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Preface

This volume contains the 37 extended and short abstracts presented at the 23rd
International Conference on Research in Computational Molecular Biology
(RECOMB) 2019, which was hosted by the George Washington University in
Washington, DC, during May 5–8.

These 37 contributions were selected from 175 submissions. There were 204 sub-
missions made in total, but after removing submissions that were withdrawn or
transferred to other conference tracks at the request of the authors, there were 175
submissions that were ultimately reviewed by the Program Committee (PC). In par-
ticular, each of the 175 submissions was assigned to three members of the PC for
independent reviews, who in many cases solicited additional advice from external
reviewers. Following the initial reviews, final decision were made after an extensive
discussion of the submissions among the members of the PC. Reviews and discussions
were conducted through the EasyChair Conference Management System.

While RECOMB 2019 did not allow parallel submissions, authors of accepted
papers were given the option to publish short abstracts in these proceedings and submit
their full papers to a journal. In addition, several accepted papers were invited to submit
revised manuscripts for consideration for publication in Cell Systems. Papers accepted
for oral presentation that were subsequently submitted to a journal are published as
short abstracts and were deposited on the preprint server arxiv.org or biorxiv.org. All
other papers that appear as long abstracts in the proceedings were invited for sub-
mission to the RECOMB 2019 special issue of the Journal of Computational Biology.

In addition to presentations of these contributed papers, RECOMB 2019 featured six
invited keynote talks given by leading scientists. The keynote speakers were Carlos D.
Bustamante (Stanford University), Rachel Kolodny (University of Haifa), Franziska
Michor (Harvard University and Dana Farber Cancer Institute), Mihai Pop (University
of Maryland), Eytan Ruppin (US National Cancer Institute), and Alfonso Valencia
(Spanish National Bioinformatics Institute, and Barcelona Supercomputing Center).

RECOMB 2019 also featured highlight talks of computational biology papers that
were published in journals during the previous 18 months. Of the 43 submissions to the
Highlights track, 10 were selected for oral presentation at RECOMB. There was also a
special invited panel session on Genomic Privacy.

Four RECOMB Satellite meetings took place in parallel directly preceding the main
RECOMB meeting. The RECOMB Genetics Satellite was co-chaired by Itsik Pe’er
(Columbia University), Simon Gravel (McGill University), and Seyoung Kim
(Carnegie Mellon University). The RECOMB Satellite Workshop on Massively Parallel
Sequencing (RECOMB-Seq) was co-chaired by Christina Boucher (University of
Florida) and Vikas Bansal (University of California, San Diego). The
RECOMB-Computational Cancer Biology Satellite meeting (RECOMB-CCB) was
co-chaired by Max Leiserson (University of Maryland) and Rachel Karchin (Johns
Hopkins University). The DREAM meeting with RECOMB 2019 was co-organized by



Laura Heiser (Oregon Health and Science University) and Gustavo Stolovitzky (IBM
Research and Icahn School of Medicine at Mount Sinai).

The organization of this conference was a dedicated community effort with many
colleagues contributing their time and expertise. I thank the Steering Committee for
their input, especially the chair, Bonnie Berger (MIT), for their wisdom and guidance,
as well as Ben Raphael (Princeton University), the program chair of RECOMB 2018
for his help, advice, and support throughout the process. I thank Mona Singh (Princeton
University) for chairing the Highlights track, and Rob Patro (Stony Brook University)
for chairing the Posters track. I thank co-chairs Max Alekseyev (The George
Washington University) and Teresa Przytycka (US National Institutes of Health), and
all the members of their Organizing Committee including Pavel Avdeyev (The George
Washington University), Rebecca Sarto Basso (University of California, Berkeley),
Chanson Benjamin (The George Washington University), Jan Hoinka (US National
Institutes of Health), and Damian Wojtowicz (US National Institutes of Health).
Damian Wojtowicz also served as chair of the Student Travel Fellowship Award
Committee.

A very special thanks to Yann Ponty (CNRS/LIX, Ecole Polytechnique) who as
chair of the Publications Committee served as proceedings chair for this volume,
including chasing down final versions and checking copyright forms and final
camera-ready copy. Thanks to all PC members and external reviewers who completed
their reviews in a very tight timeframe despite their busy schedules, the authors of the
papers, highlights, and posters for their scientific contributions, and all the attendees for
their enthusiastic participation in the conference.

We thank all our conference sponsors for their support, who at press time for this
volume included: Akamai Technologies, Computation (MDPI journal), Journal of
Computational Biology (Mary Ann Liebert, Inc.), Natera, Springer, and The George
Washington University. A very special thanks to our student travel fellowship spon-
sors, the US National Science Foundation (NSF) and the International Society for
Computational Biology (ISCB).

May 2019 Lenore J. Cowen
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An Efficient, Scalable and Exact
Representation of High-Dimensional

Color Information Enabled via de Bruijn
Graph Search

Fatemeh Almodaresi1, Prashant Pandey1(B), Michael Ferdman1,
Rob Johnson1,2, and Rob Patro1

1 Computer Science Department, Stony Brook University, Stony Brook, USA
{falmodaresit,ppandey,mferdman,rob.patro}@cs.stonybrook.edu

2 VMware Research, Palo Alto, USA
robj@vmware.com

Abstract. The colored de Bruijn graph (cdbg) and its variants have
become an important combinatorial structure used in numerous areas in
genomics, such as population-level variation detection in metagenomic
samples, large scale sequence search, and cdbg-based reference sequence
indices. As samples or genomes are added to the cdbg, the color informa-
tion comes to dominate the space required to represent this data struc-
ture.

In this paper, we show how to represent the color information effi-
ciently by adopting a hierarchical encoding that exploits correlations
among color classes—patterns of color occurrence—present in the de
Bruijn graph (dbg). A major challenge in deriving an efficient encod-
ing of the color information that takes advantage of such correlations
is determining which color classes are close to each other in the high-
dimensional space of possible color patterns. We demonstrate that the
dbg itself can be used as an efficient mechanism to search for approx-
imate nearest neighbors in this space. While our approach reduces the
encoding size of the color information even for relatively small cdbgs
(hundreds of experiments), the gains are particularly consequential as
the number of potential colors (i.e. samples or references) grows into the
thousands.

We apply this encoding in the context of two different applications;
the implicit cdbg used for a large-scale sequence search index, Mantis, as
well as the encoding of color information used in population-level varia-
tion detection by tools such as Vari and Rainbowfish. Our results show
significant improvements in the overall size and scalability of representa-
tion of the color information. In our experiment on 10,000 samples, we
achieved more than 11× better compression compared to RRR.

1 Introduction

The colored de Bruijn graph (cdbg) [1], an extension of the classical de Bruijn
graph [2–4], is a key component of a growing number of genomics tools.
c© Springer Nature Switzerland AG 2019
L. J. Cowen (Ed.): RECOMB 2019, LNBI 11467, pp. 1–18, 2019.
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2 F. Almodaresi et al.

Augmenting the traditional de Bruijn graph with “color” information provides
a mechanism to associate meta-data, such as the raw sample or reference of
origin, with each k-mer. Coloring the de Bruijn graph enables it to be used in
a wide range of applications, such as large-scale sequence search [5–9] (though
some [6–8] do not explicitly couch their representations in the language of the
cdbg), population-level variation detection [10–12], traversal and search in a pan-
genome [11], and sequence alignment [13]. The popularity and applicability of the
cdbg has spurred research into developing space-efficient and high-performance
data-structure implementations.

An efficient and fast representation of cdbg requires optimizing both the de
Bruijn graph and the color information. While there exist efficient and scalable
methods for representing the topology of the de Bruijn graph [4,14–18] with
fast query time, a scalable and exact representation of the color information has
remained a challenge. Recently, Mustafa et al. [19] has tackled this challenge
by relaxing the exactness constraints—allowing the returned color set for a k-
mer to contain extra samples with some controlled probability—but it is not
immediately clear how this method can be made exact.

Specifically, existing exact color representations suffer from large sizes and a
fast growth rate that leads them to dominate the total representation size of the
cdbg with even a moderate number of input samples (see Fig. 3b). As a result,
the color information grows to dominate the space used by all these indexes and
limits their ability to scale to large input data sets.

Iqbal et al. introduced cdbgs [1] and proposed a hash-based representation
of the de Bruijn graph in which each k-mer is additionally tagged with the list
of reference genomes in which it is contained. Muggli et al. reduced the size of
the cdbg in VARI [10] by replacing the hash map with BOSS [16] (a BWT-
based [20] encoding of the de Bruijn graph that assigns a unique ID to each
k-mer) and using a boolean matrix indexed by the unique k-mer ID and genome
reference ID to indicate occurrence. They reduced the size of the occurrence
matrix by applying off-the-shelf compression techniques RRR [21] and Elias-
Fano [22] encoding. Rainbowfish [12] shrank the color table further by ensuring
that rows of the color matrix are unique, mapping all k-mers with the same color
information to a single row, and assigning row indices based on the frequency of
each occurrence pattern. However, despite these improvements, the scalability of
the resulting structure remains limited because even after eliminating redundant
colors, the space for the color table grows quickly to dominate the total space
used by these data structures.

We observe that, in real biological data, even when the number of distinct
color classes is large, many of them will be near each other in terms of the
set of samples or references they encode. That is, the color classes tend to be
highly correlated rather than uniformly spread across the space of possible col-
ors. There are intuitive reasons for such characteristics. For example, we observe
that adjacent k-mers in the de Bruijn graph are extremely likely to have either
identical or similar color classes, enabling storage of small deltas instead of the
complete color classes. This is because k-mers adjacent in the de Bruijn graph
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are likely to be adjacent (and hence present) in a similar set of input samples. In
the context of sequence-search, because genomes and transcriptomes are largely
preserved across organs, individuals, and even across related species, we expect
two k-mers that occur together in one sample to be highly correlated in their
occurrence across many samples. Thus, we can take advantage of this correla-
tion when devising an efficient encoding scheme for the cdbg’s associated color
information.

In this paper, we develop a general scheme for efficient and scalable encoding
of the color information in the cdbg by encoding color classes (i.e. the patterns of
occurrence of a k-mer in samples) in terms of their differences (which are small)
with respect to some “neighboring” color class. The key technical challenge,
solved by our work, is efficiently searching for the neighbors of color classes in
the high-dimensional space of colors by leveraging the observation that similar
color classes tend to be topologically close in the underlying de Bruijn graph. We
construct a weighted graph on the color classes in the cdbg, where the weight
of each edge corresponds to the space required to store the delta between its
endpoints. Finding the minimum spanning tree (MST) of this graph gives a
minimal delta-based representation. Although reconstructing a color class on
this representation requires a walk to the MST root node, abundant temporal
locality on the lookups allows us to use a small cache to mitigate the performance
impact, yielding query throughput that is essentially the same as when all color
classes are represented explicitly.

An alternative would have been to try to limit the depth (or diameter) of
the MST. This problem is heavily studied in two forms: the unrooted bounded-
diameter MST problem [23] and the rooted hop-constrained MST problem [24].
Neither is in APX, i.e. it is not possible to approximate them to within any
constant factor [25]. Althaus et al. gave an O(logn) approximation assuming the
edge weights form a metric [24]. Khuller et al. show that, if the edge lengths are
the same as the edge weights, then there is an efficient algorithm for finding a
spanning tree that is within a constant of optimal in terms of both diameter and
weight [26]. Marathe et al. show that in general we can find trees within O(logn)
of the minimum diameter and weight [27]. We can’t use Khuller’s approach
(because our edge lengths are not equal to our edge weights), and even a O(logn)
approximation would give up a potentially substantial amount of space.

We showcase the generality and applicability of our color class table com-
pression technique by demonstrating it in two computational biology applica-
tions: sequence search and variation detection. We compare our novel color class
table representation with the representation used in Mantis [5], a state-of-the-art
large-scale sequence-search tool that uses a cdbg to index a set of sequencing
samples, and the representation used in Rainbowfish [12], a state-of-the-art index
to facilitate variation detection over a set of genomes. We show that our app-
roach maintains the same query performance while achieving over 11× and 2.5×
storage savings relative to the representation previously used by these tools.
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2 Methods

This section describes our compact cdbg representation. We first define cdbgs
and briefly describe existing compact cdbg representations. We then outline the
high-level idea behind our compact representation and explain how we use the de
Bruijn graph to efficiently build our compact representation. Finally, we describe
implementation details and optimizations to our query algorithm.

2.1 Colored de Bruijn graphs

De Bruijn graphs are widely used to represent the topological structure of a set
of k-mers [2,18,28–33]. The de Bruijn graph induced by a set of k-mers is defined
below.

Definition 1. Given a set E of k-mers, the de Bruijn graph induced by E has
edge set E, where each k-mer (or edge) connects its two (k−1)-length substrings
(or vertices).

Cdbgs extend the de Bruijn graph by assigning a color class C(x) to each
edge (or node) x of the de Bruijn graph. The color class C(x) is a set drawn
from some universe U . Examples of U and C(x) are

– Sometimes, U is a set of reference genomes, and C(x) is the subset of reference
genomes containing k-mer x [10,12,13,34].

– Sometimes, U is a set of reads, and C(x) is the subset of reads containing
x [35–37].

– Sometimes, U is a set of sequencing experiments, and C(x) is the subset of
sequencing experiments containing x [5–8].

