
ISSN 1063-4541, Vestnik St. Petersburg University, Mathematics, 2019, Vol. 52, No. 3, pp. 244–258. © Pleiades Publishing, Ltd., 2019.
Russian Text © The Author(s), 2019, published in Vestnik Sankt-Peterburgskogo Universiteta: Matematika, Mekhanika, Astronomiya, 2019, Vol. 64, No. 3, pp. 376–393.

MATHEMATICS
Invariant Surfaces of Periodic Systems
with Conservative Cubic First Approximation

V. V. Basova,* and A. S. Zhukova,**
a St. Petersburg State University, St. Petersburg, 199034 Russia

* e-mail: vlvlbasov@rambler.ru
** e-mail: artzhukov1111@gmail.com

Received February 19, 2019; revised March 19, 2019; accepted March 21, 2019

Abstract—Two classes of time-periodic systems of ordinary differential equations with a small param-
eter ε ≥ 0, those with “fast” and “slow” time, are studied. The corresponding conservative unperturbed
systems  = ,  = γi(  – )εν (i = , ν = 0, 1) have 1 to 3n singular points. The following
results are obtained in explicit form: (1) conditions on perturbations independent of the parameter
under which the initial systems have a certain number of invariant surfaces of dimension n + 1 homeo-
morphic to the torus for all sufficiently small parameter values; (2) formulas for these surfaces and their
asymptotic expansions; (3) a description of families of systems with six invariant surfaces.
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1. INTRODUCTION
1.1. Objects of Study

Consider the following periodic ODE system of dimension 2n (n ≥ 2) with a small parameter:

(1.1)

where ν = 0, 1; γi ∈ (0, +∞); ηi = –1, 0, 1; ε ∈ [0, ε0) is a small parameter; x = (x1, …, xn), and the vectors

y, X, Y, γ, and η are written in a similar form; and X and Y are continuous  functions T-periodic in t
for t ∈ , |xi| < x0, and |yi| < y0.

In essence, formula (1.1) determines two different systems, with ν = 0 and with ν = 1; comparing these
systems, we can say that the system with ν = 1 has “fast” time, because, reducing it to the system with
ν = 0, we obtain the period Tε.

Remark 1. The linear change  = ,  =  (i = ) reduces the following system of more general
form to system (1.1):

Indeed, (a) if  = 0, then λi =  and μi = , and in (1.1), γi = 1 and ηi = 0; (b) if  ≠ 0,

then λi = , μi = , γi = , and ηi = .
It is natural to refer to the 2-dimensional autonomous system

(1.2)

as the system of the first approximation, or the unperturbed system with respect to (1.1); system (1.2)
decomposes into n independent conservative two-dimensional systems with variables (xi, yi), each of
which has the only singular point (0,0) (for ηi =0, –1) or the three singular points (–1, 0), (0, 0), and (1, 0)
(for ηi = 1).
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The phase planes of such two-dimensional systems are filled, in addition to the singular points, with
the closed orbits and separatrices determined by the integrals

(1.3)

Thus, the autonomous system (1.2) has 3ι (ι ∈ ) singular points, depending on the values of η1, …,
ηn, and its phase space of dimension 2n is filled with the invariant n-tori determined by integrals (1.3) with
a1, …, an ≠ 0, 1, as well as with the singular points, separatrix surfaces, and tori of lower dimensions deter-
mined by integrals (1.3) with other constants a1, …, an.

1.2. Formulation of the Problem and Results
The goal of this paper is to find, for system (1.1) with any sufficiently small ε > 0, a certain number of

invariant surfaces homeomorphic to the (n + 1)-torus in the cylindrical phase space of (1.1), which is
obtained by factoring time with respect to the period. The projections of such surfaces on the space of the
variables x and y are contained in a small neighborhood of certain invariant n-tori of the unperturbed sys-
tem (1.2); thereby, they are preserved under small periodic perturbations.

Systems (1.1) with ν = 0 and ν = 1 can be analyzed simultaneously, because the invariant tori can be
found by the same method, which was developed in [1, 2] and substantially modified in [3–5].

As a result, we can explicitly write out conditions on the functions Xi(t, x, y, 0) and Yi(t, x, y, 0) under
which the perturbed system (1.1) has invariant surfaces specified above (these conditions depend on γi and
ηi), derive formulas for these surfaces, and obtain the asymptotic expansion of each of them in powers of ε.

