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RADIAL SPECTRUM OF LIGHT MESONS IN PLANAR QCD SUM
RULES AND THE SCALAR SIGMA-MESON

S. S. Afonin* and T. D. Solomko*

In the framework of spectral sum rules in the planar limit of quantum chromodynamics, we propose two
new methods for calculating the spectra of light mesons based on using linear radial Regge trajectories and
the simplest quark—antiquark operators interpolating meson states. Both methods predict a resonance near
500 MeV in the scalar—isoscalar channel, which hypothetically corresponds to the lightest scalar hadron,
the o-meson. This can mean that the quark—antiquark component is strongly dominating in its structure
even if the o-meson is a tetraquark state. In one of the methods, we obtain a reasonable agreement with
experimental data using only two input parameters: the phenomenological value of the gluon condensate
and the weak decay constant of the pion. In this case, the predicted quark condensate value agrees well

with contemporary lattice computation results.
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1. Introduction

It is well known that the nonperturbative physics of strong interactions is encoded in the values of
hadron masses. This extremely complicated physics, which is still unclear in many aspects, is most clearly
manifested in hadrons consisting of the lightest u- and d-quarks because the masses m,, 4 of these quarks are
much less than the characteristic scale of nonperturbative strong interactions Aqcp. Moreover, precisely
such hadrons determine the environment. In addition to the usual nucleons and pions, the scalar o-meson
plays an important role in nuclear physics and particle physics. For example, it is assumed that the ex-
change by this particle determines the main part of the attractive internucleon potential. The corresponding
resonance in particle physics, denoted by fo(500) [1], appears in many low-energy models of strong inter-
actions describing spontaneous breaking of the approximate chiral symmetry. Despite tremendous efforts
to study the o-meson over more than 60 years, its nature is still the subject of hot debates, described in
detail in a recent survey [2]. Great progress in reducing the inaccuracy in determining its mass and total
decay width has occurred in recent years [1]. More and more specialists are inclined to think that this
wide resonance cannot be explained in the framework of the usual quark—antiquark meson picture [2]. The
situation could be explained by direct computations of the o-meson mass from the Lagrangian in quantum
chromodynamics (QCD), but no convincing results in this direction have yet been obtained.

In the contemporary literature, the o-meson, as a rule, is studied in the framework of approaches
based on the analyticity and unitarity of the S-matrix [2]. The arising models are usually not directly
related to QCD. The relation between QCD and the old approaches based on using the o-meson, i.e.,
different effective field theories and bag models, also remains unclear [2]. In light-meson spectroscopy, the

*St. Petersburg State University, St. Petersburg, Russia, e-mail: afonin@hep.phys.spbu.ru.

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 200, No. 2, pp. 173-194, August, 2019. Re-
ceived November 8, 2018. Revised December 26, 2018. Accepted February 19, 2019.

0040-5779/19/2002-1075 © 2019 Pleiades Publishing, Ltd. 1075



Shifman—Vainshtein—Zakharov (SVZ) method of spectral sum rules [3], [4], often called “ITPh” sum rules
or simply QCD sum rules, is the phenomenological approach that is probably most explicitly related to
QCD. The main idea underlying this method is the assumption that the quark-antiquark pair (or a more
complicated quark current interpolating the hadron in question) arising in the QCD vacuum perturbs it
relatively weakly. This idea allows parameterizing complex effects of the nonperturbative vacuum by several
universal phenomenological characteristics, i.e., vacuum condensates that are the average vacuum values of
various operators constructed from quark and gluon fields. The response to adding this current to the QCD
vacuum yields correlation functions of this current in the vacuum shells, which can be calculated using
the Wilson operator expansion in QCD where the corresponding operators are replaced with their vacuum
averages. It is usually further assumed that the spectral density is saturated by the peak corresponding
to the lightest resonance with quantum numbers of the constructed current after which the perturbative
continuum follows. In this case, it is unimportant whether the constructed current can exist in nature, and
we can formally calculate the response to any added current. But if at least one of the above assumptions
is false, then the method does not work. As a result, it can be assumed that hadrons with distinct quantum
numbers have distinct masses (decay constants, form-factors, etc.) because their currents interact differently
with the vacuum environment leading to different responses of the QCD vacuum to the addition of a given
current. The technical implementation of this concept turned out to be extremely fruitful for describing
hadron phenomenology, which is described the classic reviews [5]-[7]. The most current review of the SVZ
sum rules is the recent paper [8].

Here, we consider the computations of scalar and vector meson spectra in the framework of spectral
sum rules in the so-called QCD planar limit for linear radial trajectories [9]. We give the corresponding
definitions in the next section. In Sec. 2, our problem is to obtain sum rules with a minimal number of
parameters that still ensure a reasonable description of the experimental spectra: an analysis showed that
this number is two.

The most interesting results were obtained for the scalar o-meson. It is usually assumed that the mass
of the lightest scalar quark—antiquark state is near 1 GeV or above [2], [5] and the o-meson is significantly
lighter. At present, the dominating concept of the o-meson nature is the tetraquark interpretation [2]. Our
initial intention was to confirm the absence of a light scalar particle between quark—antiquark meson states
by using the QCD sum rules in the planar limit matched with the Regge phenomenology. But the result
turned out to be the opposite: a light scalar state can be naturally predicted. The apparent reason for this
is that in the framework of the methods presented in [2] (which are mainly based on dispersion relations
and unitarity), the description of the o-meson is mainly “isolated in a certain sense” from the other physics.
A conceptual distinction of the spectral sum rules considered here is the close relation between the arising
o-meson and the existence of resonances both in other channels (primarily in the vector channel) and on
the corresponding radial scalar trajectory.

