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Abstract
Computational chemistry provides versatile methods for studying the properties and functioning of biological systems at 
different levels of precision and at different time scales. The aim of this article is to review the computational methodolo-
gies that are applicable to rhodopsins as archetypes for photoactive membrane proteins that are of great importance both in 
nature and in modern technologies. For each class of computational techniques, from methods that use quantum mechanics 
for simulating rhodopsin photophysics to less-accurate coarse-grained methodologies used for long-scale protein dynamics, 
we consider possible applications and the main directions for improvement.

Keywords  GPCR · Membrane · Molecular dynamics · Protein dynamics · Quantum mechanics · Retinal

Introduction

Rhodopsins constitute a large class of membrane proteins 
that are found in many species, from ancient protobacteria 
(archea) to human beings. As the cofactor, they use the retinal 
chromophore or its derivatives, which are covalently bound 
to a seven-transmembrane helix protein, opsin. Retinylidene 
proteins function as light sensors, ion pumps, and even thermo- 
and chemosensors (Govorunova et al. 2017; Rotov et al. 2018; 
Smith 2010). After photon absorption or other types of cofac-
tor activation, isomerization of the chromophore triggers 
a series of subsequent structural reorganizations of the pro-
tein. Both physical properties, such as electronic absorption 
wavelength, and the functions of the different rhodopsins are 

determined by the primary structure of the protein. Rhodopsin 
primary structure modification allows for functional diversi-
fication of these proteins, which are widely utilized both in 
nature and technology (Govorunova et al. 2016; Hochbaum 
et al. 2014; Nikolaev et al. 2019b).

For this reason, understanding the correlation between 
structure and function in opsins and rhodopsins is an 
important task in the biophysical research field. To accom-
plish such a goal, both experimental and computational 
approaches are applied. Experimental techniques can reveal 
many important details of rhodopsin structure, starting from 
the primary sequence up to oligomeric aggregates within a 
membrane environment; they can detect and characterize 
intermediates of the rhodopsin photosequence; and deter-
mine the timescale for their rising and disappearing starting 
from femtoseconds up to hours. These techniques include 
X-ray crystallography (Gushchin et al. 2015; Volkov et al. 
2017); nuclear magnetic resonance (NMR) (Jensen et al. 
2014; Mertz et al. 2012), Raman (Gellini et al. 2000; Saint 
Clair et al. 2012b), electronic (UV–visible) (Maclaurin et al. 
2013), circular dichroism (CD) (Thomas et al. 2009), and 
Fourier transform infrared (FTIR) spectroscopies (Chen 
et  al. 2018; Hein et  al. 2003; Saint Clair et  al. 2012a), 
together with electron microscopy (Krebs et al. 2003) and 
neutron scattering (Perera et al. 2018; Shrestha et al. 2016). 
From another side, computational modeling offers an addi-
tional dimension for the understanding of rhodopsin struc-
ture and function. Computational models can both support 
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the interpretations of experimental findings and provide 
additional insights with atomistic resolution. In this review, 
we provide the detailed description of the computational 
techniques that are used for rhodopsin modeling, starting 
from an evaluation of the local conformational dynam-
ics based on the available X-ray structure and the primary 
sequence, up to the global protein dynamics on the millisec-
ond time scale with coarse-grained approaches.

Main Approaches and Methodologies Used 
for Computational Modeling of Opsins 
and Rhodopsins

More broadly, rhodopsins refer to the group of either homol-
ogous or nonhomologous proteins comprising an opsin apo-
protein and a retinylidene chromophore. Contrary to their 
name, microbial rhodopsins occur not only in archaea and 
bacteria, but also in eukaryotes (such as algae). (Recall that 
prokaryotes are divided into two domains, archaea and bac-
teria, while eukaryotes comprise a third distinct life domain.) 
Prokaryotic rhodopsins include bacteriorhodopsins, archaer-
hodopsins, proteorhodopsins, xanthorhodopsins, halorho-
dopsins, and sensory rhodopsins; and unicellular algae and 
other eukaryotes contain channelrhodopsins. Various ion-
translocating microbial rhodopsins find important applica-
tions in optogenetics, which uses light to modulate neuronal 
activity in cells genetically modified to express light-sensi-
tive ion channels. Microbial rhodopsins are different from 
and are nonhomologous to any of the G-protein-coupled 
receptor (GPCR) families. The microbial rhodopsins have 
significant sequence homology to one another, yet they 
have no detectable homology to the GPCR family to which 
animal visual rhodopsins belong. Nevertheless, microbial 
rhodopsins and GPCRs are possibly evolutionarily related 
because of their analogous three-dimensional structures; 
they are members of the same superfamily.

Rhodopsin (visual purple) is the opsin with bound 11-cis 
retinal that is responsible for scotopic (dim light) vision in 
vertebrate animals. The cofactor retinal is bound as a Schiff 
base to a conserved lysine residue on the seventh transmem-
brane helix (H7). Vertebrate visual opsins include not only 
rhodopsin, but also the cone opsins, which are the color-
sensing pigments. Depending on the number of cone opsins 
(colors detected) animals are classified as dichromats (dogs, 
cats), trichromats (humans), and tetrachromats (some birds 
and mantis shrimps). In addition, melanopsin is found in 
the retina and is involved in circadian rhythms, and pinop-
sin occurs in the pineal gland of the brain, which produces 
melatonin, a serotonin-derived hormone that modulates sleep 
patterns in both circadian and seasonal light cycles. Visual 
rhodopsin and the vertebrate opsins in animals are members 

of the large GPCR gene family. The Rhodopsin class (Fam-
ily A) GPCRs includes the opioid receptors, the cannabinoid 
receptors, dopamine receptors, and the β-adrenergic receptors 
(Weis and Kobilka 2018).

Initial Construction of Three‑Dimensional Models 
for Rhodopsin Proteins

In order to perform computational analysis of the proper-
ties and dynamics for any protein system, including opsins 
and rhodopsins, a high-quality three-dimensional structure 
of the protein is required (Fig. 1 shows an example of dark- 
and light-activated rhodopsins). In most studies, an X-ray 
structure of the target visual rhodopsin pigment or micro-
bial rhodopsin is used. However, experimental structures 
are not always available for rhodopsins, or their intermedi-
ates and mutants. In this case, a three-dimensional structure 
has to be predicted starting from the corresponding protein 
amino-acid sequence, with methodologies described in the 
next section. To complete the three-dimensional model, 
either constructed based on the X-ray structure, or pre-
dicted starting from the amino-acid sequence, one has to 
determine the protonation states of all the titratable resi-
dues. In addition, one must predict the locations of the 
water molecules that can be only partially resolved by 
X-ray crystallography.

Prediction of Three‑Dimensional Rhodopsin 
Structure

If an X-ray structure is available, the optimal strategy is to 
begin with this conformation and proceed to the next steps 

Fig. 1   X-ray structures of rhodopsin in the dark (left, PDB code 1U19) 
and active metarhodopsin-II states (right, PDB code 3PQR). Retinal 
ligand is shown in red for the dark state and in blue for the active metar-
hodopsin-II state. Major amino-acid residues involved in rearrangement 
of hydrogen-bonding networks leading to activation are indicated
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that are described in the “Prediction of Water Molecule 
Localizations”; “Prediction of the Protonation State for 
Titratable Residues”; and “Insertion into a Lipid Mem-
brane Environment” sections. Otherwise, one has to predict 
a three-dimensional structure of the protein based on its 
primary amino-acid sequence. For protein structure predic-
tion, two general strategies are applied—either ab initio 
or homology modeling (Dorn et al. 2014). In the ab initio 
approach, the protein folding process is modeled under 
the guidance of a physically realistic energy function by 
sampling the protein conformational space using molecular 
dynamics or Monte Carlo simulations. Even though this 
approach is more fundamental, it requires the investigation 
of a huge conformational space, and, therefore, it is very 
computationally expensive (Dorn et al. 2014; Khan et al. 
2016; Lee et al. 2017). Accordingly, the ab initio approach 
is rarely used alone, giving preference to homology mod-
eling methods that can include ab initio modeling as an 
integral part (Wu et al. 2007).

Homology modeling methods use the X-ray structures of 
close homologs as an initial approximation (template). To 
choose the appropriate template, alignment of the primary 
sequences of the target protein and the possible template 
protein is carried out, and the template protein with the most 
similar amino-acid sequence is selected (Chothia and Lesk 
1986). Usually, to find the appropriate template protein(s) 
and perform accurate sequence alignment, automatic algo-
rithms that search the databases of protein structures are 
used (Hill and Deane 2012; Söding 2004; Wu and Zhang 
2008). To predict the target structure on the basis of the 
selected template, the following approaches are generally 
applied.

(i) In the global approach to structure building, at the 
first step, a complete backbone structure is modeled, and 
then it is reorganized under the constraint of a specific 
energy function. To build the initial conformation, the fol-
lowing algorithm is usually applied. The structures of the 
conserved regions are extracted from the template(s) and 
reorganized in the proper order. The conserved regions 
are defined on the basis of the target-template sequence 
alignment. The conformation of nonconserved regions is 
generated using the ab initio approach (Eswar et al. 2006; 
Roy et al. 2010; Song et al. 2013). Next, the conforma-
tional search is performed using Monte Carlo or molecular 
dynamics-based approaches with the guidance of a specific 
energy function. Usually, three kinds of energy functions 
are used and combined: physically based energy functions 
(Alford et al. 2017), statistically driven energy functions 
(Yang et al. 2015) and energy functions that represent tem-
plate-derived spatial constraints (Eswar et al. 2006). The 
sampling procedure can be aimed at the optimization of 
either the energy or free energy of the system. In the latter 

case, the conformations generated during the sampling pro-
cedure are clustered (on the basis of geometrical similarity) 
(Zhang and Skolnick 2004). As a general rule, it is assumed 
that the largest clusters correspond to the conformations 
with the lowest free energy. Then, the centroids of the larg-
est clusters are generated as prefinal models. To obtain the 
final conformations, the prefinal models are additionally 
optimized to avoid steric clashes that may occur during the 
generation of the centroid models (Yang et al. 2015; Yang 
and Zhang 2015).

(ii) For local structure building, the core of the structure 
is extracted from the template (for membrane proteins, it is 
the center of the transmembrane region) (Ebejer et al. 2013; 
Kelm et al. 2010). Afterward, the structure is completed on 
a residue-by-residue basis. Following the addition of each 
amino acid, local optimization of its orientation is performed 
to predict its most optimal position. Usually, during the ini-
tial conformational search, only the backbone atoms are 
modeled, and the side chains are represented only by their 
centers of mass (Yang et al. 2015). When the final confor-
mation is predicted, the side chains are added from specific 
rotamer libraries. The orientations of the side chains that do 
not lead to the emergence of steric clashes are selected, and 
the final energy optimization is performed (Xu and Zhang 
2011).

In a recent study (Nikolaev et al. 2018), the performance 
of several modern homology modeling approaches that com-
bine algorithms for structural construction and optimization 
have been compared. A set of 24 rhodopsins, both visual and 
archaeal, were investigated (Nikolaev et al. 2018). This study 
demonstrated that the correct choice and usage of modern 
homology methodologies allows for accurate prediction of 
average structural properties of rhodopsin proteins (Yang 
and Zhang 2015). Even then, to evaluate the quality of 
homology modeling-based rhodopsins for subsequent com-
putational modeling, further investigations are needed. It is 
also worth mentioning that all modern homology modeling 
algorithms do not consider the retinal moiety, and, for this 
reason, the orientation of side chains in the retinal-binding 
cavity can be incorrect. Although these inaccuracies can lead 
to steric clashes when the retinal cofactor is inserted in the 
model,  optimization of retinal geometry on the molecular 
mechanics (MM) level can be applied to overcome these 
problems (Nikolaev et al. 2018).

Prediction of Water Molecule Localizations

When experimental data about the locations of water mol-
ecules in rhodopsins are not available or incomplete, compu-
tational algorithms for predicting water molecules in protein 
cavities are applied. The pipeline of such algorithms can be 
divided into two general steps: finding the possible water 



428	 M. N. Ryazantsev et al.

1 3

positions; and evaluation of the propensity of positioning 
the water molecules at the defined locations.

(i) Initially, comparatively simple approaches that 
involved finding protein cavities with a probe radius and 
energy minimization of water molecules in the cavity were 
applied (Zhang and Hermans 1996). With the development 
of docking algorithms, stochastic approaches were intro-
duced (Trott and Olson 2010). These approaches combine 
global and local optimization techniques to find all possible 
water positions in a given cavity with subsequent clustering 
of the possible positions (Trott and Olson 2010).

(ii) To evaluate the propensity of a water molecule to 
be placed at a certain location inside a protein cavity, two 
approaches are used. In the first approach, implemented 
in the Dowser (Zhang and Hermans 1996) and Dowser++ 
(Morozenko and Stuchebrukhov 2016) algorithms, the 
potential energy of interaction between the water mol-
ecule and the environment is calculated. The proposed 
energy function includes terms that consider van der 
Waals interactions (approximated by the 6–12 Lennard-
Jones potential), electrostatic interactions with charges on 
protein atoms, and electrostatic interactions with water 
molecules inside the same cavity. In all the water predic-
tion algorithms, Marsili–Gasteiger partial charges are usu-
ally applied for the calculation of electrostatic interactions 
(Gasteiger and Marsili 1980). This approach does not take 
into account the entropy of the water molecules inside the 
cavity. However, the developers of these algorithms assume 
that the entropy factor is small (~ 1 kcal/mol) (Morozenko 
et al. 2014). If the value of the potential energy describing 
the interaction of the water molecule with the cavity envi-
ronment is less than a certain threshold, e.g., − 10 kcal/
mol in Dowser and − 4 kcal/mol in Dowser++, the water 
molecule is accepted.

In the second approach, implemented in the WaterDock 
(Ross et al. 2012) and WaterDock 2.0 (Sridhar et al. 2017) 
programs, an empirical energy function that describes the 
free energy of placing a water molecule inside the target 
cavity, i.e., including the entropy factor, is proposed. This 
energy function involves terms that take into account steric, 
hydrophobic, and hydrogen-bonding interactions, and is 
essentially empirical—it is not based on the actual physi-
cal potentials (Ross et al. 2012; Trott and Olson 2010). 
Thus, to predict water positions in protein cavities, mod-
ern algorithms analyze each possible cavity by testing all 
possible positions of water molecules inside it. The pos-
sible water positions are scored and clustered, generating 
a small number of final variants. Finally, the energy or free 
energy of the possible water molecules inside a cavity is 
calculated, and those water molecules that are energetically 
unfavorable are removed. It should be mentioned that for 
rhodopsins, comparative studies of these methodologies 

have not yet been conducted, and further investigations 
are needed to fill this gap. To further improve the qual-
ity of water prediction, more accurate estimation of the 
water–protein interaction energy should be considered. 
Such approaches can estimate the free energy of transfer-
ring a water molecule from the bulk to a specific site in 
the protein cavity, and optimize the position of a water 
molecule in the cavity by free energy minimization. While 
free energy calculations are still computationally expen-
sive, and cannot be applied to test all protein cavities, 
they can be used in critical cases, i.e., when highly struc-
tured functionally important water clusters are concerned. 
Besides, to develop strategies for improvement, extensive 
benchmarks that compare existing algorithms should be 
performed. To our knowledge, the algorithms for water pre-
diction have never been tested on a large class of proteins. 
Rather, the test pools were limited by the small amount of 
globular proteins with sufficient numbers of water mol-
ecules resolved in the X-ray structure.

Prediction of the Protonation State for Titratable 
Residues

To predict the protonation state of titratable residues, in pro-
teins pKA calculations of these residues are performed. The 
most widely applied algorithms for pKA calculations imply 
empirical implicit approaches. For example, the algorithm 
implemented in the PROPKA program (Olsson et al. 2011) 
takes into account electrostatic interactions of the ionizable 
residues with charges and dipoles of the protein environ-
ment, as well as van der Waals interactions. In addition, the 
algorithm considers the hydrogen bonding and desolvation 
energy, i.e., the free energy of transferring the amino acid 
from the bulk to the protein environment. While MM-based 
or QM/MM-based calculations of such energy terms are 
computationally expensive, the algorithm implemented in 
PROPKA applies empirical parameters (Olsson et al. 2011; 
Rostkowski et al. 2011). Recently, a new method for predict-
ing the protonation states was developed and implemented 
in the Rosetta program package (Kaufmann et al. 2010). 
It defines the most energetically favorable states during 
sampling under the guidance of the modified force field. 
The modification required adding a term that considers the 
probability of protonation at a given pH to the potential 
energy function (Kilambi and Gray 2012). In other strate-
gies, calculations of all-atom MD trajectories for the protein 
in explicit or implicit solvents, as well as QM/MM calcula-
tions, have been applied to evaluate pKA values. In addition, 
modern algorithms apply Monte Carlo sampling to optimize 
the hydrogen-bonding network in the protein (Dolinsky 
et al. 2004, 2007). These approaches are computationally 
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expensive (Schaefer et al. 2005; Simonson et al. 2004), but 
they can be indispensible in some challenging cases, and 
their usage will be increasing. Prediction of the protonation 
state of titratable residues is a general biological problem 
of special importance, and these methodologies are always 
improving.

