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Abstract—Pliocardiines (Bivalvia: Vesicomyidae: Pliocardiinae) are a chemosymbiotrophic group of bivalve
mollusks that are obligate for reducing environments. These mollusks house endosymbiotic thioautotrophic
bacteria in their gills, which provide nutrition for the host. The ultrastructure of spermatozoa and the state of
the gonads in the pliocardiine bivalve Calyptogena pacifica in June 2016 were studied. Material was collected
in the Bering Sea on the slopes of the Piip’s Volcano at a depth of 466 m. The condition of the gonads indi-
cated a pre-spawning state. Active processes of spermatogenesis and oogenesis were noted in the gonads. The
mature spermatozoon has an elongated bullet-shaped head with an average length of 4 ± 0.2 μm from the tip
of the acrosome to the base of the mid-piece. The mid-piece was formed by a complex of four spherical mito-
chondria with a diameter of approximately 0.7 μm. An electron dense material of a lipid nature was observed
in the distal region of the mid-piece of the sperm. C. pacifica mature eggs are approximately 200 μm in diam-
eter. The results are discussed in the context of the available data on the morphology of pliocardiine gametes.

Keywords: reproduction, vesicomyids, chemosymbiosis-based communities, gonads, gametogenesis, sper-
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INTRODUCTION
Reducing marine environments occurring in areas

of hydrothermal vents and cold seeps contrast with the
background in their physico-chemical parameters.
Such biotopes and associated chemosynthesis-based
communities, although they have a pronounced
island-type pattern of distribution, are widespread in
the World Ocean. Some chemosymbiotrophic species
that are obligate for reducing conditions are character-
ized by extensive transoceanic distribution patterns;
however, their habitats are separated by vast areas that
are unsuitable for the life of adults. In these cases,
reproductive biology is especially important for under-
standing the mechanisms of dispersal of obligate che-
mosymbiotrophic animals and formation of the fauna
of the fragmented reducing environments.

Pliocardiines (Bivalvia: Vesicomyidae: Pliocardi-
inae) are one of the conspicuous symbiotrophic
groups. To date, the subfamily includes more than 110
species [31]. They are distributed in the World Ocean
from the shelf to oceanic trenches and inhabit all types

of reducing environments [36]. There are 20 genera of
Pliocardiinae [38]; however, the generic assignment of
many species is ambiguous, and despite using mor-
phological and molecular characters, the taxonomy of
the subfamily has not been finalized.

It is known that the characters of the structure of
spermatozoa are among the most phylogenetically
informative for bivalve mollusks [5, 14]. Nevertheless,
information on pliocardiine gamete morphology in
the literature is scarce. According to published data
[23, 43], Pliocardiinae exhibit a sperm type adapted
for external fertilization, the so-called primitive [21],
or classical [5] sperm. This type of f lagellated sperm is
characterized by a barrel-shaped, bullet-shaped, or
cylindrical head, consisting of a nucleus with an acro-
some, and a mid-piece with two mutually perpendic-
ular centrioles surrounded by four mitochondria; a tail
f lagellum arises from the distal centriole. Morpholog-
ical features of sperm that could be characteristic of
individual genera of Pliocardiinae are not known.
292
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One of the largest genera in the subfamily is the
genus Calyptogena Dall, 1891 with ten species [35].
The type species of the genus, C. pacifica Dall, 1891, is
widely distributed in the Pacific Ocean: it is found in
the eastern Pacific along the North American coast
from Alaska to California, as well as in the northwest-
ern Pacific in the Bering Sea on the slope of the Piip’s
Volcano [35] and on the slope of the Koryak Highland
[3, 34]. C. pacifica usually occurs at depths of 500–900 m,
although its records are known from a depth of 361 m
(northern California) down to 2423 m (Juan de Fuca
Ridge, northeastern Pacific) [10, 35].

The literature provides some data on the structure
of the reproductive system and spermatozoa of
C. pacifica from the Monterey Bay, California [41], as
well as another species of the genus Calyptogena,
C. gallardoi from off the coast of Chile [43]. In this
paper, we examined the sperm ultrastructure and the
state of the gonads in June 2016 in individuals of
C. pacifica from the slopes of the Piip’s Volcano.
Newly obtained data and previously published infor-
mation on the sperm and egg cell structure, as well as
on the synchrony and seasonality of reproductive pro-
cesses in Pliocardiinae are discussed in the comparative
aspect. Knowledge on the sperm morphology of different
representatives of Pliocardiinae could help reproductive
biology may improve understanding the  mechanisms
of maintaining the extensive disjunct ranges of plio-
cardiines.