The goal of a cdbg representation is to store E and C as compactly as possible1,
while supporting the following operations efficiently:

– Point query. Given a k-mer x, determine whether x is in E.
– Color query. Given a k-mer x ∈ E, return C(x).

Given that we can perform point queries, we can traverse the de Bruijn
graph by simply querying for the 8 possible predecessor/successor edges of an
edge. This enables us to implement more advanced algorithms, such as bubble
calling [1].

Many cdbg representations typically decompose, at least logically, into two
structures: one structure storing a de Bruijn graph and associating an ID with
each k-mer, and one structure mapping these IDs to the actual color class [10,
12,38]. The individual color classes can be represented as bit-vectors, lists, or
via a hybrid scheme [39]. This information is typically compressed [21,40,41].

Our paper follows this standard approach, and focuses exclusively on reduc-
ing the space required for the structure storing the color information. We propose
1 The nodes of the de Bruijn graph are typical stored implicitly, because the node set

is simply a function of E.
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a compact representation that, given a color ID, can return the corresponding
color efficiently. Although we pair our color table representation with the de
Bruijn graph structure representation of the counting quotient filter [38] as used
in Mantis [5], our proposed color table representation can be paired with other
de Bruijn graph representations.

2.2 A Similarity-Based cdbg Representation

The key observation behind our compressed color-class representation is that
the color classes of k-mers that are adjacent in the de Bruijn graph are likely
to be very similar. Thus, rather than storing each color class explicitly, we can
store only a few color classes explicitly and, for all the remaining color classes,
we store only their differences from other color classes. Because the differences
are small, the total space used by the representation will be small.

Motivated by the observation above, we propose to find an encoding of the
color classes that takes advantage of the fact that most color classes can be
represented in terms of only a small number of edits (i.e., flipping the parity of
only a few bits) with respect to some neighbor in the high-dimensional space
of the color classes. This idea was first explored by Bookstein and Klein [42] in
the context of information retrieval. Bookstein and Klein showed how to exploit
the implicit clustering among bitmaps in IR to achieve excellent reduction in
storage space to represent those bitmaps using an MST as the underlying repre-
sentation. Unfortunately, the approach taken by Bookstein and Klein cannot be
directly used in our problem, since it requires computing and optimizing upon
the full Hamming distance graph of the bitvectors being represented, which is not
tractable for the scale of data we are analyzing. Hence, what we need is a method
to efficiently discover an incomplete and highly-sparse Hamming distance graph
that, nonetheless, supports a low-weight spanning tree. We describe below how
we apply and modify this approach in the context of the set of correlated bit
vectors (i.e. color classes) that we wish to encode.

We construct our compressed color class representation as follows (see Fig. 1).
For each edge x of the de Bruijn graph, let C(x) be the color class of x. Let C be
the set of all color classes that occur in the de Bruijn graph. We first construct
an undirected graph with vertex set C and edge set reflecting the adjacency
relationship implied by the de Bruijn graph. In other words, there is an edge
between color classes c1 and c2 if there exist adjacent edges (i.e. incident on the
same node) x and y in the de Bruijn graph such that c1 = C(x) and c2 = C(y).
These edges indicate color classes that are likely to be similar, based on the
structure of the de Bruijn graph. We then add a special node ∅ to the color class
graph, which is connected to every node. We set the weight of every edge in the
color class graph to be the Hamming distance between its two endpoints (where
we view color classes as bit vectors and ∅ is the all-zeros bit vector).

We then compute a minimum spanning tree of the color class graph and root
the tree at the special ∅ node. Note that, because the ∅ node is connected to
every other node in the graph, the graph is connected and hence an MST is
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(a) A colored de Bruijn graph. Each
rectangle node represents a kmer. Each vector represents
a color class (equal color classes have the same color).

(b) The color class graph from the cdbg. There
is an edge between each pair of color classes that which

correspond to adjacent k-mers in cdbg. Weights on the edges
represent the Hamming distances of the color class vectors.

(c) The color class graph we achieve from
1b by removing duplicate edges and its corresponding MST.

(d) The complete color class graph and its
derived MST which has the minimum achievable total weight.

Fig. 1. Encoding color classes by finding the MST of the color class graph, an undi-
rected graph derived from cdbg. The order of the process is a, b and c. The arrows in
a and b show the direction of edges in the de Bruijn graph which is a directed graph.
The optimal achievable MST is shown in d for comparison. Since we never observe the
edge between any k-mers from color classes green and yellow in cdbg, we won’t have
the edge between color classes green and yellow and therefore, our final MST is not
equal to the best MST we can get from a complete color class graph. (Color figure
online)

guaranteed to exist. By using a minimum spanning tree, we minimize the total
size of the differences that we need to store in our compressed representation.

We then store the MST as a table mapping each color class ID to the ID
of its parent in the MST, along with a list of the differences between the color
class and its parent. For convenience we can view the list of differences between
color class c1 and color class c2 as a bit vector c1 ⊕ c2, where ⊕ is the bit-wise
exclusive-or operation. To reconstruct a color class given its ID i, we simply xor
all the difference vectors we encounter while walking from i to the root of the
MST.

2.3 Implementation of the MST Data Structure

Assuming we have |C| color classes, |U | colors, and an MST with total weight
of w over the color class graph, we store all the information required to retrieve
the original color bit-vector for each color class ID based on the MST structure
into three data structures:
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– Parent vector: This vector contains |C| slots, each of size �log2 C�. The value
stored in index i represents the parent color class ID of the color class with
index i in the MST.

– Delta vector: This vector contains w slots, each of size �log2 |U |�. For each
pair of parent and child in the parent vector, we compute a vector of the
indices at which they differ. The delta vector is the concatenation of these
per-edge delta vectors, ordered by the ID of the source of the edge. Note
that the per-edge delta vectors will not all be of the same length, because
some edges have larger weight than others. Thus, we need an auxiliary data
structure to record the boundaries between the per-edge deltas within the
overall delta vector.

– Boundary bit-vector: This vector contains w bits, where a set bit indicates
the boundary between two delta sets within the delta vector. To find the
starting position, within the delta vector, of the per-edge delta list for the
MST edge with source ID i, we perform select(i) on the boundary vector.
Select returns the position of the ith one in the boundary vector.

Query of the MST-Based Representation. Figure 2 shows how queries proceed
using this encoding. We start with an empty accumulator bit vector and a color
class ID i for which we want to compute the corresponding color class. We
perform a select query for i and i + 1 in the boundary bit-vector to get the
boundaries of i’s difference list in the delta vector. We then iterate over its
difference list and flip the indicated bits in our accumulator. We then set i ←
parent[i] and repeat until i becomes 0, which indicates that we have reached
the root. At this point, the accumulator will be equal to the bit vector for color
class i.

2.4 Integration in Mantis

Once constructed, our MST-based color class representation is a drop-in replace-
ment for the current color class representations used in several existing tools,
including Mantis [5] and Rainbowfish [12]. Their existing color class tables sup-
port a single operation—querying for a color class by its ID—and our MST-based
representation supports exactly the same operation.

For this paper, we integrated our MST-based representation into Mantis.
The same space savings can be achieved in other tools, particularly Rainbowfish,
which has a similar color-class encoding as Mantis.

Construction. We construct our MST-based color-class representation as fol-
lows. First, we run Mantis to build its default representation of the cdbg. We
then build the color-class graph by walking the de Bruijn graph and adding all
the corresponding edges to the color-class graph. The edge set is typically much
smaller than the de Bruijn graph (because many de Bruijn graph edges may map
to the same edge in the color-class graph), so this can be done in RAM. Note
that we do not compute the weights of the edges during this pass, because that
would require having all of the large color-class bit vectors in memory in order
to compute their Hamming distance.



8 F. Almodaresi et al.

Fig. 2. The conceptual MST (top-left), the data structure to store the color information
in the format of an MST (right). This figure also illustrates the steps required to build
one of the color vectors (C3) at the leaf of the tree. Note that the query process shown
here does not depict the caching policy we apply in practice.

In the second pass, we traverse the edge set and compute the weight of each
edge. To minimize RAM usage during this phase, we sort the edges and iterate
over them in a “blocked” fashion. Specifically, Mantis stores the color class bit
vectors on-disk sequentially by ID, grouped into blocks of roughly 6 GBs each.
We sort the edges lexicographically by their source and destination block. We
then load all pairs of blocks and compute the weights of all the edges between
the two blocks currently in memory. At all times, we need only two blocks of
color class vectors in memory. Given the weighted graph, we compute the MST
and make one final pass to determine the relevant delta lists and encode our
final MST structure.

Parallelization. We note that, after having constructed the Mantis representa-
tion, most phases of the MST construction algorithm are trivially parallelized.
MST construction decomposes into three phases: (1) color-class graph construc-
tion, (2) MST computation, and (3) color-class representation generation. We
parallelize graph construction and color-class representation generation. The
MST computation itself is not parallelized.

We parallelized the determination of edges in the color-class graph by assign-
ing each thread a range of the k−mer-to-color-class-ID map. Each thread
explores the neighbors of the k-mers that appear in its assigned range, and
any redundant edges are deduplicated when all threads are finished. Similarly,
we parallelized the computation of edge weights and the extraction of the delta
vectors that correspond to each edge in the MST. Given the list of edges sorted
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lexicographically by their endpoints (determined during the first phase), it is
straightforward to partition the work for processing batches of edges across many
threads. It is possible, of course, that the batches will display different workloads
and that some threads will complete their assigned work before others. We have
not yet made any attempt to optimize the parallel construction of the MST in
this regard, though many such optimizations are likely possible.

Accelerating Queries with Caching. The encoded MST is not a balanced
tree, so decoding a color bit-vector might require walking a long path to the
root, which negatively impacts the query time. Attempting to explicitly mini-
mize the depth or diameter of the MST is, as discussed in Sect. 1, not generally
approximable within a constant factor. However, considering the fact that the
frequency distribution of the color classes is very skewed, some of the color classes
are more popular or have more children and, therefore, are in the path of many
more nodes. We take advantage of these data characteristics by caching the most
recent queried color bit-vectors. Every time we walk up the tree, if the color bit-
vector for a node is already in the cache, our query algorithm stops at that point
and applies all the deltas to this bit-vector instead of the zero bit-vector of the
root. This caching approach significantly improves the query time, resulting in
the final query time required to decode a color class being marginally faster than
direct RRR access.

The cache policy is designed with the tree structure of our color-class repre-
sentation in mind. Specifically, we want to cache nodes near the leaves, but not
so close to the leaves that we end up caching essentially the entire tree. Also,
we don’t want to cache infrequently queried nodes. Thus we use the following
caching policy: all queried nodes are cached. Furthermore, we cache interior
nodes visited during a query as follows. If a query visits a node that has been
visited by more than 10 other queries and is more than 10 hops away from the
currently queried item, then we add that node to the cache. If a query visits
more than one such node, we add the first one encountered.

In our experiments, we used a cache of 10,000 nodes and managed the cache
using a FIFO policy.

2.5 Comparison with Brute-Force and Approximate-Nearest-
Neighbor-Based Approaches

Our MST-based color-class representation uses the de Bruijn graph as a hint as
to which color classes are likely to be similar. This leads to the natural question:
how good are the hints provided by the de Bruijn graph?

One could imagine alternatively constructing the MST on the complete color-
class graph. This would yield the absolutely lowest-weight spanning tree on the
color classes. Unforunately, no MST algorithm runs in less than Ω(|E|) time, so
this would make our construction time quadratic in the number of color classes.
The number of color classes in our experiments range from 106 to 109, so the
number of edges in the complete color-class graph would be on the order of 1012

to 1018, or possibly even more, making this algorithm impractical for the largest
data sets considered in this paper.
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Alternatively, we could try to use an approximate nearest-neighbor algorithm
to find pairs of color classes with small Hamming distance. As an experiment,
we implemented an approximate nearest neighbor algorithm that bucketed color
classes by their projection into a smaller-dimensional subspace. Nearest-neighbor
queries were computed by searching within the queried item’s bucket. Results
were disappointing. Even on small data sets, the average distance between the
queried item and the returned neighbor was several times larger than the average
distance found using the neighbors suggested by the de Bruijn graph. Thus, we
did not pursue this direction further.

3 Evaluation

In this section we evaluate our MST-based representation of the color informa-
tion in the cdbg. All our experiments use Mantis with our integrated MST-based
color-class representation.

Evaluation Metrics. We evaluate our MST-based representation on the fol-
lowing parameters:

– Scalability. How does our MST-based color-class representation scale in
terms of space with increasing number of input samples, and how does it
compare to the existing representations of Mantis?

– Construction time. How long does it take – in addition to the original
construction time for building cdbg – to build our MST-based color-class
representation?

– Query performance. How long does it takes to query the cdbg using our
MST-based color-class representation?

3.1 Experimental Procedure

System Specifications. Mantis takes as input a collection of squeakr files [43].
Squeakr is a k-mer counter that takes as input a collection of fastq files and
produces as output, a single file with a compact hash table mapping each k-mer
to the number of times it occurs in the input files. As is standard in evaluations
of large-scale sequence search indexes, we do not benchmark the time required
to construct these filters.

The data input to the construction process was stored on 4-disk mirrors (8
disks total). Each is a Seagate 7200rpm 8 TB disk (ST8000VN0022). They were
formatted using ZFS and exported via NFS over a 10 Gb link. We used different
systems to run and evaluate time, memory, and disk requirements for the two
steps of preprocessing and index building as was done by Prashant et al. [5].