The major problem of all pKA calculation approaches 
is that they evaluate pKA values only for an immobile or 
“frozen” protein conformation. However, during the dynam-
ics occurring under the natural conditions, the pKA values 
change with the alteration of protein conformation, mean-
ing that the protonation state of the ionizable residue also 
fluctuates. For this reason, it would be much more natural 
to apply algorithms for pKA calculation and protonation of 
titratable residues “on the fly” during the molecular dynam-
ics simulations. Such an approach is partially implemented 
in constant-pH molecular dynamics (Khandogin and Brooks 
2005). Even then, modern constant-pH MD algorithms do 
not apply accurate methods of the pKA estimation. Thus, 
the combination of the most accurate pKA calculations with 
constant-pH molecular dynamics simulations is a possible 
direction of improvement in this field.

Insertion into a Lipid Membrane Environment

In order to take the natural environment of membrane pro-
teins into account, a model constructed as described above 
has to be inserted into the lipid bilayer. Two approaches 
are commonly used for this purpose. In the first approach, 
the membrane bilayer is implicitly considered by applying 
a membrane-imitating electrostatic field (Im et al. 2003; 
Mori et al. 2016; Ulmschneider and Ulmschneider 2009). 
Even though this approach seems to be less accurate than 
the explicit membrane modeling, it has two important advan-
tages. First, an implicit membrane model greatly reduces the 
computational cost of the calculations, and allows for more 
extensive sampling (Grossfield 2008). Second, the implicit 
membrane imitates the average electrostatics, which is closer 
to the natural conditions, thus enabling better investigation 
of the rhodopsin conformational space in the lipid membrane 
environment (Feig 2008; Ulmschneider and Ulmschneider 
2009).

On the other hand, explicit parameters for different types 
of lipid bilayers have been extensively developed in the last 
decade (Cordomí et al. 2012; Jämbeck and Lyubartsev 2012; 
Klauda et al. 2010; Pastor and MacKerell 2011). These 
include saturated (e.g., DMPC, DPPC), and unsaturated 
(e.g., DOPC, POPC) lipid types (Jämbeck and Lyubartsev 
2012). Among the most recent advances in this area, the 
Lipids14 membrane parameters should be mentioned (Dick-
son et al. 2014). In this work, the authors developed the 
optimal lipid parameters that allow for accurate reproduction 

of natural thermodynamic and dynamic properties of lipid 
bilayers during short and long MD simulations. These 
parameters are compatible with the AMBER force field 
(Lindorff-Larsen et al. 2010). For the CHARMM force field, 
appropriate lipid parameters are also available (Leonard 
et al. 2018; Pastor and MacKerell 2011).

Another problem related with the explicit membrane 
modeling is the development of accurate algorithms for 
insertion of the protein into a membrane lipid bilayer. The 
most straightforward approach, which is commonly applied, 
is cutting out a cavity of the proper size in the preequili-
brated lipid bilayer, inserting a membrane protein inside the 
cavity, and performing accurate optimization of the whole 
system. Recently, a new approach, implemented in LAM-
BADA and InflateGro algorithms, was proposed (Schmidt 
and Kandt 2012). Here, the relative orientation of the mem-
brane protein and the lipid bilayer is determined on the 
basis of the protein hydrophobicity profile. Lipid molecules 
“inflate” in order to provide enough space among them-
selves for the protein. Afterward, the lipid bilayer shrinks 
back to envelop the protein without inducing any steric 
clashes. The authors showed that implementation of this 
algorithm allows for physically realistic membrane embed-
ding, even if a heterogeneous membrane is considered. For 
rhodopsins, all these algorithms can be applied on a regular 
basis at present.

Computational Strategies that can be 
Applied for Rhodopsin Modeling

Here we consider visible rhodopsins and microbial rho-
dopsins for the purposes of illustration. As mentioned above, 
visual rhodopsin is the archetype for the large Rhodopsin 
class of (Family A) G-protein-coupled receptors, with an 
increasing number of X-ray and cryo-electron microscopy 
structures becoming available. Because this largest class of 
vertebrate membrane proteins has around 800 members, 
modeling approaches may be necessary for those members 
whose tertiary structures are not currently available.

Hierarchy of Computational Models

To model the physical, chemical, and biological properties 
of rhodopsin proteins, all the main approaches of computa-
tional chemistry and biophysics can be applied. The difficul-
ties that have to be overcome for successful implementation 
of these computational methodologies are typical for flexible 
molecular systems of this size (Fig. 2).

(i) First, due to the relatively large size of rhodopsin pro-
teins, the most general approaches, i.e., employing ab ini-
tio quantum chemistry or density functional theory (DFT), 
can be used only as a part of a hybrid quantum mechanics/
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molecular mechanics (QM/MM) model. In such QM/MM 
models, a part of the protein, usually the chromophore, is 
described at the quantum mechanics level; and the rest of 
the protein is treated with a molecular mechanics force field. 
Two main approaches, subtractive and additive, are used to 
couple the QM and MM parts together (for details, see refs 
(Chung et al. 2015; Lin and Truhlar 2007; Senn and Thiel 
2009) and the section below). Another option is to imple-
ment a pure molecular mechanics (MM) model or even a 
coarse-grained (CG) model. However, a QM/MM model 
cannot be displaced by a pure MM model if one wants to 
model “intrinsically” quantum mechanical processes, such 
as light absorption, electron, proton, or energy transfer, due 
to the difficulties in obtaining high-quality MM parameters 
for modeling of chemical reactions.

(ii) Second, again due to the comparatively large sizes of 
these proteins and their relatively high flexibility, one has 
to take the entropy factor into account even for modeling 
stationary properties. It requires extensive conformational 
searches with molecular dynamics or stochastic approaches, 
i.e., calculations of energies for substantial numbers of con-
formations and, if molecular dynamics are the method of 
choice, also the forces. The molecular dynamics approach 
also has to be used if one wants to model the evolution of 
the system over time. Obviously, more expensive QM/MM 
approaches can be applied only to model relatively short 
trajectories, starting from fs to ps. Still, the MM or CG mod-
els allow one to model the evolution of a system up to ms, 
and they are also indispensable for extensive conformational 

searches and, therefore, the evaluation of the Gibbs free 
energy.

Classical Force Fields: Types and Parameterization

The calculation of energies and forces (gradients) is one of 
the central problems for quantum chemistry, and a number 
of both ab initio and DFT methodologies are available to 
perform this task. But even semiempirical ab intio and DFT 
methods are relatively expensive, and allow only calcula-
tions of relatively short trajectories. For modeling long-time 
events, or for extensive conformational space exploring, it 
is still much more practical to use the approximation of the 
potential energy surface of the molecular system in its low 
energy region, i.e., the so-called molecular mechanics (MM) 
approach. Setting the potential energy function for the MD 
calculations requires determination of its functional form. 
The most common approach is to use a potential energy 
function U that will approximate the actual physical interac-
tions between atoms (Lindorff-Larsen et al. 2010). Usually 
the potential includes van der Waals (approximated by a 
6–12 Lennard-Jones potential) and Coulombic nonbonded 
interactions between atoms, and the bonded interactions 
between couples, triples, and tetrads of atoms. Many varia-
tions of these functional forms have been proposed, and they, 
together with experimentally derived parameters, define a 
force field. For example, the functional form of the general 
AMBER force field (Cornell et al. 1995; Wang et al. 2004) 
written in terms of potential energy reads:

Fig. 2   Hierarchy of rhodopsin 
computational models. (left) 
Hybrid quantum mechanics/
molecular mechanics (QM/
MM) models are used to model 
intrinsically quantum mechani-
cal processes, such as light 
absorption, or electron, proton, 
or energy transfer. (center) 
Molecular mechanics models 
are used to simulate medium- 
and long time-scale protein 
dynamics (up to hundreds of 
μs) or to perform extensive 
conformational searches. (right) 
Coarse-grained simulations are 
used to simulate even longer 
time-scale processes in proteins 
and protein–lipid complexes (up 
to several ms)
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parameters is performed by fitting the results of molecular 
mechanics calculations to the results of quantum chemical 
calculations. The accuracy of the parameters can be also 
evaluated by the ability of models based on these parameters 
to correctly reproduce experimental data (X-ray or NMR 
structures, Raman or CD spectroscopic results) (Ferrand 
et al. 1993; Hamanaka et al. 1972; Zhou et al. 1993).

One of the first parameter sets for retinal was based on 
ab initio (HF/6-31G* and MP2/6-31G*) calculations of buta-
diene geometry and rotational energy barriers, which were 
extrapolated to the larger retinal moiety. In further studies, 
Nina et al. (1995) considered the energy surfaces for hydro-
gen bonds between the retinylidene Schiff base moiety and 
the water molecules in the retinal binding pocket as experi-
mentally observed in bacteriorhodopsin (De Groot et al. 
1990; Harbison et al. 1988). In both cases, the parameter sets 
were developed for the CHARMM force field (Cornell et al. 
1995). Baudry et al. calculated ab initio the conformational 
energies of several model compounds that represented the 
parts of retinal (Baudry et al. 1997, 1999). Specifically, the 
Gibbs free energy differences between different conforma-
tions (corresponding to all-trans, 13-trans-15-cis, 13-cis-15-
trans, (13,15)-cis retinal) were calculated at the MM level 
using an umbrella sampling approach, and were compared to 
the results of ab initio RHF/6-31G* and MP2/6-31G* calcu-
lations. In other studies, the parameter sets were developed 
on the basis of DFT calculations (B3lyp/6-31G*) of proton 
transfer and isomerization processes for different Schiff base 
models, including the complete retinal Schiff base model, in 
different environments (Tajkhorshid et al. 1997; Tajkhorshid 
and Suhai 2000). The comparison of these two parameter 
sets (developed on the basis of RHF/6-31G* Gibbs free 
energy calculations and DFT calculations) showed that 
the latter parameter set demonstrated higher isomerization 
energy barriers (Tajkhorshid et al. 2000).

As a means of improving the existing parameter sets, 
Hayashi et al. performed a QM/MM study of the retinal 
dynamics (for the ground and excited states of the mol-
ecule) in a bacteriorhodopsin environment (Hayashi et al. 
2002). On the basis of QM/MM results and the previous 
DFT-based parameter set (Tajkhorshid et al. 2000), they 
presented improved retinal parameters by introducing 
additional improper torsional functions and a new charge 
scheme calculated on the CASSCF level. Moreover, Hayashi 
et al. also introduced additional force field parameters that 
treated the interaction of the retinylidene Schiff base with 
the nearby water molecules. One should note that an ear-
lier molecular dynamics study of squid rhodopsin showed 

where r represents the Cartesian coordinates of the molecu-
lar system. The first term describes the bond stretches, l0

ij
 is 

the equilibrium distance between covalently bound atoms i 
and j, and kb

ij
 is the bond force constant. The second term 

describes the bending of angles between three bonded 
atoms, i, j, and m, where �0

ijm
 is the equilibrium value for the 

corresponding angle, and ka
ijm

 is the bending force constant. 
The third term describes the torsional rotation of four 
bonded atoms around the corresponding central bond. Here, 
�ijmp is the dihedral angle, n is the multiplicity of the func-
tion, and δ is the phase shift. The final two terms describe 
the nonbonded van der Waals and Coulombic interactions.

Another widely used force field, OPLS, has the same 
functional form as the AMBER force field, with the only 
difference in the term for torsional rotation, which is 
described as a Fourier series of cosine functions (Kaminski 
et al. 2001). The variations can also include introduction of 
a cosine-based harmonic potential for the angles between 
bonded atoms, as in the case of the GROMOS force field 
(Oostenbrink et al. 2004). In other potentials, additional 
terms are often added to obtain a better approximation of 
the potential energy surface of the molecular system. Thus, 
in the CHARMM force field (Vanommeslaeghe et al. 2010), 
a harmonic term k(� − �0)

2 that treats out-of-plane bending 
motion is introduced to keep certain groups planar. Fur-
thermore, an additional harmonic Urey–Bradley potential 
is included that depends on the distance between the 1–3 
bonded atoms to approximate the angle bending more accu-
rately. Recent versions of the CHARMM force field also 
include grid-based energy correction mapping for back-
bone dihedral angles (CMAP) (Mackerell et al. 2004). As 
described above, defining the values for all the constants 
(parameters) is performed during the parametrization pro-
cedure. While the parameters for standard amino acids are 
constantly updated and already have good accuracy (Klauda 
et al. 2010; Lindorff-Larsen et al. 2010), the parametrization 
of nonstandard cofactors, e.g., retinal, is not very accurate to 
date, and requires further development (Mertz et al. 2011; 
Zhu et al. 2013).

Parameterization for the Retinal Cofactor

To correctly model the retinal chromophore including its 
structure and dynamics at the molecular mechanics (MM) 
level, an accurate force field parameter set is required. 
Usually, the development and optimization of force field 
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that the DFT-based parameter set (Tajkhorshid and Suhai 
2000) slightly overestimates the planarity of the retinal Schiff 
base, making even the β-ionone ring coplanar with the pol-
yene chain (Jardón-Valadez et al. 2010). In a recent study, 
the influence of different factors, including the applied QM 
methodology, selected moiety of the retinal Schiff base for 
the QM calculations of the final MM torsion parameters, and 
the resulting planarity of the chromophore was thoroughly 
investigated (Bondar et al. 2011). Further calculations of the 
retinal torsional energy landscape revealed the significance 
of the retinal methyl groups (Khandogin and Brooks 2005; 
Mertz et al. 2011; Struts et al. 2011). It follows that to repro-
duce the proper planar structure and isomerization dynam-
ics of the retinal Schiff base, each methyl group should be 
treated individually (Struts et al. 2011). Intraretinal rotational 
potentials for the methyl groups change upon isomerization 
and deprotonation. More symmetric local structures cor-
respond to lower rotational barriers (Fig. 3). These results 
have facilitated the development of an improved parameter 
set (Zhu et al. 2013). Here, the authors also introduced differ-
ent torsional parameter sets for protonated and deprotonated 
retinal Schiff bases. Specifically, the MP2/6-31G* scans for 

each torsional degree of freedom were calculated for both 
protonated and deprotonated retinylidene Schiff bases.

Further development of the retinal parameter sets is 
related with automatic methodologies for force field param-
eterization on the basis of QM and QM/MM calculations. 
For example, in a recent study, the force matching approach 
was used to develop a new parameter set for retinal on the 
basis of QM/MM calculations for bovine visual rhodopsin 
(Doemer et al. 2013). Here, the algorithm minimizes the 
deviation of the forces acting on the retinal atoms between 
models obtained during the MM and QM/MM calculations. 
Recently, this approach was also implemented to study the 
photocycle of channelrhodopsin-2 (Ardevol and Hummer 
2018). Thus, researchers were able to develop parameter 
sets for the retinal chromophore in the environment of inter-
est. The extension of such automatic methodologies can be 
related with machine learning approaches that have been 
recently implemented to perform accurate parameterization 
of water molecules (Wang et al. 2012) and metal ions (Frac-
chia et al. 2017). The increase of accuracy is related with the 
improvement of the functional form of the force field that 
can include more complex effects, such as charge transfer 
and polarizability (Chen et al. 2008), and from the improve-
ment of parameter sets. To develop such force fields, accu-
rate sampling and accurate optimization procedures should 
be used. Specifically, the applied sampling procedure should 
generate structures that extensively represent the retinal con-
formational space in various environments (Fracchia et al. 
2017).

Molecular Dynamics Simulations

Molecular dynamics (MD) is the most general computa-
tional approach to study protein properties and evolution. 
Besides an exploration of the conformational space for 
Gibbs free energy calculations as described below, MD can 
be applied to study protein adaptation to specific environ-
ments, or to model the temporal evolution of the protein 
during the rhodopsin photosequence. During MD calcula-
tions, the nuclear motion is described by solving Newton’s 
equations of motion. The forces acting on the atoms are cal-
culated from the potential energy as follows:

where ri represents the Cartesian coordinates of the tar-
get atom, and U is the potential energy function (potential 
energy surface, PES).