MATERIALS AND METHODS
For the study of the reproductive system, material

was obtained from two mature specimens of Calypto-
gena pacifica collected in the Bering Sea in the area of
the submarine Piip’s Volcano during the 75th cruise of
the R/V Akademik Lavrentyev. Bivalves were collected
with a manipulator of the ROV Comanche 18 (station
LV-75-15, 55°382′ N, 167°261′ E, 466 m, June 16,
2016, IO RAS). For verification of taxonomic identifi-
cation, 14 ethanol-fixed specimens of C. pacifica col-
lected at the same station were used.

Immediately after collection, mollusks were placed
in a container with outboard sea water. Pieces of the
gonads were sampled within several hours after speci-
mens had been collected. Prior to fixation, gonad frag-
ments and the contents of the mantle cavity were
examined with a Leica DM IL inverted light micro-
scope. For ultrastructural study of spermatozoa,
pieces of the testis were fixed in 2.5% glutaraldehyde
in 0.1 M cacodylate buffer supplemented with sodium
chloride to achieve the tonicity of seawater. The mate-
rial was postfixed in 1% OsO4 in cacodylate buffer,
dehydrated in alcohols according to the standard pro-
cedure, and embedded in an epon-araldite mixture.
Ultrathin sections were cut on an Ultracut ultratome
(Reichert). Sections were sequentially stained with
uranyl acetate and lead citrate, then observed in a Carl
Zeiss Libra 120 electron microscope.
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Collection Area
The submarine Piip’s Volcano is located in the

Commander Basin of the Bering Sea, 75 km from Ber-
ing Island and 335 km from the Kamchatka Peninsula.
The volcano has a southern (447 m) and a northern
(360 m) peaks, which are 2 miles apart from each other
and are separated by a saddle with a maximum depth
of 650 m [9]. The bivalves C. pacifica were found at
depths of 466–489 m at the southern peak along the
cracks in the hydrothermal deposits covered with a
layer of greenish-gray sediment. Low-temperature
methane-enriched fluids are thought to emanate from
the cracks [9].

RESULTS
The Morphology of Adult Mollusks

The shells were strongly corroded (Fig. 1). In some
specimens, the subumbonal parts of the hinge edge
and areas of the adductor scars had holes penetrating
the shell wall. The hinge teeth were developed nor-
mally. On the right valve, the hinge consists of a ven-
tral cardinal tooth, a subumbonal cardinal tooth with
an anterior and a broad posterior rami, as well as a
nymphal ridge. The left valve has an anterior subum-
bonal cardinal tooth with an anterior and a posterior
rami, as well as a posterior cardinal tooth, which is
longer than half of the nymph. The shells of all speci-
mens have a deep escutcheon and a clearly visible pal-
lial line without a sinus.

All investigated bivalves were dioecious with exter-
nal sexual dimorphism. Shells of males are usually
smaller and more elongated with a sloping postero-dor-
sal margin, while in females the shells are broadly oval,
with a less sloping posterior dorsal margin (Fig. 1).

Structure of the Reproductive System
Mature eggs are located in the ovaries in the central

part of tubules, and relatively numerous growing
oocytes are located adjacent to the tubule walls along
the periphery. Most of the observed oocytes have not
yet completed growth and are not ready for spawning.
Mature eggs reach 200 μm in diameter (Fig. 2) and are
surrounded by two membranes: a yolk membrane
2 μm thick and an outer membrane of 7 μm. The egg
cytoplasm is filled with numerous yolk granules and
lipid droplets.

The testes of the studied mollusks are organized as
a system of tubules and acini. The walls of the testes
are lined with a germinal epithelium and auxiliary
cells. The germinal epithelium includes gametogenic
cells at different stages of development: spermatogo-
nia, spermatocytes, and spermatids. Spherical sper-
matocytes with a granular cytoplasm and a nucleus
occupy most of the acini. The spermatocytes are
approximately 6 μm in diameter. Mature spermatozoa
are localized in the lumen of the acini. In unpreserved
 No. 4  2019
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Fig. 1. The shells of adult Сalyptogena pacifica, left view. Scale bar: 1 cm.