In Sec. 3, we propose a new approach for considering planar QCD sum rules. The idea is to use the
Borel transform in the planar limit, which must significantly improve the convergence. Further, expressions
for the inclination @ in linear spectrum (5) can be derived by the method used to determine the ground state
mass in the classical SVZ sum rules [3], [4]. In other words, we propose to consider Borelized planar sum
rules and analyze them using a well-developed technique. The value mg (ground state mass) is regarded as
the value known from old SVZ sum rules or from experimental data. In the first case, the usual computations
of mg by using the SVZ sum rules are only a preliminary stage in determining the complete mass spectrum
of radial excitations. An extension of the SVZ sum rules is therefore constructed that allows obtaining the
mass spectrum of radial excitations using the same number of input parameters. The main result is the
calculation of the trajectory inclination a, which is an important parameter in various theoretical studies
and in hadron phenomenology. We apply this approach to light vector, axial vector, and scalar mesons.
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In the last case, we obtain an unexpected result related to the appearance of a second scalar trajectory
starting from the light state of a mass of nearly 500 MeV, which completely agrees with the approach used
in Sec. 2.

2. Planar sum rules

2.1. General scheme. The physical characteristics of hadrons are contained in different correlation
functions of quark currents with quantum numbers of the corresponding hadrons. The most important
physical characteristic of a hadron is its mass. According to the general principles of quantum field theory,
it appears as the real part of the pole of the two-point correlator (JJ), where the current J is constructed
of quark and gluon fields and interpolates the hadron in question. For example, if the scalar—isoscalar state
fo is a usual light quark—antiquark meson without strange quarks, then the current interpolating it must
be quark and bilinear J = ¢q, where ¢ denotes a u- or d-quark.

The SVZ sum rules follow from an analysis of the two-point correlation function

(JT) =i / dia ¢ (0T L] (z), J(0)}]0). (1)

Correlator (1) contains much dynamical information. In particular, the asymptotic behavior of expres-

—mlzl where m is the mass of the lightest hadron

sion (1) at large distances in the Euclidean space is ~ e
with quantum numbers of the current J. This property underlies the lattice computations of hadron masses
directly from the QCD Lagrangian. Unfortunately, there are no analytic methods for calculating correla-
tor (1) because of the problem of the strong bond in hadronization. The main problem of the classical SVZ
sum rules is to calculate the hadron masses from relation (1) using some semianalytic methods supplemented
with some phenomenological input parameters. On the whole, the idea is to equate two representations of
correlator (1). The first of these representations is the Wilson operator expansion in vacuum shells, and
the second is a certain dispersion relation into which the ansatz for the spectral density is then introduced.
In the classical sum rules, this ansatz is taken in the form of a single infinitely narrow resonance in the
sum with the perturbative continuum [3]-[5], where the “continuum” origin is subsequently chosen from
the phenomenology.

From the theoretical standpoint, the zero-width approximation and the simultaneous absence of mul-
tiparticle cuts of amplitude (1) on the positive axis of the squared momentum appear in the limit of a large
number of colors N, for the fixed product g?N,, where g is the QCD coupling constant. This limit is often
called the 't Hooft limit or the planar limit [10], [11], and the latter term is related to the fact that only
planar diagrams survive in this limit. It can be shown that in this case, the only poles of the two-point
correlator of the quark current J are single-hadron states [11]. For mesons, the two-point correlator has
the form 2

VI =3 m @
in the lowest order in 1/N, (in the momentum space). The behavior of the main spectral characteristics is
known for large N.: M,, = O(1) for masses, F2 = (0|J|n)? = O(N,) for residues, and T' = O(1/N,.) for the
complete widths of strong decays [11]. The asymptotic freedom in QCD dictates a logarithmic asymptotic
behavior for the left-hand side of (2) for large ¢>. This behavior is possible if the sum has finitely many
terms [11].

Because the right-hand side of relation (2) can be summed by the Euler-Maclaurin formula,

YR N F(x)de 1
,;)sz?(n)‘/o q2M2<x>+O(q_2)’ ®)
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a logarithmic asymptotic behavior arises for the residues for sufficiently large n:

F2 ~ dM72L
" dn

(4)

Under the assumption that there is a certain ansatz for the mass spectrum of radial excitations M,,, we can
sum expression (2), expand it for large spatially similar momenta Q% = —¢?, and compare the result with
the corresponding operator expansion in QCD. We then obtain a set of sum rules where each sum rule is
an equation corresponding to some k in the 1/Q2* expansion, k = 0,1,2,..., of both sides of (2).

In the simplest case, based on certain theoretical considerations (hadron string models, Veneziano
amplitude, two-dimensional QCD in the planar limit), we can choose the radial mass spectrum in the
planar limit to be linear:

M2 =an+m2, n=01,2.... (5)

In this case, the inclination @ in the first approximation is independent of the quantum numbers, which
can be explained by the universality of the gluodynamics determining the inclination. This Regge behavior
of the radial spectrum of light mesons has been confirmed experimentally [12], [13], and the inclinations
indeed exhibit a nearly universal behavior in experiments. Within the accuracy of the planar limit (10 to
20%), the universal behavior of the inclination is an acceptable assumption [14], [15].

