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RADIAL SPECTRUM OF LIGHT MESONS IN PLANAR QCD SUM

RULES AND THE SCALAR SIGMA-MESON

S. S. Afonin∗ and T. D. Solomko∗

In the framework of spectral sum rules in the planar limit of quantum chromodynamics, we propose two

new methods for calculating the spectra of light mesons based on using linear radial Regge trajectories and

the simplest quark–antiquark operators interpolating meson states. Both methods predict a resonance near

500MeV in the scalar–isoscalar channel, which hypothetically corresponds to the lightest scalar hadron,

the σ-meson. This can mean that the quark–antiquark component is strongly dominating in its structure

even if the σ-meson is a tetraquark state. In one of the methods, we obtain a reasonable agreement with

experimental data using only two input parameters: the phenomenological value of the gluon condensate

and the weak decay constant of the pion. In this case, the predicted quark condensate value agrees well

with contemporary lattice computation results.
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1. Introduction

It is well known that the nonperturbative physics of strong interactions is encoded in the values of

hadron masses. This extremely complicated physics, which is still unclear in many aspects, is most clearly

manifested in hadrons consisting of the lightest u- and d-quarks because the massesmu,d of these quarks are

much less than the characteristic scale of nonperturbative strong interactions ΛQCD. Moreover, precisely

such hadrons determine the environment. In addition to the usual nucleons and pions, the scalar σ-meson

plays an important role in nuclear physics and particle physics. For example, it is assumed that the ex-

change by this particle determines the main part of the attractive internucleon potential. The corresponding

resonance in particle physics, denoted by f0(500) [1], appears in many low-energy models of strong inter-

actions describing spontaneous breaking of the approximate chiral symmetry. Despite tremendous efforts

to study the σ-meson over more than 60 years, its nature is still the subject of hot debates, described in

detail in a recent survey [2]. Great progress in reducing the inaccuracy in determining its mass and total

decay width has occurred in recent years [1]. More and more specialists are inclined to think that this

wide resonance cannot be explained in the framework of the usual quark–antiquark meson picture [2]. The

situation could be explained by direct computations of the σ-meson mass from the Lagrangian in quantum

chromodynamics (QCD), but no convincing results in this direction have yet been obtained.

In the contemporary literature, the σ-meson, as a rule, is studied in the framework of approaches

based on the analyticity and unitarity of the S-matrix [2]. The arising models are usually not directly

related to QCD. The relation between QCD and the old approaches based on using the σ-meson, i.e.,

different effective field theories and bag models, also remains unclear [2]. In light-meson spectroscopy, the
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Shifman–Vainshtein–Zakharov (SVZ) method of spectral sum rules [3], [4], often called “ITPh” sum rules

or simply QCD sum rules, is the phenomenological approach that is probably most explicitly related to

QCD. The main idea underlying this method is the assumption that the quark–antiquark pair (or a more

complicated quark current interpolating the hadron in question) arising in the QCD vacuum perturbs it

relatively weakly. This idea allows parameterizing complex effects of the nonperturbative vacuum by several

universal phenomenological characteristics, i.e., vacuum condensates that are the average vacuum values of

various operators constructed from quark and gluon fields. The response to adding this current to the QCD

vacuum yields correlation functions of this current in the vacuum shells, which can be calculated using

the Wilson operator expansion in QCD where the corresponding operators are replaced with their vacuum

averages. It is usually further assumed that the spectral density is saturated by the peak corresponding

to the lightest resonance with quantum numbers of the constructed current after which the perturbative

continuum follows. In this case, it is unimportant whether the constructed current can exist in nature, and

we can formally calculate the response to any added current. But if at least one of the above assumptions

is false, then the method does not work. As a result, it can be assumed that hadrons with distinct quantum

numbers have distinct masses (decay constants, form-factors, etc.) because their currents interact differently

with the vacuum environment leading to different responses of the QCD vacuum to the addition of a given

current. The technical implementation of this concept turned out to be extremely fruitful for describing

hadron phenomenology, which is described the classic reviews [5]–[7]. The most current review of the SVZ

sum rules is the recent paper [8].

Here, we consider the computations of scalar and vector meson spectra in the framework of spectral

sum rules in the so-called QCD planar limit for linear radial trajectories [9]. We give the corresponding

definitions in the next section. In Sec. 2, our problem is to obtain sum rules with a minimal number of

parameters that still ensure a reasonable description of the experimental spectra: an analysis showed that

this number is two.

The most interesting results were obtained for the scalar σ-meson. It is usually assumed that the mass

of the lightest scalar quark–antiquark state is near 1GeV or above [2], [5] and the σ-meson is significantly

lighter. At present, the dominating concept of the σ-meson nature is the tetraquark interpretation [2]. Our

initial intention was to confirm the absence of a light scalar particle between quark–antiquark meson states

by using the QCD sum rules in the planar limit matched with the Regge phenomenology. But the result

turned out to be the opposite: a light scalar state can be naturally predicted. The apparent reason for this

is that in the framework of the methods presented in [2] (which are mainly based on dispersion relations

and unitarity), the description of the σ-meson is mainly “isolated in a certain sense” from the other physics.

A conceptual distinction of the spectral sum rules considered here is the close relation between the arising

σ-meson and the existence of resonances both in other channels (primarily in the vector channel) and on

the corresponding radial scalar trajectory.

In Sec. 3, we propose a new approach for considering planar QCD sum rules. The idea is to use the

Borel transform in the planar limit, which must significantly improve the convergence. Further, expressions

for the inclination a in linear spectrum (5) can be derived by the method used to determine the ground state

mass in the classical SVZ sum rules [3], [4]. In other words, we propose to consider Borelized planar sum

rules and analyze them using a well-developed technique. The value m0 (ground state mass) is regarded as

the value known from old SVZ sum rules or from experimental data. In the first case, the usual computations

of m0 by using the SVZ sum rules are only a preliminary stage in determining the complete mass spectrum

of radial excitations. An extension of the SVZ sum rules is therefore constructed that allows obtaining the

mass spectrum of radial excitations using the same number of input parameters. The main result is the

calculation of the trajectory inclination a, which is an important parameter in various theoretical studies

and in hadron phenomenology. We apply this approach to light vector, axial vector, and scalar mesons.
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In the last case, we obtain an unexpected result related to the appearance of a second scalar trajectory

starting from the light state of a mass of nearly 500MeV, which completely agrees with the approach used

in Sec. 2.

