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Abstract

We consider nonparametric estimation algorithms for current status right-
censored data model. In the model right-censored event times are not observed
exactly, but at some inspection times. The model covers right-censored data,
current status data and life table survival data with a single inspection time.
We consider the nonparametric estimation algorithms to obtain three nonpara-
metric estimators for the survival function of failure time: maximum likelihood,
pseudo maximum likelihood and the naive estimator. We discuss large sample
properties of the estimators. Using the standard R packages we perform simu-
lations, which compare the estimators under small and moderate sample sizes.

Keywords: survival data, right censoring, interval censoring, current status
data, nonparametric estimation.

Introduction

Right-censored survival data model is widely applicable in practice in spite of in
many cases the event times (failure or censoring) are not observed exactly, and the
investigator observes time interval containing a failure time for each of not missed
at follow up individuals having symptoms of disease at the endpoint. In the current
status right-censored data model the event is observed in a random inspection time
if it occurs before the inspection time or not observed otherwise.

Let 7" and U be the independent failure and censoring times respectively. Right-
censored observation consists of the event time X = T A U and the indicator § =
Iir<py. The current status right-censored observation is given as (W, x, kd), where
k = Tix<wy and W is a random inspection time, which is independent of (7, U).
The observed data is a sample from the distribution (W, k, kd) and the main target
of statistical analysis is the distribution function F' of failure time 7.

The right-censored survival data model is well developed. The Kaplan—Meier
[19] estimator is widely applicable to estimate the survival function of failure time
from right-censored data. Consistency and asymptotic normality of the Kaplan—
Meier estimator are obtained first in |5]. The point process technique allows to get
functional convergence results for the Kaplan-Meier estimator ([1, 9, 10]; see also
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[7, 2]). Note that, the Kaplan-Meier estimator requires the exact event time to
be observed, which may fail in practice. In the interval censored data model [27]
the event times are not observed exactly. The nonparametric maximum likelihood
estimator (NPMLE) for the current status data model can be obtained as a solution
of the isotonic regression model [3] using Convex Minorant Algorithm or by using
the EM-algorithm [26, 27|. Asymptotic behavior of the NPMLE at any fixed point
studied in |11, 16]. Groeneboom & Wellner [16] discussed wide range of asymptotic
results on the NPMLE.

The current status right-censored data model discussed in this paper is highly
related to the particular case of the current status data with competing risks. The
NPMLE and the nonparametric pseudo maximum likelihood estimator (NPPMLE) of
parameters from the current status data with competing risks, and the EM-algorithms
to get the estimators are given in [17]. Another naive (ad-hoc) estimator is considered
in [18], along with the NPMLE. Consistency and rate of convergence results for
the NPMLE are obtained in [14], and weak convergence results are given in [15].
Consistency of the estimators in the current status right-censored data model and
the rate of convergence results are obtained in [22].

The current status data and the life table data with a single observation time are
particular cases of the model we discuss in this paper. The life table survival data
model was widely used at the beginning of survival analysis [4, 6, 8]. The standard
life table (actuarial) estimator is generally used to estimate the parameter F'(wy).
Breslow & Crowley [5] show that there is no consistent nonparametric estimator of
completely unknown distribution function F' at the observation time wg in the life
table survival data model. Nevertheless, in many real cases the asymptotic bias of the
standard life table estimator is relatively small [20]. The extended life table estimator
that is inconsistent too was investigated in [24].

This work focuses on estimation in current status right-censored data model and
investigates properties of nonparametric estimators under small and moderate sample
sizes. We consider the NPMLE, the NPPMLE and the naive estimator, which are
obtaining from the corresponding estimators of the baseline current status data model
with two competing risks. The maximum likelihood approach and some asymptotic
properties of the estimators are discussed in Section 1. The estimation algorithms
are displayed in Section 2. Some properties of the estimators obtained by simulations
are reported in Section 3, and supplementary tables are postponed to Section 4.

1 The maximum likelihood approach

In this section we display the likelihood function for the interval right-censored data
and discuss the nonparametric estimators.

Assume that the failure time 7', the censoring time U and the observation time
W are independent with the distribution functions F, G and J respectively;
yr=sup{z: F(x) <1} and v =sup{z:G(x) <1}. Let (1}, U;,W;) be a sample from
the distribution (7°,U, W), and (W;, k;, k;9;) be the observed current status right-
censored data, where X; = T; AU;, 6; = Iyr<p,y and K = Lyx,<wyy, @ = 1,...,n.
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We slightly abuse the notations denoting F,G,J and H for both the distribution
functions and the corresponding measures.

