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ABSTRACT

In 1952, British mathematician Alan Turing (1912—-1954) published the reaction-diffusion model, in which two interacting
species of molecules can generate a complex pattern in the course of plant or animal development if the substances (termed
morphogens) differ in their diffusion rate. Turing’s theory got concrete biochemical and molecular support during recent 15
years. Several pairs of interacting and diffusing chemicals have been suggested for various morphogenetic processes in
multicellular animals. Therefore, the principal points of Turing’s theory have been confirmed, though there is no universal pair of
interacting morphogens in animal development. These recent data are briefly considered in the present essay and an attempt is
made to consider current applications of the Turing’s model to the development of vascular plants. In the latter case, however, the
situation seems today to be less clear than in the case of the metazoan morphogenesis.
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The reaction-diffusion model of Turing (1952) postulates
a pair of activator and inhibitor, one of which diffuses through
a tissue much faster than the other. According to his seminal
theoretical work, these two interacting chemical substances
(morphogens) can generate stable inhomogenous complex
patterns (for example, an isolated ring of cells). In this
connection Turing (1952, p. 68) mentioned the tentacle pattern
of Hydra (invertebrate freshwater animal) and the whorls of
leaves of certain plants such as woodruff, Galium odoratum
(Asperula odorata).

Afterwards, Turing’s ideas were developed further, first
of all by the group of German theoreticians (Gierer and
Meinhardt 1972, Koch and Meinhardt 1994, Meinhardt 1996,
2012). Their concept of local short-range activation and
long-range inhibition (also termed a lateral inhibition) seems
to be a general patterning principle. These authors dealt
predominantly with the developing animal models (such as
head and foot formation in Hydra, organogenesis in
Drosophila or formation of vertebrate limbs), but Meinhardt
(1996) emphasized on the occurrence of a common
mechanism in plant and animal ontogeny.

Finally, Turing’s theory received concrete biochemical
and molecular support during recent 15 years. Several pairs of
interacting and diffusing chemical substances have been
suggested for various morphogenetic processes in invertebrate
and vertebrate animals (see Table 1 for details). It should be
remarked that the activator-inhibitor pair cAMP/ATP was
suggested as a result of a theoretical analysis (Schiffmann
2005, 2017). By contrast, the other activator-inhibitor pairs
(WNT/DKK, Nodal/Lefty, SHH or FGF-4/BMP-2 or BMP-4)
were identified in the course of experimental studies and these
morphogens are represented by the diffusing proteinaceous

molecules. Therefore, it is reasonable to say that the principal
points of Turing’s reaction-diffusion model have been
confirmed for the case of metazoan organisms (Kondo and
Miura 2010, Painter et al. 2012, 2018), though there is no
universal pair of interacting morphogens in multicellular
animal development. Different suits of the diffusing activator
and inhibitor are used in different morphogenetic processes.
This idea seems to be appropriate within a framework of the
original reaction-diffusion model.

The model was also used in the analysis of morphogenesis
in the primitive green algae, such as Acetabularia or
Micrasterias (e.g., Harrison et al. 1984, Holloway 2010), but
this is not within the scope of present paper. I will now consider
whether the Turing’s model may be currently applied to the
development of the vascular plants. It is appropriate to remind
in this connection that Turing’s paper (1952) was a subject of
benevolent and constructive discussion in the botanical
literature very soon after its publication (Wardlaw 1953,
1955). Besides, the eminent plant morphogenesis researcher
Edmund Sinnott regarded Turing’s research as “a promising
hypothesis” (Sinnott 1960, p. 456).

First of all, it should be noted that molecular and cellular
processes underlying pattern formation in plants are not
identical with those in animals (Hernandez-Hernandez et al.
2012). Owing to the presence of cell walls, for instance, there
are no migrations of individual cells or cell sheets during
higher plant development (Ivanov 2011, Torii 2012, Nick
2014). Many authors (Smith 2008, Nick 2009, 2014, Korasick
et al. 2013, van Berkel et al. 2013, Draelants et al. 2015,
Laskowski and ten Tusscher 2017 and others) believe that the
phytohormone auxin plays a crucial role in the processes of
plant growth, morphogenesis and differentiation. Therefore,
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Table 1 —Various authors about the activator-inhibitor systems in animal ontogeny

Activator/Inhibitor Organisms, structures, morphogenetic processes References

cAMP/ATP Multicellular animals: first of all, echinoderms and amphibians; Schiffmann 2005
gastrulation, embryonic induction, organogenesis.

WNT/DKK Hair follicle patterning in developing murine skin. Maini etal. 2006,

Sick etal. 2006

Nodal/Lefty Sea urchin (Strongylocentrotus purpuratus) early embryogenesis. Ertl etal. 2011
Zebrafish (Danio rerio) ealy embryogenesis. Mdiller etal. 2012

SHH or FGF-4/BMP-2 or BMP-4 Chick feather bud patterning. Painter etal. 2012

Abbreviations for the putative morphogens: cAMP —cyclic adenosine monophosphate, ATP —adenosine triphosphate, WNT —wnt signaling protein,
DKK — dickkopf secreted protein, SHH — sonic hedgehog secreted protein, FGF-4 — proteinaceous fibroblast growth factor, BMP-2 and BMP-4 —
bone morphogenetic proteins. Nodal and Lefty are proteinaceous growth factors.

this hormone may be regarded as a principal plant morphogen,
but the situation concerning plants seems to be different from
that with the pairs of interacting morphogens in the developing
multicellular animals. Nonetheless, there is an interesting
suggestion (Nick 2009, 2014) that instead of actual inhibitory
molecules (as in the Turing—Gierer—Meinhardt model) the
developing plant organisms achieve the lateral inhibition by
mutual competition for an activator (auxin). It is appropriate to
remark, however, that “auxin is different from the morphogens
considered by Turing. Instead of moving primarily via
diffusion, it is actively pumped from cell to cell by the action
of import and export proteins” (Smith 2008, p. 2631). These
PIN-formed (PIN) proteins are polarly localized membrane
proteins that fulfill the transport of auxin in higher plants (van
Berkel et al. 2013). Several groups of researchers, mainly
working with the auxin (e.g., Prusinkiewicz and Rolland-
Lagan 2006, van Berkel ef al. 2013, Draelants ef al. 2015,
Laskowski and ten Tusscher 2017), are skeptical about the
occurrence of the Turing-type patterning during higher plant
development.

On the other hand, recent study of patterning in
Arabidopsis thaliana leaf has revealed a few interacting
activator-inhibitor pairs (Torii 2012). In the process of
stomatal development, for instance, the transcription factor
SPCH (SPEECHLESS) represents an activator, while the
secreted peptide EPF (epidermal patterning factor) represents
an inhibitor. So the SPCH/EPF relation in the Arabidopsis leat
strongly resembles certain aspects of the original reaction-
diffusion model.

In concluding, it is reasonable to say that recent results
and ideas of different authors on the developmental control in
higher plants cannot be reconciled completely and arranged
within the framework of the reaction-diffusion Turing— Gierer
—Meinhardt model (because of the specific features of plant
morphogenetic processes and their multi-faceted nature).
Further perspective for the broad application of this model to

the vascular plants is today not clear (unlike the case of the
metazoan morphogenesis).
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