For index building and query benchmarks, we ran all the experiments on
the same system used in Mantis [5], an Intel(R) Xeon(R) CPU (E5-2699 v4
@2.20 GHz with 44 cores and 56 MB L3 cache) with 512 GB RAM and a 4TB
TOSHIBA MG03ACA4 ATA HDD running Ubuntu 16.10 (Linux kernel 4.8.0-
59-generic). Constructing the main index was done using a single thread, and
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the MST construction was performed using 16 threads. Query benchmarks were
also performed using a single thread.

Data to Evaluate Scalability and Comparison to Mantis. We integrated
and evaluated our MST-based color-class representation within Mantis, so we
briefly review Mantis here. Mantis builds an index on a collection of unassem-
bled raw sequencing data sets. Each data set is called a sample. The Mantis
index enables fast queries of the form, “Which samples contain this k-mer,” and
“Which samples are likely to contain this string of bases?” Mantis takes as input
one squeakr file per sample [43]. A squeakr file is a compact hash table mapping
each k-mer to the number of times it occurs within that sample. Squeakr also has
the ability to serialize a hash that simply represents the set of k-mers present at
or above some user-provided threshold; we refer to these as filtered Squeakr files.
Using the filtered Squeakr files vastly reduces the required intermediate storage
space, and also decreases the construction time required for Mantis considerably.
For example, for the breast, blood, and brain dataset (2586 samples), the unfil-
tered Squeakr files required ∼2.5 TB of space while the filtered files require only
∼108 GB. To save intermediate storage space and speed index construction, we
built our Mantis representation from these filtered Squeakr files.

Given the input files, Mantis constructs an index consisting of two files: a
map from k-mer to color-class ID, and a map from color-class ID to the bit vector
encoding that color class. The first map is stored as a counting quotient filter
(CQF), which is the same compact hash table used by Squeakr. The color-class
map is an RRR-compressed bit vector.

Recall that our construction process is implemented as a post-processing step
on the standard Mantis color-class representation. For construction times, we
report only this post-processing step. This is because our MST-based color-class
representation is a generic tool that can be applied to many cdbg representations
other than Mantis, so we want to isolate the time spent on MST construction.

To test the scalability of our new color class representation, we used a
randomly-selected set of 10,000 paired-end, human, bulk RNA-seq short-read
experiments downloaded from European Nucleotide Archive (ENA) [44] in
gzipped FASTQ format. Additionally, we have built the proposed index for 2,586
sequencing samples from human blood, brain, and breast tissues (BBB) origi-
nally used by [6] and also used in the subsequent work [7,8,39], including Man-
tis [5], as a point of comparison with these representations. The set of 10,000
experiments does not overlap with the BBB samples. The full list of 10,000
experimental identifiers can be obtained from https://github.com/COMBINE-
lab/color-mst/blob/master/input lists/nobbb10k shuffled.lst. The total size of
all these experiments (gzipped) is 25.23 TB.

In order to eliminate spurious k-mers that occur with insignificant abundance
within a sample, the squeakr files are filtered to remove low-abundance k-mers.
We adopted the same cutoff policy originally proposed by Solomon and Kingsford
[6], by discarding k-mers that occur less than some threshold number of time.
The thresholds are determined according to the size (in bytes) of the gzipped
sample, and the thresholds are given in Table 1. We adopt a value of k = 23 for
all experiments.

https://github.com/COMBINE-lab/color-mst/blob/master/input_lists/nobbb10k_shuffled.lst
https://github.com/COMBINE-lab/color-mst/blob/master/input_lists/nobbb10k_shuffled.lst
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Table 1. Minimum number of times a k-mer must appear in an experiment in order to
be counted as abundantly represented in that experiment (taken from the SBT paper).
Note, the k-mers with count of “cutoff” are included at each threshold.

Min size Max size Cutoff # of experiments with specified threshold

0 ≤ 300MB 1 2,784

>300MB ≤500MB 3 798

>500MB ≤1GB 10 1,258

>1GB ≤3GB 20 2,296

>3GB ∞ 50 2,864

3.2 Evaluation Results

Scalability of the New Color Class Representation. Figure 3a and Table 2
show how the size of our MST-based color-class representation scales as we
increase the number of samples indexed by Mantis. For comparison, we also give
the size of Mantis’ RRR-compression-based color-class representation. Figure 3a
also plots the size of the CQF that Mantis uses to map k-mers to color class IDs.
We can draw several conclusions from this data:

– The MST-based representation is an order-of-magnitude smaller than the
RRR-based representation.

– The gap between the RRR-based representation and the MST-based represen-
tation grows as we increase the number of input samples. This suggests that
the MST-based representation grows asymptotically slower than the RRR-
based representation.

– The MST-based color-class representation is, for large numbers of samples,
about 5× smaller than the CQF. This means that representing the color
classes is no longer the scaling bottleneck.

Table 2 also shows the scaling rate of all elements of the MST representation,
in addition to the ratio of MST over the color bit-vector. As expected, the list of
deltas dominate the MST representation both in terms of total size and in terms
of growth. Table 2 also shows the average edge weight of the edges in the MST.
The edge weight grows approximately proportional to Θ(log(# of samples)) (i.e.
every time we double the number of samples, the average edge weight increases
by almost exactly 1). This suggests that our de Bruijn graph-based algorithm is
able to find pairs of similar color classes.

To better understand the scaling of the different components of a cdbg rep-
resentation, we plot the sizes of the RRR-based color-class representations and
MST-based representations on a log-log scale in Fig. 3b. Based on the data, the
RRR-based representation appears to grow in size at a rate of roughly Θ(n1.5),
whereas the new MST-based representation grows roughly at a rate of Θ(n1.2).
This explains why the RRR-based representation grows to dwarf the CQF (which
grows roughly linearly) and become the bottleneck to scaling to larger data sets,
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(a) Sizes of the RRR and MST-based color class
representations with respect to the number of samples
indexed from the human bulk RNA-seq data set.
The counting quotient filter component is the Mantis
representation of the de Bruijn graph.

(b) Empirical asymptotic analysis of the growth rates of
the sizes of RRR-based color class representation and the
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Fig. 3. Size of the MST-based color-class representation vs. the RRR-based color-class
representation.

Table 2. Space required for RRR and MST-based color class encodings over different
numbers of samples (sizes in GB) and time and memory required to build MST. Central
columns break down the size of individual MST components.

Dataset # samples RRR

matrix

MST Expected

edge

weight

size(MST )
size(RRR)

Total

space

Parent

vector

Delta

vector

Boundary

bit-vector

Build

memory

(GB)

Build time

(hh:mm:ss)

H. sapiens

RNA-seq

samples

200 0.42 0.15 0.08 0.06 0.01 8 0:05:42 2.42 0.37

500 1.89 0.46 0.2 0.24 0.03 16 0:12:15 3.42 0.24

1,000 5.14 1.03 0.37 0.6 0.06 29 0:25:03 4.39 0.2

2,000 14.2 2.35 0.71 1.5 0.14 29 0:51:58 5.38 0.17

5,000 59.89 7.21 1.72 5.1 0.39 59 3:52:34 6.61 0.12

10,000 190.89 16.28 3.37 12.06 0.86 111 10:17:42 7.68 0.085

Blood,

Brain,

Breast

(BBB)

2586 15.8 2.66 0.63 1.88 0.16 29 00:57:43 6.98 0.17

E. coli

strain

reference

genomes

5,598 2.06 0.83 0.02 0.76 0.06 6 00:03:15 7.8 0.4

Table 3. The MST construction time for 1000 experiments using different number of
threads. Memory stays the same across all the runs.

# of threads 1 2 4 8 16 32

Run time (hh:mm:ss) 02:47:08 01:38:26 01:02:42 00:31:57 00:22:00 00:14:17

whereas the MST-based representation does not. With the MST-based represen-
tation, the CQF itself is now the bottleneck.
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Table 4. Query time and resident memory for mantis using the MST-based representa-
tion for color information and the original mantis (using RRR-compressed color classes)
over 10, 000 experiments. The “query” column provides just the time taken to execute
all queries (as would be required if the index was already loaded in e.g. a server-based
search tool). Note that, in resident memory usage for the MST-based representation,
the counting quotient filter always dominates the total required memory.

Mantis with MST Mantis

Index load + query Query Space Index load + query Query Space

10 Transcripts 1min 10 s 0.3 s 118GB 32min 59 s 0.5 s 290GB

100 Transcripts 1min 17 s 8 s 119GB 34min 33 s 11 s 290GB

1000 Transcripts 2min 29 s 79 s 120GB 46min 4 s 80 s 290GB

Finally, the last two rows in Table 2 show the size of the RRR- and MST-
based color-class representations for the human blood, brain, breast (BBB) and
E. coli data sets respectively. BBB is the data set used in SBT and its subse-
quent tools [7,8,39], as well as in Mantis [5] and E. coli is the data set analyzed
in the Rainbowfish paper. This dataset, which has been obtained from Gen-
Bank [45], consists of 5,598 distinct E. coli strains. We specifically chose this
dataset since Rainbowfish has already demonstrated a large improvement in size
for it compared to Vari [10].

As the table shows, our MST-based color-class representation is able to effec-
tively compress genomic color data in addition to RNA-seq color data.

Index Building Evaluation. The “Memory” and “Build time” columns in
Table 2 show the memory and time required to build our MST-based color-
class representation from Mantis’ RRR-based representation respectively. All
builds used 16 threads. Table 3 shows how the MST construction time for a 1000
sample dataset scales as a function of the number of build threads. The memory
consumption is not affected by number of threads and remains fixed for all trials.

Overall, the MST construction time is only a tiny fraction of the overall
time required to build the Mantis index from raw fastq files. The vast bulk of
the time is spent processing the fastq files to produce filtered squeakrs. This
step was performed on a cluster of 150 machines over roughly one week. Thus
MST construction represents less than 1% of the overall index build time. The
memory required to build the MST is dependent on the size of the CQF and
grows proportional to that. In fact, due to the multi-pass construction procedure,
the peak MST construction memory is essentially the size of the CQF plus a
relatively small (and adjustable) amount of working memory. For the run over
10k experiments, where the CQF size was the largest (98G), the peak memory
required to build MST is 111G.

Query Evaluation. We evaluate query speed in the following manner. We select
random subsets, of increasing size, of transcripts from the human transcriptome,
and query the Mantis index to determine the set of experiments containing each
of these transcripts. Mantis answers transcript queries as follows. For each k-mer
in the transcript, it computes the set of samples containing that k-mer. It then
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reports a sample as containing a transcript if the sample contains more than Θ
fraction of the k-mers in the transcript, where Θ is a user-adjustable parameter.
Note that, for Mantis, the Θ threshold is applied at the very end. Mantis first
computes, for each sample, the fraction of k-mers that occur in that sample, and
then filters as a last step. Thus the query times reported here are valid for any Θ.

Table 4 reports the query performance of both the RRR and MST-based
Mantis indexes. Despite the vastly-reduced space occupied by the MST-based
index, and the fact that the color class decoding procedure is more involved,
query in the MST-based index is slightly faster than querying in the RRR-based
index. The average query time in both RRR-based and MST-based index is
0.08 s/query.

Once the index has been loaded into RAM, Mantis queries are much faster
than the three SBT-based large-scale sequence search data structures, and our
MST-based color-class representation doesn’t change that.

4 Discussion and Conclusion

We have introduced a novel exact representation of the color information asso-
ciated with the cdbg. Our representation yields large improvements in terms
of representation size when compared to previous state-of-the-art approaches.
While our MST-based representation is much smaller, it still provides rapid
query and can, for example, return the query results for a transcript across an
index of 10,000 RNA-seq experiments in ∼0.08 s/query. Further, the size benefit
of our proposed representation over that of previous approaches appears to grow
with the number of color classes being encoded, meaning it is not only much
smaller, but also much more scalable. Finally, the representation we propose
is, essentially, a stand-alone encoding of the cdbg’s associated color informa-
tion, making this representation conceptually easy to integrate with any tool or
method that needs to store color information over a large de Bruijn graph.

Though it is not clear how much further the color information can be com-
pressed while maintaining a lossless representation, this is an interesting theoret-
ical question. It may be fruitful to approach this question from the perspective
suggested by Yu et al. [46], of evaluating the metric entropy, fractal dimension,
and information-theoretic entropy of the space of color classes. Practically, how-
ever, we have observed that, at least in our current system, Mantis, for large-scale
sequence search, the counting quotient filter, which is used to store the topology
of the de Bruijn graph and to associate color class labels with each k-mer, has
become the new scalability bottleneck. Here, it may be possible to reduce the
space required by this component by making use of some of the same observations
we relied upon to allow efficient color class neighbor search. For example, because
many adjacent k-mers in the de Bruijn graph share the same color class ID, it
is likely possible to encode this label information sparsely across the de Bruijn
graph, taking advantage of the coherence between topologically nearby k-mers.
Further, to allow scalability to truly-massive datasets, it will likely be necessary
to make the system hierarchical, or even to adopt a more space-efficient (and
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domain-specific) representation of the underlying de Bruijn graph. Nonetheless,
because we have designed our color class representation as essentially orthogonal
to the de Bruijn graph representation, we anticipate that we can easily integrate
this approach with improved representations of the de Bruijn graph.

Mantis with the new MST-based color class encoding is written in C++17 and
is available at https://github.com/splatlab/mantis.