In this case, relation (4) implies F? ~ const. The sum rules thus obtained are well known and have
already been used many times [16]-[22]. It is interesting to note that these sum rules also appear in the
“bottom-up” holographic approach to strong interactions (see, e.g., the discussions in [23]).

2.2. Vector mesons. Because the vector current JX = qvuq is conserved, the vector two-point
correlator is transverse and depends only on one scalar function:

(Y (@) () = (400 — guad®)v (¢°). (6)
We consider the simplest linear Regge ansatz of type (5) following the motivation discussed above:
MZ(n) =an+ M2, n=0,1,2,.... (7)

Because the isosinglet and isotriplet states are degenerate in the limit of a large number of colors N, [11],

the spectra for w- and p-mesons are indistinguishable in our case. We now consider the isosinglet states.
The available experimental data suggest that the ground state is significantly below the linear tra-

jectory (see Fig. 1), and we hence distinguish the ground state from linear trajectory (7). Using spectral

representation (2), definition (6), and ansatz (7) in the Euclidean space Q% = —¢?, we obtain
F? = F?
Iy (Q?) = — . 8
vi@) Q2+M5+;Q2+cm+M\2, ®

It follows from the arguments presented in Sec. 1 that the residues F? of excited states in (8) can be taken
to be constant.

In the chiral and planar limits (setting N. = 3 at the end), the operator expansion of the vector
correlator for large @Q? has the form [3], [4]

o 4 ras ,_
My (@%) = — g7 log 5 + 5707 = ((Gh)?) = 5 e taa)® + .. ©)

where ((G%,)?) and (gq) denote the gluon and quark condensates.
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Fig. 1. Hypothetical spectrum of w-mesons (circles) and fo-mesons (crosses) [1]: the crosses are
drawn with a large fixed horizontal size to visualize the position of scalar resonances. The resonance
f0(1500) is eliminated because the available data indicate the global nature of this state (see [1]). The
graph is taken from [27].

We note that the coefficient 14/9 in the last term is related to precisely the planar limit. This coefficient
generally contains multipliers related to the number of colors N,

N2-1 14
NZ 9’

and for N, = 3, the coefficient must be 112/81, but it turns out that the correct value is 14/9 in the planar
limit (N, — 00).

It follows from the principles of the classical QCD sum rules [3], [4] that these vacuum characteristics
must be universal, i.e., independent of the quantum numbers of the quark current .J. The multiplier Cy
has a perturbative correction Cy = 1+ a/m to the leading logarithm but can be suppressed in our case of
large N., and we hence set Cy = 1.

We can rewrite expression (8) using the function 1, i.e., the logarithmic derivative of the function I':

Z - -11- o= —1(a) + const. (10)
n=0

This function has the asymptotic expansion for large argument values

1 < By
k=1

where By, are Bernoulli numbers. These formulas can be used to expand correlator (8) for large Q.
Introducing the dimensionless variables
(12)

my, = my, =

S

My
\/E b
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we obtain

HV(Q2)_—f210gQ—2+é{5_f2(% %)}+
2
+&[f3mg+§f2<mimi+%>}+
3
gt - g7t 5 o= )] .. "

We obtain the planar sum rules for linear spectrum (7) by comparing the terms with like powers of 1/Q?
n (13) and (9).

2.3. Axial vector mesons. The axial vector current J :} = (.59 is not conserved, and the axial
two-point correlator hence has two independent contributions:

(J2(a) T2 (—0)) = Ta(6*) gty — TTA(4®)Guv- (14)

The sum rules for II, and ﬁA differ, and ITp therefore contains an additional term from the pole of the
m-meson because of the spontaneous chiral symmetry breaking:

I~ fr Oy

In our normalization, the weak decay constant of the m-meson is f, = 93MeV. The transverse part in (14)
is usually separated [24] by adding and subtracting the term g,,¢*II5 and considering the sum rules for
1Tz together with the sum rules for Ily. Strictly speaking, the obtained sum rules are the sum rules not for
the axial vector current but for its divergence.

We consider the linear ansatz for the radial axial spectrum with the same value of the trajectory
inclination as in the case of vector mesons. The axial analogue of correlator (8) has the form

2 F2
M@= G+ 3 eI 15)

Strictly speaking, we must consider the isosinglet 7-meson instead of the m-meson. But if there are only
two flavors, the difference is insignificant in the limit of large N.. Operator expansion (15) becomes [3], [4]

C 2 1 22 Toug
MA(Q*) = ——5 o gQ + 57

e A YraTie —( ZV)2>+9Q6<*>2+.... (16)

We note that only the last terms differ in (9) and (16).
Proceeding as in the vector case and using dimensionless variables (12) (m, = Ma/+\/a), we obtain

2
HA(QQ)Z—fQIOgQ—-l-@[f— f2( ;)}—i—

+a_2f_2<m3m3+1)§§m3<m3%)(mil)+ (17)

As in the vector case, the axial sum rules can be obtained by comparing (16) and (17).
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2.4. Sum rules in the vector case. As already explained, the set of vector and axial sum rules
can be obtained by equating the terms with log @2, 1/Q?, 1/Q*, and 1/Q% in (9) and (13) and in (16)
and (17). Our “initial” data are the constant fr and the gluon condensate (as/7)((G%,)%). One of the
results of the calculations is the value of the condensate a,(Gq)? of dimension six, which has a rather small
but still nonzero anomalous dimension. The sum rules turn out to be consistent for some value of this
condensate, which can be used to obtain the quark condensate on a certain renormalization scale. For
1/Q°, we therefore have only one sum rule, which follows from comparing the 1/Q° terms in (13) and (17)
with the multiplier —7/11 (just as is prescribed by operator expansions (9) and (16)). The obtained set of
equations has the form