The mazimum likelthood estimate. Let Q be the set of nondecreasing nonnegative
cadlag functions @ : R— [0, 1], such that lim, , ., Q(z) = 0;

Q=A{(Q,Q"):Q,Q" € Qand Q(z)+Q"(z)<1,z€R}

be the set of parameters of the model. The log-likelihood function for the interval
right-censored data is defined for (@, Q*) € Q as follows:

LL(@Q,Q7) = Y ridilog QW)
+ ri(1=0) log Q" (W) +(L—r:) log (1= Q(W:) ~ Q" (W),

where Q(z) = [ (1-G_)dF = [{(1—H_)dA, Q* = H-Qand H = 1—(1-F)(1-G)
is the dlstrlbutlon functlon of the event time X, A is the cumulative hazard function
corresponding to F restricted to Dy = {x : H(z) < 1}. A parameter (Qn, Q ), which
maximizes (1) over (Q, Q") € Q is the NPMLE.

The pseudo mazximum likelihood estimate. Let

Qr={(Q,Q)eQ:Q+Q" =H}.

The likelihood function (1) can be rewritten as the sum of two terms
LL(W,k,kd; F,G) = LL™(W,k; H) + LL"(W, k, k0; R) with

(1)

LL™(W, k; H) = Z;(’% log(H(W3)) + (1 — ;) log(1 — H(W;)))

and n
LL' (W, k, k6; R) = 24_1(“2‘5@' log R(W;) + k(1 — 6;) log(1 — R(W3))),

where R(w) = Q(w)/H(w) = P(6 = 1|1X < w) = [ (1 — H_)dA/H(w). The
functions ) and Q* can be written as follows:

Q) = / pdH and QF(x) = / (1= p)at, @)

where p = d‘f{}{ is the Radon—Nikodym derivative of the measure A with respect to

AT, Moreover, any measurable function p : R — [0,1] defines the distributions of T
and U (possibly improper) under any fixed distribution function H [22]. Let H, be
the sub distribution function, Wthh maximizes LL™ and Rn = Qn / H max1mlzes
LL" under H = H,, and Q(z = [y pdH,. Then (Q,Q*) such that Q* = H — Q is
the NPPMLE for the parameter (Q, Q).

The naive (ad hoc) approach is based on the separate estimation of the parameters
@ and Q* from the observations with 7" < U and T" > U respectively. The naive

estimator Q for the parameter @) is obtaining by maximizing

U(W,r8,Q) = Y (kidilog Q(W;) + (1= k6 log(1 — Q(IT:))
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on @ him*ving atoms at the observation points W; with x;0; = 1, and the naive esti-
mator @n for the parameter Q* is obtaining by maximizing W(W, k(1 —¢), Q*) on Q*
having atoms at the observation points W; with x;(1—4;), ¢ = 1,...,n. The naive esti-
mator can be obtained by the regular convex minorant algorithm from right-censored
data analys1s The true disadvantage of the naive estimator is that the constraint
Q —|—Q < 1 may fail in the general case.

Recovering the distributions of failure and censoring times. In order to recover

the distribution of 7' from @ and Q* we use that A(z) = [[(1 — Q- — Q*)7dQ.

Hence,
50T 0~ a5 ") ®

where S = 1 — F. The distribution of Censoring time U is determined by

the cumulative hazard function A%(x fo = ; f*H )dQ* and, therefore,
G(t)=1- ﬂ-xgt(l — dA%(z)). Alternatlvely, fo (1 - F)7dQ*, t € Dy.

Large sample properties of the estimators. The large sample properties of the

nonparametric estimator S,, (S, = §n, §m§n) for the distribution of failure time are
determined by the large sample properties of the corresponding estimator (Q,, Q%)
for the parameter (@, Q*) that is the particular case of the estimator for the current
status data with two competing risks model. The uniform consistency and the rate of
convergence results for all the estimators S,, were obtained in [22]. In the absolutely
continuous case it was proved that under the condition H << J, for any 7 < vr A g

SUPg<r |Fn(l') - F(CC)| — 0,

as n — oo almost sure. The uniform consistency result under the assumption H << J
remains correct in general case. The condition H << J is important, otherwise there is
no consistent estimator for the parameter S (see [23, 24]). The rate of convergence in
the absolutely continuous case is obtained, under H << J and the bounded property
M~ < 48 < M for some M > 1, in the LI(J) norm restricted to the interval [0, 7],

IE, — Fllisqos = Op(n~?log"3 n). (4)

Remark 1. (i). The rate of convergence in (4) is obtained from the refined rate of
uniform convergence results for the corresponding estimators H, of the event time
distribution function H.