Acknowledgments and Declarations. This work was supported by the US
National Science Foundation grants BIO-1564917, CCF-1439084, CCF-1716252, CNS-
1408695, National Institutes of Health grant R01HG009937. The experiments were con-
ducted with equipment purchased through NSF CISE Research Infrastructure Grant
Number 1405641. RP is a co-founder of Ocean Genomics.

References

1. Iqbal, Z., Caccamo, M., Turner, I., Flicek, P., McVean, G.: De novo assembly and
genotyping of variants using colored de Bruijn graphs. Nat. Genet. 44, 226–232
(2012). https://doi.org/10.1038/ng.102810.1038/ng.1028

2. Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to DNA
fragment assembly. Proc. National Acad. Sci. 98(17), 9748–9753 (2001)

3. Pevzner, P.A., Tang, H.: Fragment assembly with double-barreled data. Bioinfor-
matics 17(Suppl. 1), s225–s233 (2001)

4. Chikhi, R., Limasset, A., Jackman, S., Simpson, J.T., Medvedev, P.: On the repre-
sentation of de bruijn graphs. In: Sharan, R. (ed.) RECOMB 2014. LNCS, vol. 8394,
pp. 35–55. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05269-4 4

5. Prashant, P., Fatemeh, A., Bender, M.A., Ferdman, M., Johnson, R., Patro, R.:
Mantis: a fast, small, and exact large-scale sequence-search index. Cell Syst. 7(2),
201–207.e4 (2018). https://doi.org/10.1016/j.cels.2018.05.021

6. Solomon, B., Kingsford, C.: Fast search of thousands of short-read sequencing
experiments. Nat. Biotechnol. 34(3), 300–302 (2016)

7. Solomon, B., Kingsford, C.: Improved search of large transcriptomic sequencing
databases using split sequence bloom trees. In: Sahinalp, S.C. (ed.) RECOMB
2017. LNCS, vol. 10229, pp. 257–271. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-56970-3 16

8. Sun, C., Harris, R.S., Chikhi, R., Medvedev, P.: AllSome sequence bloom trees.
In: Sahinalp, S.C. (ed.) RECOMB 2017. LNCS, vol. 10229, pp. 272–286. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-56970-3 17

9. Bradley, P., den Bakker, H., Rocha, E., McVean, G., Iqbal, Z.: Real-time search of
all bacterial and viral genomic data. BioRxiv, p. 234955 (2017)

10. Muggli, M.D., et al.: Succinct colored de bruijn graphs. Bioinformatics 33, 3181–
3187 (2017)

11. Holley, G., Wittler, R., Stoye, J.: Bloom Filter Trie: an alignment-free and
reference-free data structure for pan-genome storage. Algorithms Mol. Biol. 11(1),
3 (2016)

12. Almodaresi, F., Pandey, P., Patro, R.: Rainbowfish: a succinct colored de Bruijn
graph representation. In: LIPIcs-Leibniz International Proceedings in Informatics,
vol. 88. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

13. Liu, B., Guo, H., Brudno, M., Wang, Y.: deBGA: read alignment with de Bruijn
graph-based seed and extension. Bioinformatics 32(21), 3224–3232 (2016a)

https://github.com/splatlab/mantis
https://doi.org/10.1038/ng.102810.1038/ng.1028
https://doi.org/10.1007/978-3-319-05269-4_4
https://doi.org/10.1016/j.cels.2018.05.021
https://doi.org/10.1007/978-3-319-56970-3_16
https://doi.org/10.1007/978-3-319-56970-3_16
https://doi.org/10.1007/978-3-319-56970-3_17


An Efficient, Scalable and Exact Representation 17

14. Chikhi, R., Rizk, G.: Space-efficient and exact de bruijn graph representation based
on a bloom filter. In: Raphael, B., Tang, J. (eds.) WABI 2012. LNCS, vol. 7534, pp.
236–248. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33122-
0 19

15. Salikhov, K., Sacomoto, G., Kucherov, G.: Using cascading bloom filters to improve
the memory usage for de brujin graphs. Algorithms Mol. Biol. 9(1), 2 (2014)

16. Bowe, A., Onodera, T., Sadakane, K., Shibuya, T.: Succinct de bruijn graphs. In:
Raphael, B., Tang, J. (eds.) WABI 2012. LNCS, vol. 7534, pp. 225–235. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33122-0 18

17. Crawford, V., Kuhnle, A., Boucher, C., Chikhi, R., Gagie, T., Hancock, J.: Prac-
tical dynamic de bruijn graphs. Bioinformatics 34, 4189–4195 (2018)

18. Pandey, P., Bender, M.A., Johnson, R., Patro, R.: deBGR: an efficient and near-
exact representation of the weighted de bruijn graph. Bioinformatics 33(14), i133–
i141 (2017)

19. Mustafa, H., Schilken, I., Karasikov, M., Eickhoff, C., Rätsch, G., Kahles, A.:
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Abstract. Objective: Automatic recognition of medical concepts in unstruc-
tured text is an important component of many clinical and research applications
and its accuracy has a large impact on electronic health record analysis. The
mining of such terms is complicated by the broad use of synonyms and non-
standard terms in medical documents. Here we presented a machine learning
model for concept recognition in large unstructured text which optimizes the use
of ontological structures and can identify previously unobserved synonyms for
concepts in the ontology.
Materials and Methods: We present a neural dictionary model which can be

used to predict if a phrase is synonymous to a concept in a reference ontology.
Our model, called Neural Concept Recognizer (NCR), uses a convolutional
neural network and utilizes the taxonomy structure to encode input phrases, then
rank medical concepts based on the similarity in that space. It also utilizes the
biomedical ontology structure to optimize the embedding of various terms and
has fewer training constraints than previous methods. We train our model on
two biomedical ontologies, the Human Phenotype Ontology (HPO) and
SNOMED-CT.
Results: We tested our model trained on HPO on two different data sets: 288

annotated PubMed abstracts and 39 clinical reports. We also tested our model
trained on the SNOMED-CT on 2000 MIMIC-III ICU discharge summaries. The
results of our experiments show the high accuracy of our model, as well as the
value of utilizing the taxonomy structure of the ontology in concept recognition.
Conclusion: Most popular medical concept recognizers rely on rule-based

models, which cannot generalize well to unseen synonyms. Also, most machine
learning methods typically require large corpora of annotated text that cover all
classes of concepts, which can be extremely difficult to get for biomedical
ontologies. Without relying on a large-scale labeled training data or requiring
any custom training, our model can efficiently generalize to new synonyms and
performs as well or better than state-of-the-art methods custom built for specific
ontologies.
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1 Introduction

Automatic recognition of medical concepts in unstructured text is a key component of
biomedical information retrieval systems, having applications such as analysis of the
unstructured text in electronic health records (EHR) [1–3] or knowledge discovery
from biomedical literature [4, 5].

Many medical terminologies are structured as ontologies, adding the relations
between terms, and often including several synonyms for each concept. One of the
most widely used ontologies in the medical space is SNOMED-CT [6], which provides
structured relationships for over 300,000 medical concepts. SNOMED-CT is com-
monly used in Electronic Health Record Systems to help summarize patient encounters
and is fully integrated with ICD-9 billing codes used in the US and many other
jurisdictions. The Human Phenotype Ontology (HPO) [7] is an arrangement of the
terms used to describe the visible manifestations (phenotypes) of human genetic dis-
eases. The HPO has *12,000 terms, and has become the standard ontology used in
Rare Disease research and clinical genetics, having been adopted by IRDiRC [8],
ClinGen [9] and many other projects. Both SNOMED-CT and HPO, like most other
ontologies, provide a number of synonyms for each term, they usually miss many valid
synonymous terms, as manually curating every term that refers to a concept is extre-
mely difficult, if possible.

There have many concept recognition and text annotation tools developed for
biomedical text. Examples of popular general purpose ones are NCBO annotator [10],
OBO annotator [11], MetaMap [12] and Apache cTAKES [13]. Other tools have been
developed focusing on more specific domains, such as BioLark [14] which is devel-
oped for automatic recognition of terms from the HPO, and Lobo et al. [15] which
combines a machine learning approach with manual validation rules. These systems
usually consist of a pipeline of natural language processing components including
tokenizer, part-of-speech tagger, sentence boundary detector and named entity recog-
nizer (NER)/annotator. Generally, the NER/annotator component of these tools are
based on text matching, dictionary look-ups and rule-based methods, which usually
require significant engineering effort, and are often unable to handle novel synonyms
absent in the ontology.

On the other hand, in the more general domain of natural language processing,
many machine learning based text classification and NER tools have been recently
introduced [16–18]. Typically, these methods do not need the manual rule-based
engineering effort, however they are dependent on large annotated text data for
training. Popular among them is a model known as LSTM-CRF, in which Long-short-
term-memory (LSTM) [19], a variation of recurrent neural networks widely used for
processing sequences such as text, is used to extract rich representations of the tokens
in a sentence, followed by a conditional random field (CRF) [20] on top of these
representations to recognize named entities.
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While these methods address a similar problem, they cannot be used directly for
concept recognition, as the number of named entity classes is typically much fewer
than the concepts in medical ontologies. For instance, CoNLL-2003 [21], one of the
data sets widely used for evaluations of such methods, contains only 4 classes: loca-
tions, persons, organizations, and miscellaneous. As a result, these methods typically
have a large number of training and test examples for each class, while in our setting
we are trying to recognize tens or hundreds of thousands of terms and may have only a
few or even no examples of a specific term. In this setting, where the training data does
not fully cover all of the classes, methods based on dictionary look-up might have some
advantage, as they can identify a concept in a given text by simply matching it to a
synonym available in their dictionary, without requiring training data annotated with
that concept.

In this paper we develop a hybrid approach called Neural Concept Recognizer
(NCR), by introducing a neural dictionary model that learns to generalize to novel
synonyms for concepts. Our model is trained on the information provided by the
ontology, including the concept names, synonyms, and the taxonomic relations
between the concepts, and can be used to rank the concepts a given phrase can match as
a synonym. Our model consists of two main components: an encoder which maps an
input phrase to a vector representation, and an embedding table consisting of the vector
representations learned for the ontology concepts. The classification is done based on
the similarity between the phrase vector and the concept vectors. To allow for the use
of our model to also detect concepts from longer texts, we scan the input text with
fixed-size windows and report a phrase as matching a concept if it is above a threshold
that is chosen from an appropriate validation dataset.

We trained our neural dictionary model on the Human Phenotype Ontology
(HPO) and used it to recognize concepts from two data sets including 228 PubMed
abstracts and 39 clinical reports of patients with rare genetic diseases. Additionally, we
also used a subset of SNOMED-CT containing concepts that have matching terms in
ICD-9, and experiment on 2000 ICU discharge summaries from MIMIC-III data-set
[22]. In both settings we trained our model solely on the ontology data and did not use
the text corpora except for setting the recognition sensitivity threshold from a small
validation set. Our experiments show the high accuracy of our model, on par with or
better than hand-trained methods. Our tool has already been used in two applications. It
has been integrated with the PhenoTips tool to suggest concepts for a clinical report
[23], and to automatically recognize occurrences of phenotypes in a clinical report for
subsequent data visualization [24]. Although the main focus of this work is recognizing
HPO and SNOMED-CT concepts, our method can be easily trained on other
biomedical ontologies.

1.1 Related Works

Recently, several machine learning methods have been used in biomedical NER or
concept recognition. Habibi et al. [25] trained the LSTM-CRF NER model introduced
by Lample et al. [16] for recognizing five entity classes of genes/proteins, chemicals,
species, cell lines and diseases. They tested their model on several biomedical corpora
and achieved better results compared to previous rule-based methods. In another recent

Identifying Clinical Terms in Free-Text Notes 21



work, Vani et al. [26] introduced a novel RNN-based model, and showed its efficiency
on predicting ICD-9 codes in clinical notes. Both of these methods require a training
corpus annotated with the concepts (loosely annotated in the case of Vani et al. [26]).

Curating such annotated corpus is more difficult for typical biomedical ontologies,
as the corpus has to cover thousands of classes. For example, HPO contains 11442
concepts (classes), while the only (to the best of our knowledge) publicly available
corpus annotated with HPO concepts [14] contains 228 PubMed abstracts with only
607 unique annotations that are not an exact match of a concept name or a synonym.
Thus, training a method to recognize the presence of concepts in biomedical text
requires a different approach when there is a large number of concepts.

The concepts in an ontology often have a hierarchical structure (i.e. a taxonomy),
which can be utilized in representation learning. Hierarchies have been utilized in
several recent machine learning approaches. Deng et al. [27] proposed a CRF based
method for image classification that takes into account inheritance and exclusion
relations between the labels. Their CRF model transfers knowledge between classes by
summing the weights along the hierarchy, leading to improved performance. Vendrov
et al. [28] introduced the order-embedding penalty to learn representations of hierar-
chical entities, and used it for image-caption retrieval task. Gaussian embeddings were
introduced by Neelakantan et al. [29] which instead of single point vectors learns a
high-dimensional Gaussian distribution which can model entailment. Most recently,
Nickel et al. [30] showed learning representations in hyperbolic space can improve
performance for hierarchical representations.

2 Methods

The methods section is organized as follows: in Sect. 2.1 we describe the neural
dictionary model that computes the likelihood that a given phrase matches each concept
from an ontology. Following, in Sect. 3.2 we show how to apply the model to larger
text fragments, such as a full sentence, which may have multiple (or no) terms.