1 1 1 (18)
2| _y202 Lol a2 L\ L Qs a2
|~ gt g2 (- i+ )| = 3226002
2p0( 4 o 1 Lo a2
@ f (md =+ 5 ) = 55 TG,

1 7 1
ot g (= )= 1) = g (= 5 Yok 1),

We have a system of six polynomial equations with six variables (a, m2, m2, m2, 2, and f2) and the
input data fr = 93MeV and (a,/7)((G%,)?) = (36020 MeV)*. This system can be solved numerically. To
show that the solutions are sensitive to the choice of the input data, we also calculate the case f, = 87 MeV
(the hypothetical value of fr in the chiral limit [25]) and analyze the indeterminacy due to the inaccuracy

of the gluon condensate value. The physical solutions are shown in Table 1.

Table 1
= = 93 MeV '+ = 87 MeV

a 1.43(2) 1.32(2)
My 1.60(4) 1.45(4)
My 1.31(1) 1.21(1)
M, 0.79(3) 0.69(3)

F 0.16 0.15

E, 0.14 0.13
(—(aa)'" 0.30(1) 0.27(1)

Numerical solutions (GeV).

For the condensate as(gq)? of dimension six, the self-consistent solution appears for the choice of
as ~ 1/m ~ 0.3, which corresponds to the scale u ~ 2GeV. The obtained quark condensate value hence
corresponds to this scale. Table 1 shows that the obtained values are significantly greater than (0.23 GeV)?
in absolute value, which follows from the Gell-Mann-Oakes—Renner formula for the pion mass, m2 f2 =
—(my + mgq)(qq). But we must bear in mind that this is an approximate formula.
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The contemporary average value of the quark condensate obtained by lattice computations is near
—(0.27GeV)? on the scale u ~ 2 GeV [26]. And we reconstructed precisely this value in the chiral limit!

The data in Table 1 can be used to calculate the mass spectrum. The masses of the first three states
are given in Table 2.

Table 2
Case n 0 1 2

fr=93MeV | My(n) | 079 | 1.60 | 2.15
(n) | 131 | 1.93 | 241
fr=87TMeV | My(n) | 069 | 1.45 | 1.96
(
(¢}

n) 1.21 1.79 2.22
predicted states (GeV).

Masses of the first thre

Taking the above assumptions into account, we can conclude that the obtained solution well describes
the corresponding phenomenology: the masses of ground states are close to the experimental masses of the
unflavored vector w(782)-meson and axial vector f;(1285)-meson [1].

There are some contradictions in interpreting the experimental data and determining real physical
masses for the radially excited states [1]. If we speak about the qualitative characteristics of the model, then
we note that the obtained masses are apparently near the experimental masses and hence seem reasonable.

2.5. Sum rules in the scalar case. We consider the two-point correlator of the scalar—isoscalar
current JS = Gg. Its resonance representation has the form

fs(a?) = (50 (-0 = 3 2B (19)

where the residues are determined by the formula (0|J%|n) = G,,Ms(n). As in the vector cases, we consider
the linear radial spectrum with a universal inclination:

MZ(n) =an+ ME, n=0,1,2,.... (20)

Moreover, for consistency with the operator expansion, we assume that all analogues of the decay constants
are equal to each other as in the vector channel: G,, = G.

Because we cannot state in advance that the lightest scalar meson belongs to the scalar radial trajectory,
we consider two possibilities: (a) the ground state (n = 0) is on linear trajectory (20) or (b) the state with
n = 0, which is further called o, is not described by linear spectrum (20). The second assumption seems
more physical (see Fig. 1). The corresponding spectral expansions in the Euclidean space have the forms

(1) an+M2)
1I 21
S jg: 622-+-an/+-A42’ ( )
G2 M? = (an + M2)
H(H) 2 _ o "o S 29
s (@) Q2+M2+ZQ2+an+M2 (22)

Proceeding as in the vector case, we calculate expansions (21) and (22) for large Q? and compare them with
the operator expansion of scalar correlator (19). Introducing the dimensionless variables m, = Mg/\/a and
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g = G/+/a, we obtain expansions in the forms

2 2 2 2 2
I Q G M; a”yg 1

Qr Tata™

The operator expansion of correlator (19) in the chiral limit and in the limit of large N, [5] has the form

2 3 /4 3 2 1
_GM, a’yg 2<m§+5>(m§+1)+---- (24)

3Cy Q> 1 11 7mag
2\ _ 2 X s a \2\ _ —— 2
HS(Q ) - 167T2Q 10g /-//2 + 16@2 T <(Gul/) > 3 Q4 <q(I> + .. N (25)
where 1
Qg
=14 —= 2
Co + 37 ( 6)

The contribution of the perturbative correction to the factor before the logarithm can now be greater than
30%, which is much greater than in the vector channels, and can hence be easier to take into account.
Comparing the logarithmic terms, we obtain

, 3G

=, 27
9= 162 (27)
We consider assumption a. From (23) and (25), we obtain two sum rules:
3CHh 1 Qg a
2—7T202 (mf —m2+ g) = *?«GW)Q%
(28)

36—(7;;02a3m§ <mf — %) (m? — 1) = —11mas(qq)?.
Substituting the numerical values of a and (gq) from the solutions of the vector sum rules (Table 1), we
obtain two independent polynomial equations. If we neglect the perturbative correction in (26) (Coy = 1),
then we see that for fr = 93 MeV,! Egs. (28) have a common approximate solution m? ~ 0.74, which leads
to the radial scalar spectrum Mg(n) ~ 1.23, 1.89, 2.37, ... GeV. If we include the perturbative correction,
then the general solution disappears.