2. Planar sum rules

2.1. General scheme. The physical characteristics of hadrons are contained in different correlation

functions of quark currents with quantum numbers of the corresponding hadrons. The most important

physical characteristic of a hadron is its mass. According to the general principles of quantum field theory,

it appears as the real part of the pole of the two-point correlator 〈JJ〉, where the current J is constructed

of quark and gluon fields and interpolates the hadron in question. For example, if the scalar–isoscalar state

f0 is a usual light quark–antiquark meson without strange quarks, then the current interpolating it must

be quark and bilinear J = q̄q, where q denotes a u- or d-quark.

The SVZ sum rules follow from an analysis of the two-point correlation function

〈JJ〉 = i

∫
d4x eiqx〈0|T{J(x), J(0)}|0〉. (1)

Correlator (1) contains much dynamical information. In particular, the asymptotic behavior of expres-

sion (1) at large distances in the Euclidean space is ∼ e−m|x|, where m is the mass of the lightest hadron

with quantum numbers of the current J . This property underlies the lattice computations of hadron masses

directly from the QCD Lagrangian. Unfortunately, there are no analytic methods for calculating correla-

tor (1) because of the problem of the strong bond in hadronization. The main problem of the classical SVZ

sum rules is to calculate the hadron masses from relation (1) using some semianalytic methods supplemented

with some phenomenological input parameters. On the whole, the idea is to equate two representations of

correlator (1). The first of these representations is the Wilson operator expansion in vacuum shells, and

the second is a certain dispersion relation into which the ansatz for the spectral density is then introduced.

In the classical sum rules, this ansatz is taken in the form of a single infinitely narrow resonance in the

sum with the perturbative continuum [3]–[5], where the “continuum” origin is subsequently chosen from

the phenomenology.

From the theoretical standpoint, the zero-width approximation and the simultaneous absence of mul-

tiparticle cuts of amplitude (1) on the positive axis of the squared momentum appear in the limit of a large

number of colors Nc for the fixed product g2Nc, where g is the QCD coupling constant. This limit is often

called the ’t Hooft limit or the planar limit [10], [11], and the latter term is related to the fact that only

planar diagrams survive in this limit. It can be shown that in this case, the only poles of the two-point

correlator of the quark current J are single-hadron states [11]. For mesons, the two-point correlator has

the form

〈J(q)J(−q)〉 =
∑

n

F 2
n

q2 −M2
n

(2)

in the lowest order in 1/Nc (in the momentum space). The behavior of the main spectral characteristics is

known for large Nc: Mn = O(1) for masses, F 2
n = 〈0|J |n〉2 = O(Nc) for residues, and Γ = O(1/Nc) for the

complete widths of strong decays [11]. The asymptotic freedom in QCD dictates a logarithmic asymptotic

behavior for the left-hand side of (2) for large q2. This behavior is possible if the sum has finitely many

terms [11].

Because the right-hand side of relation (2) can be summed by the Euler–Maclaurin formula,

N∑

n=0

F 2(n)

q2 −M2(n)
=

∫ N

0

F 2(x) dx

q2 −M2(x)
+O

(
1

q2

)
, (3)
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a logarithmic asymptotic behavior arises for the residues for sufficiently large n:

F 2
n ∼ dM2

n

dn
. (4)

Under the assumption that there is a certain ansatz for the mass spectrum of radial excitations Mn, we can

sum expression (2), expand it for large spatially similar momenta Q2 = −q2, and compare the result with

the corresponding operator expansion in QCD. We then obtain a set of sum rules where each sum rule is

an equation corresponding to some k in the 1/Q2k expansion, k = 0, 1, 2, . . . , of both sides of (2).

In the simplest case, based on certain theoretical considerations (hadron string models, Veneziano

amplitude, two-dimensional QCD in the planar limit), we can choose the radial mass spectrum in the

planar limit to be linear:

M2
n = an+m2

0, n = 0, 1, 2, . . . . (5)

In this case, the inclination a in the first approximation is independent of the quantum numbers, which

can be explained by the universality of the gluodynamics determining the inclination. This Regge behavior

of the radial spectrum of light mesons has been confirmed experimentally [12], [13], and the inclinations

indeed exhibit a nearly universal behavior in experiments. Within the accuracy of the planar limit (10 to

20%), the universal behavior of the inclination is an acceptable assumption [14], [15].

In this case, relation (4) implies F 2
n ∼ const. The sum rules thus obtained are well known and have

already been used many times [16]–[22]. It is interesting to note that these sum rules also appear in the

“bottom-up” holographic approach to strong interactions (see, e.g., the discussions in [23]).

2.2. Vector mesons. Because the vector current JV
µ = q̄γµq is conserved, the vector two-point

correlator is transverse and depends only on one scalar function:

〈JV
µ (q)JV

ν (−q)〉 = (qµqν − gµνq
2)ΠV(q

2). (6)

We consider the simplest linear Regge ansatz of type (5) following the motivation discussed above:

M2
V(n) = an+M2

V, n = 0, 1, 2, . . . . (7)

Because the isosinglet and isotriplet states are degenerate in the limit of a large number of colors Nc [11],

the spectra for ω- and ρ-mesons are indistinguishable in our case. We now consider the isosinglet states.

The available experimental data suggest that the ground state is significantly below the linear tra-

jectory (see Fig. 1), and we hence distinguish the ground state from linear trajectory (7). Using spectral

representation (2), definition (6), and ansatz (7) in the Euclidean space Q2 = −q2, we obtain

ΠV(Q
2) =

F 2
ω

Q2 +M2
ω

+

∞∑

n=0

F 2

Q2 + an+M2
V

. (8)

It follows from the arguments presented in Sec. 1 that the residues F 2 of excited states in (8) can be taken

to be constant.