2.1 Overview of the Neural Dictionary Model

The neural dictionary model receives as input a word or a phrase and finds the prob-
ability of the concepts in the ontology matching it. The model consists of a text
encoder, which is a neural network that maps the query phrase into vector represen-
tation, and an embedding matrix with rows corresponding the ontology concepts. We
use the dot product of the query vector and a concept vector as the measure of
similarity. Figure 1 shows an overview of our model and the following subsections
describe our model in more details.
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Encoder. We use word embeddings to represent the input words, learned in a pre-
processing step by running fastText [31] on publicly available MEDLINE/PubMed
abstracts. The goal of this unsupervised step is to map semantically similar words (e.g.
synonyms) to close vectors. We selected fastText for this task mainly because it takes
into account the subword information, which is important in medical domain where
there are many semantically close words with slight morphologic variations.

Inspired by Kim et al. [32], our encoder projects these word vectors into another
space using a convolution neural network. We have used a much simpler network,
consisting of a single convolution layer, with a filter size of one word. Although this
choice of filter size has the disadvantage of losing the word order information, in our
settings this was outweighed by the benefit of having fewer network parameters to
learn. In the next step, these projected vectors are aggregated into a single vector v,
using a max-over-time pooling operation, as shown in equation below:

v ¼ maxt ELU Wx tð Þ þ b
� �n o

;

where x tð Þ is the vector for the tth word in the phrase,W and b are the weight matrix and
the bias vector of the convolution filter, and ELU [33] is the activation function we
used in the convolution layer. It should also be noted that the max operation used in the
equation above is an element-wise operation that takes the maximum value of each
feature across projected word vectors. Finally, a fully connected layer with the weights
U is applied on v followed by a ReLU activation and l2 normalization. The result e is
used as the encoded vector representation of the phrase:

Fig. 1. Architecture of the neural dictionary model. The encoder is shown at the top and the
procedure for computing the embedding for a concept is illustrated at the bottom. Encoder: a
query phrase is first represented by its word vectors, which are then projected by a convolution
layer into a new space. Then, a max-over-time pooling layer is used to aggregate the set of
vectors into a single one. Afterwards, a fully connected layer (referred by FC) maps this vector
into the final representation of the phrase. Concept embedding: a matrix of raw embeddings is
learned, where each row represents one concept. The final embedding of a concept is retrieved by
summing the raw embeddings for that concept and all of its ancestors in the ontology.
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e ¼ ReLU Uvð Þ
Relu Uvð Þk k2

:

Concept Representations. Our model also learns representations for the concepts and
measures the similarity between an input phrase and the concepts by computing the dot
product between these representations and the encoded phrase e.

We denote these representations by the matrix H, where each row corresponds to
one concept. Our model does not learn H directly, instead it learns a matrix ~H, where
each row ~Hc represents the features of concept c that are “novel” compared to its
ancestors. Then H can be derived by multiplying ~Hc by the taxonomy’s ancestry matrix
A, where Ai;j is 1 if and only if the concept j is an ancestor i (including i ¼ j):

H ¼ A~H:

Finally, the classification is done by computing the dot product followed by a
softmax layer as follows:

p cjeð Þ / exp Hceð Þ:

The taxonomy information can be ignored by setting A to the identity matrix I. In
this scenario the model would behave like an ordinary softmax classifier with the
weights H.

Training Procedure. Training is done on the names and synonyms provided by the
ontology. If a concept has multiple synonyms, each synonym-concept pair is consid-
ered as a separate training example. We train our model by minimizing the cross-
entropy loss between the softmax output and the class labels using Adam optimizer
[34]. The parameters learned during the training are the encoder parameters W and U,
and the concept representations through ~H.

2.2 Concept Recognition in a Sentence

To use our neural dictionary model to recognize concepts in a sentence or larger text,
we extract all n-grams of one to seven words in the text and use the neural dictionary
model to match each n-gram to a concept. We filter irrelevant n-grams by removing the
candidates whose matching score (the softmax probability provided by the neural
dictionary model), is lower than a threshold. This threshold is chosen based on the
performance of the method (f-measure) on a validation set. We also use random n-
grams from an unrelated corpus (in our case Wikipedia) as negative examples labeled
with a dummy none concept, when training the neural dictionary model. The lengths of
these n-grams were uniformly selected to be between 1 and 10.

After all the n-grams satisfying the conditions are captured, a post-processing step
is performed to make the results consistent. For every pair of overlapping captured n-
grams, if both n-grams matched the same concept we retain the smaller n-gram.
Otherwise if they were matched to different concepts, we favor choosing the longer
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n-gram, as this reduces the bias of choosing shorter more general concepts in the
presence of a more specific concept. For example, when annotating the sentence “The
patient was diagnosed with conotruncal heart defect.”, our method will favor choosing
the longer more specific concept “conotruncal heart defect”, rather than the more
general concept “heart defect”.

3 Results

To evaluate our model, we applied it to a number of medical texts, and trained on two
ontologies (HPO and SNOMED-CT). We also evaluated the model on two different
tasks. In the first task, the model ranks concepts matching an input isolated phrase
(synonym classification), and in the second task concepts are recognized and classified
from a document (concept recognition).

To assess the effectiveness of the techniques used in our model, we trained four
variations of our model as follows:

• NCR: This is the full model, with the same architecture as described in Sect. 2.1.
The training data for this model includes negative examples.

• NCR-H: In this version the model ignores the taxonomic relations by setting the
ancestry matrix A to the identity matrix I.

• NCR-N: Similar to the original NCR, this version utilizes the taxonomic relations.
However, this model has not been trained on negative samples.

• NCR-HN: This refers to a variation which both ignores the taxonomy and has not
been trained on negative examples.

3.1 Data Sets

In most of our experiments we used the Human Phenotype Ontology (HPO) to train the
neural dictionary model. The version of HPO (2016 release) we used (to maintain
consistency with previous work) contains a total of 11,442 clinical phenotypic
abnormalities seen in human disease and provides a total of 19,202 names and syn-
onyms for them, yielding an average of 1.67 names per concept.

We evaluated the accuracy of our model trained on HPO on two different data sets:

• PubMed: This data set contains 228 PubMed article abstracts, gathered and
manually annotated with HPO concepts by Groza et al. [14].

• UDP: The second set includes 39 clinical reports provided by NIH Undiagnosed
Diseases Program (UDP) [35]. Each case contains the medical history of a patient in
unstructured text format and a list of phenotypic findings, recorded as a set of HPO
concepts, gathered by the examining clinician from the patient encounter.

In order to examine the effectiveness of the model on different ontologies, we also
trained our model on a subset of SNOMED-CT, which is a comprehensive collection of
medical concepts and includes their synonyms and taxonomy. We evaluated the trained
model for concept recognition on a subset of MIMIC-III [22] described in the
following:
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• MIMIC: We used a subset of 2000 Intensive Care Unit discharge summaries from
MIMIC-III. The discharge summaries are in unstructured text format and are
accompanied with a list of disease diagnosis terms in the format of ICD-9 (Inter-
national Classification of Diseases) codes.

Since SNOMED-CT provides a more sophisticated hierarchy than ICD-9 and there
exists a mapping between the two, we used a subset of SNOMED-CT concepts that
either map to, or are an ancestor of an ICD-9 concept. We only considered the 1,292
most frequent ICD-9 concepts that have a minimum of 50 occurrences in MIMIC-III,
resulting in a total of 11,551 SNOMED-CT concepts.

3.2 Synonym Classification Results

In this experiment we evaluated our method’s performance in matching isolated
phrases with ontology concepts. For this purpose, we extracted 607 unique phenotypic
phrases, which did not have an exact-match among the names and synonyms in HPO,
from the 228 annotated PubMed abstracts. We used our model to classify HPO con-
cepts for these phrases and ranked them by their score.

In addition to the four variations of our model, we compared with another method
based on Apache Solr, customized to suggest HPO terms for phenotypic queries. This
tool is currently being used as a component of the phenotyping software PhenoTips
[23]. The results of this experiment are provided in Table 1. We measured the fraction
of the predictions where the correct label was among the top-1 and top-5 recalled
concepts. NCR significantly outperforms PhenoTips in this experiment. While NCR-N
slightly outperforms regular NCR in this test, the experiments here contained no
queries without phenotypic terms, which is the task that NCR-N was built to model.

3.3 Concept Recognition Results

We evaluated the four versions of NCR for concept recognition and also compared
with four rule-based methods, cTAKES [13] and BioLarK [14], NCBO annotator [10],
OBO annotator [11]. The NCBO annotator is a general concept recognition tool with

Table 1. Synonym classification experiments
on 607 phenotypic phrases extracted from 228
PubMed abstracts. R@1 and R@5 accuracies
represent recall using top-1 and top-5 results
from each method.

Method Accuracy (%)
R@1 R@5

PhenoTips 28.9 49.3
NCR 49.1 73.6
NCR-H 45.8 68.4
NCR-N 52.2 73.5
NCR-HN 50.1 70.5
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access to hundreds of biomedical ontologies, including HPO, cTAKES is a more
general medical knowledge extraction system primarily designed for SNOMED-CT,
while BioLarK and the OBO annotator are concept recognizers primarily tailored for
HPO. Another method called IHP [15] was recently introduced for identifying HPO
terms in unstructured text, using machine learning for named entity recognition and a
rule-based approach for further extending them. However, their method is not com-
parable to us as to the best of our knowledge their provided tool only reported the text-
spans that are a phenotype and did not classify or rank matching HPO terms.

In order to choose a score threshold for filtering irrelevant concepts, we used 40
random PubMed abstracts as a validation set and compared the Micro F1-score given
different threshold values; the selected thresholds were 0.85, 0.8, 0.8 and 0.75 for NCR,
NCR-H, NCR-N and NCR-HN respectively. Since the UDP dataset contained fewer
reports (39 in total), we did not choose a separate UDP validation set and used the same
threshold determined for the PubMed abstracts. We tested our methods on the
remaining 188 PubMed abstracts and the 39 UDP reports and calculated micro and
macro versions of precision, recall and F1-Score, as shown in following equations:

Micro Recall ¼
P

d Rd \ Ldj jP
d Ldj j ;

Micro Precision ¼
P

d Rd \ Ldj jP
d Rdj j ;

Macro Recall ¼ 1
Dj j

X
d

Rd \ Ldj j
Ldj j ;

Macro Precision ¼ 1
Dj j

X
d

Rd \ Ldj j
Rdj j :

In these equations, D is the set of all documents, and Rd and Ld notate the set of
reported concepts and label concepts for the document d, respectively. We also cal-
culated a less strict version of accuracy measurements, that takes the taxonomic rela-
tions of the concepts into consideration. To do so, we extended the reported set and the
label set for each document to include all of their ancestor concepts, which we notate
by E Rdð Þ and E Ldð Þ respectively and calculated an extended version of the precision
and recall, as well as the Jaccard Index of the extended sets. The following equations
show how these accuracies are derived.

Extended Recall ¼ 1
Dj j

X
d

EðRdÞ \Ldj j
Ldj j ;

Extended Precision ¼ 1
Dj j

X
d

Rd \EðLdÞj j
Rdj j ;
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Jaccard Index ¼ 1
Dj j

X
d

EðRdÞ \EðLdÞj j
EðRdÞ [EðLdÞj j :

The results of these experiments are available in Table 2. In both experiments,
based on the measurements of the Jaccard index and all three versions of micro, macro
and extended F1-scores, NCR has considerably higher accuracy compared to all other
baselines. Furthermore, by comparing the NCR and NCR-H, it can be observed that
using the hierarchy information has improved the accuracy of the model. Finally, with
the narrow exception of the micro F1-score, comparison of NCR and NCR-N shows
that using negative examples during the training has slightly improved the overall
accuracy.

To evaluate the effectiveness of the techniques employed in NCR on a different
ontology, we trained the four variations of our model on the SNOMED-CT subset,
using 200 MIMIC reports as the validation set and the remaining 1800 ones as test set.
We mapped each reported SNOMED-CT concept to the corresponding ICD-9 code and
calculated the accuracy measurements, available in Table 3. The results show that
utilizing the hierarchy information and including negative examples in the training has
improved both micro and macro F1-scores. Since the labels are only available as ICD-9
codes, which do not hold a sufficiently rich hierarchical structure similar to HPO and

Table 2. Concept recognition results for four variations of NCR, BioLark and cTAKES. NCR
models were trained on HPO. Two set of experiments were performed, including 188 PubMed
abstracts and 39 UDP clinical notes. In the heading, PR refers to the precision.

