known (34, 35).79

The second contribution to the magnetization, proportional80

to the difference of temperatures at the inner and the outer81

edges of the disk, is governed by the differential entropy per82

particle dependence on the external magnetic field (36). It83

can be calculated knowing the density of electronic states in84

the system for given temperature and magnetic field (37, 38).85

The difference of the values of the induced magnetic field Bind86

measured for the opposite signs of the temperature variation87

between inner and outer edges of the disk is no more sensitive88

to the background effect and allows for extracting the contri-89

bution induced by the temperature gradient, i.e. the Nernst90

effect. The shape and the period of Nernst current oscillations91

in the Corbino geometry carry a precious information on the92

type of carriers and on the trajectories of topologically pro-93

tected edge currents. The universal link between the Nernst94

current and the induced magnetization established in this work95

offers a powerful tool for the experimental studies of transport96

phenomena in two-dimensional crystals.97

The relation between the edge current and thermody-98

namic potential in the Corbino geometry99

The edge currents in Corbino geometry can be related to100

the thermodynamic potential of the system basing on very101

generic thermodynamic consideration. Indeed, let us start from102

consideration of a homogeneous metallic disk of the radius R,103

placed in a thermal reservoir of temperature T and subjected104

to the magnetic field H normal to the plane of the disk. The105

contribution to the thermodynamic potential dependent on106

the induced current can be written as107

ΩH = 1
c

∫
j (r) A (r) dV [1]108

where A is the vector potential. Consequently, the current109

can be expressed as110

j (r) = c

hS

(
∂ΩH
∂A

)
, [2]111

with S = πR2 being the area of the disk and h its height.112

Assuming that the radius of the disk is much larger than113

the magnetic length, one can choose the vector potential in114

the Landau gauge, A = (0, Hx) that yields for total current115

flowing through the disk116

J

h
= c

hS

1
H

∫ R

0

∂ΩH
∂x

dx = c

HS
ΩH(T ). [3]117

From the Fig. 1a one can see that the current is concentrated 118

only in the vicinity of the edge of the disk. 119

Now one can represent the Corbino disk (ring) as the large 120

disc of the radius R2 from which a smaller disk of the radius 121

R1 is cut out. As a result, the total current flowing along 122

the edges is given by the difference between the outer and 123

internal edge currents. Both currents are defined by the same 124

Eq. (3), taken with different areas of the disk. Accounting for 125

the temperature difference between the edges, one can finally 126

obtain 127

Jtot = c

H

[
Ω(T2)
S2

− Ω(T1)
S1

]
. [4] 128

The derivation above is based on classical arguments that 129

may seem contradictory to the quantum nature of Landau 130

diamagnetism. This is why, in the following section we will 131

reproduce the final expression for the current (3) in the frame- 132

work of a quantum mechanical approach. 133

The microscopic approach to calculation of edge cur- 134

rents 135

The eigenvalue problem. Let us consider now the Corbino disk 136

with the inner edge radius R1 and the outer edge radius R2 137

subjected to the magnetic field H applied normally to the disk 138

plane in microscopic approach. We are interested here in the 139

regime of classically strong magnetic fields, where the energy 140

separation between the neighbouring Landau levels exceeds 141

their broadening, yet remaining small with respect to the Fermi 142

energy: max {T, Γ} � ~ωc � EF , where T is temperature, Γ 143

is the Dingle temperature, ωc is the cyclotron frequency, EF 144

is the Fermi energy. In what concerns the requirements to the 145

disk geometry, we assume that R1, R2, R2 −R1 � lB , where 146

the magnetic length is lB =
√

~c/|e|H. 147

We use here the thermodynamic approach to the Nernst 148

effect developed in Refs. (4, 7). Namely, we describe the 149

system by the Gibbs thermodynamic potential 150

Ω = −2kT
∑
α

ln
[