(ii). We may expect the rate of convergence Op(n=/3) in (4) taking into account the
rate of convergence Op(n~'/3) of the estimators Q,, and Q7 to the parameters Q and
Q* in Li(J) (and even in Lo(J) norm), but the L, rate of convergence of the esti-
mators Q) and Q) is not implies the same rate of convergence for the corresponding
estimator S,.

(iii). Local weak convergence theorems for the estimators (Qn, Q%) and (Q,,Q,) are
given in [15], but there is no way to use these results in order to obtain weak conver-
gence theorem for the corresponding estimators S,,.
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2 Estimation algorithms

In this section we discuss algorithms for the NPMLE and the NPPMLE introduced
in Section 1. Let W(y,..., W, be the set of observation times in ascending order
without replications. The likelihood function (1) can be rewritten in terms of param-
eters (0,0) with @ = (01,...,0,): 0;=Q(W)) and 6" = (67, ...,07): 0: =Q* (W),
t=1,...,r, as follows:

(0, 6%) = le KO log 0; + Ky log 0 + Ky log(1 — 6; — 67),

where ;) (K0(;), k6(;)) is the total number of observations W; = W(; such that x; = 0
(kj=1 and 6; =1, kj = 1 and §; = 0, respectively). The optimization problem is to
maximize @Z)(G, 0%) on (0,0%) € S, where

S=1{(0,0"):0<6,<...<0,,0<0;<...<050,+06" <1},

Let _
) S={(0,0") €S: 0, =0,y if ki + ks =0 and

9;:9:_1 if K,S(i)—kfi(i) =0, iZl,...,T}

with the notations 6, = 65 = 0. The NPMLE (8,0 ), which maximizes ¢ over
(0,0%) € S, is maximizes ¢ over (0,0%) € S. Moreover, (/0\,5*) is uniquely defined,
and 6, + 07 = 1iff 7,y = 0 [14].

The maximum likelihood estimation requires first to get the NPMLE (@, @*) of
the parameter (Q,Q*) and then recovering the survival function §n of failure time
by formula (3). The first step reduced to the maximum likelihood estimation in the
current status data with two competing risks model. The EM-algorithm due to [17]
to get the NPMLE for the parameter (Q, Q*) is working too slow, and one can use the
iterated convex minorant (ICM) algorithm (see [12]) based on the characterization of
the NPMLE from current status data with competing risk in [14]|. Alternatively, the
NPMLE for the parameter (@, Q*) can be obtained by using the support reduction
algorithm [13], which is realized in the R-package MLFEcens [21].

The pseudo likelihood estimation consists of three steps. At the first step we
get the NPMLE H,, of the parameter H from the interval censored data (X;, W;),
i =1,...,n. The convex minorant algorithm is a common way to get the maximum
hkehhood estimator H, [16]. At the second step we get the estimator (Q,,Q%),

which maximizes LL" under Qn Qn We study an algorithm to obtain

én = @n/fln under known H = [T[n from the observed data. Let W(*fg, e W(’;’:L) be

the set of admissible step points of the estimator én in ascending order, including the
observation times W; with r;=1; hy=H(W{})>0and h; = HW3}) —H(W;i ;) >0
foralli=2,...,m; 56‘3 = ZJ:W]':W{;’; d; be the number of observed failures at W(“;’)k,

i=1,...,m. It follows from (2) that R(W;3}) = >°7_, hiGi/ >=;_; hi- Then the pseudo-
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likelihood function L" can be rewritten in the following way:

(@) =esptr (7,6 = TT(Snes o) ™ (ma-cryom) ™

s=1 =1

[1(5he) ™ (St -a0) ™

s=1 i=1

I

where ¢ = (C1,...,Gn): G = p(W(;)) € [0, 1], v; is the total number of observed events
at W(*;’)*, 1=1,...,m. The estlmamon problem reduces to maximizing the expression

0(¢) = > (0t 1os(D27 hic) + o= ) log (D7 m(1-G))) ()

over the set of ¢ € [0,1]™. Finally, at the third step one use the reconstruction
formula (3) to obtain the NPPMLE S, for S.