In the chiral and planar limits (setting Nc = 3 at the end), the operator expansion of the vector

correlator for large Q2 has the form [3], [4]

ΠV(Q
2) = − C0

8π2
log

Q2

µ2
+

1

24Q4

αs

π
〈(Ga

µν )
2〉 − 14

9

παs

Q6
〈q̄q〉2 + . . . , (9)

where 〈(Ga
µν )

2〉 and 〈q̄q〉 denote the gluon and quark condensates.
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m2
n
, GeV2

Fig. 1. Hypothetical spectrum of ω-mesons (circles) and f0-mesons (crosses) [1]: the crosses are

drawn with a large fixed horizontal size to visualize the position of scalar resonances. The resonance

f0(1500) is eliminated because the available data indicate the global nature of this state (see [1]). The

graph is taken from [27].

We note that the coefficient 14/9 in the last term is related to precisely the planar limit. This coefficient

generally contains multipliers related to the number of colors Nc,

N2
c − 1

N2
c

· 14
9
,

and for Nc = 3, the coefficient must be 112/81, but it turns out that the correct value is 14/9 in the planar

limit (Nc → ∞).

It follows from the principles of the classical QCD sum rules [3], [4] that these vacuum characteristics

must be universal, i.e., independent of the quantum numbers of the quark current J . The multiplier C0

has a perturbative correction C0 = 1+ αs/π to the leading logarithm but can be suppressed in our case of

large Nc, and we hence set C0 = 1.

We can rewrite expression (8) using the function ψ, i.e., the logarithmic derivative of the function Γ:

∞∑

n=0

1

n+ a
= −ψ(a) + const. (10)

This function has the asymptotic expansion for large argument values

ψ(z) = log z − 1

2z
−

∞∑

k=1

B2k

2kz2k
, (11)

where B2k are Bernoulli numbers. These formulas can be used to expand correlator (8) for large Q2.

Introducing the dimensionless variables

mv =
MV√
a
, mω =

Mω√
a
, f =

F√
a
, fω =

Fω√
a
, (12)
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we obtain

ΠV(Q
2) = −f2 log

Q2

µ2
+

a

Q2

[
f2
ω − f2

(
m2

v −
1

2

)]
+

+
a2

Q4

[
−f2

ωm
2
ω +

1

2
f2

(
m4

v −m2
v +

1

6

)]
+

+
a3

Q6

[
f2
ωm

4
ω − 1

3
f2m2

v

(
m2

v −
1

2

)
(m2

v − 1)

]
+ . . . . (13)

We obtain the planar sum rules for linear spectrum (7) by comparing the terms with like powers of 1/Q2

in (13) and (9).

2.3. Axial vector mesons. The axial vector current JA
µ = q̄γµγ5q is not conserved, and the axial

two-point correlator hence has two independent contributions:

〈JA
µ (q)JA

ν (−q)〉 = ΠA(q
2)qµqν − Π̃A(q

2)gµν . (14)

The sum rules for ΠA and Π̃A differ, and ΠA therefore contains an additional term from the pole of the

π-meson because of the spontaneous chiral symmetry breaking:

JA
µ ∼ fπ ∂µπ.

In our normalization, the weak decay constant of the π-meson is fπ = 93MeV. The transverse part in (14)

is usually separated [24] by adding and subtracting the term gµνq
2ΠA and considering the sum rules for

ΠA together with the sum rules for ΠV. Strictly speaking, the obtained sum rules are the sum rules not for

the axial vector current but for its divergence.

We consider the linear ansatz for the radial axial spectrum with the same value of the trajectory

inclination as in the case of vector mesons. The axial analogue of correlator (8) has the form

ΠA(Q
2) =

f2
π

Q2
+

∞∑

n=0

F 2

Q2 + an+M2
A

. (15)

Strictly speaking, we must consider the isosinglet η-meson instead of the π-meson. But if there are only

two flavors, the difference is insignificant in the limit of large Nc. Operator expansion (15) becomes [3], [4]

ΠA(Q
2) = − C0

8π2
log

Q2

µ2
+

1

24Q4

αs

π
〈(Ga

µν)
2〉+ 22

9

παs

Q6
〈q̄q〉2 + . . . . (16)

We note that only the last terms differ in (9) and (16).

Proceeding as in the vector case and using dimensionless variables (12) (ma =MA/
√
a), we obtain

ΠA(Q
2) = −f2 log

Q2

µ2
+

a

Q2

[
f2
π

a
− f2

(
m2

a −
1

2

)]
+

+
a2

Q4

f2

2

(
m4

a −m2
a +

1

6

)
− a3

Q6

f2

3
m2

a

(
m2

a −
1

2

)
(m2

a − 1) + . . . . (17)

As in the vector case, the axial sum rules can be obtained by comparing (16) and (17).
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2.4. Sum rules in the vector case. As already explained, the set of vector and axial sum rules

can be obtained by equating the terms with logQ2, 1/Q2, 1/Q4, and 1/Q6 in (9) and (13) and in (16)

and (17). Our “initial” data are the constant fπ and the gluon condensate (αs/π)〈(Ga
µν )

2〉. One of the

results of the calculations is the value of the condensate αs〈q̄q〉2 of dimension six, which has a rather small

but still nonzero anomalous dimension. The sum rules turn out to be consistent for some value of this

condensate, which can be used to obtain the quark condensate on a certain renormalization scale. For

1/Q6, we therefore have only one sum rule, which follows from comparing the 1/Q6 terms in (13) and (17)

with the multiplier −7/11 (just as is prescribed by operator expansions (9) and (16)). The obtained set of

equations has the form

f2 =
1

8π2
,

f2

(
m2

v −
1

2

)
= f2

ω,

af2

(
m2

a −
1

2

)
= f2

π,

a2
[
−f2

ωm
2
ω +

1

2
f2

(
m4

v −m2
v +

1

6

)]
=

1

24

αs

π
〈(Ga

µν )
2〉,

a2f2

(
m4

a −m2
a +

1

6

)
=

1

12

αs

π
〈(Ga

µν)
2〉,

f2
ωm

4
ω − 1

3
f2m2

v

(
m2

v −
1

2

)
(m2

v − 1) =
7

33
f2m2

a

(
m2

a −
1

2

)
(m2

a − 1).