We now study the more physical assumption b. Comparing (24) with operator expansion (25), we
obtain the sum rules

300 1 1 Qg a
GoM; — 50’ <m§ +m2 + 6) = 175 - {(GL)*), (29)
3C 1
—3G2M! + Fﬂga‘gmi (mf + 5) (m? +1) = —11ma(qq)>. (30)

We have two equations with three unknowns mg, M,, and G,. Eliminating G, from them, we obtain the

relation for the o-meson mass as a function of the parameter m?:

a2 = (Co/1672)a’mi(m +1/2)(mi + 1) + (11/3)7a(gq)
7 (3Co/32m%)a? (mf + mg +1/6) + (as/16m)((GF,)?)

(31)
LIf we take fr = 87 MeV, then the solution m? ~ 0.72 implies the spectrum Mg(n) ~ 1.12, 1.73, 2.17, ... GeV.
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—005 O 0.05 010 015 020 m?

Fig. 2. Values of M,, G-, G and the masses of the first state on the scalar trajectory Mg(1) (in
GeV) obtained from (31) and (29) (or (30)) and (27) as functions of the dimensionless parameter m?2
and ME(1) = a(1 4+ m?2) in (20).

The “decay constant” G, as a function of m? can be obtained by substituting (31) in (29) or (30). Plots of
M,, G5, G = \/ag (where g is defined in (27)), and the mass of the first state on the scalar trajectory are

shown in Fig. 2. They are obtained using the input data given in Table 1 for fr = 93MeV and o, ~ 1/7

2

2 can be negative because the sum in (22) starts from n = 1.

in (26). The parameter m

Another version of input data corresponding to f, = 87MeV in Table 1 and with as = 0 in (26)
implies that the masses are shifted by 70 to 80 MeV, which lies within the accuracy of the limit of large
N.. The general picture shown in Fig. 2 remains the same in this case. Considering the negative free
term m? of the linear ansatz, we can immediately see the nonphysical behavior for relatively small values
of m2. The mass Mg(1) is rather stable and reconstructs the value of the mass of the ag(1450)-meson,
My (1450) = 1474 £ 19 MeV [1]. Its isosinglet partner (a candidate is the f;(1370)-meson) must degenerate
with ag(1450) in the planar limit.

The plot in Fig. 2 demonstrates that the real prediction for M, is rather sensitive to the free term of
the linear scalar trajectory, although M, was not originally described by linear spectrum (20). Conversely,
the expected value of M, (near 0.5GeV [1]) imposes a strong constraint on the possible values of m2. The
graph in Fig. 2 shows that the value of m? is close to zero.

Although both the w-meson and the o-meson are not on the corresponding linear trajectories (as
assumed, e.g., in Fig. 1), there is still a difference between them in their analysis. In the vector case, it was
important that the sum in (8) starts from n = 0 and we can hence compare the expansion in resonances in
the vector case with expansion (15) in the axial case. If we start from n = 0 in scalar channel (22), then
the signs of the numerator and denominator in (31) depend on the value of m?:

a2 = (Co/1672)a’mi(mg — 1/2)(m — 1) + (11/3)7a(gq)
7 (3Co/32m%)a? (mf — mE + 1/6) + (as/16m){(GF,,)?)

(32)

which makes the prediction for M, extremely unstable and indeterminate. The o-meson is not unusual in
this sense, because its mass belongs to the radial scalar trajectory. Its mass is simply not described by linear
ansatz (20). This interpretation can be additionally motivated by comparing the residues: G, is somewhat
below G. Physically, this means that the external source of scalar mesons (a certain scalar current) creates
the lightest state with a probability close to the probability of creating other scalar resonances. In the range
of our error, the interaction between o-mesons and this source is a bit suppressed.

It is interesting to try to assume the complete universality of the residues (G, = G) from the very
beginning. After this substitution, sum rules (29) and (30) (or their analogues if we begin with n = 0
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n (22); the shift arising in this case does not affect the results) are two equations with two unknowns M2
2

s*

and m?. This system has four numerical solutions. Two of them are not physical, because they do not
lead to tachyonic masses. The third solution (in dimensionless variables, m, = M, /v/a, ms = Mg/+/a, and
for fr = 93MeV) is (m2,m?) ~ (0.742,0.739), which reproduces the solution for possibility a above. This
solution corresponds to the branch where the condensates in the right-hand sides of Egs. (29) and (30) can
be neglected. The fourth solution (m2,m?) ~ (0.074, —0.040) predicts the value M, =~ 0.39 GeV and the
radial spectrum Mg(n) ~ 1.40, 2.01, ... GeV. These values (except the masses of higher excitations) can
be seen in Fig. 2; they correspond to the point of intersection of the lines G and G,. This solution is most
interesting: the obtained mass of the o-meson is close to the expected domain of masses [1] and the radial
spectrum seems rather reasonable.