3 Simulations

In this section we consider specific designs (DS) to evaluate finite-sample perfor-
mance of the NPMLE, NPPMLE and the naive estimator from simulated data. We
perform simulations of the current status right-censored data with different rates of
observations with known status (failure or censoring) p, = P(X < W), which are
applicable for estimation of the parameter (), and different rates of observed failures
ps = P(6 = 1|k = 1), under the three sample sizes of 200, 500 and 1000. We denote
['(a,b) is the gamma distribution and W(a,b) is the Weibull distribution with the
shape parameter a > 0 and scale parameter b > 0; E(1/b) = I'(1, b) is the exponential
distribution; LN(m,b) and FN(m,b) is the lognormal and the folded-normal distri-
bution with parameters m € R and b > 0 respectively. The following table 1 collects
main features of the experimental designs used for the simulations.

Table 1. Main features of the experimental designs

os| T | U | W lplmlps T | U W |nln
I'(1/2,1)|1'(2,1)|LN(0,1){0.83/0.91|| D r'(2,1) E(1) |FN(0,1)/0.54|0.19

B [I'(1/2,1)| E(1) |FN(0,1){0.80(0.73|| E |1I'(2, 1)+2I(10, })(E(1/2)| E(1) |0.50/0.49

C|TE3,1) | B | E(L) [0.52(0.07| F [2W(E104+3W(5,1)| E(1) | E(3/2) [0.48]0.47

N[ ol

The same experimental designs were used in [22| to perform large sample properties
of the NPMLE, NPPMLE and its bootstrapped version by simulations.

In order to perform simulations we use R statistical software [25]. The function
computeMLE() of MLEcens package is used to create the MLE (Qn, Q) for the
parameter (@), Q). We use the the convex minorant algorithm realization gemlem()
of package pdrtool to get the estimator H for the distribution of the event time
H, and the function Ibfgsb3() of the same name package to solve the optimization
problem in (5) under H = H and obtain the estimator @n Finally, we obtain the
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estimators §n, S, and S, for the survival function S of failure time from (@n, @:),
(Qn, Q2) by the reconstruction formula (3).

For the NPMLE, NPPMLE and naive estimators we display the estimation bias
(Section 4, Table I) and the mean absolute estimation error (Section 4, Table II) at
the quartiles (Q25,MED,Q75) and 95%-quantile Q95 of the failure time distribution,
as well as the supremum sup,¢(y o) [Sn(z) — S(z)| (Section 4, Table IIT) and the L,
norm adjusted to the interval length ||.S, — S||1,0,0//((0,Q]) (Section 4, Table IV)
restricted to the interval [0, Q] for Q@ =Q25,MED,Q75,Q95. The results are obtained
separately by using 10* replications.

First, we note that the finite sample performance of the estimators is highly
related to the experimental design features. The designs A and B display very good
approximation quality for MED—Q95 quantiles, but there is an obvious problems
in the estimation of the survival distribution of failure time at first quartile ()25,
especially under the experimental design A because of %(w) — o0 as w — 0.
On the other hand, the number of observations is insufficient to get good enough
nonparametric estimates under the designs C and D having a very small rate of
observed failures. All the estimators display good enough finite sample performance
under the designs E and F with the bimodal distributions of failure time. The L, (/)
divergence display quite small estimation error for all the designs except the design
A, and the uniform norm divergence is too high under these sample sizes. Moreover,
both the L;(J) and the uniform estimation errors are not highly dependent of the
population sizes from 200 to 1000.

Roughly, the nonparametric estimators show very similar finite sample perfor-
mance for each of the designs. More careful look at the results allows us to give some
preference to the NPMLE, which displays a little bit smaller divergence in almost all
the cases. In most of cases the NPPMLE performs a little bit better results then the
naive estimator, but it displays a huge bias (overestimation of the survival function)
at Q75 and Q95 quantile points that should be explained by accumulation of the
bias and the estimation error appears under estimation of the event time distribution
H and the competing risks components (@), Q*) under fixed H = H in the adverse
experimental conditions.
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4 Supplementary tables