(18)

We have a system of six polynomial equations with six variables (a, m2
v, m

2
ω, m

2
a, f

2, and f2
ω) and the

input data fπ = 93MeV and (αs/π)〈(Ga
µν )

2〉 = (360±20MeV)4. This system can be solved numerically. To

show that the solutions are sensitive to the choice of the input data, we also calculate the case fπ = 87MeV

(the hypothetical value of fπ in the chiral limit [25]) and analyze the indeterminacy due to the inaccuracy

of the gluon condensate value. The physical solutions are shown in Table 1.

Table 1

fπ = 93 MeV fπ = 87MeV

a 1.43(2) 1.32(2)

MV 1.60(4) 1.45(4)

MA 1.31(1) 1.21(1)

Mω 0.79(3) 0.69(3)

F 0.16 0.15

Fω 0.14 0.13

(−〈q̄q〉)1/3 0.30(1) 0.27(1)

Numerical solutions (GeV).

For the condensate αs〈q̄q〉2 of dimension six, the self-consistent solution appears for the choice of

αs ≃ 1/π ≃ 0.3, which corresponds to the scale µ ≃ 2GeV. The obtained quark condensate value hence

corresponds to this scale. Table 1 shows that the obtained values are significantly greater than (0.23GeV)3

in absolute value, which follows from the Gell-Mann–Oakes–Renner formula for the pion mass, m2
πf

2
π =

−(mu +md)〈q̄q〉. But we must bear in mind that this is an approximate formula.
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The contemporary average value of the quark condensate obtained by lattice computations is near

−(0.27GeV)3 on the scale µ ≃ 2GeV [26]. And we reconstructed precisely this value in the chiral limit!

The data in Table 1 can be used to calculate the mass spectrum. The masses of the first three states

are given in Table 2.

Table 2

Case n 0 1 2

fπ = 93MeV MV(n) 0.79 1.60 2.15

MA(n) 1.31 1.93 2.41

fπ = 87MeV MV(n) 0.69 1.45 1.96

MA(n) 1.21 1.79 2.22

Masses of the first three predicted states (GeV).

Taking the above assumptions into account, we can conclude that the obtained solution well describes

the corresponding phenomenology: the masses of ground states are close to the experimental masses of the

unflavored vector ω(782)-meson and axial vector f1(1285)-meson [1].

There are some contradictions in interpreting the experimental data and determining real physical

masses for the radially excited states [1]. If we speak about the qualitative characteristics of the model, then

we note that the obtained masses are apparently near the experimental masses and hence seem reasonable.

2.5. Sum rules in the scalar case. We consider the two-point correlator of the scalar–isoscalar

current JS = q̄q. Its resonance representation has the form

ΠS(q
2) = 〈JS(q)JS(−q)〉 =

∑

n

G2
nM

2
S(n)

q2 −M2
S(n)

, (19)

where the residues are determined by the formula 〈0|JS|n〉 = GnMS(n). As in the vector cases, we consider

the linear radial spectrum with a universal inclination:

M2
S(n) = an+M2

S , n = 0, 1, 2, . . . . (20)

Moreover, for consistency with the operator expansion, we assume that all analogues of the decay constants

are equal to each other as in the vector channel: Gn = G.

Because we cannot state in advance that the lightest scalar meson belongs to the scalar radial trajectory,

we consider two possibilities: (a) the ground state (n = 0) is on linear trajectory (20) or (b) the state with

n = 0, which is further called σ, is not described by linear spectrum (20). The second assumption seems

more physical (see Fig. 1). The corresponding spectral expansions in the Euclidean space have the forms

Π
(I)
S (Q2) =

∞∑

n=0

G2(an+M2
S)

Q2 + an+M2
S

, (21)

Π
(II)
S (Q2) =

G2
σM

2
σ

Q2 +M2
σ

+

∞∑

n=1

G2(an+M2
S)

Q2 + an+M2
S

. (22)

Proceeding as in the vector case, we calculate expansions (21) and (22) for large Q2 and compare them with

the operator expansion of scalar correlator (19). Introducing the dimensionless variables ms =MS/
√
a and
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g = G/
√
a, we obtain expansions in the forms

Π
(I)
S (Q2) = g2Q2 log

Q2

µ2
− a2

Q2

g2

2

(
m4

s −m2
s +

1

6

)
+

+
a3

Q4

g2

3
m2

s

(
m2

s −
1

2

)
(m2

s − 1) + . . . , (23)

Π
(II)
S (Q2) = g2Q2 log

Q2

µ2
+
G2

σM
2
σ

Q2
− a2

Q2

g2

2

(
m4

s +m2
s +

1

6

)
−

− G2
σM

4
σ

Q4
+
a3

Q4

g2

3
m2

s

(
m2

s +
1

2

)
(m2

s + 1) + . . . . (24)

The operator expansion of correlator (19) in the chiral limit and in the limit of large Nc [5] has the form

ΠS(Q
2) =

3C0

16π2
Q2 log

Q2

µ2
+

1

16Q2

αs

π
〈(Ga

µν )
2〉 − 11

3

παs

Q4
〈q̄q〉2 + . . . , (25)

where

C0 = 1 +
11αs

3π
. (26)

The contribution of the perturbative correction to the factor before the logarithm can now be greater than

30%, which is much greater than in the vector channels, and can hence be easier to take into account.

Comparing the logarithmic terms, we obtain

g2 =
3C0

16π2
. (27)

We consider assumption a. From (23) and (25), we obtain two sum rules:

3C0

2π2
a2
(
m4

s −m2
s +

1

6

)
= −αs

π
〈(Ga

µν)
2〉,

3C0

16π2
a3m2

s

(
m2

s −
1

2

)
(m2

s − 1) = −11παs〈q̄q〉2.
(28)

Substituting the numerical values of a and 〈q̄q〉 from the solutions of the vector sum rules (Table 1), we

obtain two independent polynomial equations. If we neglect the perturbative correction in (26) (C0 = 1),

then we see that for fπ = 93MeV,1 Eqs. (28) have a common approximate solution m2
s ≃ 0.74, which leads

to the radial scalar spectrum MS(n) ≃ 1.23, 1.89, 2.37, . . . GeV. If we include the perturbative correction,

then the general solution disappears.