Method Micro (%) Macro (%) Extended (%) Jaccard (%)
PR Recall F1 PR Recall F1 PR Recall F1

PubMed BioLarK 78.5 60.5 68.3 71.3 60.7 65.6 79.0 68.2 73.2 74.2
cTAKES 72.2 55.6 62.8 64.4 56.1 60.0 82.5 61.9 70.7 71.0
OBO 78.3 53.7 63.7 72.1 53.3 61.3 80.4 64.1 71.3 72.8
NCBO 81.6 44.0 57.2 67.7 43.3 52.9 80.7 50.0 61.7 62.7
NCR 79.5 62.1 69.7 74.2 62.2 67.7 81.6 69.0 74.8 75.9
NCR-H 69.9 60.5 64.9 64.4 62.2 63.3 71.3 70.5 70.9 69.6
NCR-N 78.7 61.6 69.1 73.0 61.6 66.8 79.8 68.4 73.7 74.5
NCR-HN 66.0 60.0 62.9 62.3 61.5 61.9 68.8 69.3 69.0 66.5

UDP BioLarK 27.6 21.0 23.9 28.7 21.6 24.6 43.5 26.1 32.6 29.5
cTAKES 31.5 18.9 23.6 34.9 20.2 25.6 49.5 22.9 31.3 27.3
OBO 26.8 20.5 23.2 28.8 20.1 23.7 38.8 28.0 32.5 31.3
NCBO 33.4 16.9 22.5 37.1 19.9 25.9 52.8 23.2 32.2 27.2
NCR 24.8 25.5 25.1 27.8 26.4 27.1 43.0 30.8 35.9 31.6
NCR-H 24.3 25.6 24.9 26.0 26.0 26.0 39.6 31.5 35.1 30.4
NCR-N 24.1 26.6 25.3 25.8 27.0 26.4 39.2 31.3 34.8 31.2
NCR-HN 22.2 28.3 24.9 24.7 29.0 26.7 38.1 33.9 35.8 29.8
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SNOMED-CT, the Jaccard index and the extended accuracy measurements were less
meaningful and were not calculated. We also ran the original cTAKES, which is
optimized for SNOMED-CT concepts, on the 1800 test documents and filtered its
reported SNOMED-CT results to ones that have a corresponding ICD-9. While
cTAKES had a high recall, the overall F1 scores were lower than NCR.

3.4 Qualitative Results

To better understand how utilizing the hierarchy information affects the model, we used
t-SNE to embed and visualize the learned concept representations for the rows of
matrix H for NCR-N (using hierarchy) and NCR-NH (not using the hierarchy), trained
on HPO. These representations are illustrated in Fig. 2 where colors are assigned to
concepts based on their high-level ancestor (the 23 children of the root). If a concept
had multiple high-level ancestors we chose one randomly. As it is evident in the plots
the representations learned for NCR-N are better clustered compared to NCR-NH.

Table 3. Results for concept recognition experiments on 1800 MIMIC documents. The NCR
models were trained on a subset of SNOMED-CT ontology.

Method Micro (%) Macro (%)
Precision Recall F1 Precision Recall F1

cTAKES 9.1 37.0 14.6 8.7 36.3 14.0
NCR 11.2 22.6 15.0 10.9 22.9 14.8
NCR-H 9.3 32.3 14.5 9.0 32.1 14.0
NCR-N 9.6 29.3 14.4 9.3 29.5 14.1
NCR-HN 8.8 31.4 13.7 8.4 31.2 13.2

Fig. 2. Visualization of the representations learned (embedded into 2 dimensions by t-SNE) for
HPO concepts. The colors denote the high-level ancestors of the concepts. The plot on the left
shows the representations learned in NCR-N where the taxonomy information was used in
training and the plot on the right shows representations learned for NCR-HN, where the
taxonomy was ignored. (Color figure online)
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An interesting observation in the representations learned for NCR-N is that con-
cepts in categories such as “Neoplasm” (colored in dark grey), which share children
with many other categories, are located in the center of the plot, close to many other
categories, while a category like “Abnormality of ear” (colored in orange) has formed
its own cluster far from center and separated from other categories.

To further investigate the false positives reported by NCR, we manually investi-
gated the false positives reported by our method in three clinical reports randomly
chosen from the UDP dataset. We looked at false positives from the extended version
of evaluations, which includes concepts reported by our method where neither it nor
any of its descendants are in the label set. This brought a total number of 61 unique
false positives for the three documents. Based on a manual analysis of these terms
conducted by a medical expert on rare genetic diseases (co-author DRA), 44.2% of the
reported false positives were actually correctly adding more information to the closest
phenotype reported in the label set. One example is “Congenital hypothyroidism on
newborn screening”, which while our method correctly recognized “Congenital
hypothyroidism”, the closest concept in the extended label set was “Abnormality of the
endocrine system”. In an additional 13.1% of cases our model had correctly reported a
more specific concept than what was present in the patient record, but the concept was
sufficiently close to a specified phenotype not to be considered a novel finding. Fur-
thermore, 19.6% of the reported false positives were in fact mentioned in the text,
though as negations, such as “Group fiber atrophy was not seen” and in 6.5% of them
the reported phenotype was mentioned but not confidently diagnosed, such as “possible
esophagitis and gastric outlet delay”.

4 Discussion

In the synonym classification task, as evident in Table 1, all variations of NCR have a
much better performance than the tool provided by PhenoTips. Furthermore, by
comparing NCR and NCR-H, it can be observed that using the hierarchy information
has considerably improved the accuracy. On the other hand, as one would expect,
having negative samples in the training reduces the accuracy. This is because there are
no negatives among the 607 phenotypic phrases in this experiment and the actual
purpose for including them in training was to reduce false positives in the concept
recognition task.

In the concept recognition experiments provided in Table 2, NCR had a better F1-
score and Jaccard index than BioLarK and cTAKES on PubMed abstracts and UDP
reports. On both datasets, NCR had a higher recall, showing its ability to better gen-
eralize to synonymous terms occurred in the text. It can be seen that NCBO and
cTAKES have better precisions in one of the experiments (UDP), however we should
note that in the same experiments NCR has achieved a much better recall rate and when
taking both precision and recall into account, NCR has a higher F1-score.

Among different variations of NCR, using the hierarchy information has always led
to higher F1-scores and Jaccard index. Having negative samples during training has
also generally improved accuracy, however in some cases the difference has been small
and even on UDP data set NCR-N had slightly higher Micro F1-score.
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While the PubMed abstracts were manually annotated with HPO concepts by Groza
et al. [14] the text provided for UDP is not annotated and there is no explicit association
between the provided HPO terms and phenotypic phrases in the text. However, since
both the text and the terms refer to the same patient, there exists a weaker implicit
correspondence. This can explain the overall higher accuracy of all methods on
PubMed data compared to UDP. As a result, these performance measurements would
be more meaningful when observed in a relative manner, which show the better per-
formance of NCR compared to the baselines.

The experiments on MIMIC data, where the model was trained on SNOMED-CT,
resulted in much lower accuracy compared to the two experiments performed for HPO.
In addition to the problem of implicit correspondence between labels and actual
occurrences in the text, in this experiment we used a mapping between ICD-9 and
SNOMED-CT terms, which can introduce other inconsistencies. On the other hand, for
the sake of evaluating the techniques employed in our model on another ontology, it
can be observed in Table 3 that utilizing the SNOMED-CT hierarchy indeed improves
the F1-scores.

In addition to the quantitative results showing the advantage of using the hierarchy
information, our visualization of the concept representations in Fig. 2 shows that the
representations learned for NCR-N better cluster compared to NCR-HN. Although in
theory NCR-N has the flexibility to learn representations identical to NCR-HN, the way
our model utilizes the taxonomy entangles the embedding of related concepts during
the training, which in practice has led to better separated clusters. Because of this
entanglement, if the optimizer updates the raw embedding ~Hc of a concept c, sys-
tematically all descendents of c would “inherit” this update in their final representation
in H.

NCR has already been used in several applications in practice. Currently a version
of NCR trained on HPO is deployed as a component of PhenoTips software [23], being
used in both annotation of clinical notes and term suggestion for manually entered
phenotypes. Another example is PhenoLines [24], a software for visualizing disease
subtypes, relying on a mapping between HPO and UMLS [36] terms. NCR was
effectively used to help improving the coverage of their mapping. The code for NCR is
available at https://github.com/ccmbioinfo/NeuralCR under the MIT license.

5 Conclusion

In this paper we presented neural dictionary model, which ranks matching concepts for
a query phrase and can be used for concept recognition in larger text. Unlike other
machine learning based concept recognition tools our training is solely done on the
ontology data (except the unsupervised learning of the word vectors) and it does not
require any annotated corpus. This is important as it is usually difficult to manually
curate a corpus that scales to the large number of concepts in a medical ontology.
Another novelty of our model is our approach in utilizing the taxonomic relations
between concepts, that based on our experiments improves synonym classification.

NCR uses convolutional neural networks to encode query phrases into vector
representations and computes their similarity to embeddings learned for ontology
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concepts. The model benefits from knowledge transfer between child and parent
concepts by summing the raw embeddings of a concept’s ancestors to compute its final
embedding.

We tested our neural dictionary model by classifying 607 phenotypic phrases and
our model achieved a considerably higher accuracy compared to another method
designed for this task and the baseline versions of our model that do not use the
taxonomy information. We also tested our method for concept recognition on full text
by experimenting on four data sets. In one setting we trained our model on the HPO
ontology and tested on two data sets, including 188 PubMed paper abstracts and 39
UDP clinical, while in another setting we trained the model on a subset of SNOMED-
CT medical concepts and tested on 1800 MIMIC ICU discharge notes. Our results
showed the efficiency of our methods in both settings. One major challenge for the
concept recognition task is how to filter candidates that do not match any class in the
ontology. In our experiments we approached this challenge by adding negative samples
from Wikipedia in the training. Although this improved the results, it did not fully
solve the problem, as for instance in the HPO setting, there can be many relevant
medical terms in a clinical text which are not phenotypic, while are not available in the
negative examples.

Although our experiments have shown the high accuracy of our model in classi-
fying synonyms, we believe there is much room for improvement in the overall concept
recognition method, especially the way the n-grams are selected and filtered. Another
interesting direction for future work is to investigate the possibility of using unsu-
pervised methods for encoding phrases, such as skip-thought vectors [37], to utilize the
massive amount of available unannotated biomedical corpora for better generalization
of classifying synonymous phrases and concept recognition.
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Abstract. Genome segmentation methods are powerful tools to obtain
cell type or tissue specific genome-wide annotations and are frequently
used to discover regulatory elements. However, traditional segmentation
methods show low predictive accuracy and their data-driven annota-
tions have some undesirable properties. As an alternative, we developed
ModHMM, a highly modular genome segmentation method. Inspired by
the supra-Bayesian approach, it incorporates predictions from a set of
classifiers. This allows to compute genome segmentations by utilizing
state-of-the-art methodology. We demonstrate the method on ENCODE
data and show that it outperforms traditional segmentation methods not
only in terms of predictive performance, but also in qualitative aspects.
Therefore, ModHMM is a valuable alternative to study the epigenetic
and regulatory landscape across and within cell types or tissues. The
software is freely available at https://github.com/pbenner/modhmm.

1 Introduction

A single organism may consist of a remarkable diversity of cell types all sharing
the same genotype. To understand how this diversity arises, current research in
molecular biology has focused much attention on the functioning of transcrip-
tional regulation. Genome-wide measurements of epigenetic marks and RNA
expression have recently become available for many cell types and tissues [8].
These data provide a first glimpse at the regulatory program on a genome-wide
scale. It is used to annotate regulatory elements and to locate important switches
that control cell identity [22].

Genome segmentations are frequently used as a starting point for the identi-
fication and analysis of regulatory elements within cell types or tissues. By com-
bining data from multiple experiments a genome segmentation method assigns
a chromatin state to each genomic position. This may include regulatory ele-
ments such as active or repressed promoters and enhancers, active transcription
or regions without an apparent function. The set of chromatin states a seg-
mentation method is able to detect heavily depends on the choice of features.
Typically a variety of histone modification ChIP-seq experiments is used possi-
bly in combination with measurements of chromatin accessibility. However, other
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sources of information may be used as well, including DNA methylation, CpG
content or evolutionary conservation. Chromatin states are characterized by spe-
cific combinations of such features. For instance, promoters are often conserved
elements and accessible for transcription factors where the flanking nucleosomes
are marked by H3K4me3. On the other hand, most enhancers are less conserved
and marked by H3K4me1. Enrichment of H3K27ac is found at active promoters
and enhancers, whereas H3K27me3 is known to be a repressive mark observed
at bivalent promoters and poised enhancers [2,6,19,20].

Most common segmentation methods are instances of Hidden Markov Mod-
els (HMMs) where the observed data is assumed to be caused by an unobserved
sequence of hidden states with Markov dependency structure. A frequently used
implementation of this type is ChromHMM [12], which however relies on bina-
rized data. A more advanced HMM based method is EpiCSeg [31] that addresses
this shortcoming by using negative multinomial distributions to model observa-
tions. The handling of both methods is seemingly easy. Parameters are estimated
unsupervisedly without the need for a training set using a maximum likelihood
approach. Afterwards, by inspection of estimated parameters each hidden state
is identified with one or more chromatin states. While this approach is very
easy to apply, it also bears several risks. The specific combination of features
known to mark a chromatin state and their spatial distribution is often not well
reflected by the model. Hence, supervised methods specialized in the detection of
regulatory elements typically perform much better. To obtain good classification
performances of unsupervised HMMs the number of hidden states often exceeds
the actual observed number of chromatin states. This leads to highly fragmented
genome segmentations where single chromatin states are represented by multiple
states of the HMM. Figure 1 illustrates this problem on a promoter of a tran-
scribed gene. An optimal segmentation would detect the region as a single active
promoter with a transcribed region to the left. However, typical segmentations
obtained with ChromHMM or EpiCSeg instead show a highly fragmented pro-
moter region. Another drawback of the unsupervised HMM approach is the low
flexibility of the model offering no glaring way to improve a poor segmentation.
ChromHMM and EpiCSeg have only two parameters, namely the number of hid-
den states and the genomic bin size, whose effect on the resulting segmentation
is highly unpredictable. Furthermore, to determine the optimal set of param-
eters it is necessary to learn and evaluate a large number of different models,
effectively negating the presumed simplicity.

