
Elliptic Venttsel problems with VMO coefficients*

Darya Apushkinskayaa, Alexander I. Nazarovb, Dian K. Palagachevc, Lubomira Softovad

aSaarland University, Saarbrücken, Germany; Peoples’ Friendship University of Russia, Moscow and
Chebyshev Laboratory, St. Petersburg State University, St. Petersburg, Russia

bPDMI RAS and St. Petersburg State University, St. Petersburg, Russia
cDMMM, Politecnico di Bari, Bari, Italy

dDepartment of Mathematics, University of Salerno, Salerno, Italy

Abstract

We announce new results about strong solvability of linear and quasilinear Venttsel boundary value
problems with discontinuous principal coefficients.
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1. Introduction

The aim of this note is to announce very recent results [4] regarding the regularity and
solvability of the Venttsel boundary value problem for second order elliptic equations with
discontinuous principal coefficients. Precisely, we deal with the linear problem{

Lu := −aij(x)DiDju+ bi(x)Diu+ c(x)u = f(x) a.e. in Ω,

Bu := −αij(x)didju+ βi(x)Diu+ γ(x)u = g(x) a.e. on ∂Ω
(1)

and with the quasilinear one{
−aij(x, u)DiDju+ a(x, u,Du) = 0 a.e. in Ω,

−αij(x, u)didju+ α(x, u,Du) = 0 a.e. on ∂Ω.
(2)

Here Ω ⊂ Rn, n ≥ 3, is a bounded domain with C1,1-smooth boundary ∂Ω. The symbol
Di stands for the operator of weak differentiation w.r.t. xi and Du = (D1u, . . . , Dnu)

*This work was partly supported by RUDN University Program 5-100 (D.A.), by RFBR grant 18-01-
00472 (D.A. and A.N.), by the grant AP05130222 of Kazakhstan Ministry of Education and Science (A.N.).
D.P. and L.S. are members of INdAM–GNAMPA. A part of this work was done during the visits of D.A. and
A.N. to Politecnico di Bari in 2018, partially supported by Visiting Professorship Program of Politecnico di
Bari, and by the St. Petersburg University (project 34827971), respectively.

Email addresses: darya@math.uni-sb.de (Darya Apushkinskaya), al.il.nazarov@gmail.com
(Alexander I. Nazarov), dian.palagachev@poliba.it (Dian K. Palagachev), lsoftova@unisa.it
(Lubomira Softova)

Preprint submitted to Applied Mathematics Letters June 30, 2019



is the gradient of a function u. Next, di denotes tangential differentiation on ∂Ω, i.e.,
di = Di − ninjDj where n = n(x) is the unit outward normal to ∂Ω at x ∈ ∂Ω, and
du = (d1u, . . . , dnu). The repeated indices mean summation, and we use usual notation for
classical functional spaces.

We study strong solutions of (1) and (2) which belong to the space Vp,q(Ω) of all functions
u ∈ W 2

p (Ω) with traces in W 2
q (∂Ω), normed by

‖u‖Vp,q(Ω) = ‖u‖W 2
p (Ω) + ‖u‖W 2

q (∂Ω).

The history of the linear problem (1) goes back to the pioneering work [15] where, given
an elliptic operator L in Ω, A.D. Venttsel found the most general admissible boundary
conditions which restrict L to an infinitesimal generator of a Markov process in Ω. These
conditions are given in terms of a second order integro-differential operator, and include as
particular cases the Dirichlet, Neumann, and mixed boundary conditions. In a narrower
sense, the Venttsel condition is given by a combination of the second order tangential dif-
ferential operator −αijdidju + β′idiu corresponding to the diffusion with drift on ∂Ω, the
normal derivative term β0∂nu describing reflection phenomena, and the absorption term γu.

The Venttsel problems arise in various fields of science and industry, e.g. in water wave
theory, electromagnetic and phase-transition phenomena, elasticity theory problems, engi-
neering problems of hydraulic fracturing, models of fluid diffusion and some climate models or
non-isothermal phase separation, as well as in financial mathematics (see [5, 7, 9, 12, 13, 14]).

Linear and quasilinear Venttsel problems were deeply studied by many authors, see, e.g.,
the survey [3]. However, our results are completely new, being the first to treat Venttsel
problems with discontinuous principal coefficients. Under suitable hypotheses on data, which
can be viewed as optimal, we derive a Vp,q(Ω)-a priori estimate for the strong solutions of (1),
and additional assumptions lead to unique strong solvability of the problem (1). The linear
results are then combined with the Leray–Schauder fixed point principle to get solvability
of the quasilinear Venttsel problem (2) with discontinuous data.

Apart from the interest to the general theory of PDEs, we believe that our results could
give rise to a priori error estimates (e.g. [10]) for the Finite-Element-Method implementation
of Venttsel problems.