We now study the more physical assumption b. Comparing (24) with operator expansion (25), we

obtain the sum rules

G2
σM

2
σ − 3C0

32π2
a2
(
m4

s +m2
s +

1

6

)
=

1

16

αs

π
〈(Ga

µν )
2〉, (29)

− 3G2
σM

4
σ +

3C0

16π2
a3m2

s

(
m2

s +
1

2

)
(m2

s + 1) = −11παs〈q̄q〉2. (30)

We have two equations with three unknowns ms, Mσ, and Gσ. Eliminating Gσ from them, we obtain the

relation for the σ-meson mass as a function of the parameter m2
s:

M2
σ =

(C0/16π
2)a3m2

s(m
2
s + 1/2)(m2

s + 1) + (11/3)παs〈q̄q〉2
(3C0/32π2)a2(m4

s +m2
s + 1/6) + (αs/16π)〈(Ga

µν)
2〉 . (31)

1If we take fπ = 87MeV, then the solution m2
s
≃ 0.72 implies the spectrum MS(n) ≃ 1.12, 1.73, 2.17, . . . GeV.
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GeV

Fig. 2. Values of Mσ, Gσ, G and the masses of the first state on the scalar trajectory MS(1) (in

GeV) obtained from (31) and (29) (or (30)) and (27) as functions of the dimensionless parameter m2
s

and M2

S(1) = a(1 +m2
s
) in (20).

The “decay constant” Gσ as a function of m2
s can be obtained by substituting (31) in (29) or (30). Plots of

Mσ, Gσ, G =
√
ag (where g is defined in (27)), and the mass of the first state on the scalar trajectory are

shown in Fig. 2. They are obtained using the input data given in Table 1 for fπ = 93MeV and αs ≃ 1/π

in (26). The parameter m2
s can be negative because the sum in (22) starts from n = 1.

Another version of input data corresponding to fπ = 87MeV in Table 1 and with αs = 0 in (26)

implies that the masses are shifted by 70 to 80MeV, which lies within the accuracy of the limit of large

Nc. The general picture shown in Fig. 2 remains the same in this case. Considering the negative free

term m2
s of the linear ansatz, we can immediately see the nonphysical behavior for relatively small values

of m2
s. The mass MS(1) is rather stable and reconstructs the value of the mass of the a0(1450)-meson,

Ma0(1450) = 1474± 19MeV [1]. Its isosinglet partner (a candidate is the f0(1370)-meson) must degenerate

with a0(1450) in the planar limit.

The plot in Fig. 2 demonstrates that the real prediction for Mσ is rather sensitive to the free term of

the linear scalar trajectory, although Mσ was not originally described by linear spectrum (20). Conversely,

the expected value of Mσ (near 0.5GeV [1]) imposes a strong constraint on the possible values of m2
s. The

graph in Fig. 2 shows that the value of m2
s is close to zero.

Although both the ω-meson and the σ-meson are not on the corresponding linear trajectories (as

assumed, e.g., in Fig. 1), there is still a difference between them in their analysis. In the vector case, it was

important that the sum in (8) starts from n = 0 and we can hence compare the expansion in resonances in

the vector case with expansion (15) in the axial case. If we start from n = 0 in scalar channel (22), then

the signs of the numerator and denominator in (31) depend on the value of m2
s:

M2
σ =

(C0/16π
2)a3m2

s(m
2
s − 1/2)(m2

s − 1) + (11/3)παs〈q̄q〉2
(3C0/32π2)a2(m4

s −m2
s + 1/6) + (αs/16π)〈(Ga

µν)
2〉 , (32)

which makes the prediction for Mσ extremely unstable and indeterminate. The σ-meson is not unusual in

this sense, because its mass belongs to the radial scalar trajectory. Its mass is simply not described by linear

ansatz (20). This interpretation can be additionally motivated by comparing the residues: Gσ is somewhat

below G. Physically, this means that the external source of scalar mesons (a certain scalar current) creates

the lightest state with a probability close to the probability of creating other scalar resonances. In the range

of our error, the interaction between σ-mesons and this source is a bit suppressed.

It is interesting to try to assume the complete universality of the residues (Gσ = G) from the very

beginning. After this substitution, sum rules (29) and (30) (or their analogues if we begin with n = 0
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in (22); the shift arising in this case does not affect the results) are two equations with two unknowns M2
σ

and m2
s. This system has four numerical solutions. Two of them are not physical, because they do not

lead to tachyonic masses. The third solution (in dimensionless variables, mσ =Mσ/
√
a, ms =MS/

√
a, and

for fπ = 93MeV) is (m2
σ,m

2
s) ≃ (0.742, 0.739), which reproduces the solution for possibility a above. This

solution corresponds to the branch where the condensates in the right-hand sides of Eqs. (29) and (30) can

be neglected. The fourth solution (m2
σ,m

2
s) ≃ (0.074,−0.040) predicts the value Mσ ≃ 0.39GeV and the

radial spectrum MS(n) ≃ 1.40, 2.01, . . . GeV. These values (except the masses of higher excitations) can

be seen in Fig. 2; they correspond to the point of intersection of the lines G and Gσ. This solution is most

interesting: the obtained mass of the σ-meson is close to the expected domain of masses [1] and the radial

spectrum seems rather reasonable.

Our prediction of the Regge trajectory with the σ-meson on it apparently contradicts the studies of

the σ state on the complex Regge trajectory, which show that the corresponding state cannot belong to the

usual Regge trajectory because of a very large width [2], [28]. But it is not excluded that this observation can

simply indicate the restrictions of the usual methods used to describe the ππ scattering. These methods

are based on the property of the S-matrix to be analytic and unitary and do not contain dynamical

assumptions, at least not explicitly. The origin of a very large width for the f0(500)-meson is most likely a

certain dynamical effect. Therefore, it is necessary to use dynamical approaches to discover the true nature

of the σ-meson. Such approaches must simultaneously describe all resonances on the scalar trajectory and

in other channels (vector and tensor mesons). This property originally underlies the considered spectral

sum rules, which makes this method conceptually different from the dispersion approaches.