Most of the MD studies of rhodopsin dynamics have been 
aimed at investigating the structural changes that occur dur-
ing the rhodopsin photocycle. For example, the coupling 
of the retinal motion with the global reorganization of the 
transmembrane helical bundle of rhodopsin, as well as the 

(2)Fi = −
dU

d�i
,

Fig. 3   Torsional potential energy surfaces showing that 1–6 interac-
tions affect retinal methyl rotation. a Comparison of QM (circles) 
and MM (lines) methyl torsion angle energies in compounds 1 and 
2. b 1–6 distance in compound 2 between methyl hydrogen and C1 
vinyl hydrogen (closed) and C5 vinyl hydrogen (open). c QM energy 
as a function of methyl torsion angle in compounds 1, 3 (propane), 
and 4 (propene). d Activation energies (Ea) for C5-, C9-, and C13-
methyl groups from 2H NMR data for the dark, metarhodopsin-I, and 
metarhodopsin-II states of rhodopsin compared to a typical methyl 
dihedral energy barrier in a molecular mechanics force field. Steric 
interactions and electrostatic potentials are shown mapped to surfaces 
of 1 and 2. Adapted from Mertz et al. (2011) with permission from 
Elsevier
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extracellular and cytoplasmic loop regions, has been ana-
lyzed (Crozier et al. 2003; Kazmin et al. 2015; Kholmuro-
dov et al. 2007). In several works, the computation of rho-
dopsin dynamics was combined with the results of NMR 
experiments to obtain more detailed information (Hornak 
et al. 2010; Lau et al. 2007; Leioatts et al. 2014; Mertz et al. 
2012). Solid-state 2H NMR spectroscopy of deuterated lipid 
membranes recombined with rhodopsin together with MD 
simulations were used to study lipid–protein interactions 
and the effect of the membrane environment on rhodopsin 
activation and signal transduction (Huber et al. 2004). The 
solid-state NMR and MD simulation data indicated similar 
changes in order parameter profiles for the lipid acyl chains 
in recombinant membranes, as compared to membranes 
without rhodopsin. Here the important aspect is to confirm 
experimentally that the membrane structure is simulated 
correctly, before proceeding further with the analysis of 
all-atom simulations of rhodopsin-containing membranes. 
The authors concluded that the lipid membrane structure 
changes to match the hydrophobic lipid–protein interface, 
and thereby accommodate the transmembrane domain of 
the receptor. One of the MD simulations of the dark state of 
rhodopsin (Lau et al. 2007) has studied the retinal mobility, 
and has revealed that the β-ionone ring may rotate around 
the C6–C7 bond and may have multiple orientations in the 
dark state. Solid-state 2H NMR spectra of the C5-methyl 
group calculated based on the MD orientational distribution 
agree well with experimental solid-state 2H NMR spectra 
(Lau et al. 2007). Comparison of the 2H NMR spectra of the 
retinal methyl groups calculated from MD angular distribu-
tion with the experimental spectra was also used to evaluate 
proposed counterion models in the metarhodopsin-I state 
(Leioatts et al. 2014; Martínez-Mayorga et al. 2006; Mertz 
et al. 2012). The complex-counterion model showed good 
agreement with the experimental 2H NMR spectra, while the 
counterion-switch mechanism did not (Fig. 4). Furthermore, 
MD simulations have indicated that increased hydration of 
the receptor takes place already in the preactive metarhodop-
sin-I state (Grossfield 2008; Leioatts et al. 2014).

Retinal Isomerization

One of the approaches to trigger retinal isomerization dur-
ing MD is the application of steered molecular dynamics 
(SMD) (Lemaître et al. 2005). In the SMD approach, an 
additional force is applied to quickly overcome the high 
energetic barrier of the isomerization. The authors (Lemaî-
tre et al. 2005) observed good correspondence for the inter-
carbon distances (C10–C20, C11–C20, C8–C16, C8–C17, 
C8–C18) and dihedral angles of the retinal polyene chain 
obtained from 13C rotational-resonance NMR of metar-
hodopsin-I and calculated from a 10-ns MD simulation of 
rhodopsin after retinal isomerization. They concluded that 

the retinal relaxation after isomerization (lumirhodopsin 
or metarhodopsin-I states) extends by about 0.1–0.14 nm 
along its long molecular axis; however it maintains almost 
the same distance from helix H5 and helix H6. The NMR 
distance restraints obtained from 13C dipolar-assisted rota-
tional-resonance (DARR) studies (Ahuja et al. 2009a, b; 
Patel et al. 2004) were used in guided MD simulations of 
the active metarhodopsin-II state. Throughout the course of 
the simulation, initial distances (corresponding to the crys-
tal structure of rhodopsin in the dark state) were gradually 
changed toward experimental NMR distances characterizing 
active metarhodopsin-II. The MD simulation suggests that 
the retinal straightens in the metarhodopsin-II state, and the 
β-ionone ring translates by about 2 Å toward helix H5. The 
retinal motion leads to rearrangement of hydrogen bonding 
between His211 and Glu122 and around extracellular loop 
EL2, leading to its displacement toward the extracellular 
side. All these changes stabilize the active metarhodopsin-II 

Fig. 4   a Dark-state and b complex-counterion molecular dynamics 
MD simulations showing concerted transition and elongation of the 
retinal in rhodopsin’s activation. Solid-state 2H NMR spectra cal-
culated from MD simulations corroborate the complex-counterion 
model. Spectra were calculated from the complex-counterion (c and 
d), and counterion-switch (e and f) simulations. Simulation-based 
spectra are colored as follows: (red) C5-methyl, (green) C9-methyl, 
and (purple) C13-methyl group. These were compared to the dark-
states (c and e) and metarhodopsin-I (d and f) experimental 2H solid-
state NMR spectra (black). Adapted from Leioatts et al. (2014) with 
permission from ACS
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conformation. Notably, the 13C DARR restraints (Ahuja 
et al. 2009a, b; Patel et al. 2004) do not support flipping of 
the retinal (rotation about its long axis by more than 90°) in 
the activation process. Meanwhile, two (Choe et al. 2011; 
Deupi et al. 2012) out of three (Choe et al. 2011; Deupi 
et al. 2012; Standfuss et al. 2011) crystallographic structures 
of active rhodopsin have indicated flipped retinal with the 
C9- and C13-methyl groups pointing toward the cytoplasmic 
side.

Longer Time‑Scale Molecular Dynamics Simulations

In a number of works, long time-scale MD simulations 
have been performed to investigate long-lasting processes 
in rhodopsin dynamics. Examples include studying rho-
dopsin deactivation processes, which involved modeling 
of retinal orientational changes during the metarhodop-
sin-II–metarhodopsin-I transition (Feng et al. 2015). The 
authors demonstrated the existence of a retinal flip about 
its long-axis that occurs in active rhodopsin under con-
ditions favoring the inactive metarhodopsin-I state. In 
addition, μs sampling has been performed to study con-
formational ensembles of rhodopsin and opsin (Leioatts 
et al. 2014). It has been shown that upon photoisomeriza-
tion, retinal destabilizes the inactive state of the recep-
tor, whereas the active ensemble was more structurally 
homogenous. The active-like receptor without the ligand 
was on the contrary more structurally heterogeneous, and 
was able to transition from an active-like conformation to 
an inactive one. Nevertheless, the authors emphasized that 
the μs simulation is not long enough to explore transitions 
between the states in a statistically significant way.

Lipid–Rhodopsin Interactions

Additional long time-scale MD simulations have been 
aimed at studying rhodopsin interactions with the surround-
ing lipids. For example, the processes of palmitoylation at 
specific cysteine sites have been thoroughly investigated 
(Olausson et al. 2012). In other research, the effect of the 
membrane environment on rhodopsin activation and signal 
transduction has been insightfully studied by Grossfield and 
coworkers (Grossfield 2011; Salas-Estrada et al. 2018). The 
question addressed by MD simulation studies of lipid–pro-
tein interactions is how the lipids modulate rhodopsin (or 
other GPCRs) function (Brown 1994, 2012, 2017). Is it 
through specific interactions or bulk properties of the lipid 
bilayer (Grossfield 2011)? Native membranes containing 
rhodopsin have a unique composition; they are enriched in 
polyunsaturated ω-3 fatty acids and cholesterol. Polyunsatu-
rated lipids stabilize the active rhodopsin state, while cho-
lesterol shifts the equilibrium to the inactive metarhodpsin-I 
state. Early MD simulations (Feller et al. 2003) indicated 

a preference for the ω-3 docosahexanoyl chains to inter-
act with the protein. Later simulations identified distinct 
sites on the protein surface forming tight interactions with 
docosahexanoyl (DHA) (C22:6ω-3) chains (Grossfield et al. 
2006b), and suggested that the preference for polyunsatu-
rated chains at the protein surface was entropically driven 
(Grossfield et al. 2006a). Recent MD simulations of rho-
dopsin in the dark, metarhodopsin-I, and metarhodopsin-II 
states, as well as in forms of inactive and active opsin in 
a SDPE lipid bilayer by Salas-Estrada et al. (2018), have 
revealed that both types of interactions (influence through 
macroscopic properties and specific binding-like events) are 
present in the rhodopsin-containing membranes. Correla-
tions between the order parameters of saturated stearoyl 
(STEA) (C18:0) chains in the vicinity of rhodopsin and the 
state of the receptor were observed, indicating that more 
ordered and longer STEA chains correspond to an elon-
gated active conformation of the protein (Salamon et al. 
1999). On the other hand, comparatively long-lived (last-
ing > 500 ns) binding events for DHA and STEA chains 
were observed 1.7 times more often for DHA. Most of the 
long-lived DHA binding events occurred for the inactive 
rhodopsin conformation (Fig. 5). It was also shown that the 
proposed retinal flip may occur already in the dark state, 
and that it is correlated with lipid-protein interactions 
(Salas-Estrada et al. 2018).

Microbial Rhodopsins

All-atom MD simulations have also been applied to inves-
tigate the proton transfer processes in channelrhodopsin 
(Takemoto et al. 2015). Here, the behavior of the protein 
pore during the 150-ns MD simulations was analyzed with 
models for the different protonation states of glutamate 
residues located in the vicinity of the protein active site. In 
another study, MD simulations were used to compare the 
stability of different retinal conformations in deep-red cone 
pigments of the American chameleon. The evaluation of the 
retinal energy during the MD simulations has revealed that 
these rhodopsins stabilize the 6-s-trans retinal conformation 
rather than standard 6-s-cis conformation of the β-ionone 
ring (Amora et al. 2008).

G‑Protein‑Coupled Receptors

Besides visual and microbial rhodopsins, it is worth men-
tioning, that MD simulations are a powerful tool for investi-
gation of activation/deactivation processes in various G-pro-
tein-coupled receptors, such as the β2-adrenergic receptor 
(Dror et al. 2011; Latorraca et al. 2016; Nygaard et al. 2013), 
the μ-opioid receptor (Huang et al. 2015), the serotonin 
receptor (Wacker et al. 2017), and others. For example, long 
MD trajectories starting from the active form of the receptor 
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have allowed simulating the conversion of the receptor into 
its inactive form (Dror et al. 2011; Nygaard et al. 2013). In 
other studies, long time-scale MD simulations were applied 
to extensively investigate the conformational space of the 
receptor, and thereby to define all possible stable conforma-
tions (Dror et al. 2009; Romo et al. 2010). In these studies, 
the receptor demonstrated two possible inactive conforma-
tions—a “locked” conformation with a salt bridge between 
the transmembrane alpha helices, and an open conforma-
tion without the salt bridge. Additional MD investigations 
showed that the transition between the “locked” and open 
conformations is regulated by the protonation state of a 
single aspartic acid that is located at a distance of 20 Å 
away from the salt bridge (Vanni et al. 2010). The interac-
tion between the aspartic acid and the salt bridge entails 
the reorganization of several intermediate polar residues. 
An extensive investigation of the conformational space of 
the receptor was also performed by applying the accelerated 
MD approach (Tikhonova et al. 2013). A constant “boost” 
potential was applied to the dihedral angles that are included 

in the reaction coordinate of receptor activation. The “boost” 
potential enabled the transitions to occur between the active 
and inactive states, and allowed investigation of the influ-
ence of different antagonists on the conformational land-
scape of the receptor.

In addition, MD simulations have been applied to inves-
tigate the binding of different ligands to GPCRs, such as 
the β2-adrenergic receptor. This method has allowed one 
to define the binding site and the main steps involved in 
the binding process (Kaszuba et al. 2010). In this way, it 
was shown that one of the key steps of the binding pro-
cess is related with the reorganization and dislocation of 
water molecules at the binding site. Another study of the 
M2 muscarinic acetylcholine receptor by Dror et al. (2013) 
using atomic-level simulations has revealed binding sites 
for several allosteric modulators, and the mechanisms that 
contribute to positive and negative allosteric modulation of 
the classical ligand binding. It was shown that all modula-
tors interact with clusters of aromatic residues within the 
extracellular vestibule of the receptor, located approximately 
15 Å from the orthosteric ligand-binding site. Additional 
MD simulations of the adenosine A2A receptor, the β2-
adrenergic receptor, and visual rhodopsin have been used 
to study the functional role of internal water for receptor 
activation (Yuan et al. 2014). The simulations reveal that a 
continuous water channel forms only upon receptor activa-
tion (Leioatts et al. 2014).

A combination of molecular dynamics, radioligand bind-
ing, and thermostability experiments was used to investigate 
the role of a sodium ion binding site in the allosteric modu-
lation of the human A2A adenosine receptor (Gutiérrez-de-
Terán et al. 2013). It was revealed that sodium ions selec-
tively bind and stabilize the inactive conformation of the 
receptor, and that the binding of sodium ions and agonists 
is mutually exclusive. Similar modulation was observed for 
the M3 muscarinic GPCR through long-timescale acceler-
ated molecular dynamics (aMD) simulations (Miao et al. 
2015). A subsequent MD study of the M2 muscarinic recep-
tor (Vickery et al. 2018) has suggested a model for family-
A GPCR activation, in which the conformational changes 
induced by the G-protein and agonist binding are accompa-
nied by the intracellular transfer of an internally bound Na+ 
ion. Explicit-solvent, all-atom molecular dynamics (MD) 
simulations of the adenosine A2A GPCR in a lipid bilayer 
were performed to study the effects of divalent cations on 
functional states of the receptor (Ye et al. 2018). The MD 
simulations suggested that high concentrations of cations 
bridge specific extracellular acidic residues, bringing trans-
membrane helices H5 and H6 together at the extracellular 
end, and driving open the G-protein-binding site. Molecu-
lar dynamics simulations have also been applied to study 
binding of the prototypical hallucinogen LSD to the human 

Fig. 5   Protein residues with significantly different DHA occupancies 
in the dark and metarhodopsin-II states. Residues with higher occu-
pancies in the dark state are colored purple, whereas residues with 
higher occupancies in the metarhodopsin-II state are colored red. 
Adapted from Salas-Estrada et al. (2018) with permission from Else-
vier
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5-HT2B receptor (Wacker et al. 2017). The MD simulations 
suggest that slow binding kinetics of LSD may be due to a 
“lid” formed by extracellular loop EL2 at the entrance to the 
binding pocket.

The question of how GPCRs catalyze nucleotide release 
from heterotrimeric G-proteins has been also addressed by 
atomic-level simulations (Dror et al. 2015). The simulations 
indicated that the G-protein, even when it is not bound to 
the receptor, frequently adopts conformations that expose 
the guanosine diphosphate (GDP) nucleotide. Binding to 
the GPCR results in additional structural rearrangement 
that favors GDP release. In another work, the mechanism 
of receptor-mediated arrestin activation has been stud-
ied through extensive atomic-level simulations of arrestin 
(Latorraca et al. 2018). It was found that arrestin can be 
activated by binding to the GPCR core, the GPCR phos-
phorylated tail, or both. Molecular dynamics simulations 
were performed in conjunction with double electron–elec-
tron resonance (DEER) spectroscopy of activated rhodop-
sin in complex with the Gi protein to verify stability of the 
refined model (Huber and Sakmar 2008). The study revealed 
that Gi- and Gs-coupled GPCRs show different modes of 
G-protein binding. The Ras-like domain sits more upright 
on the receptor in the rhodopsin–Gi complex, and unlike the 
β2AR–Gs structure, the C3 loop of rhodopsin makes contact 
with the β6-sheet of the Gi protein. Finally, a number of 
works have investigated the functional effect of dimerization 
(or oligomerization) of GPCRs, and have been thoroughly 
discussed along with experimental approaches in a recent 
review by Sakmar et al. (2017).

Advanced Methods for Rhodopsin Molecular 
Simulations

Gibbs Free Energy Calculations

At constant pressure and temperature, any isolated macrosys-
tem tends to minimize its Gibbs free energy. For this reason, 
the Gibbs free energy surface, i.e., the Gibbs free energy as 
a function of coordinates, is one of the most fundamental 
properties in physics, chemistry, and biology (Jensen et al. 
2014). For practical applications, usually only the difference 
in free energy between two states of a molecular system is 
calculated. For example, the Gibbs free energy difference 
between two rhodopsin conformations gives information 
about the relative concentrations of these two forms in equi-
librium. The calculation of the Gibbs free energy difference 
between two states A and B is based on the general equation:

(3)ΔG = GB − GA = −kBT ln
QB

QA

,

where kB is the Boltzmann constant, T is the temperature of 
the system, and Qi is the partition function for the system in 
the ith state. The partition function is described in terms of 
the Hamiltonian of the system:

Here Vi is the phase space of state i, N is the number of 
atoms in the system, h is Planck’s constant, Hi is the Ham-
iltonian of system, r represents the Cartesian coordinates of 
all atoms in the molecular system, p represents the conjugate 
momenta of all atoms, and P and V are the pressure and the 
volume of the system, respectively (Hansen and Van Gun-
steren 2014). It has been shown that the term related with 
PV is negligible, and it is not taken into account in actual 
calculations (Shirts and Mobley 2013). Below, we summa-
rize the commonly applied computational approaches for the 
calculation of ΔG, which is the Gibbs free energy difference.