♀

♂

Fig. 2. Oocytes of Сalyptogena pacifica: (a) growing oocyte; (b) mature egg cell (the integrity is broken). n, nucleus; nc, nucleolus,
arrow indicates an egg cell membrane. Scale bar: 50 μm.
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n
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material, spermatocytes and mature spermatozoa were
easily washed out from the testes (Fig. 3).

Mature spermatozoa have an elongated bullet-
shaped head 4.3 ± 0.2 μm long from the tip of the
acrosome to the base of the mid-piece (Figs. 3–5).
The mid-piece of the sperm is formed by a complex of
four spherical mitochondria with a diameter of
approximately 0.7 μm each, interconnected via inter-
RUSSIAN JOUR
mitochondrial junctions (Figs. 4f, 4g). Mitochondria
are surrounded by two mutually perpendicular centri-
oles: proximal and distal. The proximal centriole lies
in an invagination of the distal part of the nucleus, in
the centriolar fossa. The distal centriole is surrounded
by a pericentriolar complex that holds it in the distal
part of the sperm. The tail f lagellum approximately
25 μm long arises from the distal centriole. A ring of
homogeneous electron-dense material, presumably of
NAL OF MARINE BIOLOGY  Vol. 45  No. 4  2019
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Fig. 3. Mature spermatozoa and spermatogenic cells of
Сalyptogena pacifica washed out of the gonads. Living
material. s, sperm cells; spc, spermatogenic cells. Scale bar:
10 μm.

spc

s

a lipid nature, is located distal to the mitochondria in
the mid-piece.

The elongated-conical acrosome approximately
1.5 μm long is located in the apical part of the head.
The acrosome consists of two parts: an elongated
dome-shaped acrosomal vesicle filled with electron-
dense homogeneous material and a granular subacro-
somal material adjacent to the nucleus. The nucleus is
truncated-conical, with a slightly convex apical part.

DISCUSSION
Morphology of Adult Mollusks

Analysis of the morphological features of mollusks
studied here and comparison with previously collected
specimens of Calyptogena pacifica from the slopes of
the Piip’s Volcano [35], as well as unpublished molec-
ular data (S. Sharina, unpublished data) indicate the
correctness of the identification of the specimens used
in the study as C. pacifica.

C. pacifica that inhabits the slope of Piip’s Volcano
exhibits external sexual dimorphism, which was previ-
ously described in this species from other locations
[16, 35]. Since sexual dimorphism, as evident in the
same variations of the shell shape, was shown for
C. gallardoi [43] and some more species of the genus
Calyptogena [35], it can be supposed that the dimor-
phism is characteristic of the genus as a whole.

Reproductive Cycle

Judging by the morphology of the gonads, mollusks
from the slope of the Piip’s Volcano were in the pre-
spawning state in mid-June 2016. In the presence of
mature gametes, an active gametogenesis was
observed in both females and males. This is consistent
with the data obtained for C. pacifica occurring in a
hydrocarbon seep area in Monterey Bay (California)
at a depth of 600 m [41] (Table 1). During 3 months,
from August to October 1994, gametes at different
stages of development, including egg cells and sper-
matozoa ready for spawning, were present in the
gonads; the quantitative indices of development of
reproductive tissues varied slightly. The simultaneous
presence of gametes at different stages of develop-
ment, including mature ones, was also noted for Phre-
agena soyoae (cited as Calyptogena kilmeri, [41]), an
undescribed species of Pliocardiinae from the Blake
Ridge [29], for “Calyptogena” magnifica [13], and
C. gallardoi [43]. The asynchronous growth of oocytes
indicates an annual reproductive cycle with multiple
spawning or with continuous spawning, which is not
suggestive of a lack of seasonality in reproduction.

Studies over longer periods of time indicate possi-
ble seasonal differences in the intensity of spawning in
Pliocardiinae. As an example, from August to Novem-
RUSSIAN JOURNAL OF MARINE BIOLOGY  Vol. 45 
ber 1994 and in March 1995, Ph. soyoae (cited as
Calyptogena kilmeri [41]) occurring in a hydrocarbon
seep area in Monterey Bay at a depth of 900 m showed
an increase in the average diameter of oocytes [41].
Variations in the proportion of reproductive and
somatic tissues in the female gonads of Ph. soyoae from
June 1994 to March 1995 also indicate seasonality in
reproductive activity with peaks in November and
March; however, a certain number of mature oocytes
were present in the gonads during the entire period of
study [41]. Despite the seasonal differences, spawning
is probably possible throughout the year. Thus, 11
spawning events over 1.5 years caused by a slight
increase in temperature were reported for Ph. soyoae
from Sagami Bay (depth 1175 m) [23]. Males were the
first to spawn, followed by females, as a rule, within
the next 10 min [23]. No seasonal timing of spawning
was observed.