Our analysis thus demonstrates that the existence of a light scalar state together with the structure of

planar sum rules in the scalar channel can also be obtained naturally from the Regge phenomenology.

3. Borelized sum rules

3.1. Derivation of Borelized sum rules. The classical SVZ sum rules for light hadrons are formed

in the Borelized version [3], [4]. We construct a generalization of this formalism to the case of infinitely

many meson states expected in the planar limit. We first consider the case of vector mesons consisting of

only u- and d-quarks in detail.

The operator expansion for the correlator of vector currents has the form

Π(Q2) = − 1

8π2
log

Q2

µ2
+

1

Q4
〈mq̄q〉+ 1

24Q4

αs

π
〈(Ga

µν )
2〉 − 14

9

παs

Q6
〈q̄q〉2. (33)

This expansion without the second term was also used in Sec. 2 (see (9)). That term appears if we abandon

the assumption of the chiral limit but preserve the contribution linear in the quark masses (see, e.g., [5]).

We apply the Borel transform

LM (Q2) = lim
Q2,n→∞
Q2/n=M2

1

(n− 1)!
(Q2)n

(
− d

dQ2

)n

to the operator expansion of correlator (33):

LMΠ(Q2) =
1

8π2
+

1

M4
〈mq̄q〉+ 1

24M4

αs

π
〈(Ga

µν)
2〉 − 7

9

παs

M6
〈q̄q〉2.

We then consider the expansion of the correlator in an infinite sum over resonances:

Π(q2) =
∑

n

F 2

q2 −m2
n − iε

.
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We separate the imaginary part of this expansion using the Sokhotskii formula,

ImΠ(q2) =
∑

n

πF 2δ(q2 −m2
n).

The dispersion relation for this correlator has the form (we omit the inessential subtraction)

Π(q2) =
1

π

∫ ∞

s0

ds
ImΠ(s)

s− q2 − iε
.

Applying the Borel transform to it, we obtain

LMΠ(q2) =
1

πM2

∫ ∞

s0

e−s/M2

ImΠ(s) ds.

We substitute the imaginary part in the Borel transform for the dispersion relation and integrate:

1

πM2

∫
ds e−s/M2

∑

n

πF 2δ(s−m2
n) =

F 2

M2

∑

n

e−m2

n
/M2

. (34)

We substitute linear mass spectrum (5) and sum relation (34) as a geometric progression:

∑

n

e−m2

n
/M2

= e−m2

0
/M2

∑

n

e−a·n/M2

=
e−m2

0
/M2

1− e−a/M2
.

After several transformations, we equate both expansions of the correlator:

F 2e−m2

0
/M2

1− e−a/M2
=
M2

8π2

[
1 +

h1
M2

+
h2
M4

+
h3
M6

]
. (35)

We here let hi denote the coefficients of the corresponding powers of 1/M2, which in our example of vector

mesons have the forms

h1 = 0, h2 = 8π2〈mq̄q〉+ π2

3

αs

π
〈(Ga

µν )
2〉, h3 = −56

9

π3αs

M6
〈q̄q〉2.

We differentiate Eq. (35) with respect to 1/M2. The derivative of the left-hand side is

F 2e−m2

0
/M2 −m2

0(1− e−a/M2

)− ae−a/M2

(1− e−a/M2)2
.

For the right-hand side, we obtain

−M
4

8π2

[
1 +

h1
M2

+
h2
M4

+
h3
M6

]
+
M2

8π2

[
h1 +

2h2
M2

+
3h3
M4

]
= −M

4

8π2

[
1− h2

M4
− 2h3
M6

]
.

Dividing the differentiated parts of the equation by the original parts, we obtain

−m2
0(1− e−a/M2

)− ae−a/M2

1− e−a/M2
= −m2

0 −
ae−a/M2

1− e−a/M2

for the left-hand side and

− M2[1− h2/M
4 − 2h3/M

6]

1 + h1/M2 + h2/M4 + h3/M6
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for the right-hand side. The last two expressions must equal each other, which allows writing the expression

for the squared ground-state mass m2
0:

m2
0(M

2; a) =
M2[1− h2/M

4 − 2h3/M
6]

1 + h1/M2 + h2/M4 + h3/M6
− a

ea/M2 − 1
. (36)

The obtained formula can also be applied in other cases; it is only necessary to change the coefficients

hi (the coefficients for different cases are given in Table 3). For example, if we consider φ-mesons consisting

of strange quarks, then an additional correction of the order of 1/Q2 arises in the operator expansion [5],

which leads to the nonzero coefficient h1. A similar situation arises if the axial vector correlator for the

divergence current is considered (see Sec, 2.3): a term related to the pole of π-meson and proportional to

1/M2 appears.

Table 3

Case h1 h2 h3

ρ 0 8π2〈mq̄q〉+ π2

3
αs

π 〈(Ga
µν )

2〉 − 56
9 π

3αs〈q̄q〉2

φ −6m2
s 8π2〈mss̄s〉+ π2

3
αs

π 〈(Ga
µν)

2〉 − 56
9 π

3αs〈s̄s〉2

a1 (for ∂µj
µ
a1
) −8π2f2

π −8π2〈mq̄q〉+ π2

3
αs

π 〈(Ga
µν)

2〉 88
9 π

3αs〈q̄q〉2

a1 (for jµa1
) 0 8π2〈mq̄q〉 − π2

3
αs

π 〈(Ga
µν )

2〉 − 176
9 π3αs〈q̄q〉2

a1 (with s-quark) −6m2
s 8π2〈mss̄s〉 − π2

3
αs

π 〈(Ga
µν)

2〉 − 176
9 π3αs〈s̄s〉2

f0 0 8π2〈mq̄q〉+ π2

3
αs

π 〈(Ga
µν )

2〉 − 176
9 π3αs〈q̄q〉2

f0 (with s-quark) −6m2
s 8π2〈mss̄s〉+ π2

3
αs

π 〈(Ga
µν)

2〉 − 176
9 π3αs〈s̄s〉2

Expressions for the coefficients hi.