Our prediction of the Regge trajectory with the o-meson on it apparently contradicts the studies of
the o state on the complex Regge trajectory, which show that the corresponding state cannot belong to the
usual Regge trajectory because of a very large width [2], [28]. But it is not excluded that this observation can
simply indicate the restrictions of the usual methods used to describe the 77 scattering. These methods
are based on the property of the S-matrix to be analytic and unitary and do not contain dynamical
assumptions, at least not explicitly. The origin of a very large width for the f,(500)-meson is most likely a
certain dynamical effect. Therefore, it is necessary to use dynamical approaches to discover the true nature
of the o-meson. Such approaches must simultaneously describe all resonances on the scalar trajectory and
in other channels (vector and tensor mesons). This property originally underlies the considered spectral
sum rules, which makes this method conceptually different from the dispersion approaches.

Our analysis thus demonstrates that the existence of a light scalar state together with the structure of
planar sum rules in the scalar channel can also be obtained naturally from the Regge phenomenology.

3. Borelized sum rules

3.1. Derivation of Borelized sum rules. The classical SVZ sum rules for light hadrons are formed
in the Borelized version [3], [4]. We construct a generalization of this formalism to the case of infinitely
many meson states expected in the planar limit. We first consider the case of vector mesons consisting of
only u- and d-quarks in detail.

The operator expansion for the correlator of vector currents has the form

1 Q? 1 _ 1 s o 14 oy,
Q%) =~ 53108 5 + g {ma) + 5307+ ((Gh)?) = 5 oo (@) (33)

This expansion without the second term was also used in Sec. 2 (see (9)). That term appears if we abandon
the assumption of the chiral limit but preserve the contribution linear in the quark masses (see, e.g., [5]).
We apply the Borel transform

1 d \"
Ly(@Q*) = lim ——n 2"<—)
Q*/n=M"*
to the operator expansion of correlator (33):
1 1 1 ag T mos
L H 2 - - — - s a 2\ _ S /- 2.

We then consider the expansion of the correlator in an infinite sum over resonances:

2 F2
W) =2 i
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We separate the imaginary part of this expansion using the Sokhotskii formula,
ImTI(gq Z TF?6(q* —m?).

The dispersion relation for this correlator has the form (we omit the inessential subtraction)

/ PRLON ImTI(s
s—q2—ie’

Applying the Borel transform to it, we obtain

1

Lyll(@®) = —

/ es/M? ImTI(s) ds.

We substitute the imaginary part in the Borel transform for the dispersion relation and integrate:

1 F?
Yo /ds es/M? ZWFQ(S(S —m2) = e Ze*mi/MQ. (34)

We substitute linear mass spectrum (5) and sum relation (34) as a geometric progression:

2 /a2
—mg/M
—m2/M?* _ —m?2/M? —an/M? _ e o/
e n = e e — T o
1 —e—a/M
n

n

After several transformations, we equate both expansions of the correlator:

F2e—mo/M? 72 hi  hy  hs
1 — e—a/M? 8 Q2

Yot T (85)

We here let h; denote the coefficients of the corresponding powers of 1/M?, which in our example of vector
mesons have the forms
’ 56 o

™ Qs ),
h’l = 0’ h’2 - 87T2<qu> + __<(Gu1/)2>7 h/S = T

3 T 9 M6 <qq>2 °

We differentiate Eq. (35) with respect to 1/M?2. The derivative of the left-hand side is

2 /02 -m2(1 — e’“/Mz) —ae~ /M’

2, —m
Fee Mo (1767(1/1\/[2)2

For the right-hand side, we obtain

M4 h1 hg hg M2 2h2 3h3 M4 h2 2h3
——_h =2 8 hy4+ 222 208 .
sttt T Tl | T\ T ar T am 872

Dividing the differentiated parts of the equation by the original parts, we obtain

—m3(1 — e*a/M2) — ge— /M’ ae~ /M’

2 e —
1 — e-a/M? 1— e-a/M?

= —mj —

for the left-hand side and
M?[1 — hg/M4 — 2h3/M6]

1+ h1 /M2 + hy/M* + hy /M6
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for the right-hand side. The last two expressions must equal each other, which allows writing the expression

for the squared ground-state mass m2:

o M2[1—h2/M4—2h3/M6] B a (36)
71+h1/M2+h2/M4+h3/M6 ea/M27]_'

mg(M?;a)

The obtained formula can also be applied in other cases; it is only necessary to change the coefficients
h; (the coefficients for different cases are given in Table 3). For example, if we consider ¢-mesons consisting
of strange quarks, then an additional correction of the order of 1/Q? arises in the operator expansion [5],
which leads to the nonzero coefficient hi. A similar situation arises if the axial vector correlator for the
divergence current is considered (see Sec, 2.3): a term related to the pole of m-meson and proportional to

1/M? appears.

Table 3
Case h1 ha hs3
p 0 | 87(mag) + F2((Gh)?) | —Erla(qg)?
¢ —6m2 | 8% (myss) + 52 ((GY,)?) 367301, (5s) 2
ar (for 9,jlt) | —872f2 | —872(maq) + F2((G4,)%) | Brla(qg)?

ar (for jt,) 0 | 82(mag) — F2((Ga)?) | —onia.(dg)?
ap (with s-quark) | —6m?2 | 87%(ms3s) — é%((wa)Q} — 18730, (5s)2
fo 0 | 8(maq) + F2=((Go)?) | —Lonia.(dg)?

fo (with s-quark) | —6m?2 | 87%(ms3s) + é%((wa)Q} 0730 (3s)?

Expressions for the coefficients h,;.