The constructiveness of the developed method is confirmed by the example of the four-dimensional
system (1.1) with perturbation analytic at ε = 0. The choice of average value makes it possible to find six
points such that, through their small neighborhoods, different invariant three-dimensional surfaces of sys-
tem (1.1) homeomorphic to the torus pass, provided that Siegel’s condition on the periods and the dissi-
pativity condition hold.

2. PARAMETERIZATION OF THE ORBITS OF THE UNPERTURBED SYSTEM
2.1. Construction of the Phase Portrait

For each i = , consider the two-dimensional autonomous system

(2.1)

whose integrals are the functions

(2.2)

First, consider the case where ηi = 1.
For ai = 0, integral (2.2) degenerates into the two singular points (1, 0) and (–1, 0) (in the coordinates

Ci, Si) of system (2.1).
For ai = 1, integral (2.2) determines the singular point (0,0) of system (2.1) and the separatrices Γi, –1

and Γi, 1 adjacent to this point. Each separatrix Γij ( j = ±1) passes through the extremal points (21/2j, 0)
and ( j, ±2–1/2); hence, on it, jCi ∈ (0, 21/2] and Si ∈ [–2–1/2, 2–1/2].

For ai ∈ (0, 1), integral (2.2) determines two closed orbits  and  of system (2.1). Each orbit lij ( j =
±1) lies inside Γij and encloses the point ( j, 0); moreover, for it, jCi ∈ [(1 – ai)1/2, (1 + ai)1/2], where (1 
ai)1/2 are the intersection points of lij with the abscissa axis.

For ai > 1, integral (2.2) determines the closed orbit li0 of system (2.1) enclosing  ∪ Γi1, and for this
orbit, Ci ∈ [–(ai + 1)1/2, (ai + 1)1/2], where the boundary values are the intersection points of li0 with the
OCi axis.

Now consider the case where ηi = 0, –1. Then the only rest point of system (2.1) is (0, 0), and the inte-
gral (2.2) degenerates into this point at ai = |ηi|.

All other orbits li0 are closed, enclose the origin, and are given by integrals (2.2) with ai > |ηi|, and for
these orbits, Ci ∈ [–(ai – ηi)1/2, (ai – ηi)1/2].
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246 BASOV, ZHUKOV
2.2. Parameterization of Closed Orbits

Based on the obtained range of variation of the coordinate Ci of any closed orbit  (ki = 0, ±1) of sys-
tem (2.1), we introduce the following constants  (i = ):

(2.3)

Then the orbits li0 for ηi = 0, ±1 and li1, , for ηi = 1 are parameterized by the solutions of the initial
value problem Ci(ϕi) = Ci( , ), Si(ϕi) = Si(ϕi, ) for system (2.1) with initial conditions

(2.4)

Thereby, geometrically, each  determines the maximum absolute value of Ci on the parameterized
closed orbit .

The solution of system (2.1) with initial condition (2.4) is a real-analytic ω( )-periodic function ϕi.
Moreover, the function Ci(ϕi) is even and Si(ϕi) is odd, because the solution (Ci(–ϕi), –Si(–ϕi)) of
system (2.1) also satisfies the initial condition (2.4).

Moreover, (0) = 0 and (0) =  – ηi) > 0 for all  in (2.3). Therefore, for ϕi = 0, any orbit
 from the point ( , 0) goes counterclockwise with increasing ϕi.

Convention. All functions and constants introduced in what follows depend in some way on the initial
data  (ki = 0, ±1); we sometimes omit the second subscript ki, when its particular value does not matter.
For example, ci = .

Let bi =  be the second intersection point of the orbit  with the OCi axis.

The choice of  in (2.3) fixes bi =  and the constant ai =  in integral (2.2), namely,

(2.5)

moreover, 0 < |bij| < 1 < |cij| < 21/2 and |cij| – 1 < 1 – |bij|.

2.3. Calculation of Periods

Let us calculate the period ω( ) of the trajectory of a given closed orbit  of system (2.1). There exists
a  such that Ci( ) = bi and Si( ) = 0 (0 <  < ω(ci)).

Let ϕi ∈ [0, ]. In this case, if ci > 0, then Si(ϕi) > 0, and if ci < 0, then Si(ϕi) < 0. Therefore, in integral

(2.2), Si = sign(ci) × 2–1/2(  – (  – ηi)2)1/2, and in system (2.1), dϕi = –sign(ci) × 21/2 (  – (  –
ηi)2)–1/2dCi(ϕi). Integrating this equality with respect to ϕi from 0 to , we obtain  = , where  =

.

