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ABSTRACT
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In 1952, British mathematician Alan Turing (1912–1954) published the reaction-diffusion model, in which two interacting 
species of molecules can generate a complex pattern in the course of plant or animal development if the substances (termed 
morphogens) differ in their diffusion rate. Turing’s theory got concrete biochemical and molecular support during recent 15 
years. Several pairs of interacting and diffusing chemicals have been suggested for various morphogenetic processes in 
multicellular animals. Therefore, the principal points of Turing’s theory have been confirmed, though there is no universal pair of 
interacting morphogens in animal development. These recent data are briefly considered in the present essay and an attempt is 
made to consider current applications of the Turing’s model to the development of vascular plants. In the latter case, however, the 
situation seems today to be less clear than in the case of the metazoan morphogenesis. 
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The reaction-diffusion model of Turing (1952) postulates molecules. Therefore, it is reasonable to say that the principal 
a pair of activator and inhibitor, one of which diffuses through points of Turing’s reaction-diffusion model have been 
a tissue much faster than the other. According to his seminal confirmed for the case of metazoan organisms (Kondo and 
theoretical work, these two interacting chemical substances Miura 2010, Painter et al. 2012, 2018), though there is no 
(morphogens) can generate stable inhomogenous complex universal pair of interacting morphogens in multicellular 
patterns (for example, an isolated ring of cells). In this animal development. Different suits of the diffusing activator 
connection Turing (1952, p. 68) mentioned the tentacle pattern and inhibitor are used in different morphogenetic processes. 
of Hydra (invertebrate freshwater animal) and the whorls of This idea seems to be appropriate within a framework of the 
leaves of certain plants such as woodruff, Galium odoratum original reaction-diffusion model. 

The model was also used in the analysis of morphogenesis (Asperula odorata). 
Afterwards, Turing’s ideas were developed further, first in the primitive green algae, such as Acetabularia or 

of all by the group of German theoreticians (Gierer and Micrasterias (e.g., Harrison et al. 1984, Holloway 2010), but 
Meinhardt 1972, Koch and Meinhardt 1994, Meinhardt 1996, this is not within the scope of present paper. I will now consider 
2012). Their concept of local short-range activation and whether the Turing’s model may be currently applied to the 
long-range inhibition (also termed a lateral inhibition) seems development of the vascular plants. It is appropriate to remind 
to be a general patterning principle. These authors dealt in this connection that Turing’s paper (1952) was a subject of 
predominantly with the developing animal models (such as benevolent and constructive discussion in the botanical 
head and foot formation in Hydra, organogenesis in literature very soon after its publication (Wardlaw 1953, 
Drosophila or formation of vertebrate limbs), but Meinhardt 1955). Besides, the eminent plant morphogenesis researcher 
(1996) emphasized on the occurrence of a common Edmund Sinnott regarded Turing’s research as “a promising 
mechanism in plant and animal ontogeny. hypothesis” (Sinnott 1960, p. 456). 

Finally, Turing’s theory received concrete biochemical First of all, it should be noted that molecular and cellular 
and molecular support during recent 15 years. Several pairs of processes underlying pattern formation in plants are not 
interacting and diffusing chemical substances have been identical with those in animals (Hernández-Hernández et al. 
suggested for various morphogenetic processes in invertebrate 2012). Owing to the presence of cell walls, for instance, there 
and vertebrate animals (see Table 1 for details). It should be are no migrations of individual cells or cell sheets during 
remarked that the activator-inhibitor pair cAMP/ATP was higher plant development (Ivanov 2011, Torii 2012, Nick 
suggested as a result of a theoretical analysis (Schiffmann 2014). Many authors (Smith 2008, Nick 2009, 2014, Korasick 
2005, 2017). By contrast, the other activator-inhibitor pairs et al. 2013, van Berkel et al. 2013, Draelants et al. 2015, 
(WNT/DKK, Nodal/Lefty, SHH or FGF-4/BMP-2 or BMP-4) Laskowski and ten Tusscher 2017 and others) believe that the 
were identified in the course of experimental studies and these phytohormone auxin plays a crucial role in the processes of 
morphogens are represented by the diffusing proteinaceous plant growth, morphogenesis and differentiation. Therefore, 



this hormone may be regarded as a principal plant morphogen, the vascular plants is today not clear (unlike the case of the 
but the situation concerning plants seems to be different from metazoan morphogenesis). 
that with the pairs of interacting morphogens in the developing 
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Table 1 — Various authors about the activator-inhibitor systems in animal ontogeny 

Activator/Inhibitor Organisms, structures, morphogenetic processes References

cAMP/ATP Multicellular animals: first of all, echinoderms and amphibians; Schiffmann 2005 
gastrulation, embryonic induction, organogenesis. 

WNT/DKK Hair follicle patterning in developing murine skin. Maini et al. 2006, 
Sick et al. 2006

Nodal/Lefty Sea urchin (Strongylocentrotus purpuratus) early embryogenesis. Ertl et al. 2011 

Zebrafish (Danio rerio) ealy embryogenesis. Müller et al. 2012 

SHH or FGF-4/BMP-2 or BMP-4 Chick feather bud patterning. Painter et al. 2012 

Abbreviations for the putative morphogens: cAMP – cyclic adenosine monophosphate, ATP – adenosine triphosphate, WNT – wnt signaling protein, 
DKK – dickkopf secreted protein, SHH – sonic hedgehog secreted protein, FGF-4 – proteinaceous fibroblast growth factor, BMP-2 and BMP-4 – 
bone morphogenetic proteins. Nodal and Lefty are proteinaceous growth factors. 
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