3.2. Scalar case. We must consider the scalar mesons separately because the calculations and the
results differ noticeably from the vector analogue; the difference is related to the greater dimension of the

correlator. Moreover, there are differences in the coefficients of the operator expansion:

3 2 3 1 s
Is(Q?%) = S?QQ log @ (maq) + STQQ%

22 movg
JEGE 3

3 Q4

(qq)*.

<(G7w)2> -
The expansion in resonances has the form

F2m2

2\ L
HS(p )_ZprmQLie'

n n

Applying the Borel transform to the dispersion relation for this correlator, we obtain an expression that

can be summed as

2 a2 282 . 2 . 2
§ 7TF2m%e m, /MT 7TF2€ mg /M § |:m3€ an/M + ane an/M :| —
n

n

2
= nF2e=mo/M? Ul ac®/ .
1 — e—a/M? (ea/M2 _ 1)2

1087



As a result, we have the equation

F2€7mg/M2

m3 ae®/M* ~ 3M* ) hy | hs
[—cane * (e®/M* —1)2| — 82 e

where we use a notation h; similar to that introduced in Sec. 3.1. We differentiate this equation with respect
to 1/M? and divide it by itself. For the right-hand side (denoted by —L), we obtain

M2[2 — hy/MY]

— =-L.
L+ ho/M* + h3/M®

After several transformations, the same operations with the left-hand side lead to the expression

a2(e®M” 4 1) + 2am2(evM* — 1) + mi(ev/M* — 1)2
(e — 1)(a = w3 + e/ )

As a result, we have the equation for m3:
(12(<3’1/M2 +1)+ 2amg(ea/M2 -1+ mé(ea/M2 —1)? = L(ea/M2 —1)(a—m2+ mge“/MQ).
Collecting similar terms, we finally obtain the squared equation:
mi (™~ 1)2 4 m2(eM —1)[2a — L(e*™" —1)] + a2(e”™* + 1) — La(e™™’ —1)=0.  (37)

It has two solutions:

1 2a \/—4a2ea/M2 + L2(ex/M? —1)2
20 1s2y
mO(a’vM )_§|:1_ea/M2 +L - ea/M? )
(38)
1 2a \/—4a2ea/M2 + L2(ex/M? —1)2
20 1s2y
s ) = [+ 1 Y ]

We discuss an interpretation of these two solutions below.

We note that this method can also be applied in several other cases: for scalar mesons with strange
quarks and also for axial vector mesons if the current itself is considered rather than the current divergence
(see Sec. 3.1). This allows considering axial mesons containing the s-quark.

3.3. Mass spectra. The problem of calculating the mass spectrum reduces to the problem of de-
termining the linear trajectory inclination and the ground state mass. We assume that the ground state
masses are the initial data and prescribe them using the values obtained by the “classical” sum rules in [5].

After the ground state masses are prescribed, we must correctly choose the value of M? to calculate
the inclination of trajectories by formula (36). In some cases, there is the so-called Borel window, i.e.,
the domain of values of the parameter M where the ground state mass is independent of this parameter.
According to [3], [29], this domain is determined by an extremum of the function m3(M?), and the position
of this extremum determines the value of M?2. In the situation where the Borel window is absent or is
weakly expressed, we must use the limit as M2 — oo.

Table 5 presents the calculated mass spectra for all studied cases. For comparison, we also present
experimental data taken from [1]. All masses are given in MeV. The error arising in determining myg leads
to errors in calculating the inclination and hence the mass spectrum. Taking these errors into account, we
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still do not need to consider the errors related to other external parameters (e.g., the condensate), because
they have already been taken into account in calculating the classical sum rules.

Table 4
Case h1 ha hs
p 0 0.032 —0.030
10 —0.101 —0.089 —0.019
ay (for 9,1 ) —0.674 0.046 0.048
ay (for ji) 0 ~0.046 ~0.095
ay (with s-quark) —0.101 —0.167 —0.061
fo 0 0.032 —0.095
fo (with s-quark) —0.101 —0.089 —0.061

Values of the coefficients h;.

We take the values (v, /m)((G%,)?) = (330MeV)* and (gq) = —(250 MeV)? for the external parameters,
the quark and gluon condensates. We note that these values differ from the condensate values in Sec. 2.
This can be explained because we used condensate values that were used in calculations in the classical
sum rules for self-consistency. Using the value m, + mg ~ 10.7MeV for px = 1 GeV for the masses of light
quarks, we can obtain the condensate value (mgq) = —(95.6 MeV)*.

In the case of the ¢-meson, we must use somewhat different condensate values because the strange
quark is involved: (3s) = 0.8(qg) = —(232MeV)? and (ms3s) = —(201 MeV)*. Moreover, we need the
constants fr = 93MeV, my = 130 MeV, and a; = 0.7 (for 1 = 1 GeV). These constants allow determining
the coefficients hy and ho. But for self-consistency, it seems reasonable to use the value of the coefficient
hs given in [4] for the vector case and to multiply this value by an appropriate factor in the other cases.
As a result, we obtain the values of the coefficients h; given in Table 4.