Let us continue to move on the orbit, considering ϕi ∈ [ , ω( )]. We have ciSi(ϕi) < 0. Therefore, the
sign on the right-hand sides of the expressions for Si and dϕi changes, and integrating the latter expression
with respect to ϕi from  to ω(ci) yields ω(cj) –  = .

As a result, we obtain  = ω(ci)/2, Ci(ω(ci)/2) = bi, Si(ω(ci)/2) = 0, and

(2.6)
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2.4. The Choice of Generating Invariant Surfaces

We set ϕ = (ϕ1, …, ϕn), C(ϕ) = (C1(ϕ1), …, Cn(ϕn)), S(ϕ) = (S1(ϕ1), …, Sn(ϕn)), k = (k1, …, kn), ck =
( , …, ), ω(ck) = (ω( ), …, ω( )), and

For system (1.1), we introduce the defining system of equations

(2.7)

in which Ci = Ci(ϕi, ), Si = Si(ϕi, ) is an ω( )-periodic (in ϕi) solution of the Cauchy problem for
system (2.1) with initial condition (2.4) satisfying conditions (2.3),  and  are the derivatives of this
solution with respect to ϕi, and Xi and Yi are perturbations of (1.1) T-periodic in t.

We refer to a vector ck which is a solution of system (2.7) as an admissible vector.
Remark 2. In what follows, we shall be interested in systems (1.1) with nonempty sets of admissible vec-

tors. For such systems, is will be proved that any admissible vector ck satisfying two additional conditions,
which will be specified for perturbations of system (1.1) with ε = 0 in Sections 4.3 and 5.1, determines the
point (ck, 0); through a small neighborhood of this point, for all sufficiently small ε, an invariant (n + 1)-
surface retained in the T-periodically perturbed system (1.1) passes.

3. PASSAGE TO A NEIGHBORHOOD OF THE CHOSEN INVARIANT SURFACE
OF THE UNPERTURBED SYSTEM

3.1. Shifts of the Unperturbed System to Singular Points

Take any admissible vector ck. For each i = , it fixes a solution of system (2.1) parameterizing a
closed orbit  enclosing a singular point (ki, 0). This distinguishes the singular point (k1, …, kn, 0, …, 0)
of the unperturbed system (1.2) and the invariant surface  × … ×  enclosing this point; in a small
neighborhood of this surface, we shall seek an invariant surface of system (1.1).

It will be seen in what follows that, for ηi = 1, we have to move the origin in system (2.1) to the singular
point (ki, 0). Therefore, in addition to system (2.1), we shall consider two more systems obtained
from (2.1) by shifting the variable Ci by 1 to the right or left.

In other words, in system (2.1), we must make the change

(3.1)

as a result, we obtain the system

(3.2)

which has integrals

(3.3)

Now, any closed orbit  is determined both by integral (2.2) and by the corresponding integral (3.3),
and it is parameterized by a solution of the initial value problem  = ,  =  for
system (3.2) with initial condition

(3.4)

where  =  =  – ki; hence, it follows from (2.3) that  ∈ , –∞) for ηi = 0, ±1 and  ∈
(1 – 21/2, 0) and  ∈ (0, 21/2 – 1) for ηi = 1.
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248 BASOV, ZHUKOV
The choice of  fixes  =  in (3.3) and  =  = bi – ki, which is the second intersection point of
the orbit  (ki = 0, ±1) with the  axis, namely,

(3.5)

moreover,  ∈ (0, 1),  > , and  ∈ [ , ] for  from (3.4).

Obviously, the period of the solution of system (2.1) parameterizing an arbitrary closed orbit  does
not change under the passage to system (3.2); i.e., for any initial value  in (3.4), we have

(3.6)

3.2. Study of the Monotonicity of the Angular Variable

For each  in (3.4), we introduce the function αi( ) =  defined by

(3.7)

Then, for the solutions of system (3.2) with initial values 0, ( , 0), we have

(3.8)

Indeed, substituting the right-hand sides of system (3.2) into (3.8) instead of  and  and
using formula (3.3), we obtain (3.7).

Now let us show that, for any , the function  is positive.

A. Let ki = 0. If ηi = 0, then αi0 =  > 0; if ηi = 1, then αi0 = (  – 1)2 – 1 +  > 0, because  > 2;

if ηi = –1, then αi0 = (  + 1)2 – 1 –  ≥ 2ci0 > 0, because  = |Ci| ≤ |ci0|.