Free Energy Perturbation

The method of free energy perturbation is based on the 
Zwanzig relationship (Zwanzig 1954) that describes the ΔG 
between two nearby states of a molecular system, i.e., states 
with intersecting phase spaces:

In the above formula, ΔU is the potential energy difference 
between the system in two close-lying states. Still, in most 
cases, the phase spaces of target states A and B do not inter-
sect. The transformation from state A to state B can then be 
represented by a series of intermediate states, so that any 
neighboring pair of states along the path would have inter-
secting phase spaces. In this case, if the series of N states is 
introduced, then ΔG can be calculated as

where i = 1 corresponds to state A, and i = N corresponds 
to state B. Because G is a state function of a system, any 
convenient path between A and B states can be constructed, 
and the intermediate states do not need to be physically real-
istic. The complete path can consist of several equilibrium 
end states connected by sub-paths of intermediate states, 
presented as a thermodynamic cycle.

As an example, consider the path for the retinal isomeri-
zation reaction in bovine visual rhodopsin (Fig. 6). Here, 
state A corresponds to dark-state rhodopsin that contains 
retinal in the 11-cis conformation, and state B corresponds 
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to bathorhodopsin that contains all-trans retinal. The path 
consists of three transitions: transferring the 11-cis retinal 
from the gas phase to rhodopsin; the gas-phase transition 
between the 11-cis and all-trans retinal conformations, 
and transferring the all-trans retinal from the gas phase to 
bathorhodopsin. At each point, i.e., for each end state and 
for each intermediate state, equilibrium simulations are per-
formed, and uncorrelated states (decoys) are extracted from 
the simulations. These decoys represent the ensemble of 
conformations for the specific state. Using the values of the 
potential energy for each conformation in the ith and (i + 1)
th intermediate state, the ΔGi,i+1 difference can be calculated 
by applying Eq. (3).

For rhodopsins, free energy perturbation (FEP) has been 
applied for calculating the thermodynamic stability of water 
molecules located near the retinal protonated Schiff base in 
bacteriorhodopsin (Baudry et al. 2001; Roux et al. 1996). 
To accomplish this task, the free energy of transferring 
water molecules from the bulk phase to predefined sites 
inside protein cavities was calculated. In other studies, 
free energy perturbation was applied to calculate the bind-
ing affinities of different ligands to GPCRs, which is an 
essential step in rational drug design (Hénin et al. 2006; 
Lenselink et al. 2016).

Thermodynamic Integration

The process of thermodynamic integration is closely related 
to the free energy perturbation approach. Here, the deriva-
tive dU/dλ is calculated along the path between states A and 
B, where λ describes the distance variable (Shirts and Mob-
ley 2013). The equation for calculating ΔG thus reads:

(7)ΔG =

1

∫
0

⟨dU(�, �)

d�

⟩

�
d�,

where λ = 0 corresponds to the A state and λ = 1 corresponds 
to state B, and the angular brackets denote that the derivative 
is averaged over the ensemble. For rhodopsin, thermody-
namic integration has been applied to compare the depro-
tonation free energy profiles of the retinal chromophore in 
the dark (11-cis) state of the bovine visual pigment and in 
its intermediate lumirhodopsin state. The study revealed the 
influence of the retinal orientation, hydrogen bonding net-
work, and positioning of the protonated Schiff base coun-
terion on the deprotonation efficiency (Van Keulen et al. 
2017).

Biased Molecular Dynamics Approaches

All the biased MD approaches are based on sampling of 
the actual trajectory between the equilibrium states A and 
B, and require knowledge of the reaction coordinate for 
the calculations. The reaction coordinate can be repre-
sented as a set of collective variables (CVs), which are the 
functions η(r) of the Cartesian coordinates of the atoms 
constituting the molecular system. The motion of the CVs 
corresponds to the slow modes of the system dynamics 
that constitute the reaction process (Moradi et al. 2013). 
Examples of CVs are the isomerization angle, in the case 
of the C12–C13 = C14–C15 dihedral angle for the 13-cis 
to all-trans retinal isomerization of microbial rhodopsins, 
or the distance between the ligand and its interaction site 
for the binding reaction.

Umbrella Sampling

The umbrella sampling (US) approach is based on calcula-
tion of the Landau free energy G(χ) along the reaction path:

where χ is the reaction coordinate, and P(χ) is the prob-
ability density function along the reaction coordinate. 
Thus, efficient sampling of all states along the A → B path 
is required. In the umbrella sampling approach, this require-
ment is achieved by introducing a bias potential (Kästner 
2011). At each intermediate point (λi) along the path that 
crosses the free energy barrier, the system is sampled under 
the guidance of standard force field, with an extra term that 
constraints the system in the λi vicinity. Usually, this extra 
term is represented by a harmonic function:

in which A is the constraint constant and χi is the value of 
the reaction coordinate at the λi state. Afterward, a weighted 
histogram analysis (Kumar et al. 1992) is applied to derive 
the unbiased free energy along the path and, finally, the free 
energy difference between the A and B states. There are 
two key differences between umbrella sampling and the 

(8)G(�) = −kBTP(�),

(9)Uextra = A(� − �i)
2,

Fig. 6   Example of thermodynamic cycle constructed for the calcula-
tion of difference in Gibbs free energy between bovine visual rhodop-
sin that contains 11-cis retinal and bathorhodopsin that contains all-
trans retinal using the free-energy perturbation approach
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free energy perturbation methodology. First, while during 
the FEP calculations an arbitrary path can be constructed 
between the A and B states, in the US approach the actual 
reaction coordinate should be used. Second, while during 
FEP calculations the system is fixed at the λi points, in the 
US approach, the system is only constrained to move around 
λi in a specific range.

For microbial rhodopsins, the umbrella sampling 
approach has been applied to investigate the retinal isomeri-
zation around the C13=C14 and C15=N bonds in bacteri-
orhodopsin. The difference in stability of the equilibrium 
(13,15)-cis, 13-cis-15-trans, 13-trans-15-cis, and all-trans 
conformations was thoroughly investigated, and allowed der-
ivation of the entropy factor that stabilizes specific rhodop-
sin conformations (Baudry et al. 1997; Crouzy et al. 1999). 
In other studies, umbrella sampling was applied by Periole 
et al. (2012) to investigate the dimerization of visual rhodop-
sin, and to define the preferential dimerization interfaces.

Metadynamics

For the calculation of ΔG values, metadynamics is rep-
resentative of the adaptively biased molecular dynamics 
approaches that can be applied (Laio and Gervasio 2008; 
Moradi et al. 2013; Vymětal and Vondrášek 2010). Notably, 
in metadynamics sampling begins in one of the equilibrium 
states of the system (e.g., in the A state). During the simu-
lation, an additional time-dependent biasing potential is 
added to the equations of motion. This biasing potential adds 
potential energy to the collective variables, so that the move-
ment of the system along the reaction coordinate becomes 
more pronounced. Usually, symmetric biasing potentials, 
e.g., those based on B-splines (Laio and Parrinello 2002; 
Moradi et al. 2013), are applied. During the simulation, the 
free energy barrier between A and B states becomes flat, and 
the system starts moving freely along the reaction path. In 
the long-time limit, the free energy along the reaction path 
can be derived as:

where C is a constant and Vbias(�) is the added bias potential. 
Although adding biased potentials of fixed height can lead 
to overfilling of the free energy surface along the reaction 
path, well-tempered metadynamics that introduces biased 
potentials which steadily diminish with time can be applied 
to overcome this problem (Barducci et al. 2008). Modern 
developments of metadynamics algorithms are connected to 
the application of replica-exchange during the simulations. 
In multiple-walkers metadynamics, several simulations are 
run in parallel, each with its specific biasing potential and 
temperature of simulation (Raiteri et al. 2006). The rules for 
the exchange of states between trajectories are usually based 
on the Metropolis criterion (Metropolis and Ulam 1949).

(10)G(�) = −Vbias(�) + C,

In this way, metadynamics has been applied to investigate 
the free energy differences between metastable states that 
emerge during the photosequence of bovine rhodopsin (Pro-
vasi et al. 2009). Also, the free energy landscape between 
the photoactivated deprotonated bovine rhodopsin and the 
low-pH ground state of 11-cis-retinylidene rhodopsin in the 
presence of the lipid membrane environment has been inves-
tigated (Provasi and Filizola 2010). Two additional studies 
aimed at the investigation of the channelrhodopsin-2 proton 
pump have applied metadynamics for deriving important 
information about the protein functioning. In the first work, 
metadynamics allowed the performance of extensive sam-
pling of retinal isomerization in channelrhodopsin-2. The 
free energy profile of the isomerization process was derived, 
and the water penetration through the protein pore was sam-
pled during the protein isomerization (Ardevol and Hummer 
2018). In the second work, well-tempered metadynamics 
was applied to investigate the reorientation of the Glu123 
counterion of the retinylidene protonated Schiff base in 
channelrhodopsin-2. Here, the dependence of the free energy 
value on the Glu123 orientation angle was calculated for 
the wild-type protein and its C128T mutant which demon-
strates substantially different photocycle kinetics (Guo et al. 
2016). In other studies metadynamics was applied to inves-
tigate the activation processes, and the possible metastable 
states of other classes of GPCRs (Gushchin et al. 2013; 
Meral et al. 2018), or to evaluate the binding affinities of 
ligands to GPCRs (Saleh et al. 2017). Metadynamics has 
also been combined with the umbrella sampling approach 
to investigate the relative stability of dimer interfaces in 
human β-adrenergic receptors, which required the introduc-
tion of several angle-related and distance-related collective 
variables (Johnston et al. 2012). During the metadynamics 
simulation, the bias potential was added only to the distance-
related collective variable, generating the starting states for 
umbrella sampling simulations of the angle-related collec-
tive variables.

Steered Molecular Dynamics

Another approach for practical calculation of the free energy 
difference between the states is based on the Jarzynski equa-
tion. As shown by Jarzynski (1997) the ΔG between states 
A and B can be evaluated as:

where W is the work that is required to pull the system from 
state A to state B. To apply the Jarzynski equation, sampling 
of the steered molecular dynamics (SMD) simulation is 
required. In SMD, an artificial force is applied that pulls the 
system from state A (e.g., unbound protein–ligand system) 

(11)ΔG ≈ −kBT ln
⟨
e
−

W

kBT

⟩
,
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to state B (bound protein–ligand system), and several A → B 
and B → A simulations are sampled.

The SMD-based approach for free energy calculation was 
applied to study the energy profile of sodium ion translo-
cation through the pore of the sodium-pumping microbial 
rhodopsin KR2 (Suomivuori et al. 2017). For microbial 
rhodopsins, SMD per se was applied to investigate the tor-
sion of specific alpha helices during the primary events after 
photoactivation (Saam et al. 2002), the process of retinal 
binding in bacteriorhodopsin (Isralewitz et al. 1997), and 
the process of sodium ion conduction through channelrho-
dopsin-2 (Richards and Dempski 2017). In addition, this 
approach has been applied to evaluate the binding affinities 
of different ligands to GPCRs, e.g., the β-adrenergic recep-
tors (González et al. 2011).

Coarse‑Grained Molecular Dynamics Simulations

Coarse-grained (CG) simulations are applied when the long 
time-scale dynamics of the system are required for the inves-
tigation of the target process (e.g., conformational changes 
of a membrane-protein complex), while the atomistic preci-
sion is either less essential (Noid 2013), or incorporated by 
a multiscale modeling approach as pioneered by Voth et al. 
(Ayton et al. 2007; Izvekov and Voth 2005; Saunders and 
Voth 2013). However, if the process under study is more 
complex and requires higher precision, then a hybrid MM/
CG approach (that is described in the "Hybrid Molecular 
Mechanics/Coarse-Grained Simulations" section) is applied 
(Leguèbe et al. 2012). To reduce the computational cost of 
simulations, i.e., to reduce the dimensionality of the sim-
ulated molecular system, in the CG approach the groups 
of atoms are combined into interaction sites with specific 
physical and chemical properties. The strong requirement 
is that each atom can be a part of only one interaction site 
(Noid 2013). Usually, each interaction site consists of 2–10 
“heavy” atoms with associated hydrogen atoms. Besides 
the reduction of dimensionality, the CG simulations do not 
include fast movements (such as vibrations of C–H bonds), 
and for this reason they allow an increase in the time step 
of the MD simulations (Marrink et al. 2004; Noid 2013). 
Moreover, the averaging in the CG simulations leads to the 
implicit inclusion of entropic effects, thereby increasing 
the speed of the conformational space investigation. Sev-
eral force fields have been developed for CG simulations, 
among which the MARTINI force field of Marrink et al. 
(2007) is the most commonly applied. The MARTINI force 
field maps four “heavy” atoms to one interaction site, with 
the exception of ring moieties, for which two “heavy” atoms 
correspond to one interaction site. The functional form of 
the MARTINI force field is the same as the form of stand-
ard atomistic force fields, such as AMBER or CHARMM 
(Klauda et al. 2010; Lindorff-Larsen et al. 2010). The CG 

force field must obey specific consistency conditions, i.e., 
the structural and thermodynamic properties of the system 
during the MD simulation under the guidance of the atom-
istic and CG force fields should be similar. For example, 
the parameterization of nonbonded interactions during the 
development of the MARTINI force field involved com-
paring the calculated thermodynamic properties, such as 
hydration and vaporization free energies (Monticelli et al. 
2008), with the experimental values. For parameterization of 
bonded interactions, the reproducibility of structural features 
was evaluated.

The CG approach has been applied in a large number of 
studies of visual and microbial rhodopsins. For example, 
it was used to study the adaptation of the lipid membrane 
structure in the vicinity of visual rhodopsin (Periole et al. 
2007), which required running 8-μs MD simulations for the 
proteolipid membrane system. In other studies, the CG MD 
simulations were applied to define the cholesterol binding 
sites at the rhodopsin surface, to derive energy profiles for 
lipid–rhodopsin interactions (Horn et al. 2014; Periole 2016; 
Scott et al. 2008), and to investigate the assembly of lipid 
nanodisks around microbial rhodopsins (Sahoo et al. 2019). 
Furthermore, CG MD simulations have been used to inves-
tigate long-lasting processes in rhodopsins, e.g., modeling 
of the complete bacteriorhodopsin photocycle (Tavanti and 
Tozzini 2014), the unfolding of bacteriorhodopsin in the 
membrane (Yamada et al. 2016), and the adaptation of visual 
rhodopsin to a lipidic cubic phase environment (Khelashvili 
et al. 2012). An approach involving CG MD simulations in 
combination with normal mode analysis was also used to 
study the allosteric regulation, i.e., the structural determi-
nants that regulate ligand binding in visual rhodopsin and 
other GPCRs (Balabin et al. 2009).

Quantum Mechanics/Molecular Mechanics 
Models

In a QM/MM model, the system is divided into two subsys-
tems: the molecular mechanics (MM) and quantum mechan-
ics (QM) parts. There are two approaches to deal with the 
model: a subtractive scheme and an additive scheme. In 
the subtractive scheme (Svensson et al. 1996; Vreven and 
Morokuma 2006), the QM/MM energy of the system is 
given by:

Here, VMM(QM + MM) is the energy of the whole system 
calculated at the MM level, VQM(QM) is the energy of the 
QM subsystem calculated at the QM level, and finally, 
VMM(QM) is the energy of the QM subsystem calculated 
at the MM level.

(12)
VQM∕MM = VMM(QM +MM) + VQM(QM) − VMM(QM).



440	 M. N. Ryazantsev et al.

1 3

In additive schemes (Field et al. 1990), the QM part is 
embedded within the MM system, and the total potential 
energy is represented as a sum of the QM energy term, the 
MM energy term, and the QM/MM coupling term:

The molecular mechanics force fields are described above. 
To treat the QM part, which is usually a Schiff base in rho-
dopsins, both ab initio and density functional theory (DFT) 
methodologies are applied. The choice of the QM method-
ology is dictated by the problem. For example, to treat the 
spectral properties, multiconfigurational and multireference 
methods, such as CASPT2 (Finley et al. 1998), MRCI (Lis-
chka et al. 2002), SORCI (Nikolaev et al. 2017; Ryazantsev 
et al. 2012), or analogs are applied. For description of the 
ground state, usually a DFT (Elstner et al. 2003) or SCC-
DFTB (Elstner 2006; Gaus et al. 2011) calculation, which 
is a semiempirical variation of DFT, is a method of choice.

Treatment of Electronic Structure of Retinal 
Chromophore

The ability of QM/MM methodologies to treat the electronic 
structure of the retinal chromophore placed in the protein 
environment makes this approach a method of choice for 
studying the optical and photochemical properties of rho-
dopsins. In a number of studies, the effect of the protein 
environment, including both steric and electrostatic interac-
tions, on the retinal structure and optical properties, has been 
investigated (Altun et al. 2008b; Andruniów et al. 2004; 
Bravaya et al. 2007; Coto et al. 2006a; 2008; Gozem et al. 
2017; Hoffmann et al. 2006). For microbial rhodopsins, the 
electrostatic interactions of the retinal chromophore with 
polar and charged residues of the protein play a major role 
in spectral color tuning, while steric interactions usually 
provide a negligible effect (Hoffmann et al. 2006; Ryazant-
sev et al. 2012). For visual rhodopsins, the effect caused by 
the retinal deformation is more pronounced, but the elec-
trostatic interaction still plays the major role (Altun et al. 
2008b). Among all the charged residues, the negatively 
charged counterion residue, which is located in the retinal-
binding pocket of the rhodopsin proteins in the vicinity of 
the N–H+ moiety, is the most important, causing a large blue 
shift of the absorption maxima from its gas phase value, 
610 nm and 615 nm for 11-cis and all-trans protonated Schiff 
bases, respectively (Nielsen et al. 2006). The rest of the pro-
tein either enhances this blue shift, or provides the redshift 
that partially compensates the effect of the counterion (Altun 
et al. 2008a; Hoffmann et al. 2006; Nikolaev et al. 2019a; 
Rajamani and Gao 2002; Ryazantsev et al. 2012).