Figure 3 shows the plots of Borel windows in different cases. As already mentioned, a Borel window
is not always present. For example, in the case of sum rules for the current of the a;-meson, there are two
solutions, and both of them have no Borel window. In the sum rules for the divergence, the situation is
somewhat different. In the “classical” sum rules, there is no extremum in M?, and we must therefore take
the limit values as M? — oo in the calculations. Nevertheless, the plot shows that there is still a Borel
window but related to the maximum instead of the minimum. The value at the maximum is ~ 1250 MeV,
which is near the experimental value. As a result, we can calculate two versions of the spectrum: one for
the maximum, and the other of the limit value as M? — co. But in the scalar case, there are two solutions
and hence two trajectories in the plot. It can be seen that the second solution is below the first and has
the value ~ 0.62 GeV. This lower solution can be interpreted as the second trajectory of scalar mesons with
f0(500) as the ground state.

Table 5 presents the mass spectra calculated using the trajectory inclinations obtained from Borel
windows and with the experimental data for comparison. As experimental data for the ground state mass
in the case of the a;-meson with a strange quark, we use the value of the mass of the axial resonance
f1(1510). For the fo-meson with a strange quark, it is rather difficult to compare the obtained values with
experimental data because it is difficult to determine which of the observed scalar mesons contain strange
quarks and which do not. We note that the data for the resonance f,(1200 — 1600) [1] are close to the used
value of the ground state mass.

4. Conclusion

In Sec. 2, we considered the spectral QCD sum rules in the limit of a large number N, of colors under
the assumption that the Regge spectrum is linear with a universal inclination for radial excitations of
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Fig. 3. Borel windows for different meson channels: (a) p-meson, (b) ¢-meson, (¢) a1-meson (for the
divergence), (d) a1-meson (for the current?), (e) a;-meson with s-quark,® (f) fo-meson (two solutions),

and (g) fo-meson with s-quark (two solutions).

isosinglet vector, axial, and scalar mesons. The choice of the spectrum is motivated by models of hadron
strings and related approaches and also by meson spectroscopy. The considered ansatz allows solving the
arising sum rules with a minimum number of input parameters. Because it is impossible to use the QCD
sum rules to obtain either the scale of QCD masses or the scale of spontaneous chiral symmetry breaking,
the minimum number of free parameters is two. In our method, these parameters are the gluon condensate

and the weak decay constant of the m-meson.

2The lower solution attains the value = 0.487 as M? — oo.
3The lower solution takes complex values beyond the domain shown on the graph. The main solution has a barely
distinguishable Borel window and diverges as M2 — oco.
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Table 5

Case a, GeV? n 0 1 2 3
Comput. 70 4 10 1450 + 20 1910 + 40 2230 + 50
p 1.5195 + 0.0695
Exper. 770 + 10 1465 + 25 1909 + 17 + 25 2265 + 40
Comput. 1010 4+ 10 1710 4+ 20 2190 =+ 30 2590 4 30
) 1.8955 + 0.0565
Exper. 1010 4+ 10 1680 + 20 2188 + 10 —
1150 + 40 1620 + 60 1980 + 90 2280 =+ 120
Comput.
a1 (for O,.j%,) 1.3+£0.184 1250 1690 + 50 2040 + 90 2330 + 120
Exper. 1010 + 10 1680 + 20 2188 + 10 —
Comput. 1150 + 40 1700 + 40 2110 + 60 2450 + 80
ar (for j* ) 1.561 4+ 0.124
Exper. 1230 + 40 1647 + 22 19302 2270%55
Comput. 1470%59 2120 + 30 2610 + 50 —
ay (with s-quark) 2.3365 + 0.1305
Exper. 1518+ 5 2096 + 17 4 121 — —
Comput. 1000 + 30 1540 + 20 1940 + 40 2270 + 50
Exper. 990 + 20 1504 + 6 1992 + 16 2189 + 13
fo 1.384 4 0.069
Comput. 620 1330 + 30 1780 + 40 2130 + 50
Exper. 400-550 1200-1500 172316 2101+ 7
fo (with s-quark) 1.886 Comput. 1350 1930 2370 2740

1601

Calculated mass spectra of radial excitations of mesons for different meson channels and their comparison with experimental data: for the
fo-meson, the mass spectra are given for both trajectories.



Solving the arising equations numerically, we reconstruct the physical mass of the w(782)-meson and
the value of the quark condensate that agrees well with the results of lattice computations. The radial
spectrum of vector and axial states is also reasonable.

We then used the obtained values of radial trajectory inclinations and the quark condensate to analyze
the scalar case. It turned out that by interpolating the scalar states by the simplest bilinear quark current,
we can naturally obtain a light scalar resonance in the range 500 £ 100 MeV. This could not be done
previously in the framework of QCD sum rules (except where the isoscalar scalar was still interpolated by
the pure gluon operator [20]). The obtained scalar state can be identified as the fp(500)-meson, also called
a o-meson, which is traditionally regarded as an unusual particle [2]. Our analysis shows that at least the
value for the mass of the f,(500)-meson is not unusual. We demonstrated that although the mass of the
lightest scalar meson is not on the scalar radial Regge trajectory, it still strongly correlates with the mass
parameters of this trajectory.

In Sec. 3, we considered the Borelized sum rules, which have also been widely studied in the literature.
But instead of studying finitely many esonances and the continuous spectrum after them, we used the
infinite discrete spectrum. This allowed obtaining some new results. We proposed a method for calculating
the inclination of linear trajectories and a related new scheme for calculating the masses of radial excitations.
A very unexpected result is that in the framework of the approach developed above, we also obtained a
solution predicting a light scalar meson that can be compared to the fy(500)-meson.

If our conclusions are valid, then this means that the quark—antiquark component in the structure of
the o-meson strongly dominates even if it is a tetraquark state.
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