B. Let ki = j (ηi = 1). Since  = –(  + 4)  and | | < 1, then αij( ) increases for  < 0
and decreases for  > 0. Therefore, in view of (3.5), it suffices to check its positivity at the endpoints:

given that

Remark 3. If ηi = 1 and the closed orbits lij lying inside Γij are parameterized by solutions of system (2.1),
i.e., the cij are chosen from (2.4) without passing to system (3.2), then the function αij(Ci) =  – 

introduced on the solutions of system (2.1) is alternating. Indeed, αij(cij) =  –  > 0 and αij(bij) = –

 – 1) < 0, because  ∈ (1, 21/2).
Geometrically, this fact means the absence of monotonicity with respect to the angular variable in

moving on orbits lying inside the separatrices Γij; thus, it is necessary to perform shift (3.1), because the
monotonicity of the functions  makes it possible to pass to neighborhoods of such orbits.

3.3. Shifts in the Perturbed System

Before passing to a small neighborhood of the chosen invariant surface  × … ×  of the unperturbed
system (1.2), in system (1.1), we perform the shift to the point (k1, …, kn, 0, …, 0) with the given ki similar
to the shift of (3.1) for each system (2.1) (i = ), i.e., make the variable change

(3.9)
where ki ∈ {0, ±1} if ηi = 1 and ki = 0 if ηi = –1, 0.
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As a result, we obtain the system

(3.10)

in which  =  and  is defined in a similar way (i = ).
Obviously, the closed orbits  of system (3.10) without the perturbations  and  are parameterized

by solutions of the n initial value problems  = ,  =  of system (3.2) with the
 determined by (3.4).

3.4. A Nonnormalized Generalized Polar Change
Now, in system (3.10), we make the nonnormalized generalized polar change

(3.11)

where each ,  is the ω( )-periodic real analytic solution of the initial value problem for
system (3.2) with initial values 0, ( , 0); here the  are determined by (3.4) and (3.6) holds.

For brevity, we introduce the notation

(3.12)

Let us differentiate change (3.11) with respect to system (3.10):

Then, we solve the system thus obtained with respect to  and :

Taking into account relations (3.8) and (3.12) and reducing by γisi, we obtain the system

(3.13)

where Θi = (1 – si)(  – (ηi – )(si + 1))  =  + (  – , because, by virtue of (3.7),
we have  =  and  = –(  + 4) .

To complete change (3.11), we divide the equations of system (3.13) by the function αi( ), which
is of fixed sign for the chosen initial values , …, , and single out terms of lower order in r1, …, rn and
ε in the perturbations Ri and Φi of system (3.13) described in (3.12).

As a result, making change (3.11) and taking into account (3.12), we reduce system (3.10) to the form
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=  –  (σij is the Kronecker delta),  =  –  is from Θi, and

ρi( ) =  +  (αi( ) is from (3.7)).

4. PRIMARY AVERAGING IN THE RADIAL EQUATIONS OF THE SYSTEM
4.1. Decompositions of Two-Periodic Functions

For continuous functions  T-periodic in t and ω( ) = ω(ci)-periodic in ϕi, we use the following
decomposition depending on the parameter ν:

in which  =  is the average value of  and  =

. Therefore,  =  –  has zero average value with respect to t,

which implies the periodicity of the function , which also has zero average value by virtue of

the choice of the constant t0 ∈ [0, T].
For the subsequent changes and systems to look uniformly, we introduce the functions

4.2. The Mean Value of Rio.

First, let us show that the functions Rio(t, ϕ) in system (3.14) have zero average value, i.e.,

(4.1)

Relation (4.1) holds because we have chosen an admissible vector ck of initial values, which satisfies
system (2.7) by definition.

Indeed, we have    –   ,  + k, , 0) – ,  + k,

, 0)  , C, S, 0) – , C, S, 0), whence  =  = 0 by
virtue of (2.7).

Thus, Rio =  for ν = 0 and Rio =  +  for ν = 1.