1 + e

µ−εα
kT

]
, [5] 151

where εα are the eigenvalues, and the summation is performed 152

over the complete set of the quantum numbers {α}, µ (T ) is 153

the chemical potential of the electron gas, coinciding with the 154

Fermi energy at zero temperature. The spin degeneracy of 155

the electron gas under study is postulated, that results in the 156

appearance of the factor 2 in Eq. (5). In the case corresponding 157

to the 2D gas of free electrons (2DEG) subjected to a magnetic 158

field, the electronic Hamiltonian has the familiar Landau form 159

(the specifics of carriers having a Dirac dispersion will be 160

discussed later): 161

Ĥ = − ~2

2m
d2

dx2 + mω2
c

2 (x− x0)2 [6] 162

with ωc = |e|H/ (mc). The set of quantum numbers is α = 163

{x0, n}, where x0 = l2Bky is the x-coordinate of the center of 164

the electron cyclotron orbit, ky is the tangential component 165

of the electron momentum (see the schematic in Figure 1a), n 166

is the index of the energy quantization level in the potential 167

induced by the magnetic field (with the minimum at the point 168

x0). 169
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Fig. 1. a). The schematic showing the edge currents flowing in a Corbino disk
subjected to an external magnetic field normal to its plane and to a radial temperature
gradient. b). The schematic showing the edge currents flowing in a conducting strip
subjected to an external magnetic field normal to its plane.

The rule for summation over eigenvalues in Eq. (5) takes a 170

form 171∑
α

... = |e|H
c

Ly
2π~

∫ ∞
−∞

dx0

∞∑
n=0

..., [7] 172

where Ly is the linear dimension of the system along the edge. 173

The Shrödinger equation with the Hamiltonian (6) and the 174

specific boundary conditions Wα (0) = Wα (Lx) = 0 (Teller’s 175

model (5)) determine the spectrum εα and the set of eigen- 176

functions: 177

ĤWα (x) = εαWα (x) . [8] 178

The latter turn out to be the Weber functionsWα (x) Ref. (39), 179

while the electron eigenenergies in the vicinity of the edge x = 0 180

can be approximated by: 181

εα = ~ωc

{ (
n+ 1

2

)
+ 2n√

πn!

(
x0
lB

)2n+1 exp
[
− x2

0
l2
B

]
, x0 � lB

2
(
n+ 3

4

)
− 2 (2n+1)Γ(n+1/2)

πn!

(
x0
lB

)
, x0 . lB

[9] 182

(we note that the similar expressions were obtained in Ref. 183

(6), while some errors in the coefficients and the erroneous 184

factor of “2” in the exponential function are present in that 185

work.) The upper line in (9) corresponds to the cyclotron 186

orbits centered far from the edges (x0 � lB). The energy 187

spectrum for these states coincides with the Landau one with 188

an exponential accuracy. The lower line describes the energy 189

spectrum for the states whose orbits are centered close to the 190

border (x0 . lB). The doubling of the cyclotron frequency 191

that appears in the first term is due to the supplementary 192

quantum confinement of carriers in a half-parabolic potential 193

that appears due to their reflection from the boundary. 194

The edge currents calculated from the first principles. We 195

consider a macroscopic Corbino disk and assume that the 196

curvature of the edges can be safely neglected on the length 197

scale of the cyclotron orbits (see Fig. 1b). In this case, one can 198

calculate the edge currents starting from the exact quantum 199

mechanical expression for the charge flow in a pure quantum 200

state α (6, 40): 201

jyα (x, x0) = −|e|ωc
Ly

(x− x0)W 2
α (x) . [10] 202

The full current Jtot is obtained by summing jyα over all 203

eigenstates {α} of the problem, accounting for the occupation 204

numbers f (εα) = [exp ((εα − µ) /kT ) + 1]−1 and integrating 205

over the width of the disk: 206

Jtot =
∫ Lx

0

∑
α

jyα (x, x0) f (εα) dx

= −m |e|ω
2
c

π~

∞∑
n=0

∫ ∞
−∞

dx0f [εn (x0) , T ]
∫ Lx

0
dx (x− x0)W 2

α (x) .

[11]

207

One can relate the integral over x in Eq. (11) to the derivative 208

of the eigenenergy over x0 employing the Feynman theorem 209

(40): 210∫ Lx

0
dx (x− x0)W 2

α (x− x0) = 1
mω2

c

∂εα
∂x0

, [12] 211
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that results in212

Jtot = − |e|
π~

∞∑
n=0

∫ ∞
−∞

d

dx0
ln
[

1 + exp
(
µ (T )− εn (x0)

kT

)]
dx0.