The important role of charged and polar residues in 
color tuning was demonstrated in bovine rhodopsin (Altun 

(13)VQM∕MM = VQM(QM) + VMM(MM) + VQM∕MM.

et al. 2008a; b; Bravaya et al. 2007; Coto et al. 2006b), 
halorhodopsins (Ryazantsev et  al. 2012), bacteriorho-
dopsin (Rajamani and Gao 2002), visual cone pigments 
(Frähmcke et al. 2012; Fujimoto et al. 2006; Zhou et al. 
2014), mutants of Anabaena sensory rhodopsin (Melaccio 
et al. 2012), intermediates of the rhodopsin photocycle 
(Campomanes et al. 2014), the deprotonated M state of 
bacteriorhodopsin (Fujimoto et al. 2010), and blue-light 
absorbing proteorhodopsin (Hillebrecht et al. 2006). For 
example, Fujimoto et al. (2005) and Hoffman et al. (2006) 
considered the spectral shift between bacteriorhodopsin 
and sensory rhodopsin-II. It was demonstrated that the 
major part of the spectral shift was provided by the differ-
ences in the positions of the negatively charged counte-
rions and in the orientations of polar residues (Hoffmann 
et al. 2006). The importance of protein reorganization in 
the color-tuning mechanism was also demonstrated for the 
chloride-bound and anion-free halorhodopsins (Ryazant-
sev et al. 2012). Here, the authors demonstrated that the 
22-nm blue shift that is observed upon chloride binding 
in the N. pharaonis halorhodopsin consists of two terms: 
a 95-nm blue shift induced by a negatively charged chlo-
ride ion and a 73-nm red shift caused by the protein reor-
ganization. In a number of studies, absorption maxima 
calculations along with energy calculations were applied 
to define the protonation state of the Glu181 residue in 
bovine rhodopsin (Frähmcke et al. 2010; Hall et al. 2008). 
Unfortunately, the results could not be interpreted unam-
biguously, partially because of the relatively large distance 
between the Glu181 residue and the retinal chromophore 
in bovine rhodopsin.

Photoisomerization of the Retinal Cofactor

In other QM/MM studies, the photochemical step of the 
rhodopsin photocycle, i.e., the isomerization of the retinal 
chromophore in the protein environment, has been inves-
tigated (Curchod and Martínez 2018; Gozem et al. 2017). 
Upon absorption of a photon, the retinal chromophore is 
excited from the ground state (S0) to the first excited sin-
glet state (S1). Thereafter, the S1 state evolves from the 
Frank–Condon (FC) region of the S1 potential energy sur-
face (PES) toward the conical intersection (CI)—the region 
where the PES of the S1 and S0 states intersect. From the 
CI point, the system can evolve either into the product state 
(the isomerized state), or back to the reactant state. One 
of the unique features of the rhodopsin proteins is that the 
photoactivated isomerization is performed with a high quan-
tum yield and at the ultrafast time scale, especially when 
compared to the retinal isomerization in methanol solu-
tion (Andruniów et al. 2004; Frutos et al. 2007; Khrenova 
et al. 2010; Kukura et al. 2005; Schapiro et al. 2008, 2011; 
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Schnedermann et al. 2018; Schoenlein et al. 1991; Wang 
et al. 1994). It has been postulated that the electrostatic field 
produced by the rhodopsin environment catalyzes the reti-
nal isomerization process (Andruniów et al. 2004; Schapiro 
et al. 2011; Tomasello et al. 2009). To obtain the atomis-
tic details of the retinal isomerization, the evolution of the 
excited state on the S1 PES has to be simulated from the 
FC region to the CI point. Here, two approaches have been 
applied: static calculation of the S1 PES topology, and direct 
on-the-fly dynamics starting from Franck–Condon points 
going to the products.

(i) Investigation of the important topological features 
of the potential energy surface includes minima, transition 
states, conical intersections, and minimal energy paths. In 
several works, the minimal energy path (MEP) on the S1 
potential has been calculated (Coto et al. 2006a, 2008; El-
Khoury et al. 2009; González-Luque et al. 2000; Sumita 
et al. 2009). Generally, the MEP provides the insight into the 
topology of the S1 PES, and allows for defining intermediate 
states of the retinal isomerization. Other studies have con-
centrated directly on the geometry and energetics of the reti-
nal chromophore in the critical CI point (Coto et al. 2006a). 
It has been shown that the isomerization angle (C11=C12 
torsional angle for visual rhodopsin and C13=C14 torsional 
angle for microbial rhodopsins) is twisted by 90° at the CI 
point.

(ii) Evolution of the excited state from the FC region 
toward the CI point is provided by QM/MM MD simula-
tions (Andruniów et al. 2004; Frutos et al. 2007; Khrenova 
et al. 2010; Schapiro et al. 2008, 2011). Using this method, 
researchers have distinguished the three major motions 
(modes) that are involved in the retinal isomerization: tor-
sional deformation of the reactive bond, bond length altera-
tion (BLA), and the hydrogen-out-of-plane (HOOP) mode. 
The BLA mode represents the stretching vibration of the 
bonds along the main chain of the retinal, and leads to the 
inversion of single and double bonds. The HOOP mode rep-
resents the wagging motion of the hydrogens bound to the 
carbon atoms that constitute the reactive double bond. Nota-
bly, the HOOP motion greatly accelerates the isomerization 
process. The majority of studies have concentrated on the 
retinal isomerization in bovine visual rhodopsin; however, 
similar QM/MM MD trajectories were also calculated for 
isorhodopsin (bovine rhodopsin containing 9-cis retinal) 
(Chung et al. 2012; Strambi et al. 2008), nonvisual human 
melanopsin (Rinaldi et al. 2014), and bacteriorhodopsin (Li 
et al. 2011; Warshel and Chu 2001). For example, Chung 
et al. (2012) showed that while in bovine rhodopsin retinal 
undergoes a straightforward isomerization directly into the 
all-trans state (bathorhodopsin), isorhodopsin demonstrates 
a more complex isomerization path that branches in two pos-
sible directions.

Polarizability and Charge‑Transfer Effects

Finally, a number of studies concentrated on the extension 
of QM/MM methodology to take into account polarizabil-
ity and charge transfer effects in the retinal binding pocket 
(Caprasecca et al. 2014; Söderhjelm et al. 2009; Wanko et al. 
2008a, b). Here, two approaches were applied. In the first 
approach, a part of the retinal binding pocket was included 
in the QM part at a lower level of theory (QM/QM/MM 
approach). Using this methodology, Wanko et al. (2008b) 
demonstrated that polarizability and charge transfer effects 
lead to a 0.08–0.09 eV bathochromic shift of the absorption 
maxima. In the second approach, the effect of polarization 
was taken into account by applying a polarizable MM force 
field for the opsin environment (Caprasecca et al. 2014), 
while QM calculations were performed only for the retinal 
chromophore.

QM/MM Free Energy Optimization of Retinal 
Chromophore in the Protein Environment

Because molecular systems tend to a minimum of the Gibbs 
free energy, the minimization of this function rather than 
the potential energy is preferred during geometry optimiza-
tion. Such optimization is based on the calculation of free 
energy gradients (FEG) as proposed by Okuyama-Yoshida 
et al. (2000), and is applied to optimize the target molecule 
at the QM level, in the environment described at the MM 
level. During minimization, the force acting on the atoms 
of QM subsystem can be calculated through the following 
relationship:

where r represents the Cartesian coordinates of the opti-
mized QM subsystem, G is the Gibbs free energy of the 
system and 〈U〉 is the average potential energy of the QM 
subsystem that includes its interaction with the environment. 
To calculate the average potential energy, two approaches 
have been proposed. In the first approach, called ASEP 
(average solvent electrostatic potential), the average inter-
action between the QM subsystem and the MM environment 
is calculated (Galván et al. 2003). In the second approach, 
referred to as ASEC (average solvent electrostatic configura-
tion), the QM subsystem is optimized in the modified envi-
ronment presented as an ensemble of noncorrelated environ-
ment configurations (Coutinho et al. 2007). Recently, this 
approach was applied to optimize the retinal chromophore 
in the rhodopsin environment (Orozco-Gonzalez et al. 2017). 
To generate the ensemble of configurations, a preliminary 
MD trajectory was simulated, and N uncorrelated configura-
tions (decoys) were extracted from the trajectory. Thereafter, 

(14)F(�) = −
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all the N decoys were superimposed to construct the average 
environment (consisting of NM virtual atoms, where M is 
the number of atoms in the MM subsystem). To conserve 
the interaction forces, the nonbonded interactions between 
the QM subsystem and the MM environment were properly 
scaled. Each virtual atom of the new MM environment had 
a charge that was N times smaller than the charge of the 
corresponding atom in the actual protein. The terms that 
describe the van der Waals interactions were also decreased 
N times. After the generation of the average environment, 
the QM/MM optimization of the retinal chromophore was 
performed.

Hybrid Molecular Mechanics/Coarse‑Grained 
Simulations

The investigation of certain processes may require long 
simulation times of large molecular systems (e.g., mem-
brane-embedded rhodopsin) on one hand, and the atomis-
tic description of the target process on the other hand. To 
overcome this problem, the hybrid MM/CG approach can 
be applied (Leguèbe et al. 2012). Here, the system is repre-
sented at an atomistic level, i.e., its dynamics are calculated 
by utilizing an atomistic MM force field, and the rest of the 
system is modeled at the CG level, under the guidance of the 
CG force field. To our knowledge, the MM/CG approach has 
not yet been applied to investigate rhodopsins; however, it 
has been implemented for other GPCRs. Examples include 
ligand binding to the TAS2R38 bitter taste receptor (Mar-
chiori et al. 2013) and the β-adrenergic receptors (Leguèbe 
et al. 2012). In both cases, the ligand and its binding site 
were sampled at the atomistic MM level, while the rest of 
GPCR and the membrane environment were sampled at the 
CG level.

Conclusions

In this article, we reviewed the modern computational 
methodologies used for modeling rhodopsin dynamics and 
the properties at different time scales and levels of preci-
sion. Due to the further development of both computational 
methodologies and the performance of computer systems, 
the role of computational modeling in understanding and 
predicting rhodopsin properties will be steadily increasing. 
First, the accuracy of applied computational models can 
be improved. Second, as described above, computational 
studies of rhodopsins require extensive MM and QM/MM 
sampling, which is becoming possible due to increasing 
availability of the high-performance calculations, includ-
ing massively parallel calculations on graphics proces-
sors units. When prediction of rhodopsin structure is con-
cerned, the explicit inclusion of the retinal chromophore 

and the implicit inclusion of the membrane environment can 
increase the quality of predicted models. Other improve-
ments of the model construction are related with the 
increasing accuracy of water prediction, and with apply-
ing pKA calculations “on the fly” during the MD sampling. 
Precise prediction of water locations in critical cases can 
be related with the application of MM-based free energy 
estimation approaches, such as free energy perturbation. 
For the pKA calculations, application of constant-pH MD 
approaches during sampling should be considered. Finally, 
development of improved force fields for the retinal 
chromophore is directly related with the increase of accu-
racy in MM calculations. These new force fields should 
take polarization and charge-transfer effects into account, 
better treat the van der Waals interactions, and also should 
be easily integrated in the standard MM force fields for pro-
teins, such as AMBER or CHARMM. Future development 
of such force fields should apply modern machine learning 
techniques that utilize data from QM/MM MD simulations 
to derive more accurate parameters.

Funding  This work was supported by the US National Institutes of 
Health (EY012049 and EY02604) and by the US National Science 
Foundation (MCB 1817862 and CHE 1904125) (to M.F.B.). A.V.S. 
was supported by the Russian Foundation for Basic Research (Grant 
16-04-00494A). M.N.R. was supported by the Skolkovo Foundation 
(Grant agreement for Russian educational and scientific organization 
No. 7 dd 19.12.2017) and the Skolkovo Institute of Science and Tech-
nology (General agreement No. 3663-MRA dd 25.12.2017).

Compliance with Ethical Standards 

Conflict of interest  The authors declare that they have no conflicts of 
interest.

Research Involving Human and Animal Participants  This article does 
not contain any studies with human participants or animals performed 
by any of the authors.

References

Ahuja S, Crocker E, Eilers M, Hornak V, Hirshfeld A, Ziliox M, Syrett 
N, Reeves PJ, Khorana HG, Sheves M, Smith SO (2009a) Loca-
tion of the retinal chromophore in the activated state of rhodop-
sin. J Biol Chem 284:10190–10201

Ahuja S, Hornak V, Yan EC, Syrett N, Goncalves JA, Hirshfeld A, 
Ziliox M, Sakmar TP, Sheves M, Reeves PJ, Smith SO, Eilers 
M (2009b) Helix movement is coupled to displacement of the 
second extracellular loop in rhodopsin activation. Nat Struct Mol 
Biol 16:168–175

Alford RF, Leaver-Fay A, Jeliazkov JR, O’Meara MJ, DiMaio FP, 
Park H, Shapovalov MV, Renfrew PD, Mulligan VK, Kappel K, 
Labonte JW, Pacella MS, Bonneau R, Bradley P, Dunbrack RL Jr, 
Das R, Baker D, Kuhlman B, Kortemme T, Gray JJ (2017) The 
Rosetta all-atom energy function for macromolecular modeling 
and design. J Chem Theory Comput 13:3031–3048



443Quantum Mechanical and Molecular Mechanics Modeling of Membrane‑Embedded Rhodopsins﻿	

1 3

Altun A, Yokoyama S, Morokuma K (2008a) Mechanism of spectral 
tuning going from retinal in vacuo to bovine rhodopsin and its 
mutants: multireference ab initio quantum mechanics/molecular 
mechanics studies. J Phys Chem B 112:16883–16890

Altun A, Yokoyama S, Morokuma K (2008b) Spectral tuning in visual 
pigments: an ONIOM (QM: MM) study on bovine rhodopsin and 
its mutants. J Phys Chem B 112:6814–6827

Amora TL, Ramos LS, Galan JF, Birge RR (2008) Spectral tuning of 
deep red cone pigments. Biochemistry 47:4614–4620

Andruniów T, Ferré N, Olivucci M (2004) Structure, initial excited-
state relaxation, and energy storage of rhodopsin resolved at 
the multiconfigurational perturbation theory level. Proc Natl 
Acad Sci USA 101:17908–17913

Ardevol A, Hummer G (2018) Retinal isomerization and water-pore 
formation in channelrhodopsin-2. Proc Natl Acad Sci USA 
115:3557–3562

Ayton GS, Noid WG, Voth GA (2007) Multiscale modeling of bio-
molecular systems: in serial and in parallel. Curr Opin Struct 
Biol 17:192–198

Balabin IA, Yang W, Beratan DN (2009) Coarse-grained modeling 
of allosteric regulation in protein receptors. Proc Natl Acad Sci 
USA 106:14253–14258

Barducci A, Bussi G, Parrinello M (2008) Well-tempered meta-
dynamics: a smoothly converging and tunable free-energy 
method. Phys Rev Lett 100:020603

Baudry J, Crouzy S, Roux B, Smith JC (1997) Quantum chemical 
and free energy simulation analysis of retinal conformational 
energetics. J Chem Inf Comput Sci 37:1018–1024

Baudry J, Crouzy S, Roux B, Smith JC (1999) Simulation analysis 
of the retinal conformational equilibrium in dark-adapted bac-
teriorhodopsin. Biophys J 76:1909–1917

Baudry J, Tajkhorshid E, Molnar F, Phillips J, Schulten K (2001) 
Molecular dynamics study of bacteriorhodopsin and the purple 
membrane. J Phys Chem B 105:905–918

Bondar A-N, Knapp-Mohammady M, Suhai S, Fischer S, Smith JC 
(2011) Ground-state properties of the retinal molecule: from 
quantum mechanical to classical mechanical computations of 
retinal proteins. Theoret Chem Acc 130:1169–1183

Bravaya K, Bochenkova A, Granovsky A, Nemukhin A (2007) An 
opsin shift in rhodopsin: retinal S0–S1 excitation in protein, in 
solution, and in the gas phase. J Am Chem Soc 129:13035–13042

Brown MF (1994) Modulation of rhodopsin function by properties of 
the membrane bilayer. Chem Phys Lipids 73:159–180

Brown MF (2012) Curvature forces in membrane lipid–protein interac-
tions. Biochemistry 51:9782–9795

Brown MF (2017) Soft matter in lipid–protein interactions. Ann Rev 
Biophys 46:379–410

Campomanes P, Neri M, Horta BA, Röhrig UF, Vanni S, Tavernelli I, 
Rothlisberger U (2014) Origin of the spectral shifts among the 
early intermediates of the rhodopsin photocycle. J Am Chem 
Soc 136:3842–3851

Caprasecca S, Jurinovich S, Viani L, Curutchet C, Mennucci B 
(2014) Geometry optimization in polarizable QM/MM mod-
els: the induced dipole formulation. J Chem Theory Comput 
10:1588–1598