Size of Oocytes

According to our data, mature oocytes of C. paci-
fica from the Piip’s Volcano slope are up to 200 μm,
which falls into the size range of oocytes of C. pacifica
from Monterey Bay [41]. However, oocyte sizes are
similar in different species of Pliocardiinae (Table 1).
The oocytes of pliocardiines are among the largest for
bivalves [12]. According to traditional views, such
dimensions correspond to lecithotrophic or direct
 No. 4  2019
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Fig. 4. Spermatozoa of Сalyptogena pacifica, transmission electron micrographs. (a) Longitudinal section of sperm cell; (b) lon-
gitudinal section of acrosome; (c) transverse section of acrosome of spermatid; (d) transverse section of distal part of acrosome
of sperm; (e, f, g) transverse sections of sperm mid-piece: (e) an electron-dense lipid droplet is visible, (f) four mitochondria sur-
round the distal centriole with a f lagellum arising from it, (g) mitochondria surround mutually perpendicular proximal and distal
centrioles. Designations: ac, acrosomal complex; av, acrosomal vesicle; dc, distal centriole; f , f lagellum; imc, intermitochondrial
connection; lm, lipid material; m, mitochondrion; n, nucleus; pc, proximal centriole; pm, subacrosomal material. Scale bars:
(a) 1 μm; (b), (c), (d), (e), (f), (g) 0.5 μm. 
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types of development [6, 42], which implies a brief
planktonic larval stage. In this aspect, the assumption
of Beninger and Le Penneck [12] that the nutrient
reserves in large oocytes of the symbiotrophic bivalve
Acharax alinae (family Solemyidae) could contribute
to increasing the lifespan of the lecithotrophic larva is
very interesting. Data have accumulated that indicate
RUSSIAN JOUR
that the species distribution ranges of pliocardiines are
rather extensive, despite very special ecological
requirements and the spatial discontinuity of environ-
ments suitable for their habitation [10, 17, 37]. The
presence of a larva with an extended developmental
period would explain the genetic homogeneity, which
is often observed in spatially disjunct subpopulations
NAL OF MARINE BIOLOGY  Vol. 45  No. 4  2019
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Fig. 5. The scheme of the structure of the spermatozoa of
Calyptogena pacifica (a) and Phreagena soyoae (b) [by 23].
st, axial rod; other designations, as in Fig. 4. Scale bar: 1 μm.
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of pliocardiines [39]. It is possible that, in the case of
Pliocardiinae, as well as A. alinae, the classical con-
cept of lecithotrophic larva with a short planktonic
stage needs to be revised.

Structure of Spermatozoa
The general type of structure of the spermatozoa in

C. pacifica does not differ from that of most bivalves,
particularly those belonging to the order Venerida.
These are typical f lagellated spermatozoa, as charac-
teristic of animals with external fertilization [5, 6, 20,
22, 26, 45].

The images obtained in our study confirm the pres-
ence of intermitochondrial connections (IMCs) in the
sperm of C. pacifica. IMCs have been noted in the
spermatozoa of bivalves such as Modiolus modiolus
[32] and Glycymeris yessoensis [8]; they can be seen in
images of sperm in Mytilus edulis, Atactodea striata,
Modiolus rumphii, and Eucrassatella cumingii [14, see
Fig. 24B–E]. In addition to spermatozoa, IMCs have
been found in cells of actively functioning animal tis-
sues, such as muscle [1, 2] and nerve tissues [7]. For
the spermatozoa of Vesicomyidae, IMCs were noted
for the first time. The IMC ultrastructure is universal
among different groups; IMCs have the same param-
eters and morphological features: the gap between
mitochondria is 15–20 nm, the size of particles form-
ing the transverse connections between mitochondria
RUSSIAN JOUR
is 6–8.5 nm, and the distance between particles is up
to 13–18 nm [7]. It was suggested that the IMCs are
necessary for the formation of the energy system of the
cell, the mitochondriome, which allows rapid distribu-
tion of the energy reserves in the volume of the cell [46].