ChroModule [45] is a supervised alternative that models the spatial distri-
bution of features at chromatin states with left-right structured HMMs that
are commonly used in speech recognition [36]. However, the construction of a
model requires a training set for each chromatin state. As an alternative to the
HMM based methods, Segway [21,22] allows to compute segmentations based
on arbitrary hidden processes, as long as the model can be represented as a
dynamic Bayesian network. It operates on a single base-pair resolution and with
its default model computes segmentations that are even more fine-grained than
those of ChromHMM and EpiCSeg [21]. Segway models are typically trained on
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Fig. 1. Genome segmentations. Typical genome segmentation (s1) where the promoter
is fragmented into many different segments. In this example, the optimal segmentation
(s2) shows a single active promoter segment (PA) with a transcribed region to the left
and no signal to the right.

a small fraction of the available data, due to the computational complexity of
the inference algorithm and the high data resolution.

We propose here a new modular segmentation method based on HMMs called
ModHMM that addresses some of these shortcomings in the following way. First
of all, we recognize that jointly learning all parameters of an HMM in an unsu-
pervised way is overly ambitious and leads to poor results. Instead, we propose
to assemble the segmentation method piece by piece allowing us to guide the
learning process as much as possible. Second, our objective is to construct a
method that may benefit from the ample variety of well-performing classifiers
that have been developed for most regulatory elements. Inspired by the supra-
Bayesian approach [15,16,23,28–30], we propose here to construct an HMM that
acts as a decision maker who integrates assessments from several experts. Each
expert or classifier is specialized in the detection of a single chromatin state,
possibly by considering only a subset of the available features. The classifiers
may also model the spatial distribution of features near functional elements to
improve prediction accuracy.

Hence, our segmentation method consists of an HMM combined with a set of
chromatin state classifiers. As opposed to traditional segmentation methods, our
HMM does not take feature tracks (i.e. ChIP-seq/ATAC-seq tracks) as input,
but instead regards the genome-wide probability assessments of the chromatin
state classifiers as observations. We constructed the method in a highly modular
way, allowing to easily improve segmentations by replacing single classifiers.
To facilitate the usage of ModHMM, we constructed a default set of chromatin
state classifiers. The parameters of supervised classifiers are commonly estimated
on some training set. However, constructing a training set for each classifier
would not only be a tedious task, it would also shift control over the resulting
segmentation to the composition of such training sets. Instead, we do not rely on
a training set but engineer each classifier by translating contemporary knowledge
of chromatin states into a probabilistic model.
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We evaluate ModHMM equipped with its default chromatin state classifiers
on promoter and enhancer test sets and show that it outperforms traditional
segmentation methods not only in classification accuracy, but also in qualitative
aspects, meaning that ModHMM segmentations are less fragmented.

2 Materials and Methods

We consider chromatin states that are most relevant for the analysis of gene
regulation and that are typically found in genome annotation studies [13,17,22].
This includes active promoters (PA) and enhancers (EA), primed (PR) and
bivalent (BI) regions as well as regions of active (TR) and low transcription
(TL). In addition, we model heterochromatic regions marked by H3K27me3 (R1)
or H3K9me3 (R2) and regions where either no signal (NS) or a control signal
(CL) is observed. Enhancers and promoters are detected based on ATAC-seq
[3,4] data measuring chromatin accessibility in combination with histone marks
H3K4me1 and H3K4me3. To measure the activity of promoters and enhancers
we use histone mark H3K27ac [9]. While active promoters and enhancers can be
accurately discriminated by the ratio of histone marks H3K4me1 and H3K4me3,
we observed that the prediction accuracy is much lower for bivalent promoters
and poised enhancers (Sect. 3.3). Therefore, we decided to merge both chro-
matin states into a single bivalent state (BI), which is marked by H3K27me3
and H3K4me1 or H3K4me3. Similarly, we define primed states (PR) as acces-
sible regions marked by H3K4me1 or H3K4me3 but showing no H3K27ac and
H3K27me3 signal. We also model regions solely marked by either H3K27me3
(R1) or H3K9me3 (R2). Histone mark H3K27me3, catalyzed by the polycomb
repressive complex 2, is involved in gene silencing and associated with consti-
tutive heterochromatin [26,32]. On the other hand, histone mark H3K9me3 is
associated with constitutive heterochromatin, predominantly formed in gene-
empty regions [39]. Transcribed regions are typically marked by H3K36me3 [43],
however, we decided to use polyA RNA-seq data instead since it is a more direct
and less noisy measurement. Our model also accounts for low levels of transcrip-
tion (TL) that frequently occur at repressed genes or in intergenic regions, for
instance near certain types of enhancers that generate unidirectional polyA+
eRNAs [24].

ModHMM is a highly modular genome segmentation method that incorpo-
rates predictions from a set of classifiers. In contrast to unsupervised methods,
we manually construct most parts of the model. It consists of two components,
the HMM and the set of chromatin state classifiers, both will be outlined in
the following. For the chromatin state classifiers we consider a default set of
engineered classifiers.

2.1 Hidden Markov Model

ModHMM implements a hidden Markov model, which consists of an unobserved
Markov process generating a series of hidden states, each emitting a single obser-
vation [7]. In order to define the HMM, we first must assign each chromatin state
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to one or more hidden states of the HMM and decide on a set of feasible transi-
tions of the unobserved Markov process. Finally, we present the emission model
for incorporating genome-wide predictions of the classifiers and show that tran-
sition rates must be further constrained in order to construct a well-functioning
model.

Hidden States and Feasible Transitions. Unsupervised HMM based segmenta-
tions methods, including ChromHMM and EpiCSeg, learn transition rates using
a maximum likelihood approach and initially allow transitions between any two
states. To guide the learning process, it is often helpful to enforce a predefined
structure on the transition matrix [14]. In genetics such structured HMMs have
been utilized before, for instance, for the prediction of gene structures from DNA
sequences [5]. In our case, the structure of the HMM should encode any prior
knowledge about the context in which chromatin states appear in the genome and
may for instance be used to implement a model for actively transcribed genes.
However, one has to be cautious not to enforce an overly simplistic model. For
instance, an HMM that requires each gene to have exactly one promoter and a
single transcribed region would not be realistic and result in wrong predictions.
The converse, a model that is excessively complex would have equally poor pre-
dictive performance. Therefore, we decided on an HMM with minimal structure,
as depicted in Fig. 2. Some chromatin states are represented by multiple hid-
den states of the HMM. For instance, active enhancers (EA) are represented by
hidden states EA, EA1, and EA2, in order to model different contexts in which
enhancers may appear. The HMM structure enforces that each transcribed region
must be flanked by at least one active promoter and each active promoter must
be flanked by a transcribed region. It also forbids that transcribed regions are
flanked by active enhancers and primed or bivalent regions. In addition, tran-
sitions between active promoters, active enhancers, primed and bivalent states
are forbidden.

CL NS

R1 R2

TL

EA PR

BI

PA1 PA2

TR1 TR2

BI1

EA1 PR1

BI2

EA2 PR2

PA: active promoter
EA: active enhancer
BI: bivalent region
PR: primed region
R1: H3K27me3 repressed
R2: H3K9me3 repressed
TR: transcribed region
TL: low transcription
NS: no signal
CL: control

Fig. 2. ModHMM state diagram. Some chromatin states are represented by multiple
hidden states. For instance, active enhancers (EA) are represented by hidden states
EA, EA1, and EA2. If two states are connected by an undirected edge, transitions in
both directions are allowed. Self-transitions are in general allowed but omitted in the
figure. A box is used to group states that are fully connected. If an arrow points to
the box, transitions to any of the states in that box are admissible. Crossing edges are
connected if marked with a circle.



40 P. Benner and M. Vingron

Emissions. The ModHMM segmentation method is inspired by the supra-
Bayesian approach that integrates predictions of an expert committee from
which a decision maker reaches a final decision. The expert committee con-
sists of a set of classifiers, each specialized in the detection of a single chro-
matin state s ∈ S = {PA,EA,BI, . . . }. The output of the classifiers are the
genome-wide predictions of chromatin states, i.e. prediction ct(s) yields the
assessment of the expert for chromatin state s that genomic position t is in
this state. In the supra-Bayesian approach, expert predictions are treated as
observations and a separate model, the decision maker, is constructed to reach
a final decision. Here, we decided to implement the decision maker as an HMM
in which each chromatin state s is associated with one or more hidden states
s′ ∈ S ′ = {PA,EA,EA1,EA2, . . . }. For the emission model several choices would
be conceivable. For instance, the family of beta distributions is frequently used
to model probabilities. However, to reduce the number of parameters that must
be estimated from data we decided to use a likelihood model that contains no
free parameters and incorporates the classifier predictions as they are. We define
the emission distribution of state s′ in terms of the density function

fs′(x) ∝ x ,

where x = ct(s) and s′ is associated with chromatin state s.

Transition Rates. In typical HMMs, transition rates are estimated from data
and reflect context-dependent state prevalences. The situation is different in
our case, where classifiers are used to optimally discriminate between chromatin
states and to account for prevalances. By näıvely integrating classifiers into an
HMM, results of classification may get overruled by transition rates, making it
more difficult to combine classifiers into a well-functioning model. Still, transition
rates are valuable parameters and we use them to model the expected length of
chromatin states.

Two types of constraints are imposed on the transition matrix Σ. First, the
structure of the HMM forbids certain transitions resulting in entries that must
remain zero during learning. Second, transition rates should only account for
the average length of chromatin states. To accomplish this, it is necessary to
constrain all non-zero off-diagonal entries within a row to share the same value.
More specifically, ModHMM uses the transition matrix Σ = (σij) with

σij =

⎧
⎪⎨

⎪⎩

δi if i = j ,

νi if i �= j and transition is feasible ,

0 otherwise .

The parameter δi models the expected length of the ith chromatin state while
νi represents the transition rate into another state. In addition to the above
constraints, we also assume that the expected length of chromatin states is
context-independent, i.e. δi = δj for i, j ∈ {EA,EA1,EA2}, i, j ∈ {BI,BI1,BI2},
i, j ∈ {PR,PR1,PR2}, and i, j ∈ {TR1,TR2}. For each row i, diagonal entries δi
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and off-diagonal entries νi must be chosen such that the row sum is equal to one.
The constraints that are imposed on the transition matrix Σ = (σij) complicate
the estimation step, which requires a modified Baum-Welch algorithm.

2.2 Default Chromatin State Classifiers

ModHMM takes as input the genome-wide predictions of a set of classifiers. In
principle, any type of classifier can be used, however, ModHMM implements
a default classifier set in order to simplify usage. These engineered classifiers
require no training data and consist of two layers. First, a single-feature classifier
is constructed for each feature that determines the probability of enrichment at
each genomic position. These single-feature classifiers are then combined into a
set of näıve Bayesian multi-feature classifiers [11,33,34,38], each specialized in
the detection of a single chromatin state.

Single-feature Classifiers. The purpose of a single-feature classifier is to assess
the enrichment of a feature genome-wide. Since it assigns a probability to each
genomic position, we may also interpret this step as a normalization step that
decouples the definition of the engineered multi-feature classifiers from the actual
observations. Such classifiers are the basic ingredient of many peak calling meth-
ods, implementing a large variety of different statistical models [44], ranging
from Poisson [35,42] or local Poisson [46] to hidden Markov models [41]. Our
approach differs in that we do not assume the same model for all features but
rather account for the high heterogeneity. More specifically, we first compute
the coverage along the genome in 200 bp bins. The coverage values are then
modeled by a feature-specific mixture distribution. Consider an event {Xϕ

t = x}
with coverage value x from a feature ϕ ∈ {ATAC,H3K4me1, . . . } at bin t. We
assume that

Xϕ
t ∼

∑

k∈F∪B

πkpk

where pk is the kth component of the feature-specific mixture distribution with
weight πk. F and B partition the set {pk} into foreground {pk | k ∈ F} and
background components {pk | k ∈ B}. Whether a component belongs to the fore-
ground or background is a subjective choice and must be determined by visual
inspection of the data. The parameters of the mixture distribution are estimated
by maximum likelihood using the expectation maximization algorithm [10].

Once a mixture distribution for a feature ϕ is determined, the probability
that a given bin t of the genome with coverage value x is enriched is given by
the posterior probability

qt(ϕ) =
∑

k∈F πkpk(x)
∑

k∈F∪B πkpk(x)
.