[13]213

We underline that far from the edges of the disk the electron214

energy levels (9) coincide with the Landau levels with an215

exponential accuracy, i.e. in this domain x̃0 . x . Lx − x̃0216

the derivative ∂εα/∂x0=0. The value x̃0 can be estimated by217

imposing the phenomenological requirement(6):218 (
∂εα
∂x0

)
x0=x̃0

= 0.219

One can see from Eq. (9) that x̃0 ∼ lB
√

2n+ 1 , which is220

nothing but the radius of the cyclotron orbit at the n-th221

Landau level. Having this in mind, the integration in (13)222

can be restricted to the vicinity of the edges of the sample:223

]−∞, x̃0], [Lx − x̃0,∞[. The contribution to the current from224

the bulk region tends to zero (see Fig. 1).225

The edge currents in an inhomogeneously heated sample. In226

order to study the Nernst effect we assume that the inner227

(outer) edge of the disc is kept at equilibrium with the thermal228

bath of the temperature T1 (T2) . We assume that the tem-229

perature gradient is small enough, so that on the scale of the230

order of x̃0 it can be neglected. In this case the full circular231

current is determined by the difference of two edge currents:232

Jtot = J (T1)− J (T2) , [14]233

where234

J (T ) = −|e|kT
π~

∞∑
n=0

ln
[

1 + exp
(
µ (T )− εn (x̃0 (n))

kT

)]
.

[15]235

Since the sum in (15) is determined by its upper limit one236

can use the expression for εn (x̃0 (n)) from the upper line of237

Eq. (9). Neglecting the exponentially small second term, we238

obtain:239

J (T ) ≈ −|e|kT
π~

∞∑
n=0

ln
[

1 + exp
(
µ (T )− ~ωc (n+ 1/2)

kT

)]
.

[16]240

The Eqs. (14)-(16) describe the total current induced by241

the external magnetic field in the Corbino geometry. The242

chemical potential µ (B, T, ρ) depends on the magnetic field,243

temperature, and the carrier concentration ρ. Comparing244

Eq. (16) with the thermodynamic potential calculated for the245

Landau energy spectrum (see Eqs. (5)- (7))246

ΩL (T ) = −2kT |e|H
c

S

2π~

×
∞∑
n=0

ln
[

1 + exp
(
µ (T )− ~ωc (n+ 1/2)

kT

)]
,

[17]247

one finds the universal relation which was first derived by248

Obraztsov in (4):249

J (T,H, µ) = c

HS
ΩL (T,H, µ) . [18]250

Let us stress that the sign in Eq. (18) is the matter of conven-251

tion: in the chosen form it corresponds the direction of the252

current flowing along the internal edge of the ring.253

The problem of calculation of the Gibbs potential in the 254

presence of a homogeneous magnetic field was considered long 255

ago in relation to the de Haas - van Alphen oscillations. The 256

corresponding expression can be easily obtained from (17). In 257

the limit of low temperatures kT � µ (T ), the exponential 258

term in the argument of the logarithmic function strongly 259

exceeds unity. The expression for the current thus reduces to 260

J2DEG(T, µ) = − |e|
π~2

µ2 (T )
2ωc

. [19] 261

In the case of graphene characterised by the linear dis- 262

persion of Dirac carriers, the Landau quantization leads 263

to the appearance of a non-equidistant energy spectrum 264

(En = ±
√

2n~|e|Bv2
F /c), in which case the summation in 265

Eq.(15) results in 266

Jgr(T, µ) = − c

H

|µ(T )|3

3π~2v2
F

, [20] 267

where vF is the Fermi velocity. 268

The Nernst oscillations in 2DEG and graphene 269

Oscillations of the edge currents. We shall evaluate the sum 270

in (17) applying the Poisson summation formula. This results 271

in the appearance of the oscillating term that is small by a 272

parameter ω2
c/µ

2 with respect to the principal contributions 273

to each of the edge currents (19) and (20). It is important to 274

note that the chemical potential oscillates as a function of the 275

magnetic field with a magnitude ωc/µ (7, 31, 35), hence we 276

can restrict ourselves to the consideration of this, principal, 277

contribution, when calculating each of the edge currents. It is 278

important to note, that the sum of two edge currents is zero, 279

if the temperature is constant across the sample. Jtot deviates 280

from zero if the radial temperature gradient is introduced 281

as discussed below. On the other hand, the magnetic field 282

induced by two edge currents in the center of the disk is 283

different from zero also in the uniform temperature case. At 284

low temperatures, in a 2D system with a fixed number of 285

particles µ(T ) = EF + µ̃, where µ̃ is the oscillating part of the 286

chemical potential that can be written is the universal form 287

valid both for 2DEG of carriers having a parabolic dispersion 288

and for Dirac fermions in graphene characterised by a linear 289

dispersion: 290

µ̃ =

− ~ωc
π

∞∑
l=1

ψ(lλ)
l

sin
[

2πl
(
cS(EF )
2πe~B + 1

2 +β
)]

exp
(
−2πlΓ

~ωc

)
,

[21]