Table I. The estimation bias

NPMLE NPPMLE Naive

DS| N [Q25 [MED| Q75 | Q9 | Q25 | MED | Q75 | Q9 | Q25 |[MED| Q75 | Q95

A [200[0.2314[0.0309 | 6.9E-4|-0.009 |0.2314 | 0.0282[0.0013[-0.0138[0.2337(0.0885| 0.0947 | 0.137
500 |0.2088 |0.0141 | 9.4E-5 |-0.0128|0.2086 | 0.012 |0.0012| -0.007 |0.2141(0.0768| 0.1002 |0.1505
1000|0.1804 [0.0085 | 1.5E-4|-0.0101|0.1803 | 0.0066 |7.9E-4|-1.1E-4|0.1899/0.0735| 0.1029 |0.1565
B [ 200 [0.0716|0.0177 |-0.0045[-0.0029]0.0602 [ 0.0171 |0.0150[ 0.0132 [0.1048]0.1112[ 0.1711|0.1664
500 |0.0314 | 0.0087 |-0.0012/-0.0139| 0.0242 | 0.0099 |0.0112| 0.0022 | 0.073 | 0.105 | 0.1721 |0.2128
10000.0192 [0.0052 |-0.0010|-0.0184| 0.0151 | 0.0074 |0.0085|-0.0025(0.0624|0.1019] 0.171 |0.2353
C 200 [-0.0439-0.0914[0.0561 | 0.2349 | 0.0112 [ 0.1732 |0.4094] 0.6086 |0.0475]0.0558 0.0447 |0.1064
500 |-0.0277]-0.1052{ 0.0146 | 0.1959 | 0.0018 | 0.0932|0.3181| 0.5163 |0.0735(0.1515| 0.1711 |0.0989
1000/-0.0173]-0.0926/-0.0097| 0.173 |0.0052 |0.0429 |0.2500( 0.4471 [0.0781|0.1853| 0.2528 |0.1257
D [ 200 |-0.0081]-0.0932[-0.0318] 0.1589 [ 0.0106 | 0.0238 [0.1893[ 0.3865 |0.0554| 0.073 |-0.0657]0.0987
500 |-0.0051]-0.0605|-0.0669 0.1193 | 0.0084 | 0.0027 |0.1278| 0.3222 |0.0616(0.1278| 0.0042 |0.0882
1000/-0.0045|-0.0337]-0.0858| 0.0945 |0.0062 | 0.0015 [0.0852| 0.2776 |0.0627|0.1492| 0.0865 |0.0802
E [ 200 |0.0146 [-0.0392[-0.0700|-0.0097| 0.0176 |-0.0045]0.0594] 0.1742 [0.0608|0.1036] 0.2079 [0.2467
500 | 0.0084 |-0.0183|-0.0510| -0.022 | 0.0106 |-0.0010|0.0383| 0.1169 | 0.059 [0.1200| 0.2311 |0.3046
1000|0.0057 |-0.0102|-0.0290|-0.0248| 0.0086 |-3.1E-4|0.0237| 0.0796 |0.0584/0.1265| 0.2359 [0.3278
F | 200 [-0.0075-0.0382]-0.0378| 0.053 |-0.0067|0.0057 [0.08510.1612 |0.0449]0.1289 0.2572 [0.0964
500 |-0.0047| -0.021 |-0.0269| 0.043 |-0.0039| 7.5E-4{0.0491|0.0852 |0.0486| 0.135 | 0.2653 |0.0951
1000/-0.0032|-0.0121|-0.0166| 0.0347 |-0.0020| 0.0018 |0.0306| 0.0526 |0.0508|0.1377| 0.265 |0.0946