In specimens we examined, a ring of electron-
dense material located distal to the mitochondria was
found for the first time for vesicomyid spermatozoa.
This structure is presumably of a lipid nature. Lipid
material in the mid-piece of the sperm has been noted
in different groups of animals. In particular, two lipid
droplets were found in the sperm mid-piece of the
sand dollar Scaphechinus griseus (Clypeasteroida) [4].
Apparently, lipids provide an additional source of
energy for sperm, ensuring the prolongation of the
active phase.

Comparative Analysis of Pliocardiine Sperm

Despite sharing a common structural plan, the
spermatozoa of different groups of bivalves differ in
particular ultrastructural features [6, 27, 28]. Specific
features of sperm structure are among the most infor-
mative morphological characters in the systematics of
bivalve mollusks [14]. The system and phylogeny of
Pliocardiinae have been intensively developed using
morphological and molecular methods [17, 31, 38];
however, the relationships between many genera have
not been resolved thus far. The use of features of sperm
structure can be productive for solving the taxonomic
problems of the group. We compiled all of the available
information on the structure of the pliocardiine
sperm, including the data that were first obtained in
the present study for C. pacifica from the Bering Sea
(Table 1). The sizes of the head and flagellum previ-
ously reported for C. pacifica by Beninger and Le Pen-
nec [12], significantly differ from our measurements
(Table 1). In particular, according to the data of the
authors, the f lagellum of C. pacifica sperm is two times
shorter than in the specimens we studied. We believe
that the discrepancy in size may be due not to variabil-
ity of the sperm within the same species, but rather to
the incorrect identification of the species. At the time
of writing [12], the taxonomic uncertainty in the fam-
ily Vesicomyidae was very high at both the species and
generic levels (see discussion in [35]). Molecular stud-
ies have demonstrated a large number of cryptic spe-
cies within the family [25, 44]. Moreover, the above
authors [12] did not indicate the locality where their
material was collected; therefore, even indirect evi-
dence is not suggestive of the reliability of species
identification.

Information on the size, number of mitochondria,
and the nucleus shape of spermatozoa has been pub-
lished for five species from four genera of Pliocardi-
inae: C. gallardoi, C. pacifica, Ph. soyoae, “Calypto-
gena” magnifica, and Abyssogena phaseoliformis; while
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on the shape and length of the acrosome, only for
C. gallardoi, C. pacifica, and Ph. soyoae. The maxi-
mum length of the sperm head varies from 3 μm
(Calyptogena magnifica) to 4.8 μm (A. phaseoliformis);
the maximum length of the f lagellum, from 8.5 μm
(“Calyptogena” magnifica) to 26.5 ± 2.5 μm (C. gallardoi).
All studied species have four mitochondria in the mid-
piece of the spermatozoon. The nucleus is truncated
conical in shape in both species of the genus Calypto-
gena, while it is barrel-shaped in representatives of
other genera. The second character separating both
species of the genus Calyptogena is the elongated-con-
ical shape of the acrosome. Spermatozoa of Ph. soyoae
differ from the sperm of C. gallardoi and C. pacifica in
having a dome-shaped acrosome and a rod in the sub-
acrosomal material [23, Fig. 5].

Species of the genera Calyptogena and Phreagena
often form dense beds in close proximity to each other
[11, 24]. It was shown that the spawning in Ph. soyoae
can be induced by an increase in temperature of more
than 0.1°C [23]. Obviously, a change in temperature is
not a species-specific stimulus and causes spawning in
different species of bivalves living in the immediate
vicinity. In the case of mass spawning of different spe-
cies with external fertilization, significant differences
in the structure of spermatozoa may be of particular
importance, reducing the risk of fertilization of the
eggs of another species, formation of hybrids, and the
loss of valuable reproductive material.

The differences in the structure of the spermatozoa
in mollusks of the genera Calyptogena and Phreagena
support the earlier conclusions on the distant affinity
of the genera, based on the morphological character-
istics of the shells and soft body [33, 35], as well as
based on molecular markers [31]. The data obtained in
our work for the first time indicate that the ultrastruc-
tural features of spermatozoa can be used to diagnose
genera within the subfamily Pliocardiinae.
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