Chen J, Hundertmark D, Martínez TJ (2008) A unified theoretical 
framework for fluctuating-charge models in atom-space and in 
bond-space. J Chem Phys 129:214113

Chen H-F, Inoue K, Ono H, Abe-Yoshizumi R, Wada A, Kandori H 
(2018) Time-resolved FTIR study of light-driven sodium pump 
rhodopsins. Phys Chem Chem Phys 20:17694–17704

Choe H-W, Kim YJ, Park JH, Morizumi T, Pai EF, Krauss N, Hofmann 
KP, Scheerer P, Ernst OP (2011) Crystal structure of metarho-
dopsin II. Nature 471:651–655

Chothia C, Lesk AM (1986) The relation between the divergence of 
sequence and structure in proteins. EMBO J 5:823–826

Chung WC, Nanbu S, Ishida T (2012) QM/MM trajectory surface hop-
ping approach to photoisomerization of rhodopsin and isorho-
dopsin: the origin of faster and more efficient isomerization for 
rhodopsin. J Phys Chem B 116:8009–8023

Chung LW, Sameera WMC, Ramozzi R, Page AJ, Hatanaka M, Petrova 
GP, Harris TV, Li X, Ke Z, Liu F, Li H-B, Ding L, Morokuma 
K (2015) The ONIOM method and its applications. Chem Rev 
115:5678–5796

Cordomí A, Caltabiano G, Pardo L (2012) Membrane protein simula-
tions using AMBER force field and Berger lipid parameters. J 
Chem Theory Comput 8:948–958

Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, 
Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A sec-
ond generation force field for the simulation of proteins, nucleic 
acids, and organic molecules. J Am Chem Soc 117:5179–5197

Coto PB, Sinicropi A, De Vico L, Ferré N, Olivucci M (2006a) Char-
acterization of the conical intersection of the visual pigment 
rhodopsin at the CASPT2//CASSCF/AMBER level of theory. 
Mol Phys 104:983–991

Coto PB, Strambi A, Ferré N, Olivucci M (2006b) The color of rho-
dopsins at the ab initio multiconfigurational perturbation theory 
resolution. Proc Natl Acad Sci USA 103:17154–17159

Coto PB, Strambi A, Olivucci M (2008) Effect of opsin on the shape 
of the potential energy surfaces at the conical intersection of the 
rhodopsin chromophore. Chem Phys 347:483–491

Coutinho K, Georg H, Fonseca T, Ludwig V, Canuto S (2007) An 
efficient statistically converged average configuration for solvent 
effects. Chem Phys Lett 437:148–152

Crouzy S, Baudry J, Smith JC, Roux B (1999) Efficient calculation 
of two-dimensional adiabatic and free energy maps: application 
to the isomerization of the C13–C14 and C15–N16 bonds in 
the retinal of bacteriorhodopsin. J Comput Chem 20:1644–1658

Crozier PS, Stevens MJ, Forrest LR, Woolf TB (2003) Molecular 
dynamics simulation of dark-adapted rhodopsin in an explicit 
membrane bilayer: coupling between local retinal and larger scale 
conformational change. J Mol Biol 333:493–514

Curchod BF, Martínez TJ (2018) Ab initio nonadiabatic quantum 
molecular dynamics. Chem Rev 118:3305–3336

De Groot HJ, Smith SO, Courtin J, Van den Berg E, Winkel C, Lugten-
burg J, Griffin RG, Herzfeld J (1990) Solid-state carbon-13 and 
nitrogen-15 NMR study of the low pH forms of bacteriorhodop-
sin. Biochemistry 29:6873–6883

Deupi X, Edwards P, Singhal A, Nickle B, Oprian D, Schertler G, 
Standfuss J (2012) Stabilized G protein binding site in the struc-
ture of constitutively active metarhodopsin-II. Proc Natl Acad 
Sci USA 109:119–124

Dickson CJ, Madej BD, Skjevik ÅA, Betz RM, Teigen K, Gould IR, 
Walker RC (2014) Lipid14: the Amber lipid force field. J Chem 
Theory Comput 10:865–879

Doemer M, Maurer P, Campomanes P, Tavernelli I, Rothlisberger U 
(2013) Generalized QM/MM force matching approach applied 
to the 11-cis protonated Schiff base chromophore of rhodopsin. 
J Chem Theory Comput 10:412–422

Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) 
PDB2PQR: an automated pipeline for the setup of Poisson-
Boltzmann electrostatics calculations. Nucleic Acids Res 
32:W665–W667

Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH, Klebe G, 
Baker NA (2007) PDB2PQR: expanding and upgrading auto-
mated preparation of biomolecular structures for molecular simu-
lations. Nucleic Acids Res 35:W522–W525

Dorn M, de Silva MB, Buriol LS, Lamb LC (2014) Three-dimensional 
protein structure prediction: methods and computational strate-
gies. Comput Biol Chem 53:251–276

Dror RO, Arlow DH, Borhani DW, Jensen MØ, Piana S, Shaw DE 
(2009) Identification of two distinct inactive conformations of 



444	 M. N. Ryazantsev et al.

1 3

the β2-adrenergic receptor reconciles structural and biochemical 
observations. Proc Natl Acad Sci USA 106:4689–4694

Dror RO, Arlow DH, Maragakis P, Mildorf TJ, Pan AC, Xu H, Borhani 
DW, Shaw DE (2011) Activation mechanism of the β2-adrenergic 
receptor. Proc Natl Acad Sci USA 108:18684–18689

Dror RO, Green HF, Valant C, Borhani DW, Valcourt JR, Pan AC, Arlow 
DH, Canals M, Lane JR, Rahmani R, Baell JB, Sexton PM, Chris-
topoulos A, Shaw DE (2013) Structural basis for modulation of a 
G-protein-coupled receptor by allosteric drugs. Nature 503:295–299

Dror RO, Mildorf TJ, Hilger D, Manglik A, Borhani DW, Arlow DH, 
Philippsen A, Villanueva N, Yang Z, Lerch MT, Hubbell WL, 
Kobilka BK, Sunahara RK, Shaw DE (2015) Structural basis 
for nucleotide exchange in heterotrimeric G proteins. Science 
348:1361–1365

Ebejer J-P, Hill JR, Kelm S, Shi J, Deane CM (2013) Memoir: tem-
plate-based structure prediction for membrane proteins. Nucleic 
Acids Res 41:W379–W383

El-Khoury PZ, Tarnovsky AN, Schapiro I, Ryazantsev MN, Olivucci 
M (2009) Structure of the photochemical reaction path populated 
via promotion of CF2I2 into its first excited state. J Phys Chem 
A 113:10767–10771

Elstner M (2006) The SCC-DFTB method and its application to bio-
logical systems. Theoret Chem Acc 116:316–325

Elstner M, Frauenheim T, Suhai S (2003) An approximate DFT method 
for QM/MM simulations of biological structures and processes. 
J Mol Struct (Theochem) 632:29–41

Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, 
Shen M-y, Pieper U, Sali A (2006) Comparative protein structure 
modeling using Modeller. Curr Protoc Bioinf 15:5.6.1–5.6.30

Feig M (2008) Implicit membrane models for membrane protein simu-
lation. Methods Mol Biol 443:181–196

Feller SE, Gawrisch K, Woolf TB (2003) Rhodopsin exhibits a prefer-
ence for solvation by polyunsaturated docosohexaenoic acid. J 
Am Chem Soc 125:4434–4435

Feng J, Brown MF, Mertz B (2015) Retinal flip in rhodopsin activa-
tion? Biophys J 108:2767–2770

Ferrand M, Zaccai G, Nina M, Smith J, Etchebest C, Roux B (1993) 
Structure and dynamics of bacteriorhodopsin: comparison of 
simulation and experiment. FEBS Lett 327:256–260

Field MJ, Bash PA, Karplus M (1990) A combined quantum mechani-
cal and molecular mechanical potential for molecular dynamics 
simulations. J Comput Chem 11:700–733

Finley J, Malmqvist P-Å, Roos BO, Serrano-Andrés L (1998) The 
multi-state CASPT2 method. Chem Phys Lett 288:299–306

Fracchia F, Del Frate G, Mancini G, Rocchia W, Barone V (2017) 
Force field parametrization of metal ions from statistical learning 
techniques. J Chem Theory Comput 14:255–273

Frähmcke JS, Wanko M, Phatak P, Mroginski MA, Elstner M (2010) 
The protonation state of Glu181 in rhodopsin revisited: interpre-
tation of experimental data on the basis of QM/MM calculations. 
J Phys Chem B 114:11338–11352

Frähmcke JS, Wanko M, Elstner M (2012) Building a model of the blue 
cone pigment based on the wild type rhodopsin structure with 
QM/MM methods. J Phys Chem B 116:3313–3321

Frutos LM, Andruniów T, Santoro F, Ferré N, Olivucci M (2007) 
Tracking the excited-state time evolution of the visual pigment 
with multiconfigurational quantum chemistry. Proc Natl Acad 
Sci USA 104:7764–7769

Fujimoto K, Hasegawa J-y, Hayashi S, Kato S, Nakatsuji H (2005) 
Mechanism of color tuning in retinal protein: SAC-CI and QM/
MM study. Chem Phys Lett 414:239–242

Fujimoto K, Hasegawa J-y, Hayashi S, Nakatsuji H (2006) On the 
color-tuning mechanism of Human-Blue visual pigment: SAC-
CI and QM/MM study. Chem Phys Lett 432:252–256

Fujimoto KJ, Asai K, Hasegawa J-y (2010) Theoretical study 
of the opsin shift of deprotonated retinal Schiff base in 

the M state of bacteriorhodopsin. Phys Chem Chem Phys 
12:13107–13116

Galván IF, Sánchez M, Martín M, Olivares del Valle F, Aguilar M 
(2003) Geometry optimization of molecules in solution: joint 
use of the mean field approximation and the free-energy gradient 
method. J Chem Phys 118:255–263

Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital 
electronegativity—a rapid access to atomic charges. Tetrahedron 
36:3219–3228

Gaus M, Cui Q, Elstner M (2011) DFTB3: extension of the self-con-
sistent-charge density-functional tight-binding method (SCC-
DFTB). J Chem Theory Comput 7:931–948

Gellini C, Lüttenberg B, Sydor J, Engelhard M, Hildebrandt P (2000) 
Resonance Raman spectroscopy of sensory rhodopsin II from 
Natronobacterium pharaonis. FEBS Lett 472:263–266

González A, Perez-Acle T, Pardo L, Deupi X (2011) Molecular basis 
of ligand dissociation in β-adrenergic receptors. PLoS ONE 
6:e23815

González-Luque R, Garavelli M, Bernardi F, Merchán M, Robb 
MA, Olivucci M (2000) Computational evidence in favor of a 
two-state, two-mode model of the retinal chromophore photoi-
somerization. Proc Natl Acad Sci USA 97:9379–9384

Govorunova EG, Cunha SR, Sineshchekov OA, Spudich JL (2016) 
Anion channelrhodopsins for inhibitory cardiac optogenetics. 
Sci Rep 6:33530

Govorunova EG, Sineshchekov OA, Li H, Spudich JL (2017) Micro-
bial rhodopsins: diversity, mechanisms, and optogenetic appli-
cations. Annu Rev Biochem 86:845–872

Gozem S, Luk HL, Schapiro I, Olivucci M (2017) Theory and simu-
lation of the ultrafast double-bond isomerization of biological 
chromophores. Chem Rev 117:13502–13565

Grossfield A (2008) Implicit modeling of membranes. Curr Top 
Membr 60:131–157

Grossfield A (2011) Recent progress in the study of G protein-cou-
pled receptors with molecular dynamics computer simulations. 
Biochim Biophys Acta 1808:1868–1878

Grossfield A, Feller SE, Pitman MC (2006a) Contribution of 
omega-3 fatty acids to the thermodynamics of membrane pro-
tein solvation. J Phys Chem B 110:8907–8909

Grossfield A, Feller SE, Pitman MC (2006b) A role for direct interac-
tions in the modulation of rhodopsin by ω-3 polyunsaturated 
lipids. Proc Natl Acad Sci USA 103:4888–4893

Guo Y, Beyle FE, Bold BM, Watanabe HC, Koslowski A, Thiel W, 
Hegemann P, Marazzi M, Elstner M (2016) Active site struc-
ture and absorption spectrum of channelrhodopsin-2 wild-type 
and C128T mutant. Chem Sci 7:3879–3891

Gushchin I, Gordeliy V, Grudinin S (2013) Two distinct states of the 
HAMP domain from sensory rhodopsin transducer observed in 
unbiased molecular dynamics simulations. PLoS ONE 8:e66917

Gushchin I, Shevchenko V, Polovinkin V, Kovalev K, Alekseev A, 
Round E, Borshchevskiy V, Balandin T, Popov A, Gensch T, 
Fahlke C, Baumann C, Willbold D, Büldt G, Bamberg E, Gor-
delly V (2015) Crystal structure of a light-driven sodium pump. 
Nat Struct Mol Biol 22:390–395

Gutiérrez-de-Terán H, Massink A, Rodríguez D, Liu W, Han GW, 
Joseph JS, Katritch I, Heitman LH, Xia L, IJzerman AP, 
Chereƶov V, Katritch V, Stevens RC (2013) The role of a sodium 
ion binding site in the allosteric modulation of the A2A adenosine 
G protein-coupled receptor. Structure 21:2175–2185

Hall KF, Vreven T, Frisch MJ, Bearpark MJ (2008) Three-layer 
ONIOM studies of the dark state of rhodopsin: the protonation 
state of Glu181. J Mol Biol 383:106–121

Hamanaka T, Mitsui T, Ashida T, Kakudo M (1972) The crystal struc-
ture of all-trans retinal1. Acta Crystallogr B 28:214–222

Hansen N, Van Gunsteren WF (2014) Practical aspects of free-energy 
calculations: a review. J Chem Theory Comput 10:2632–2647



445Quantum Mechanical and Molecular Mechanics Modeling of Membrane‑Embedded Rhodopsins﻿	

1 3

Harbison GS, Roberts JE, Herzfeld J, Griffin RG (1988) Solid-state 
NMR detection of proton exchange between the bacteriorhodop-
sin Schiff base and bulk water. J Am Chem Soc 110:7221–7223

Hayashi S, Tajkhorshid E, Schulten K (2002) Structural changes dur-
ing the formation of early intermediates in the bacteriorhodopsin 
photocycle. Biophys J 83:1281–1297

Hein M, Wegener AA, Engelhard M, Siebert F (2003) Time-resolved 
FTIR studies of sensory rhodopsin II (NpSRII) from Natrono-
bacterium pharaonis: implications for proton transport and 
receptor activation. Biophys J 84:1208–1217

Hénin J, Maigret B, Tarek M, Escrieut C, Fourmy D, Chipot C (2006) 
Probing a model of a GPCR/ligand complex in an explicit mem-
brane environment: the human cholecystokinin-1 receptor. Bio-
phys J 90:1232–1240

Hill JR, Deane CM (2012) MP-T: improving membrane protein align-
ment for structure prediction. Bioinformatics 29:54–61

Hillebrecht JR, Galan J, Rangarajan R, Ramos L, McCleary K, Ward 
DE, Stuart JA, Birge RR (2006) Structure, function, and wave-
length selection in blue-absorbing proteorhodopsin. Biochemis-
try 45:1579–1590

Hochbaum DR, Zhao Y, Farhi SL, Klapoetke N, Werley CA, Kapoor V, 
Zou P, Kralj JM, Maclaurin D, Smedemark-Margulies N (2014) 
All-optical electrophysiology in mammalian neurons using engi-
neered microbial rhodopsins. Nat Methods 11:825–833

Hoffmann M, Wanko M, Strodel P, König PH, Frauenheim T, Schulten 
K, Thiel W, Tajkhorshid E, Elstner M (2006) Color tuning in 
rhodopsins: the mechanism for the spectral shift between bac-
teriorhodopsin and sensory rhodopsin II. J Am Chem Soc 
128:10808–10818

Horn JN, Kao T-C, Grossfield A (2014) Coarse-grained molecular 
dynamics provides insight into the interactions of lipids and 
cholesterol with rhodopsin. Adv Exp Med Biol 796:75–94

Hornak V, Ahuja S, Eilers M, Goncalves JA, Sheves M, Reeves PJ, 
Smith SO (2010) Light activation of rhodopsin: insights from 
molecular dynamics simulations guided by solid-state NMR dis-
tance restraints. J Mol Biol 396:510–527

Huang W, Manglik A, Venkatakrishnan AJ, Laeremans T, Feinberg 
EN, Sanborn AL, Kato HE, Livingston KE, Thorsen TS, Kling 
RC, Granier S, Gmeiner P, Husbands SM, Traynor JR, Weiss WI, 
Steyaert J, Dror RO, Kobilka BK (2015) Structural insights into 
µ-opioid receptor activation. Nature 524:315–321

Huber T, Sakmar TP (2008) Rhodopsin’s active state is frozen like a 
DEER in the headlights. Proc Natl Acad Sci USA 105:7343–7344

Huber T, Botelho AV, Beyer K, Brown MF (2004) Membrane model 
for the G-protein-coupled receptor rhodopsin: hydrophobic inter-
face and dynamical structure. Biophys J 86:2078–2100