3.2. Scalar case. We must consider the scalar mesons separately because the calculations and the

results differ noticeably from the vector analogue; the difference is related to the greater dimension of the

correlator. Moreover, there are differences in the coefficients of the operator expansion:

ΠS(Q
2) =

3

8π2
Q2 log

Q2

µ2
+

3

Q2
〈mq̄q〉+ 1

8Q2

αs

π
〈(Ga

µν)
2〉 − 22

3

παs

Q4
〈q̄q〉2.

The expansion in resonances has the form

ΠS(p
2) =

∑

n

F 2m2
n

p2 −m2
n − iε

.

Applying the Borel transform to the dispersion relation for this correlator, we obtain an expression that

can be summed as

∑

n

πF 2m2
ne

−m2

n
/M2

= πF 2e−m2

0
/M2

∑

n

[
m2

0e
−a·n/M2

+ ane−a·n/M2

]
=

= πF 2e−m2

0
/M2

[
m2

0

1− e−a/M2
+

aea/M
2

(ea/M2 − 1)2

]
.
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As a result, we have the equation

F 2e−m2

0
/M2

[
m2

0

1− e−a/M2
+

aea/M
2

(ea/M2 − 1)2

]
=

3M4

8π2

[
1 +

h2
M4

+
h3
M6

]
.

where we use a notation hi similar to that introduced in Sec. 3.1. We differentiate this equation with respect

to 1/M2 and divide it by itself. For the right-hand side (denoted by −L), we obtain

− M2[2− h3/M
6]

1 + h2/M4 + h3/M6
≡ −L.

After several transformations, the same operations with the left-hand side lead to the expression

−a
2(ea/M

2

+ 1) + 2am2
0(e

a/M2 − 1) +m4
0(e

a/M2 − 1)2

(ea/M2 − 1)(a−m2
0 +m2

0e
a/M2 )

.

As a result, we have the equation for m2
0:

a2(ea/M
2

+ 1) + 2am2
0(e

a/M2 − 1) +m4
0(e

a/M2 − 1)2 = L(ea/M
2 − 1)(a−m2

0 +m2
0e

a/M2

).

Collecting similar terms, we finally obtain the squared equation:

m4
0(e

a/M2 − 1)2 +m2
0(e

a/M2 − 1)[2a− L(ea/M
2 − 1)] + a2(ea/M

2

+ 1)− La(ea/M
2 − 1) = 0. (37)

It has two solutions:

m2
0(a;M

2) =
1

2

[
2a

1− ea/M2
+ L−

√
−4a2ea/M2 + L2(ea/M2 − 1)2

ea/M2 − 1

]
,

m2
0(a;M

2) =
1

2

[
2a

1− ea/M2
+ L+

√
−4a2ea/M2 + L2(ea/M2 − 1)2

ea/M2 − 1

]
.

(38)

We discuss an interpretation of these two solutions below.

We note that this method can also be applied in several other cases: for scalar mesons with strange

quarks and also for axial vector mesons if the current itself is considered rather than the current divergence

(see Sec. 3.1). This allows considering axial mesons containing the s-quark.

3.3. Mass spectra. The problem of calculating the mass spectrum reduces to the problem of de-

termining the linear trajectory inclination and the ground state mass. We assume that the ground state

masses are the initial data and prescribe them using the values obtained by the “classical” sum rules in [5].

After the ground state masses are prescribed, we must correctly choose the value of M2 to calculate

the inclination of trajectories by formula (36). In some cases, there is the so-called Borel window, i.e.,

the domain of values of the parameter M where the ground state mass is independent of this parameter.

According to [3], [29], this domain is determined by an extremum of the function m2
0(M

2), and the position

of this extremum determines the value of M2. In the situation where the Borel window is absent or is

weakly expressed, we must use the limit as M2 → ∞.

Table 5 presents the calculated mass spectra for all studied cases. For comparison, we also present

experimental data taken from [1]. All masses are given in MeV. The error arising in determining m0 leads

to errors in calculating the inclination and hence the mass spectrum. Taking these errors into account, we
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still do not need to consider the errors related to other external parameters (e.g., the condensate), because

they have already been taken into account in calculating the classical sum rules.

Table 4

Case h1 h2 h3

ρ 0 0.032 −0.030

φ −0.101 −0.089 −0.019

a1 (for ∂µj
µ
a1
) −0.674 0.046 0.048

a1 (for jµa1
) 0 −0.046 −0.095

a1 (with s-quark) −0.101 −0.167 −0.061

f0 0 0.032 −0.095

f0 (with s-quark) −0.101 −0.089 −0.061

Values of the coefficients hi.

We take the values (αs/π)〈(Ga
µν )

2〉 = (330MeV)4 and 〈q̄q〉 = −(250MeV)3 for the external parameters,

the quark and gluon condensates. We note that these values differ from the condensate values in Sec. 2.

This can be explained because we used condensate values that were used in calculations in the classical

sum rules for self-consistency. Using the value mu +md ≈ 10.7MeV for µ = 1GeV for the masses of light

quarks, we can obtain the condensate value 〈mq̄q〉 = −(95.6MeV)4.

In the case of the φ-meson, we must use somewhat different condensate values because the strange

quark is involved: 〈s̄s〉 = 0.8〈q̄q〉 = −(232MeV)3 and 〈mss̄s〉 = −(201MeV)4. Moreover, we need the

constants fπ = 93MeV, ms = 130MeV, and αs = 0.7 (for µ = 1GeV). These constants allow determining

the coefficients h1 and h2. But for self-consistency, it seems reasonable to use the value of the coefficient

h3 given in [4] for the vector case and to multiply this value by an appropriate factor in the other cases.

As a result, we obtain the values of the coefficients hi given in Table 4.