Table II. The absolute error

NPMLE NPPMLE Naive

DS| N [ Q25 [MED| Q75 | Q95 | Q25 |MED| Q75 | Q9 | Q25 |[MED | Q75 | Q9%
A [ 200 |0.2413]0.0946]0.0560[0.0355|0.2412[0.09450.0583[0.0537]0.2404[0.1161 | 0.1096 | 0.1446
500 |0.2257|0.0637(0.0402|0.0288|0.2256|0.0643| 0.0425 |0.0424 |0.2244(0.0934[0.1059|0.1519
1000{0.2024 |0.0485| 0.032 [0.0236]0.2019{0.0492| 0.034 |0.03280.2016 | 0.083 [0.1055|0.1569
B | 200 [0.1251[0.0774]0.0649(0.0487(0.1215|0.0796| 0.074 [0.0804]0.1278[0.1214]0.17490.1887
500 |0.0770/0.0561|0.0451|0.0372|0.0761|0.0591|0.0521 |0.0645 |0.0882(0.1099| 0.173 |0.2198
1000{0.0571 |0.0442|0.0350[0.0327[0.0573|0.0475|0.0416|0.0540|0.0726 |0.1041 |0.1713|0.2375
C | 200 [0.1534]0.2540(0.2696]0.2803]0.1341|0.2809 | 0.4635 | 0.6194]0.1424]0.2826|0.30630.1780
500 |0.1009|0.2052|0.2188(0.2390|0.1023|0.2165|0.3763 |0.5278 | 0.1065 |0.2352|0.3216|0.1689
1000{0.0741 |0.1687|0.1889[0.2143|0.0804|0.1747(0.3103 | 0.4584 | 0.0969 |0.2214|0.3367|0.1899
D | 200 |0.0784]0.1706]0.1811[0.2009[0.0801| 0.179 [0.3076]0.4101]0.0894 [0.1893[0.2463[0.1647
500 |0.0561|0.1205|0.1520(0.1619|0.0601|0.1317|0.2474 |0.3459|0.0770|0.1694|0.2437|0.1544
1000/ 0.0442 |0.0855 | 0.1406|0.1384|0.0485(0.1045|0.2086 |0.3014|0.0719[0.1671|0.2432(0.1467
E | 200 |0.0574]0.1186]0.16060.0643[0.0590(0.1116]0.1979[0.2216{0.0730|0.1327|0.2306 |0.2634
500 |0.0404|0.0830(0.1172]0.0522|0.0425(0.0830|0.1334 |0.1636 |0.0639 0.1297| 0.236 |0.3083
1000/0.0321|0.0653|0.0867[0.0464| 0.034 0.0678|0.0979|0.1229|0.0609|0.1302|0.2376|0.3287
F | 200 [0.0558[0.1321[0.1258(0.0919]0.05590.1256 | 0.1851 | 0.2089|0.0638 [0.1509|0.2662|0.1498
500 |0.0395|0.0935[0.08980.0719|0.0412|0.0940|0.1186 |0.1336 |0.0567 |0.1434|0.2672|0.1481
1000{0.03120.0715|0.0693|0.0608 0.0328|0.0763|0.0871|0.0997|0.0547 |0.1417|0.2654|0.1472
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Table III. The supremum norm divergence

NPMLE NPPMLE Naive

DS| N [ Q25 [MED| Q75 | Q95 | Q25 |MED| Q75 | Q9 | Q25 [MED | Q75 | Q9%
A [ 200 [0.2490(0.3506]0.3512[0.3512[0.2490|0.3505| 0.351 |0.3511]0.2487|0.35150.3537|0.3564
500 |0.2466 |0.3059|0.3060|0.3060|0.2466|0.3058| 0.3059 |0.3059 |0.2462 |0.3069|0.3084|0.3131
10000.2423 |0.2767|0.2767[0.2767|0.2424|0.2767(0.2767 | 0.2767|0.2420 |0.2779[0.2795 | 0.2869
B | 200 |0.2036]0.2327(0.2381(0.2393(0.2025 |0.2305|0.2373[0.24380.1998|0.2429]0.2752 [0.3167
500 |0.1661|0.1805|0.1836]0.1841|0.1645(0.1801|0.1846 |0.1888 |0.1650 [0.1988 0.2380|0.2940
1000{0.13790.1480|0.1499[0.1502| 0.137 |0.1486(0.1520|0.1549|0.1401 [0.1734[0.2182|0.2849
C | 200 [0.2126]0.3879(0.4621|0.5364]0.1836|0.3432[0.5240|0.6872| 0.183 |0.3607|0.4755|0.5256
500 |0.1524| 0.323 0.3913] 0.457 |0.1475|0.2897|0.4451 |0.5963|0.1394|0.2901 | 0.42870.4942
10000.1205 |0.2683|0.3449|0.4044|0.1230{0.2504| 0.3845 | 0.5249 | 0.1252[0.2655 | 0.4136|0.4951
D | 200 |0.1323]0.2673]0.3465|0.3960|0.1297|0.2530|0.3916|0.5178|0.13060.2573 |0.3777 | 0.4199
500 |0.1014]0.1957[0.29780.3351|0.1038|0.1995| 0.3258 |0.4421 |0.1101 [0.2207|0.3453 | 0.3898
1000{0.08370.1513/0.2663|0.2972|0.0877|0.1662(0.2832|0.3909 | 0.0998 |0.2084[0.3335|0.3794
E | 200 [0.1189[0.1953]0.2862(0.3005|0.1171|0.1856|0.2860|0.3637|0.1227|0.19080.3013[0.3913
500 |0.0909|0.1447(0.2193]0.2340|0.0919|0.1447|0.2189 |0.2800 | 0.1021 [0.1732|0.2893|0.3871
1000{0.0748|0.1184/0.1751[0.1905|0.0768|0.1217(0.1803 | 0.2255 |0.0913 0.1663|0.2819| 0.383
F | 200 [0.1146]0.2122(0.2812[0.2905|0.11320.2002]0.2895 |0.3578]0.1161|0.2022 | 0.3288]0.4004
500 |0.0878(0.1623(0.2149]0.2208|0.0880|0.1616|0.2223 |0.2632|0.0964|0.1859|0.3120{0.3855
1000| 0.072 |0.1324/0.1730[0.1776|0.0726|0.1365(0.1852|0.2120 | 0.0859 |0.1787[0.3019|0.3768