4.3. Preparation of Functions for the Primary Averaging Change

A. For each i = , consider the equation

(4.2)

In view of (4.1), it decomposes into the three equations

(4.3)

For the solvability of Eqs. (4.3), it is sufficient that the periods ωi = ω( ) (calculated by (2.6)) of the
solutions Ci, Si specified in (2.7) and the period T, if ν = 0, satisfy the Siegel condition

(4.4)

in which K > 0, τ ≥ 1, l0 and li are integers, and T and ν are the constants in system (1.1).
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Then, by Lemma V.5 [6, p. 17], Eqs. (4.3) have solutions  and  of the same differentiability
class as the right-hand sides, i.e., continuous, real-analytic, and ω(ck)-periodic in ϕ; moreover, the solu-
tion  is also T-periodic in t. These solutions are uniquely determined by their zero average value.

In particular, let  =  be a function with zero average value periodic in t, ϕ. Then

=  –  is the unique periodic solution of Eq. (4.33) with zero mean.
The solutions of Eqs. (4.3) determine the unique solution of Eq. (4.2).
Remark 4. The Siegel condition holds for almost all vectors with respect to the Lebesgue measure.

B. For each ki = 0, ±1, we introduce the following auxiliary constants  = :

It is convenient to define a function βi =  as a solution of the equation

(4.5)
To facilitate integration, we rewrite Eq. (4.5) in the form

where αi( ) is the function from (3.7), , , and  are from (3.14), and the constants are
from (3.5). Then we have

(4.6)

where  =  =  for j = ±1.

C. Using the obtained solution of Eq. (4.2) and the  from Eq. (4.5), for any i, l =  and ν = 0, 1, we
introduce the periodic functions

(4.7)

D. Finally, for the same i, l, and ν, we consider the equation

(4.8)

obviously, its right-hand side has zero average value. Therefore, Eq. (4.8) is similar to Eq. (4.2), and the
functions  and  in its solution are continuous, real-analytic, ω(ck)-periodic in ϕ, and T-peri-
odic in t, and they are uniquely determined by their zero average value.

4.4. The Primary Averaging Change of Radial Variables
Let us show that, under condition (4.4), the doubly periodic (in ϕ and t) averaging change

(4.9)
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in which αj is defined by (3.7), βi is defined by (4.6),  and  are the solutions of Eq. (4.2), and  and

 are the solutions of Eq. (4.8), transforms system (3.14) into the system

(4.10)

where the function ρi, , , and  are defined by (3.14) and (4.7) (ν = 0, 1; i = ).

Substituting (4.9) into the equations for  in (3.14) and taking into account (4.73), we obtain equations
for the angular variables of system (4.10).

Then, differentiating change (4.9) with respect to systems (3.14) and (4.10) and multiplying by αiεν, we
obtain the following identity for each i = :

Let us equate the coefficients of respective powers of  and ε.
For , the identity degenerates, and for ε, we obtain Eq. (4.2).

For , we obtain Eq. (4.5); its solution is given in (4.6).

For ε2, we obtain the expression (4.72) for , because, in this formula, according to (4.73) and (4.5),

 +  =  – .

Finally, for , we obtain Eq. (4.8), because in , we have  +  =

 +  –  from (4.71).
Thus, we have obtained the partially averaged system (4.10).

5. FINAL AVERAGINGS UNDER THE DISSIPATIVITY CONDITION
5.1. The Dissipativity Condition

To performing further averagings of system (3.14), in addition to the already used conditions (2.7) and
(4.4), we need one more assumption, which can be called the dissipativity condition. This condition con-
sists in that the matrix  composed of the average values of the functions  defined in (4.7) has no
eigenvalues with zero real parts.

Thus, we shall assume that, in system (4.10),
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Remark 5. It is easy to check that, in the matrix Vν, only the functions X(t, x, y, 0) and Y(t, x, y, 0) from
the perturbed part of system (1.1) are used.

Certainly, the violation of condition (5.1) is an exceptional case, in which it is possible to continue
seeking an invariant surface but of higher dimension. Thus, in [7], a constructive process was proposed for
obtaining classes of real autonomous systems of order 2d (d ≥ 1), including polynomial ones, in which the
bifurcation of the birth of an invariant torus of codimension 1 occurs for all sufficiently small positive val-
ues of the parameter.

5.2. The Secondary Averaging Change of Radial Variables

Assumption (5.1) makes it possible to annihilate the functions  in the radial equations of system
(4.10) by means of the two-periodic change

(5.2)
which transforms system (4.10) into the system

(5.3)

with  =  +  (ν = 0, 1; i = ).
Differentiating change (5.2) with respect to (4.10) and (5.3), we obtain the equation

(5.4)

to make it solvable, it is necessary to zero the average value of the right-hand side, which can easily be
done, thanks to condition (5.1), by setting

(5.5)

After this, Eq. (5.4) takes the form  =  + , that matches Eq. (4.2). This allows us

to explicitly find the required solutions  and , along with the constant vector , from (5.5). 