Im W, Feig M, Brooks CL III (2003) An implicit membrane general-
ized Born theory for the study of structure, stability, and interac-
tions of membrane proteins. Biophys J 85:2900–2918

Isralewitz B, Izrailev S, Schulten K (1997) Binding pathway of retinal 
to bacterio-opsin: a prediction by molecular dynamics simula-
tions. Biophys J 73:2972–2979

Izvekov S, Voth GA (2005) A multiscale coarse-graining method for 
biomolecular systems. J Phys Chem B 109:2469–2473

Jämbeck JP, Lyubartsev AP (2012) An extension and further validation 
of an all-atomistic force field for biological membranes. J Chem 
Theory Comput 8:2938–2948

Jardón-Valadez E, Bondar A-N, Tobias DJ (2010) Coupling of reti-
nal, protein, and water dynamics in squid rhodopsin. Biophys J 
99:2200–2207

Jarzynski C (1997) Equilibrium free-energy differences from nonequi-
librium measurements: a master-equation approach. Phys Rev 
E 56:5018

Jensen MR, Zweckstetter M, Huang J-r, Blackledge M (2014) Exploring 
free-energy landscapes of intrinsically disordered proteins at atomic 
resolution using NMR spectroscopy. Chem Rev 114:6632–6660

Johnston JM, Wang H, Provasi D, Filizola M (2012) Assessing the rela-
tive stability of dimer interfaces in G protein-coupled receptors. 
PLoS Comput Biol 8:e1002649

Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) 
Evaluation and reparametrization of the OPLS-AA force field 
for proteins via comparison with accurate quantum chemical cal-
culations on peptides. J Phys Chem B 105:6474–6487

Kästner J (2011) Umbrella sampling. Wiley Interdiscip Rev 1:932–942
Kaszuba K, Róg T, Bryl K, Vattulainen I, Karttunen M (2010) Molecu-

lar dynamics simulations reveal fundamental role of water as 
factor determining affinity of binding of β-blocker nebivolol to 
β2-adrenergic receptor. J Phys Chem B 114:8374–8386

Kaufmann KW, Lemmon GH, DeLuca SL, Sheehan JH, Meiler J 
(2010) Practically useful: what the Rosetta protein modeling 
suite can do for you. Biochemistry 49:2987–2998

Kazmin R, Rose A, Szczepek M, Elgeti M, Ritter E, Piechnick R, 
Hofmann KP, Scheerer P, Hildebrand PW, Bartl FJ (2015) 
The activation pathway of human rhodopsin in comparison to 
bovine rhodopsin. J Biol Chem 290:20117–201127

Kelm S, Shi J, Deane CM (2010) MEDELLER: homology-based 
coordinate generation for membrane proteins. Bioinformatics 
26:2833–2840

Khan FI, Wei D-Q, Gu K-R, Hassan MI, Tabrez S (2016) Current 
updates on computer aided protein modeling and designing. 
Int J Biol Macromol 85:48–62

Khandogin J, Brooks CL (2005) Constant pH molecular dynamics 
with proton tautomerism. Biophys J 89:141–157

Khelashvili G, Albornoz PBC, Johner N, Mondal S, Caffrey M, Wein-
stein H (2012) Why GPCRs behave differently in cubic and 
lamellar lipidic mesophases. J Am Chem Soc 134:15858–15868

Kholmurodov KT, Fel’dman T, Ostrovskii M (2007) Molecular dynam-
ics of rhodopsin and free opsin: computer simulation. Neurosci 
Behav Physiol 37:161–174

Khrenova MG, Bochenkova AV, Nemukhin AV (2010) Modeling 
reaction routes from rhodopsin to bathorhodopsin. Proteins 
78:614–622

Kilambi KP, Gray JJ (2012) Rapid calculation of protein pKa values 
using Rosetta. Biophys J 103:587–595

Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mon-
dragon-Ramirez C, Vorobyov I, MacKerell AD Jr, Pastor RW 
(2010) Update of the CHARMM all-atom additive force field for 
lipids: validation on six lipid types. J Phys Chem B 114:7830–7843

Krebs A, Edwards PC, Villa C, Li J, Schertler GFX (2003) The three-
dimensional structure of bovine rhodopsin determined by elec-
tron cryomicroscopy. J Biol Chem 278:50217–50225

Kukura P, McCamant DW, Yoon S, Wandschneider DB, Mathies 
RA (2005) Structural observation of the primary isomeriza-
tion in vision with femtosecond-stimulated Raman. Science 
310:1006–1009

Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA 
(1992) The weighted histogram analysis method for free-energy 
calculations on biomolecules. I. The method. J Comput Chem 
13:1011–1021

Laio A, Gervasio FL (2008) Metadynamics: a method to simulate rare 
events and reconstruct the free energy in biophysics, chemistry 
and material science. Rep Prog Phys 71:126601

Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl 
Acad Sci USA 99:12562–12566

Latorraca NR, Venkatakrishnan A, Dror RO (2017) GPCR dynamics: 
structures in motion. Chem Rev 117:139–155

Latorraca NR, Wang JK, Bauer B, Townshend RJ, Hollingsworth SA, 
Olivieri JE, Xu HE, Sommer ME, Dror RO (2018) Molecular mech-
anism of GPCR-mediated arrestin activation. Nature 557:452–456

Lau P-W, Grossfield A, Feller SE, Pitman MC, Brown MF (2007) 
Dynamic structure of retinylidene ligand of rhodopsin probed 
by molecular simulations. J Mol Biol 372:906–917



446	 M. N. Ryazantsev et al.

1 3

Lee J, Freddolino PL, Zhang Y (2017) Ab initio protein structure pre-
diction. In: Daniel JR (ed) From Protein Structure to Function 
with Bioinformatics. Springer, Berlin, pp 3–35

Leguèbe M, Nguyen C, Capece L, Hoang Z, Giorgetti A, Carloni P 
(2012) Hybrid molecular mechanics/coarse-grained simulations 
for structural prediction of G-protein coupled receptor/ligand 
complexes. PLoS ONE 7:e47332

Leioatts N, Mertz B, Martínez-Mayorga K, Romo TD, Pitman MC, 
Feller SE, Grossfield A, Brown MF (2014) Retinal ligand 
mobility explains internal hydration and reconciles active 
rhodopsin structures. Biochemistry 53:376–385

Lemaître V, Yeagle P, Watts A (2005) Molecular dynamics simu-
lations of retinal in rhodopsin: from the dark-adapted state 
towards lumirhodopsin. Biochemistry 44:12667–12680

Lenselink EB, Louvel J, Forti AF, van Veldhoven JPD, de Vries H, 
Mulder-Krieger T, McRobb FM, Negri A, Goose J, Abel R, 
van Vlijmen HWT, Wang L, Harder E, Sherman W, IJƶerman 
AP, Beuming T (2016) Predicting binding affinities for 
GPCR ligands using free-energy perturbation. ACS Omega 
1:293–304

Leonard AN, Pastor RW, Klauda JB (2018) Parameterization of the 
CHARMM all-atom force field for ether lipids and model lin-
ear ethers. J Phys Chem B 122:6744–6754

Li X, Chung LW, Morokuma K (2011) Photodynamics of all-trans 
retinal protonated Schiff base in bacteriorhodopsin and metha-
nol solution. J Chem Theory Comput 7:2694–2698

Lin H, Truhlar DG (2007) QM/MM: what have we learned, where 
are we, and where do we go from here? Theoret Chem Acc 
117:185–199

Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, 
Dror RO, Shaw DE (2010) Improved side-chain torsion 
potentials for the Amber ff99SB protein force field. Proteins 
78:1950–1958

Lischka H, Dallos M, Shepard R (2002) Analytic MRCI gradient for 
excited states: formalism and application to the n-π* valence-
and n-(3s, 3p) Rydberg states of formaldehyde. Mol Phys 
100:1647–1658

Mackerell AD Jr, Feig M, Brooks CL III (2004) Extending the treat-
ment of backbone energetics in protein force fields: limitations 
of gas-phase quantum mechanics in reproducing protein con-
formational distributions in molecular dynamics simulations. 
J Comput Chem 25:1400–1415

Maclaurin D, Venkatachalam V, Lee H, Cohen AE (2013) Mecha-
nism of voltage-sensitive fluorescence in a microbial rhodop-
sin. Proc Natl Acad Sci USA 110:5939–5944

Marchiori A, Capece L, Giorgetti A, Gasparini P, Behrens M, Carloni 
P, Meyerhof W (2013) Coarse-grained/molecular mechanics of 
the TAS2R38 bitter taste receptor: experimentally-validated 
detailed structural prediction of agonist binding. PLoS ONE 
8:e64675

Marrink SJ, De Vries AH, Mark AE (2004) Coarse grained model 
for semiquantitative lipid simulations. J Phys Chem B 
108:750–760

Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, De Vries AH 
(2007) The MARTINI force field: coarse grained model for bio-
molecular simulations. J Phys Chem B 111:7812–7824

Martínez-Mayorga K, Pitman MC, Grossfield A, Feller SE, Brown MF 
(2006) Retinal counterion switch mechanism in vision evaluated 
by molecular simulations. J Am Chem Soc 128:16502–16503

Melaccio F, Ferré N, Olivucci M (2012) Quantum chemical modeling 
of rhodopsin mutants displaying switchable colors. Phys Chem 
Chem Phys 14:12485–12495

Meral D, Provasi D, Filizola M (2018) An efficient strategy to estimate 
thermodynamics and kinetics of G protein-coupled receptor acti-
vation using metadynamics and maximum caliber. J Chem Phys 
149:224101

Mertz B, Lu M, Brown MF, Feller SE (2011) Steric and electronic 
influences on the torsional energy landscape of retinal. Biophys 
J 101:L17–L19

Mertz B, Struts AV, Feller SE, Brown MF (2012) Molecular simu-
lations and solid-state NMR investigate dynamical structure in 
rhodopsin activation. Biochem Biophys Acta 1818:241–251

Metropolis N, Ulam S (1949) The Monte Carlo method. J Am Stat 
Assoc 44:335–341

Miao Y, Caliman AD, McCammon JA (2015) Allosteric effects of 
sodium ion binding on activation of the M3 muscarinic G-pro-
tein-coupled receptor. Biophys J 108:1796–1806

Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, 
Marrink S-J (2008) The MARTINI coarse-grained force field: 
extension to proteins. J Chem Theory Comput 4:819–834

Moradi M, Babin V, Sagui C, Roland C (2013) Recipes for free 
energy calculations in biomolecular systems. Methods Mol Biol 
924:313–337

Mori T, Miyashita N, Im W, Feig M, Sugita Y (2016) Molecular 
dynamics simulations of biological membranes and membrane 
proteins using enhanced conformational sampling algorithms. 
Biochim Biophys Acta 1858:1635–1651

Morozenko A, Stuchebrukhov A (2016) Dowser++, a new method of 
hydrating protein structures. Proteins 84:1347–1357

Morozenko A, Leontyev I, Stuchebrukhov A (2014) Dipole moment 
and binding energy of water in proteins from crystallographic 
analysis. J Chem Theory Comput 10:4618–4623

Nielsen IB, Lammich L, Andersen LH (2006) S1 and S2 excited states 
of gas-phase Schiff-base retinal chromophores. Phys Rev Lett 
96:018304

Nikolaev DM, Emelyanov A, Boitsov VM, Panov MS, Ryazantsev MN 
(2017) A voltage-dependent fluorescent indicator for optogenetic 
applications, archaerhodopsin-3: structure and optical properties 
from in silico modeling. F1000Research 6:33

Nikolaev DM, Shtyrov AA, Panov MS, Jamal A, Chakchir OB, 
Kochemirovsky VA, Olivucci M, Ryazantsev MN (2018) A 
comparative study of modern homology modeling algorithms 
for rhodopsin structure prediction. ACS Omega 3:7555–7566

Nikolaev DM, Osipov DE, Strashkov DM, Vyazmin SY, Akulov VE, 
Kravtcov DV, Chakchir OB, Panov MS, Ryazantsev MN (2019a) 
Molecular mechanisms of adaptation to the habitat depth in vis-
ual pigments of A. subulata and L. forbesi squids: on the role of 
the S270F substitution. J Integr OMICS 9:44–50

Nikolaev DM, Panov MS, Shtyrov AA, Boitsov VM, Vyazmin SY, 
Chakchir OB, Yakovlev IP, Ryazantsev MN (2019b) Perspective 
tools for optogenetics and photopharmacology: from design to 
implementation. In: Yamanouchi K, Tunik S, Makarov V (eds) 
Progress in Photon Science. Springer, Berlin, pp 139–172

Nina M, Roux B, Smith JC (1995) Functional interactions in bacteri-
orhodopsin: a theoretical analysis of retinal hydrogen bonding 
with water. Biophys J 68:25–39

Noid W (2013) Systematic methods for structurally consistent coarse-
grained models. Methods Mol Biol 924:487–531

Nygaard R, Zou Y, Dror RO, Mildorf TJ, Arlow DH, Manglik A, Pan 
AC, Liu CW, Fung JJ, Bokoch MP, Thian FS, Kobilka TS, Shaw 
DE, Mueller L, Prosser RS, Kobilka BK (2013) The dynamic 
process of β2-adrenergic receptor activation. Cell 152:532–542

Okuyama-Yoshida N, Kataoka K, Nagaoka M, Yamabe T (2000) Structure 
optimization via free energy gradient method: application to glycine 
zwitterion in aqueous solution. J Chem Phys 113:3519–3524

Olausson BE, Grossfield A, Pitman MC, Brown MF, Feller SE, Vogel 
A (2012) Molecular dynamics simulations reveal specific interac-
tions of post-translational palmitoyl modifications with rhodop-
sin in membranes. J Am Chem Soc 134:4324–4331

Olsson MHM, Søndergaard CR, Rostkowski M, Jensen JH (2011) 
PROPKA3: consistent treatment of internal and surface residues 
in empirical pKa predictions. J Chem Theory Comput 7:525–537



447Quantum Mechanical and Molecular Mechanics Modeling of Membrane‑Embedded Rhodopsins﻿	

1 3

Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF (2004) A bio-
molecular force field based on the free enthalpy of hydration and 
solvation: the GROMOS force-field parameter sets 53A5 and 
53A6. J Comput Chem 25:1656–1676

Orozco-Gonzalez Y, Manathunga M, Marin MdC, Agathangelou D, 
Jung KH, Melaccio F, Ferré N, Haacke S, Coutinho K, Canuto S, 
Olivucci M (2017) An average solvent electrostatic configuration 
protocol for QM/MM free energy optimization: implementation 
and application to rhodopsin systems. J Chem Theory Comput 
13:6391–6404

Pastor R, MacKerell AD Jr (2011) Development of the CHARMM 
force field for lipids. J Phys Chem Lett 2:1526–1532

Patel AB, Crocker E, Eilers M, Hirshfeld A, Sheves M, Smith SO 
(2004) Coupling of retinal isomerization to the activation of 
rhodopsin. Proc Natl Acad Sci USA 101:10048–10053

Perera SM, Chawla U, Shrestha UR, Bhowmik D, Struts AV, Qian 
S, Chu X-Q, Brown MF (2018) Small-angle neutron scattering 
reveals energy landscape for rhodopsin photoactivation. J Phys 
Chem Lett 9:7064–7071

Periole X (2016) Interplay of G protein-coupled receptors with the 
membrane: insights from supra-atomic coarse grain molecular 
dynamics simulations. Chem Rev 117:156–185

Periole X, Huber T, Marrink S-J, Sakmar TP (2007) G protein-cou-
pled receptors self-assemble in dynamics simulations of model 
bilayers. J Am Chem Soc 129:10126–10132

Periole X, Knepp AM, Sakmar TP, Marrink SJ, Huber T (2012) 
Structural determinants of the supramolecular organization 
of G protein-coupled receptors in bilayers. J Am Chem Soc 
134:10959–10965

Provasi D, Filizola M (2010) Putative active states of a prototypic 
G-protein-coupled receptor from biased molecular dynamics. 
Biophys J 98:2347–2355

Provasi D, Palczewski K, Filizola M (2009) Exploring the thermo-
dynamics of activation pathways of bovine rhodopsin with fast 
molecular dynamics simulations. Biophys J 96:679a

Raiteri P, Laio A, Gervasio FL, Micheletti C, Parrinello M (2006) 
Efficient reconstruction of complex free energy land-
scapes by multiple walkers metadynamics. J Phys Chem B 
110:3533–3539

Rajamani R, Gao J (2002) Combined QM/MM study of the opsin shift 
in bacteriorhodopsin. J Comput Chem 23:96–105

Richards R, Dempski RE (2017) Adjacent channelrhodopsin-2 residues 
within transmembranes 2 and 7 regulate cation selectivity and 
distribution of the two open states. J Biol Chem 292:7314–7326

Rinaldi S, Melaccio F, Gozem S, Fanelli F, Olivucci M (2014) Com-
parison of the isomerization mechanisms of human melanopsin 
and invertebrate and vertebrate rhodopsins. Proc Natl Acad Sci 
USA 111:1714–1719

Romo TD, Grossfield A, Pitman MC (2010) Concerted interconver-
sion between ionic lock substates of the β2 adrenergic receptor 
revealed by microsecond timescale molecular dynamics. Biophys 
J 98:76–84