291

where 292

ψ(z) = z

sinh z , λ = 2π2kT

~ωc
[22] 293

is the temperature factor, S(EF ) is the electron cyclotron 294

orbit area in the momentum space, β is the topological part 295

of the Berry phase. In the case of a 2DEG characterized by 296

a parabolic dispersion of charge carriers, ε = p2/(2m), the 297

electron orbit area is S(EF ) = 2πmEF , and the trivial phase, 298

β = 0. In its turn, for the massless Dirac fermions, ε = ±vF p, 299

the area is S(EF ) = πE2
F /v

2
F , while the cyclotron frequency 300

depends on the Fermi energy ωc = v2
F |e|H/(c|EF |). In contrast 301

to the case of a 2DEG the phase becomes nontrivial, β = 1/2. 302
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All above is valid for the range of classically strong magnetic303

fields, ~ωc � EF . (We assume that EF > 0.)304

Substituting Eq. (21) to Eqs. (19) and (20) one can find305

explicitly the magnetic field dependence of the edge currents:306

J (T,H) = − |e|
π~2

E2
F

ωc

[
η + µ̃

EF

]
[23]307

with η = 1/2 for 2DEG and η = 1/3 for the Dirac electrons in308

graphene, respectively.309

Applying the above expression for the edge currents flowing310

in the Corbino disk with differently heated inner and outer311

edges one can find the sum of two edge currents as312

Jtot (T1, T2) = |e|
π~2

EF
ωc

[µ̃ (T2, H)− µ̃ (T1, H)] . [24]313

In the case of a relatively small temperature difference ∆T =314

T1 − T2 � T1 one can expand µ̃ and obtain the explicit315

dependence of the oscillating total current on the magnetic316

field:317

Jtot (T,∆T ) = |e|EF
π2~

(
∆T
T

) ∞∑
l=1

ψ′(lλ)
l

× sin
[

2πl
(
cS(EF )
2πe~B + 1

2 +β
)]

exp
(
−2πlΓ

~ωc

)
.

[25]

318

The amplitude factor319

ψ′(lλ) = λl [λl coth(λl)− 1]
sinh(λl) =

{
λl
3

[
1− 7

30 (λl)2] , λl� 1,
2λl exp(−λl), λl� 1

[26]320

is presented in Fig. 2 a. In contrast to the conventional factor321

ψ(lλ), it is a nonmonotonic function of temperature. Note322

that the same function ψ′(lλ) appears in the expression for323

the oscillating part of the Seebeck coefficient in an electron324

gas subjected to a strong magnetic field (41).325

The total edge current Jtot (T1, T2, ν) as a function of the326

filling factor of a Landau level327

ν = π~cρ
eB

=

{
EF
~ωc , 2DEG
cE2
F

~eHv2
F

, graphene
[27]328

is plotted in Fig. 2 b. One can see that the period of oscillations329

for graphene is twice larger due to the valley degeneracy.330

The phase of oscillations for graphene is shifted with respect331

to 2DEG. The sharp features correspond to the Fermi level332

crossing by the Landau levels. Note that the shape of obtained333

current oscillations shown in Fig. 2 b resembles one of the334

thermoelectric power coefficient for the 2DEG calculated in335

(41).336

The induced magnetic field and its oscillations in the Corbino337

geometry. The circular electric currents J(T1,2) along the338

edges of the disk lead to the induction of the magnetic339

field in the center of the disk Bind(T1, T2) = B1 + B2 with340

B1,2 = ±2πJ(T1,2)/cR1,2. This field constitutes a diamagnetic341

response of the ring generated by the persistent currents that342

have a purely thermodynamic nature343

Bind(T1, T2) = η
|e|EF
~c

(
EF
~ωc

)( 1
R1
− 1
R2

)
+Bosc. [28]344

(a)
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l = 5

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

T/ℏωc

ψ
'