5.3. The Averaging Change of Angular Variables

Now we simplify the equations for the angular variables of system (5.3). We average the functions 
in these equations by means of the following periodic change of angular variables:
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As a result, we obtain the system
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Indeed, differentiating change (5.6) with respect to (5.3) and (5.7) and taking into account the relation
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6. INVARIANT SURFACES OF SYSTEM (1.1) AND THEIR ASYMPTOTICS

6.1. The Final Scaling Change

For convenience, we introduce the vectors u = (u1, …, un), w = (w1, …, wn), and ψ = (ψ1, …, ψn).

In system (5.7), we make the additional scaling change

(6.1)

which transforms this system into the following system written in the vector form:

(6.2)

where Wν and Ξν are real continuous vector functions of their arguments in a small neighborhood of the
point w = 0, ε = 0, which are continuously differentiable with respect to w and ψ, ω(ck)-periodic in ψ, and
T-periodic in t.

Indeed, we have Wν(t, ψ, w, ε) = O((|w|ε3/2 + ε)3)ε–3 and Ξν(t, ψ, w, ε) = diag{ρ1, …, ρn}w + O((|w|ε3/2 +
ε)2)ε–3/2, and the functions O((|w|ε3/2 + ε)2) are real-analytic with respect to ψ and three times continu-
ously differentiable in a small neighborhood of the point w = 0, ε = 0. Therefore, in particular,  and

 are continuous at this point.

6.2. The Application of Hale’s Lemma

System (6.2) satisfies the conditions of Hale’s lemmas 2.1 and 2.2 in [8]; hence, for all sufficiently small
ε > 0, it has an invariant surface of the form

(6.3)

where Hν is a continuous continuously differentiable function T-periodic in t and ω(ck)-periodic in ψ.
Thus, we have proved the following assertions.
Lemma 1. Under condition (4.10), for any sufficiently small ε > 0, system (4.10) has the continuous con-

tinuously differentiable invariant surface

(6.4)

where Θν =  + ( (t, ϕ) + Hν(t, ϕ + χν(t, ϕ, ε)ε, ε))ε2 + , which is T-periodic in t and ω(ck)-
periodic in ϕ; this surface is obtained by substituting the invariant surface (6.3) into the composition of changes
(5.2), (5.9), and (6.1).

Moreover, the function f is uniquely determined from Eqs. (5.4) and (5.5) and χν is uniquely determined
from (5.9).

Lemma 2. Under conditions (4.4) and (5.1), for any sufficiently small ε > 0, system (3.14) has the contin-
uous continuously differentiable invariant surface

(6.5)

where  =  +  + βi(ϕi)( )2 +  +

, which is T-periodic in t and ω(ck)-periodic in ϕ. This surface

is obtained by substituting the invariant surface (6.4) into change (4.9). The functions αi are given by (3.7), the
βi are given by (4.6), the gi are uniquely determined by (4.3), and the hi are uniquely determined by (4.8).

Corollary 1. The invariant surface (6.5) of system (3.14) has asymptotic expansion  =  +
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6.3. Results of the Study

Theorem 1. For any admissible vector ck such that conditions (4.4) and (5.1) hold and any sufficiently small
positive ε, system (1.1) has the (n + 1)-dimensional continuous continuously differentiable invariant surface

(6.6)

where  = ki +  +  and  =  +  (i = ), which is T-periodic
in t and ω(ck)-periodic in ϕ. This surface is obtained by substituting the invariant surface (6.5) into the com-
position of changes (3.9) and (3.11). Moreover, the invariant surface (6.6) passes through a small neighborhood
of the point (ck, 0) and is homeomorphic to the (n + 1)-torus, provided that time t is factored by the period.

Corollary 2. The invariant surface (6.6) in Corollary 1 has asymptotic expansion

Thus, if a system of the form (1.1) has m different admissible vectors for which conditions (4.4) and
(5.1) hold, then, for any sufficiently small ε > 0, system (1.1) has m invariant surfaces homeomorphic to
the (n + 1)-torus and passing through small neighborhoods of the corresponding generating points.