Ross GA, Morris GM, Biggin PC (2012) Rapid and accurate prediction 
and scoring of water molecules in protein binding sites. PLoS 
ONE 7:e32036

Rostkowski M, Olsson MHM, Søndergaard CR, Jensen JH (2011) 
Graphical analysis of pH-dependent properties of proteins pre-
dicted using PROPKA. BMC Struct Biol 11:6

Rotov AY, Astakhova L, Sitnikova V, Evdokimov A, Boitsov V, Dubina 
M, Ryazantsev M, Firsov M (2018) New experimental models of 
retinal degeneration for screening molecular photochromic ion 
channel blockers. Acta Nat 10:75–84

Roux B, Nina M, Pomès R, Smith JC (1996) Thermodynamic stability of 
water molecules in the bacteriorhodopsin proton channel: a molecu-
lar dynamics free energy perturbation study. Biophys J 71:670–681

Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for 
automated protein structure and function prediction. Nat Protoc 
5:725–738

Ryazantsev MN, Altun A, Morokuma K (2012) Color tuning in rho-
dopsins: the origin of the spectral shift between the chloride-
bound and anion-free forms of halorhodopsin. J Am Chem Soc 
134:5520–5523

Saam J, Tajkhorshid E, Hayashi S, Schulten K (2002) Molecular 
dynamics investigation of primary photoinduced events in the 
activation of rhodopsin. Biophys J 83:3097–3112

Sahoo BR, Genjo T, Maharana KC, Ramamoorthy A (2019) Self-
assembly of polymer-encased lipid nanodiscs and membrane 
protein reconstitution. J Phys Chem B 123:4562–4570

Saint Clair EC, Ogren JI, Mamaev S, Kralj JM, Rothschild KJ (2012a) 
Conformational changes in the archaerhodopsin-3 proton pump: 
detection of conserved strongly hydrogen bonded water net-
works. J Biol Phys 38:153–168

Saint Clair EC, Ogren JI, Mamaev S, Russano D, Kralj JM, Rothschild 
KJ (2012b) Near-IR resonance Raman spectroscopy of archaer-
hodopsin 3: effects of transmembrane potential. J Phys Chem B 
116:14592–14601

Sakmar TP, Periole X, Huber T (2017) Probing self-assembly of G pro-
tein-coupled receptor oligomers in membranes using molecular 
dynamics modeling and experimental approaches. In: Herrick-
Davis K, Milligan G, Di Giovanni G (eds) G-Protein-Coupled 
Receptor Dimers. Humana Press, Cham, pp 385–414

Salamon Z, Brown MF, Tollin G (1999) Plasmon resonance spectros-
copy: probing molecular interactions within membranes. Trends 
Biochem Sci 24:213–219

Salas-Estrada LA, Leioatts N, Romo TD, Grossfield A (2018) Lipids 
alter rhodopsin function via ligand-like and solvent-like interac-
tions. Biophys J 114:355–367

Saleh N, Ibrahim P, Saladino G, Gervasio FL, Clark T (2017) An effi-
cient metadynamics-based protocol to model the binding affinity 
and the transition state ensemble of G-protein-coupled receptor 
ligands. J Chem Inf Model 57:1210–1217

Saunders MG, Voth GA (2013) Coarse-graining methods for compu-
tational biology. Ann Rev Biophys 42:73–93

Schaefer P, Riccardi D, Cui Q (2005) Reliable treatment of electrostat-
ics in combined QM/MM simulation of macromolecules. J Chem 
Phys 123:014905

Schapiro I, Weingart O, Buss V (2008) Bicycle-pedal isomerization 
in a rhodopsin chromophore model. J Am Chem Soc 131:16–17

Schapiro I, Ryazantsev MN, Frutos LM, Ferré N, Lindh R, Olivucci 
M (2011) The ultrafast photoisomerizations of rhodopsin and 
bathorhodopsin are modulated by bond length alternation and 
HOOP driven electronic effects. J Am Chem Soc 133:3354–3364

Schmidt TH, Kandt C (2012) LAMBADA and InflateGRO2: effi-
cient membrane alignment and insertion of membrane pro-
teins for molecular dynamics simulations. J Chem Inf Model 
52:2657–2669

Schnedermann C, Yang X, Liebel M, Spillane K, Lugtenburg J, Fernán-
dez I, Valentini A, Schapiro I, Olivucci M, Kukura P, Mathies 
RA (2018) Evidence for a vibrational phase-dependent isotope 
effect on the photochemistry of vision. Nat Chem 10:449–455

Schoenlein RW, Peteanu LA, Mathies RA, Shank CV (1991) The first 
step in vision: femtosecond isomerization of rhodopsin. Science 
254:412–415

Scott KA, Bond PJ, Ivetac A, Chetwynd AP, Khalid S, Sansom MS 
(2008) Coarse-grained MD simulations of membrane protein-
bilayer self-assembly. Structure 16:621–630

Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. 
Angew Chem Int Ed 48:1198–1229

Shirts MR, Mobley DL (2013) An introduction to best practices in free 
energy calculations. Methods Mol Biol 924:271–311



448	 M. N. Ryazantsev et al.

1 3

Shrestha UR, Perera SM, Bhowmik D, Chawla U, Mamontov E, Brown 
MF, Chu X-Q (2016) Quasi-elastic neutron scattering reveals 
ligand-induced protein dynamics of a G-protein-coupled recep-
tor. J Phys Chem Lett 7:4130–4136

Simonson T, Carlsson J, Case DA (2004) Proton binding to proteins: 
pKa calculations with explicit and implicit solvent models. J Am 
Chem Soc 126:4167–4180

Smith SO (2010) Structure and activation of the visual pigment rho-
dopsin. Ann Rev Biophys 39:309–328

Söderhjelm P, Husberg C, Strambi A, Olivucci M, Ryde U (2009) 
Protein influence on electronic spectra modeled by multipoles 
and polarizabilities. J Chem Theory Comput 5:649–658

Söding J (2004) Protein homology detection by HMM–HMM compari-
son. Bioinformatics 21:951–960

Song Y, DiMaio F, Wang RY-R, Kim D, Miles C, Brunette TJ, Thomp-
son J, Baker D (2013) High-resolution comparative modeling 
with RosettaCM. Structure 21:1735–1742

Sridhar A, Ross GA, Biggin PC (2017) Waterdock 2.0: water place-
ment prediction for holo-structures with a PYMOL plugin. PLoS 
ONE 12:e0172743

Standfuss J, Edwards PC, D’Antona A, Fransen M, Xie G, Oprian DD, 
Schertler GFX (2011) The structural basis of agonist-induced 
activation in constitutively active rhodopsin. Nature 471:656–660

Strambi A, Coto PB, Frutos LM, Ferré N, Olivucci M (2008) Relation-
ship between the excited state relaxation paths of rhodopsin and 
isorhodopsin. J Am Chem Soc 130:3382–3388

Struts AV, Salgado GF, Brown MF (2011) Solid-state 2H NMR 
relaxation illuminates functional dynamics of retinal cofactor 
in membrane activation of rhodopsin. Proc Natl Acad Sci USA 
108:8263–8268

Sumita M, Ryazantsev MN, Saito K (2009) Acceleration of the Z to E 
photoisomerization of penta-2,4-dieniminium by hydrogen out-
of-plane motion: theoretical study on a model system of retinal 
protonated Schiff base. Phys Chem Chem Phys 11:6406–6414

Suomivuori C-M, Gamiz-Hernandez AP, Sundholm D, Kaila VR 
(2017) Energetics and dynamics of a light-driven sodium-pump-
ing rhodopsin. Proc Natl Acad Sci USA 114:7043–7048

Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma 
K (1996) ONIOM: a multilayered integrated MO + MM method 
for geometry optimizations and single point energy predictions. 
A test for Diels–Alder reactions and Pt(P(t-Bu)3)2 + H2 oxidative 
addition. J Phys Chem 100:19357–19363

Tajkhorshid E, Suhai S (2000) The dielectric effect of the environment on 
the pKa of the retinal Schiff base and on the stabilization of the ion 
pair in bacteriorhodopsin. J Mol Struct: THEOCHEM 501:297–313

Tajkhorshid E, Paizs B, Suhai S (1997) Conformational effects on the 
proton affinity of the Schiff base in bacteriorhodopsin: a density 
functional study. J Phys Chem B 101:8021–8028

Tajkhorshid E, Baudry J, Schulten K, Suhai S (2000) Molecular 
dynamics study of the nature and origin of retinal’s twisted struc-
ture in bacteriorhodopsin. Biophys J 78:683–693

Takemoto M, Kato HE, Koyama M, Ito J, Kamiya M, Hayashi S, Matu-
rana AD, Deisseroth K, Ishitani R, Nureki O (2015) Molecular 
dynamics of channelrhodopsin at the early stages of channel 
opening. PLoS ONE 10:e0131094

Tavanti F, Tozzini V (2014) A multi-scale–multi-stable model for the 
rhodopsin photocycle. Molecules 19:14961–14978

Thomas YG, Szundi I, Lewis JW, Kliger DS (2009) Microsecond time-
resolved circular dichroism of rhodopsin photointermediates. 
Biochemistry 48:12283–12289

Tikhonova IG, Selvam B, Ivetac A, Wereszczynski J, McCammon JA 
(2013) Simulations of biased agonists in the β2 adrenergic receptor 
with accelerated molecular dynamics. Biochemistry 52:5593–5603

Tomasello G, Olaso-González G, Altoè P, Stenta M, Serrano-Andrés 
L, Merchán M, Orlandi G, Bottoni A, Garavelli M (2009) Elec-
trostatic control of the photoisomerization efficiency and optical 
properties in visual pigments: on the role of counterion quench-
ing. J Am Chem Soc 131:5172–5186

Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and 
accuracy of docking with a new scoring function, efficient opti-
mization, and multithreading. J Comput Chem 31:455–461

Ulmschneider JP, Ulmschneider MB (2009) Sampling efficiency in 
explicit and implicit membrane environments studied by peptide 
folding simulations. Proteins 75:586–597

Van Keulen SC, Solano A, Rothlisberger U (2017) How rhodopsin 
tunes the equilibrium between protonated and deprotonated 
forms of the retinal chromophore. J Chem Theory Comput 
13:4524–4534

Vanni S, Neri M, Tavernelli I, Rothlisberger U (2010) A conserved 
protonation-induced switch can trigger “ionic-lock” formation 
in adrenergic receptors. J Mol Biol 397:1339–1349

Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim 
J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD Jr 
(2010) CHARMM general force field: a force field for drug-like 
molecules compatible with the CHARMM all-atom additive bio-
logical force fields. J Comput Chem 31:671–690

Vickery ON, Carvalheda CA, Zaidi SA, Pisliakov AV, Katritch V, 
Zachariae U (2018) Intracellular transfer of Na+ in an active-state 
G-protein-coupled receptor. Structure 26:171–180

Volkov O, Kovalev K, Polovinkin V, Borshchevskiy V, Bamann 
C, Astashkin R, Marin E, Popov A, Balandin T, Willbold 
D,  Büldt G, Bamberg E, Gordelly V (2017) Structural 
insights into ion conduction by channelrhodopsin 2. Science 
358:eaan8862

Vreven T, Morokuma K (2006) Hybrid methods: ONIOM (QM:MM) 
and QM/MM. Ann Rep Comput Chem 2:35–51

Vyěmtal J, Vondrášek J (2010) Metadynamics as a tool for mapping the 
conformational and free-energy space of peptides—the alanine 
dipeptide case study. J Phys Chem B 114:5632–5642

Wacker D, Wang S, McCorvy JD, Betz RM, Venkatakrishnan A, Levit 
A, Lansu K, Schools ZL, Che T, Nichols DE, Shoiket BK, Dror 
RO, Roth BL (2017) Crystal structure of an LSD-bound human 
serotonin receptor. Cell 168:379–389

Wang Q, Schoenlein RW, Peteanu LA, Mathies RA, Shank CV (1994) 
Vibrationally coherent photochemistry in the femtosecond pri-
mary event of vision. Science 266:422–424

Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Devel-
opment and testing of a general Amber force field. J Comput 
Chem 25:1157–1174

Wang L-P, Chen J, Van Voorhis T (2012) Systematic parametrization 
of polarizable force fields from quantum chemistry data. J Chem 
Theory Comput 9:452–460

Wanko M, Hoffmann M, Frähmcke J, Frauenheim T, Elstner M 
(2008a) Effect of polarization on the opsin shift in rhodopsins. 
2. Empirical polarization models for proteins. J Phys Chem B 
112:11468–11478

Wanko M, Hoffmann M, Frauenheim T, Elstner M (2008b) Effect of 
polarization on the opsin shift in rhodopsins. 1. A combined QM/
QM/MM model for bacteriorhodopsin and pharaonis sensory 
rhodopsin II. J Phys Chem B 112:11462–11467

Warshel A, Chu Z (2001) Nature of the surface crossing process 
in bacteriorhodopsin: computer simulations of the quantum 
dynamics of the primary photochemical event. J Phys Chem B 
105:9857–9871

Weis WI, Kobilka BK (2018) The molecular basis of G protein–cou-
pled receptor activation. Annu Rev Biochem 87:897–919



449Quantum Mechanical and Molecular Mechanics Modeling of Membrane‑Embedded Rhodopsins﻿	

1 3

Wu S, Zhang Y (2008) MUSTER: improving protein sequence pro-
file–profile alignments by using multiple sources of structure 
information. Proteins 72:547–556

Wu S, Skolnick J, Zhang Y (2007) Ab initio modeling of small proteins 
by iterative TASSER simulations. BMC Biol 5:17

Xu D, Zhang Y (2011) Improving the physical realism and structural 
accuracy of protein models by a two-step atomic-level energy 
minimization. Biophys J 101:2525–2534

Yamada T, Yamato T, Mitaku S (2016) Forced unfolding mechanism 
of bacteriorhodopsin as revealed by coarse-grained molecular 
dynamics. Biophys J 111:2086–2098

Yang J, Zhang Y (2015) I-TASSER server: new development for protein 
structure and function predictions. Nucl Acids Res 43:W174–W181

Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The 
I-TASSER suite: protein structure and function prediction. Nat 
Methods 12:7–8

Ye L, Neale C, Sljoka A, Lyda B, Pichugin D, Tsuchimura N, Larda 
ST, Pomès R, García AE, Ernst OP, Sunahara RK, Prosser RS 
(2018) Mechanistic insights into allosteric regulation of the A2A 
adenosine G protein-coupled receptor by physiological cations. 
Nat Commun 9:1372

Yuan S, Filipek S, Palczewski K, Vogel H (2014) Activation of G-pro-
tein-coupled receptors correlates with the formation of a continu-
ous internal water pathway. Nat Commun 5:4733

Zhang L, Hermans J (1996) Hydrophilicity of cavities in proteins. Pro-
teins 24:433–438

Zhang Y, Skolnick J (2004) SPICKER: a clustering approach to iden-
tify near-native protein folds. J Comput Chem 25:865–871

Zhou F, Windemuth A, Schulten K (1993) Molecular dynamics study 
of the proton pump cycle of bacteriorhodopsin. Biochemistry 
32:2291–2306

Zhou X, Sundholm D, Wesołowski TA, Kaila VR (2014) Spectral tun-
ing of rhodopsin and visual cone pigments. J Am Chem Soc 
136:2723–2726

Zhu S, Brown MF, Feller SE (2013) Retinal conformation governs pKa 
of protonated Schiff base in rhodopsin activation. J Am Chem 
Soc 135:9391–9398

Zwanzig RW (1954) High-temperature equation of state by a pertur-
bation method. I. Nonpolar gases. J Chem Phys 22:1420–1426

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Quantum Mechanical and Molecular Mechanics Modeling of Membrane-Embedded Rhodopsins
	Abstract
	Introduction
	Main Approaches and Methodologies Used for Computational Modeling of Opsins and Rhodopsins
	Initial Construction of Three-Dimensional Models for Rhodopsin Proteins
	Prediction of Three-Dimensional Rhodopsin Structure
	Prediction of Water Molecule Localizations
	Prediction of the Protonation State for Titratable Residues
	Insertion into a Lipid Membrane Environment

	Computational Strategies that can be Applied for Rhodopsin Modeling
	Hierarchy of Computational Models
	Classical Force Fields: Types and Parameterization
	Parameterization for the Retinal Cofactor
	Molecular Dynamics Simulations
	Retinal Isomerization
	Longer Time-Scale Molecular Dynamics Simulations
	Lipid–Rhodopsin Interactions
	Microbial Rhodopsins
	G-Protein-Coupled Receptors


	Advanced Methods for Rhodopsin Molecular Simulations
	Gibbs Free Energy Calculations
	Free Energy Perturbation
	Thermodynamic Integration
	Biased Molecular Dynamics Approaches
	Umbrella Sampling
	Metadynamics
	Steered Molecular Dynamics

	Coarse-Grained Molecular Dynamics Simulations

	Quantum MechanicsMolecular Mechanics Models
	Treatment of Electronic Structure of Retinal Chromophore
	Photoisomerization of the Retinal Cofactor
	Polarizability and Charge-Transfer Effects
	QMMM Free Energy Optimization of Retinal Chromophore in the Protein Environment
	Hybrid Molecular MechanicsCoarse-Grained Simulations

	Conclusions
	References