(b)2DEG T1=0.53 K, T2=0.5 K
T1=1.1 K, T2=1.2 K

0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

J
to
t
(μ
A
)

graphene T1=0.53 K, T2=0.5 K
T1=1.1 K, T2=1.2 K

30 31 32 33 34 35
-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

ν

J
to
t
(μ
A
)

Fig. 2. (a) The dimensionless amplitude factor (26) plotted as a function of tempera-
ture T measured in the units of ~ωc for three different values of l. (b) The sum of two
edge currents Jtot in µA as a function the Landau filling factor ν that is introduced
for the cases of 2DEG and graphene in the body of the paper. The Fermi energy is
assumed to be EF = 500 K and the level broadening Γ = 0.5 K. The cyclotron
energy ~ωc = Ef/ν. Note that T1 > T2 for the blue curves and T1 < T2 for the
red ones. The direction of the temperature gradient strongly affects the shape of the
oscillations.
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The first term in Eq. (28) monotonously decreases with the345

increase of the external magnetic field as a result of the reduc-346

tion of the magnitude of the edge currents. The oscillating347

part Bosc of the induced magnetic field for the specific cases348

of carriers with parabolic and linear dispersions is given by349

Bosc = |e|EF2π~c

∞∑
l=1

1
l

[
ψ [lλ (T1)]

R1
− ψ [lλ (T2)]

R2

]
× sin

[
2πl
(
cS(EF )
2πe~B + 1

2 +β
)]

exp
(
−2πlΓ

~ωc

)
.

350

In order to exclude the background part of Bind that is indepen-351

dent of the temperature gradient one can study the difference of352

the induced fields ∆Bind(T1, T2) = Bind(T1, T2)−Bind(T2, T1).353

The dependence of ∆Bind(T1, T2) on the filling factor is shown354

in Fig. 3. The phase and magnitude of the oscillatory features355

corresponding to the resonances of Landau and Fermi levels is356

strongly dependent on the temperature gradient in the studied357

sample. The oscillations depend on the temperature difference358

at the edges of the disk. Dirac fermions and 2D electrons with359

a parabolic spectrum are characterized by oscillations of dif-360

ferent phase and frequency. We predict qualitatively different361

power dependencies of the magnitude of Nernst signal on the362

chemical potential for normal and Dirac carriers.363

Conclusions364

We have demonstrated that the Corbino geometry offers a365

precious opportunity for the observation of the specific Nernst366

effect having a purely thermodynamic nature. The effect is367

caused by the imbalance of magnetization currents flowing368

along the inner and outer edges of the Corbino disk maintained369

at different temperatures. We demonstrate that the experimen-370

tally observable manifestation of this thermodynamic Nernst371

effect consists in the appearance of the specific oscillations372

of the magnetic field measured in the center of the disk as a373

function of the external field.374

We have developed the microscopic model describing such375

oscillatory diamagnetic response of the Corbino disk made of376

a normal metal and of graphene in the presence of the radial377

temperature gradient. The total current exhibits oscillations378

corresponding to the resonances of Fermi and Landau levels in379

the disk. The value and the direction of the radial temperature380

gradient in the sample strongly affect the magnitude and the381

shape of the oscillations in the dependence of the induced382

magnetic field on the Landau filling factor. An experimental383

study of such diamagnetic oscillations in the center of the384

Corbino disk would allow for the high precision measurement385

of the Nernst effect that is expected to be of strongly different386

magnitude in graphene and in normal metals. Such a study387

would also shed light on the contribution of the diamagnetic388

currents to the Nernst effect that has been a subject of debate389

for many years.390
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Fig. 3. The contribution to the induced magnetic field ∆Bind at the center of the
Corbino disk that is induced by a temperature gradient in nT plotted as a function
of the filling factor ν. The upped panel is describing the 2DEG characterised by
a parabolic dispersion of charge carriers while the lower panel corresponds to the
case of graphene characterised by the linear dispersion of charge carriers. The blue
curves are calculated with T1 = 1.3K, T2 = 0.9K and the red curves correspond
to T1 = 0.7K, T2 = 0.3K. The other parameters used in this calculation are
R1 = 100µm, R2 = 110µm, EF = 500 K, Γ = 0.5 K.
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