7. THE DEFINING SYSTEM IN THE ANALYTIC CASE
7.1. The Structure of the Defining System

Let us study system (2.7) in the important special case where the functions Xi(t, x, y, 0) and Yi(t, x, y,
0) in system (1.1) are continuous, T-periodic in t, and analytic in xi and yi in the open connected set G =
{(t, x, y) : t ∈ , |x1|, …, |xn| < x0, |y1|, …, |yn| < y0} and, moreover, x0 > 21/2 and y0 > 2–1/2.

In other words, we assume that, in system (1.1),

(7.1)

are power series absolutely convergent in the open connected set G uniformly in t with real continuous
coefficients T-periodic in t, the vectors p and q have nonnegative integer components, and xp = ;
the numbers yq are defined in a similar way.

As a result, in the equation with index i of system (2.7), the integrand contains the series

absolutely convergent for any real ϕ1, …, ϕn uniformly in t.
Since the integral over the period of the product of the even function Ci(ϕi) and the odd function Si(ϕi)

vanishes, it follows that system (2.7) takes the form

where the bar denotes mean value with respect to t and ei = (0, …, 1(i), …, 0).
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Using the identity (2qi + 1)  =  + , we reduce system (2.7) to the form

Expressing dϕι in the first equation of system (2.1) and S(ϕι) on the half-periods from integral (2.2)
and taking into account (2.5), as in Section 2.3, we obtain

After reduction by , system (2.7) takes the form

(7.2)

where  =  – , the bι = bι(cι) are from (2.5),  =

, and the  and  are the average values of the coeffi-

cients in expansions (7.1).
The functions  can be written in a form more convenient for calculations as

(7.3)

where, according to (2.3), if kι = 0, then cι0 ∈ ( , +∞) (ηι = 0, ±1) and if kι = j ( j = ±1), then
ηι = 1 and jcι j ∈ (1, 21/2).

Indeed, if kι = 0 in (7.2), then bι0 = –cι0 and the change τ = cι0ς should be made, and if kι = j, then bι j =

j(2 – )1/2 and the change τ = j((  – 1)ς + 1)1/2 should be made.
Note that, in (7.3), we have  = 0 for odd pι.
In terms of the  defined by (7.3), it is also convenient to rewrite the expression (2.6) for the

period ω( ) of trajectory of the closed orbit  of system (2.1):

(7.4)

where ζ = {  for kι = 0, 4(  + 1 – ς) for kι = j ( j = ±1)}.

7.2. The Application of the Obtained Results in Practice
Suppose that system (1.1) satisfies the following conditions:

all coefficients  (i = 1, 2) of system (7.2) are zero, except

(7.5)

2 'i ip q
i i iC S S +2 1( ) 'i ip q

i iC S − +γ 1 2 2i ip q
i i i ipC S

ι

ι ι

ω∞ ∞
+ − −

ι ι ι
= ι==

 + + ϕ = − 
 ∏ 

( )
( ,2( )) ( ,2 ) 2

0 1 0

1 0.
2 1

i i i

i

cn
p e q e p q e p qi

i i
p iq e

p X Y C S d
q

ι ι
ι

ι ι ι ι

ι

ω −
−

ι ι ι ι ι ι ι ι ι ι
ι

ϕ = − η − − η
γ 

( ) 3/2
2 2 2 2 2 1/2

0

2sign( ) (( ) ( ) ) .
c cq

p q p q

b

C S d c C c C dC

ιι=
ιγ

∏
3/2

1
2sign( )

n
c

ι ι ι

∞ ∞

ι ι ι ι
= ι==

θ = ≥ = ± = ∏( , )
,

0 1
( ) 0 ( , 0; 0, 1; 1, ),

i

n
p q

i p q k
p q e

d c p q k i n

ι ι ιθ , ( )p q c
ι

ι

ι
ι ιτ − η
2 2( )

c p

b
c ι−

ι ιτ − η τ2 2 1/2( ) )q d ( , )p q
id

− + + + − − + + − 

…1( ) ( ,2( )) ( ,2 )12
2 1

i i i
nq q p e q e p q ei

i i
i

p X Y
q

( , )p q
iX ( , )p q

iY

ι ι ιιθ ( )p q kc

ι ι ι ι
ι ι

ι ι
ι ι

ι ι

+ −
ι ι ι ι ι

−
+

− −ι
ι ι

−

θ = ς ς + − η − ς ς

−
θ = − ς + − ς ς





1
2 2 2 2 2 1/2

, 0 0 0 0
1

11 2 2
2 ( 1)/2 2 1/2

,
1

( ) (( 2 )(1 )) ,

( 1)
( ) (( 1) 1) (1 ) ,

2

p q p q
p q

p q
p qj

p q j j

c c c c d

j c
c c d

ι ιη η +( 1)