Figure 3 shows the plots of Borel windows in different cases. As already mentioned, a Borel window

is not always present. For example, in the case of sum rules for the current of the a1-meson, there are two

solutions, and both of them have no Borel window. In the sum rules for the divergence, the situation is

somewhat different. In the “classical” sum rules, there is no extremum in M2, and we must therefore take

the limit values as M2 → ∞ in the calculations. Nevertheless, the plot shows that there is still a Borel

window but related to the maximum instead of the minimum. The value at the maximum is ≈ 1250MeV,

which is near the experimental value. As a result, we can calculate two versions of the spectrum: one for

the maximum, and the other of the limit value as M2 → ∞. But in the scalar case, there are two solutions

and hence two trajectories in the plot. It can be seen that the second solution is below the first and has

the value ≈ 0.62GeV. This lower solution can be interpreted as the second trajectory of scalar mesons with

f0(500) as the ground state.

Table 5 presents the mass spectra calculated using the trajectory inclinations obtained from Borel

windows and with the experimental data for comparison. As experimental data for the ground state mass

in the case of the a1-meson with a strange quark, we use the value of the mass of the axial resonance

f1(1510). For the f0-meson with a strange quark, it is rather difficult to compare the obtained values with

experimental data because it is difficult to determine which of the observed scalar mesons contain strange

quarks and which do not. We note that the data for the resonance f0(1200− 1600) [1] are close to the used

value of the ground state mass.

4. Conclusion

In Sec. 2, we considered the spectral QCD sum rules in the limit of a large number Nc of colors under

the assumption that the Regge spectrum is linear with a universal inclination for radial excitations of
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m0, GeV m0, GeV

M2, GeV2 M2, GeV2

a b

m0, GeV m0, GeV

M2, GeV2 M2, GeV2

c d

m0, GeV m0, GeV

M2, GeV2 M2, GeV2

e f

m0, GeV

M2, GeV2

g

Fig. 3. Borel windows for different meson channels: (a) ρ-meson, (b) φ-meson, (c) a1-meson (for the

divergence), (d) a1-meson (for the current2), (e) a1-meson with s-quark,3 (f) f0-meson (two solutions),

and (g) f0-meson with s-quark (two solutions).

isosinglet vector, axial, and scalar mesons. The choice of the spectrum is motivated by models of hadron

strings and related approaches and also by meson spectroscopy. The considered ansatz allows solving the

arising sum rules with a minimum number of input parameters. Because it is impossible to use the QCD

sum rules to obtain either the scale of QCD masses or the scale of spontaneous chiral symmetry breaking,

the minimum number of free parameters is two. In our method, these parameters are the gluon condensate

and the weak decay constant of the π-meson.

2The lower solution attains the value ≈ 0.487 as M2
→ ∞.

3The lower solution takes complex values beyond the domain shown on the graph. The main solution has a barely
distinguishable Borel window and diverges as M2

→ ∞.
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Table 5

Case a, GeV2 n 0 1 2 3

ρ 1.5195± 0.0695
Comput. 70± 10 1450± 20 1910± 40 2230± 50

Exper. 770± 10 1465± 25 1909± 17± 25 2265± 40

φ 1.8955± 0.0565
Comput. 1010± 10 1710± 20 2190± 30 2590± 30

Exper. 1010± 10 1680± 20 2188± 10 —

a1 (for ∂µj
µ
a1
) 1.3± 0.184

Comput.
1150± 40 1620± 60 1980± 90 2280± 120

1250 1690± 50 2040± 90 2330± 120

Exper. 1010± 10 1680± 20 2188± 10 —

a1 (for jµa1
) 1.561± 0.124

Comput. 1150± 40 1700± 40 2110± 60 2450± 80

Exper. 1230± 40 1647± 22 1930+30
−70 2270+55

−40

a1 (with s-quark) 2.3365± 0.1305
Comput. 1470+30

−10 2120± 30 2610± 50 —

Exper. 1518± 5 2096± 17± 121 — —

f0 1.384± 0.069

Comput. 1000± 30 1540± 20 1940± 40 2270± 50

Exper. 990± 20 1504± 6 1992± 16 2189± 13

Comput. 620 1330± 30 1780± 40 2130± 50

Exper. 400–550 1200–1500 1723+6
−5 2101± 7

f0 (with s-quark) 1.886 Comput. 1350 1930 2370 2740

Calculated mass spectra of radial excitations of mesons for different meson channels and their comparison with experimental data: for the

f0-meson, the mass spectra are given for both trajectories.

1
0
9
1



Solving the arising equations numerically, we reconstruct the physical mass of the ω(782)-meson and

the value of the quark condensate that agrees well with the results of lattice computations. The radial

spectrum of vector and axial states is also reasonable.

We then used the obtained values of radial trajectory inclinations and the quark condensate to analyze

the scalar case. It turned out that by interpolating the scalar states by the simplest bilinear quark current,

we can naturally obtain a light scalar resonance in the range 500 ± 100MeV. This could not be done

previously in the framework of QCD sum rules (except where the isoscalar scalar was still interpolated by

the pure gluon operator [20]). The obtained scalar state can be identified as the f0(500)-meson, also called

a σ-meson, which is traditionally regarded as an unusual particle [2]. Our analysis shows that at least the

value for the mass of the f0(500)-meson is not unusual. We demonstrated that although the mass of the

lightest scalar meson is not on the scalar radial Regge trajectory, it still strongly correlates with the mass

parameters of this trajectory.

In Sec. 3, we considered the Borelized sum rules, which have also been widely studied in the literature.

But instead of studying finitely many esonances and the continuous spectrum after them, we used the

infinite discrete spectrum. This allowed obtaining some new results. We proposed a method for calculating

the inclination of linear trajectories and a related new scheme for calculating the masses of radial excitations.

A very unexpected result is that in the framework of the approach developed above, we also obtained a

solution predicting a light scalar meson that can be compared to the f0(500)-meson.

If our conclusions are valid, then this means that the quark–antiquark component in the structure of

the σ-meson strongly dominates even if it is a tetraquark state.
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