Table IV. The L; norm divergence

NPMLE NPPMLE Naive
DS| N [Q25 [MED]| Q75 | Q95 | Q25 [MED | Q75 | Q9 | Q25 |MED | Q75 | Q9%
A | 200 [0.2159]0.1525]0.0854[0.0653]0.2159[0.1541|0.0876|0.0709]0.2154]0.1643|0.1188|0.1224
500 |0.2096]0.1001 |0.0590|0.0459|0.2095 [0.1015|0.0610{0.0493|0.2085 |0.1195(0.1018|0.1152
1000{0.1980[0.0735|0.0452(0.0353(0.1979|0.0747(0.0469|0.0379|0.1971|0.0972|0.0944[0.1130
B | 200 [0.1207]0.0979[0.0803[0.0717|0.1194]0.09790.0831[0.0849[0.1184[0.1174]0.13660.1675
500 |0.0876]0.0688 |0.0568|0.0510|0.0864 |0.0699|0.0604|0.0607 |0.0894 |0.0951|0.1246 |0.1653
1000|0.0663[0.0528|0.0441(0.0395|0.0656 |0.0544|0.0478 0.0476 |0.0718|0.0845| 0.119 |0.1642
C [ 200 [0.0337[0.0541[0.0645]0.0683]0.0307|0.0496]0.0651|0.0734| 0.031 |0.0512]0.0642[0.0677
500 |0.0231]0.0381|0.0469|0.0501|0.0226|0.0375|0.0498|0.0568 |0.0231 |0.0392|0.0515 |0.0556
1000{0.0177(0.0290|0.0367(0.03960.0181 |0.0302(0.0401 |0.0461 |0.0199|0.03480.0470 0.0518
D | 200 [0.0391]0.0596]0.0704[0.0712]0.0377|0.0592[0.0741 |0.0759|0.0400 | 0.0643 [0.0787|0.0797
500 |0.0281]0.04140.0508|0.0515|0.0283|0.0438|0.0552|0.0567|0.0318|0.0541|0.0673 | 0.0684
1000{0.0220(0.0318/0.0396(0.0403|0.0227|0.0349(0.0442|0.0455 |0.0277|0.0500|0.0633 |0.0644
E | 200 [0.0437]0.0572[0.0667|0.0703]0.04260.0566 | 0.0665|0.0771|0.0468 |0.0659]0.07780.0905
500 |0.0313]0.0405 |0.0470|0.0504|0.0314 |0.0413|0.0480|0.0556 |0.0375 | 0.058 |0.0707[0.0854
1000/0.0246[0.0317|0.0365(0.0394|0.0250 |0.0329{0.0381|0.0434 | 0.0326 0.0547|0.0678 |0.0833
F | 200 [0.0499]0.0610/0.0697|0.0741]0.0491 [0.0597|0.0699|0.0946 [0.0562[0.0677|0.0826 |0.1133
500 |0.0348]0.0432|0.0493|0.0524|0.0350|0.0439| 0.0506|0.0652 | 0.046 |0.0585|0.0739(0.1096
1000/0.0270[0.0338|0.0383(0.0408 | 0.0275 |0.0349(0.0401 | 0.0500 |0.04140.0549|0.0704|0.1089
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