ι
2
jc ι

2
jc

ι ι ιθ 0( )p q c

ιιθ0,0( )kc

ιιkc
ιιkl

ι

ι

ι
ι ι−

ςω = ι =
γ ζ ς − ς

13/2

2 1/2
1

2( ) ( 1, ),
( ( , )(1 ))

k
k

dc n
c

ι ι+ ς − η2 2
0(1 ) 2c ι ς

2
jc

= η = η = γ = γ =1 2 1 22; –1, 1; 1 (7.1, 2; h) olds;n
( , )p q
id

= = = − =
� �

� �

1 1 1 1ˆ ˆ( , ) 1 1 ( , ) 1 1
1 1 ˆ ˆ1, ( , ) (0,0;3,1); 10, ( , ) (0,0;2,1);p q p qd p q d p q

= = = =� � � �

� � � �

1 1 2 2( , ) 1 1 ( , ) 2 2
1 218, ( , ) (0,0;1,1); 20, ( , ) (0,0;1,1);p q p qd p q d p q

= − = = =
� �

� �

2 22 2 ( , )ˆ ˆ( , ) 2 2 2 2
2 2ˆ ˆ22, ( , ) (0,2;1,1); 1, ( , ) (0,0;1,1).p qp qd p q d p q
VESTNIK ST. PETERSBURG UNIVERSITY, MATHEMATICS  Vol. 52  No. 3  2019



INVARIANT SURFACES OF PERIODIC SYSTEMS 257

Fig. 1. Phase portraits.
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Then system (1.2) unperturbed with respect to (1.1) has the three singular points (x1, x2, y1, y2) = (0, ‒1,
0, 0), (0, 0, 0, 0), (0, 1, 0, 0).

In turn, the defining system (7.2) takes the form

(7.6)

where, according to (7.3) and by virtue of the choice of η1 and η2,

Let L1(c10) = 18θ0, 1(c10) – 10θ0, 2(c10) + θ0, 3(c10). Then L1(1.01) ≈ 0.614, L1(1.02) ≈ –0.29, L1(1.44) ≈
–1.14, and L1(1.45) ≈ 3.756. Hence, there exist c101 ∈ (1.01, 1.02) and c102 ∈ (1.44, 1.45) such that L1(c101) =
L1(c102) = 0.

Now suppose that  = 20θ0, 1( ) – 22θ2, 1( ) + θ1, 1( ). We have L20(1.73) ≈ 0.43,
L20(1.74) ≈ –0.14, L21(1.26) ≈ –0.001, L21(1.27) ≈ 0.015, L2, –1(–1.34) ≈ –0.03, and L2, –1(–1.33) ≈ 0.02.
Hence, there exist c200 ∈ (1.73, 1.74), c210 ∈ (1.26,1.27), and c2, –10 ∈ (–1.34, –1.33) such that L20(c200) =
L21(c210) = L2, –1(c2, –10) = 0.

Thus, system (7.6) has the six solutions (c10ι, ) (ι = 1, 2; k2 = 0, ±1).
According to formula (7.4), the solutions of the initial value problems for system (2.1) with i = 1 have

periods ω(c101) ≈ 4.7 and ω(c102) ≈ 4.0, and those for system (2.1) with i = 2 have periods ω(c200) ≈ 3.0,
ω(c210) ≈ 2.4, and ω(c2, –10) ≈ 2.6.

By Theorem 1, through a small neighborhood of each of the six points (c10ι, , 0, 0), for any small
ε, a three-dimensional invariant torus passes, provided that Siegel’s condition (4.4) on the periods and the
dissipativity condition (5.1) hold; if needed, the latter can be verified by straightforward calculations.
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In the phase portraits (see the figure 1), the orbits of systems (2.1) whose pairwise products determine
the six invariant surfaces of the unperturbed system (1.2) are constructed. In their small neighborhood,
the invariant surfaces of any system (1.1) are preserved under conditions (7.5). As mentioned, the violation
of Siegel’s conditions and the dissipativity condition is an exceptional case. Therefore, slightly changing
the coefficients , which entails a small continuous change of the admissible solutions of the defining
system, we can satisfy conditions (4.4) and (5.1).
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