2. Main results

Dealing with the linear Venttsel problem, we suppose that the second order operators
appearing in (1) are uniformly elliptic, that is, there exists a constant ν > 0 such that

ν|ξ|2 ≤ aij(x)ξiξj ≤ ν−1|ξ|2 a.e. x ∈ Ω, ∀ξ ∈ Rn, aij(x) = aji(x), (3)

ν|ξ′|2 ≤ αij(x)ξ′iξ
′
j ≤ ν−1|ξ′|2 a.e. x ∈ ∂Ω, ∀ξ′ ∈ Rn, ξ′ ⊥ n, αij(x) = αji(x). (4)

The principal coefficients of the operators L and B are supposed to be functions of vanishing
mean oscillation, aij ∈ VMO(Ω) and αij ∈ VMO(∂Ω). Referring the reader to [8] for more
details about these spaces, let us only mention that VMO contains as proper subsets C0(Ω),
W 1
n(Ω) and the fractional Sobolev space W θ

n/θ(Ω) with θ ∈ (0, 1).
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For the lower order coefficients, we impose minimal integrability requirements as follows

bi ∈ Lmax{p,n}(Ω) if p 6= n, bi
(

log (1 + |bi|)
)1− 1

n ∈ Ln(Ω) if p = n;

c ∈ Lmax{p,n
2
}(Ω) if p 6= n

2
, c

(
log (1 + |c|)

)1− 1
n ∈ L

n
2 (Ω) if p =

n

2
.

As for the lower order coefficients of the operator B, we decompose βi(x) into sum of normal
and tangential components, βi(x) = β0(x)ni + β′i with β0(x) = βj(x)nj and assume that

β0 ∈ Lq(∂Ω) if p > n, β0 ∈ L
qp∗

p∗− qn
n−1 (∂Ω) if p < n, β0 (log (1 + |β0|))1− 1

n ∈ Lq(∂Ω) if p = n;

β′i ∈ Lmax{q,n−1}(∂Ω) if q 6= n− 1, β′i
(

log (1 + |β′i|)
)1− 1

n−1 ∈ Ln−1(∂Ω) if q = n− 1;

γ ∈ Lmax{q,n−1
2
}(∂Ω) if q 6= n− 1

2
, γ

(
log (1 + |γ|)

)1− 1
n−1 ∈ L

n−1
2 (∂Ω) if q =

n− 1

2
.

Theorem 1. Let 1 < p ≤ nq
n−1

< p∗, q ≥ 2, where p∗ stands for the Sobolev conjugate of p.
Under the above hypotheses on the coefficients of the operators L and B, we have:

1) If u ∈ Vp,q(Ω) solves the Venttsel problem (1) with f ∈ Lp(Ω) and g ∈ Lq(∂Ω), then

‖u‖Vp,q(Ω) ≤ C
(
‖f‖p,Ω + ‖g‖q,∂Ω + ‖u‖p,Ω + ‖u‖q,∂Ω

)
(5)

with a constant C depending on n, ν, p, q, diam Ω, the regularity of ∂Ω, on the VMO-
moduli of aij and αij, and on the moduli of continuity of bi, c, β0, β′i, and γ in the
corresponding functional spaces;

2) Assume, in addition, that p ≥ n, c ≥ 0, β0 ≥ 0 and γ ≥ γ0 = const > 0. Then the
problem (1) admits a unique solution u ∈ Vp,q(Ω) for each f ∈ Lp(Ω) and g ∈ Lq(∂Ω).

The proof of the first claim relies on a thorough analysis based on the coercive esti-
mates from [6], appropriate interpolation procedures and Lp-bounds for suitable extension
operators [2]. Further, the uniquess in the second claim is proved using the Aleksandrov–
Bakel’man interior maximum principle and its local variant for the Venttsel problem [1],
while the solvability of (1) is based on the Fredholm alternative and the estimate (5).

Moving to the quasilinear Venttsel problem (2), we suppose that the differential operators
involved are uniformly elliptic and the principal coefficients aij(x, z) and αij(x, z), being
Carathéodory functions, belong to VMO w.r.t. x locally uniformly in z.

As for the lower order terms, we suppose these support quadratic gradient growths,

|a(x, z, p)| ≤ η(|z|)
(
|p|2 + b(x)|p|+ Φ(x)

)
a.e. x ∈ Ω,

|α(x, z, p′)| ≤ η(|z|)
(
|p′|2 + β(x)|p′|+ Θ(x)

)
a.e. x ∈ ∂Ω,

for all (z, p, p′) ∈ R× Rn × Rn, p′ ⊥ n. Here η ∈ C0(R+) is a non-decreasing function, and

b (log (1 + |b|))1− 1
n ∈ Ln(Ω), Φ ∈ Ln(Ω);

β (log (1 + |β|))1− 1
n−1 ∈ Ln−1(∂Ω), Θ ∈ Ln−1(∂Ω).
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We assume moreover that the lower order term in the Venttsel condition in (2) is “exterior”
to ∂Ω, that is, α(x, z, p) is weakly differentiable with respect to p and

0 ≤ αpi(x, z, p)ni ≤ η(|z|)β0(x),

with β0 (log (1 + |β0|))1− 1
n ∈ Ln−1(∂Ω) and η as above.

Finally, suppose that there is a z0 > 0 such that for |z| ≥ z0 the functions a(x, z, p) and
α(x, z, p′) with p′ ⊥ n are weakly differentiable with respect to z, and

az(x, z, p) ≥ θ0Φ(x); αz(x, z, p
′) ≥ θ0 max

{
1,Θ(x)

}
, θ0 = const > 0. (6)

Theorem 2. Under the above assumptions, the quasilinear Venttsel problem (2) admits at
least one solution in the class Vn,n−1(Ω).

The proof relies on the Leray–Schauder fixed point theorem that reduces the solvability of
(2) to the establishment of suitable a priori estimates for all solutions to a family of Venttsel
problems (see [4]). We only point out that (6) ensures an L∞-estimate for these solutions;
their uniform Hölder boundedness follows from [1]; while the estimates from Theorem 1,
together with [11, Lemma 2.1] and the hypotheses guarantee the gradient a priori bound.
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