In this way, a single-feature classifier is constructed for all features. Every
such classifier consists of a mixture of Poisson, geometric, and delta distributions.
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Multi-feature Classifiers. Multi-feature classifiers are defined as simple combi-
nations of single-feature classifiers. Consider the case of active promoters that
are known to be accessible and marked by H3K27ac and H3K4me3 as well as
a high H3K4me3-to-me1 ratio (H3K4me3/1). A classifier for active promoters
should assign high probabilities to regions where those three features co-occur.
Therefore, a näıve Bayesian promoter model is given by

ct(PA) =
qt(ATAC) · qt(H3K27ac) · qt(H3K4me3) · qt(H3K4me3/1) · q̄t(Control)

where

q̄t(Control) = 1 − qt(Control)

enforces that no peak is observed in the control data set. The classifier can
be improved by also considering the spatial structure of features. For instance,
histone modifications are typically more broadly distributed than ATAC-seq
peaks. For such features it is necessary to also consider surrounding bins and
ask for the probability that any one of the bins is enriched. For a feature ϕ the
probability that any one out of three adjacent bins is enriched is given by

qt−1:t+1 = qt−1 + q̄t−1 · qt + q̄t−1 · q̄t · qt+1 ,

where function arguments have been omitted for better readability. Some fea-
tures may require a more detailed modeling of the spatial structure. For instance,
H3K4me1 is symmetrically distributed around regulatory elements as opposed
to H3K4me3 that shows a higher enrichment at promoters towards transcribed
regions due to its role in preinitiation complex formation [27]. The symmetric
structure of a feature is captured by

st−1:t+1 = qt−1 · qt+1 + qt−1 · qt+1 · qt

where

qt−1 · qt+1 = qt−1 · q̄t+1 + q̄t−1 · qt+1 + q̄t−1 · q̄t+1 .

The classifier requires an enrichment at bins t − 1 and t + 1 or an enrichment at
the center bin t.

In this fashion, a multi-feature classifier is constructed for every chromatin
state. The classifiers are then assigned to states of the HMM, where some clas-
sifiers may also be shared among several states. This is for instance the case for
the active enhancer states EA, EA1, and EA2, as well as the bivalent states BI,
BI1, and BI2. A full specification of the classifiers is given in Table 1.

3 Results

We compared our method, equipped with its default set of engineered chromatin
state classifiers, with two other segmentation methods, namely ChromHMM
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Table 1. Multi-feature classifier definitions.

PA EA PR BI TL TR CL NS R1 R2

ATAC ✓c ✓c ✓c ✓c ✗c ✗c ✗c

H3K27ac ✓s ✓s ✗a ✗a ✗c

H3K4me1 ✓s,3 ✓s,3 ✓s,3 ✗c ✗c ✗c ✗c ✗c

H3K4me3 ✓a ✓a ✓a ✗c ✗c ✗c ✗c ✗c

H3K4me3/1 ✓a ✗a

H3K27me3 ✗a ✗a ✓s ✓s ✗c ✓c

H3K9me3 ✗c ✓c

RNA ✓c ✗c

RNA (low) ✓c

Control ✗a ✗a ✗a ✗a ✗a ✗a ✓c ✗c ✗c ✗c

✓c: bin t is enriched [qt]; ✓a: at least one bin out of {t−2, . . . , t+2} is enriched
[qt−2:t+2]; ✓s: symmetric enrichments at bins {t−2, . . . , t+2} [st−2:t+2]; ✓s,3:
symmetric enrichments at bins {t−3, . . . , t+3} [st−3:t+3]; ✗a: no enrichment
in all bins i ∈ {t− 2, . . . , t+ 2} [q̄t−2:t+2]; ✗c: bin t shows no enrichment [q̄t].

[12] and EpiCSeg [31]. ChromHMM is the most popular segmentation method,
although it uses Bernoulli emission distributions for which the data must first
be binarized into enriched and nonenriched regions. To also incorporate how
strongly genomic regions are enriched, EpiCSeg uses negative multinomial emis-
sions. Compared to the multinomial distribution, the negative multinomial bet-
ter models the variability observed in most ChIP-seq data. We decided to omit
a comparison to Segway, since its segmentations are even more fine-grained than
those of ChromHMM and EpiCSeg [21]. We also omit a comparison to Chro-
Module [45] since no software package was published by the authors. For all
three methods a bin size of 200 bps was used. The ModHMM segmentation is
computed as the most likely sequence of hidden states, i.e. the Viterbi path.
ChromHMM and EpiCSeg use the posterior decoding algorithm to compute
segmentations.

We evaluated all three methods on ENCODE [8] data from mouse embry-
onic liver at day 12.5. For a first qualitative comparison, Fig. 3 shows a small
region within chromosome 1 that contains three actively transcribed genes, as
indicated by the data. The ModHMM segmentation correctly detects the pro-
moters and transcribed regions. In addition, there is a primed region located
in one of the gene bodies. For ChromHMM and EpiCSeg the number of states
were determined by maximizing classification performance (Sect. 3.1). The seg-
mentations of both methods are highly fragmented and much more difficult to
interpret. States that appear close to the promoter are also found at the primed
region. This is due to the lack of an appropriate model for the spatial distribu-
tion of features around regulatory elements. To study this observation further,
we looked at state equivalences between the three methods. In general, there is
a low overlap between states. Since we used more states for ChromHMM and
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EpiCSeg, it is clear that a single ModHMM state must be represented by mul-
tiple states from ChromHMM and EpiCSeg. However, there are also multiple
recombinations, for instance, one ChromHMM state corresponds to ModHMM
active promoter (PA) and enhancer (EA) states.

ATAC

H3K27ac

H3K4me1

H3K4me3

log RNA

s1 NS TRPA TR PR:tr TR PA
s2

s3

Arfgef1
Cspp1

Fig. 3. Qualitative comparison of segmentation methods. s1: ModHMM, s2:
ChromHMM, s3: EpiCSeg. The primed states of ModHMM within transcribed regions
(PR1, PR2) are both abbreviated as PR:tr.

3.1 Enhancer Predictions

To compare the predictive performance of segmentation methods we constructed
a test set with active enhancers identified by the FANTOM consortium [1].
Enhancers are experimentally detected as origins of bidirectional capped tran-
scripts using CAGE [40]. We took all enhancers that showed at least 5 CAGE
reads in liver at embryonic day 12 resulting in only 537 regions. With such a
low detection threshold on the number of counts many false positives ought to
be expected. Indeed, about half of the regions did not show the desired histone
modification patterns. To filter false positives, we clustered the enhancer regions
using deepTools2 [37]. We dropped all clusters that either showed no histone
marks or high levels of H3K4me3, resulting in 265 positive regions. The detec-
tion of active enhancers based on chromatin marks is difficult, mostly because
promoters show a very similar pattern. Therefore, we constructed a test set
consisting of 2650 regions, 1/10th are the filtered FANTOM enhancers, 8/10th
promoters and 1/10th random genomic regions.
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Fig. 4. Classification performances of active enhancer regions in mouse embryonic liver
at day 12.5. (A) Performance of ModHMM and ChromHMM. Lines show performances
evaluated using posterior marginals, while dots mark the performances of segmenta-
tions. For ChromHMM models with an even number of states between 10 and 30 were
tested. The precision-recall curve is evaluated for several states and all possible combi-
nations. For each model only the best curve is shown in gray. The optimal (opt.) curve
is highlighted in blue. (B) Performance summary of ModHMM and EpiCSeg similar
to (A). (Color figure online)

While ModHMM has a well defined enhancer state, ChromHMM and EpiC-
Seg are unsupervised methods where states must be assigned a function after
training. This assignment is often difficult especially for EpiCSeg where also the
intensity of enrichment is modeled. To avoid wrong assignments, we consider for
each model 2–3 putative enhancer states that are most abundant at the positive
enhancer regions. Performance is then evaluated based on these states including
all possible combinations. The best performance is then reported, potentially
giving ChromHMM and EpiCSeg a strong advantage over ModHMM.

Results are summarized in Fig. 4. For all three methods we used posterior
marginals of one or several states to compute precision-recall curves. In addi-
tion, we computed the classification performances of Viterbi paths. ModHMM
shows the highest area under the precision-recall curve. The best ChromHMM
model consists of 22 states and surprisingly outperforms the best EpiCSeg model
with 20 states. The Viterbi path of ModHMM optimally balances precision and
recall yielding the highest F-score. In contrast, especially the segmentations of
ChromHMM show a poor balance of precision and recall with a maximum pre-
cision of around 60%.

3.2 Promoter State Frequencies

To understand why ModHMM performs better than ChromHMM and EpiCSeg,
we looked at segmentations around active promoters. We used UCSC refGenes to
obtain an initial set of transcription start sites (TSSs). Promoters are defined as
2 kbp windows around the TSS. From this set we took regions that have a clear
ATAC-seq, H3K27ac, and RNA-seq signal. Regions enriched with H3K27me3
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were filtered out. For each segmentation method, we computed at every position
relative to the TSS the frequency of every state.
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Fig. 5. State frequencies at promoters. Promoters that belong to genes on the reverse
strand are inverted so that the gene body is right of the TSS. For ChromHMM and
EpiCSeg, states that are frequently observed at enhancers are colored in red. (Color
figure online)

For ModHMM we observe a clear enrichment of the active promoter state
(PA) around transcription start sites (Fig. 5). The active transcription state
(TR) is flanking this region in most cases, while other states are rarely observed.
For ChromHMM active promoters are modeled by state 16, which represents
enrichment in ATAC-seq, H3K27ac, H3K4me3, and RNA-seq. However, the
region represented by this state is much narrower and it is frequently flanked
by a diverse set of states. One of them is state 9, which models enrichment in
ATAC-seq, H3K27ac, H3K4me1 and H3K4me3. It is also frequently found at
enhancers that show enrichment in H3K4me3 above the binarization threshold
set by ChromHMM. The situation is similar for EpiCSeg, however, the pro-
moter is fragmented into several states modeling different levels of ATAC-seq
and H3K4me3 enrichment. State 2 is frequently flanking promoters, which also
occurs at enhancers since it models enrichment in ATAC-seq, H3K27ac, and
H3K4me1 but low enrichment in H3K4me3. Peaks of H3K4me3 tend to be more
localized than H3K4me1 peaks, so that regions close to promoters typically show
characteristics of enhancers. Both ChromHMM and EpiCSeg do not model the
spatial distribution of features around promoters and enhancers and therefore
often fail to correctly discriminate between them.

3.3 Bivalent State

During the development of ModHMM, we observed that the H3K4me1-to-me3
ratio has low predictive power for discriminating between bivalent promoters
and poised enhancers. This led us to represent both chromatin states by a single
bivalent state. To quantify this observation, we consider all bivalent regions in the
ModHMM segmentation of mouse embryonic liver at day 12.5. The H3K4me1-
to-me3 ratio is then used to separate promoters from the remaining regions (i.e.
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putative poised enhancers). All bivalent regions overlapping annotated UCSC
refGene promoters (500 bp regions around transcription start sites) are defined
as true positives. This leads to an area under the precision recall curve (PR-AUC)
of around 0.84. The minimal PR-AUC achieved by a random classifier is around
0.63. As a comparison, we took all regions of the ModHMM segmentation that
are either labeled as active promoter or enhancer. Here, the same procedure leads
to a PR-AUC of about 0.96, whereas a random classifier achieves a performance
of 0.46.

4 Discussion

Traditional genome segmentation methods, such as ChromHMM, EpiCSeg, or
Segway, are unsupervised methods and can be used to detect known and
unknown patterns in genomics data. They have been extensively used in the
past to analyze the epigenetic landscape of a large variety of cell types and
tissues [13,22,25]. However, nowadays much is known about the epigenetic land-
scape and the features that mark regulatory elements. This extensive knowledge
questions, at least to some extent, the traditional approach to genome segmen-
tation. Instead, we used this knowledge to construct a segmentation method
that outperforms the traditional methods in several aspects. ModHMM has a
higher prediction accuracy and the segmentations show a better balance of pre-
cision and recall. With each hidden state of ModHMM a classifier is associated
that detects a well-defined chromatin state. This leads to segmentations that are
superior in qualitative aspects. Functional elements, such as active promoters or
enhancers, are typically contained in a single segment, which is not the case for
ChromHMM and EpiCSeg.

Inspired by the supra-Bayesian approach, ModHMM integrates predictions of
a set of experts or classifiers. Using the output of classifiers as input to the HMM
has certain advantages over classical HMMs that model observations directly.
For instance, a classifier may cherry-pick only a subset of the available data.
The coverage of RNA-seq reads in a single genomic bin already provides enough
information to decide whether the region is transcribed. On the other hand, clas-
sification of active promoters and enhancers requires data from multiple features
and several surrounding bins.

ModHMM uses a default set of engineered classifiers to detect chromatin
states. The basis of which is a single-feature enrichment analysis with a mixture
model tailored to each feature (Sect. 2.2). This is unique to ModHMM as most
peak calling methods implement a single model. Applying ModHMM to a new
data set requires to perform the enrichment analysis de novo. Alternatively,
ModHMM may quantile normalize a new data set to a known reference for
which single-feature models already exist. Unlike ChromHMM and EpiCSeg,
ModHMM has well-defined hidden states that do not change when applied across
different cell types or tissues. This makes ModHMM ideal for differential analysis.

Compared to traditional segmentation methods, ModHMM is much more
flexible and provides many leverage points to construct high-quality segmenta-
tions. For instance, any of the chromatin state classifiers from the default set can
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be replaced by more accurate alternatives, allowing to incorporate predictions
from state-of-the-art methods such as REPTILE [18]. To improve a given seg-
mentation, ModHMM allows visual inspection of all classifier predictions, which
may serve as a powerful tool to decide which classifiers must be replaced.
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Abstract. Acquired immunodeficiency syndrome (AIDS) is a syndrome
caused by the human immunodeficiency virus (HIV). During the pro-
gression of AIDS, a patient’s the immune system is weakened, which
increases the patient’s susceptibility to infections and diseases. Although
antiretroviral drugs can effectively suppress HIV, the virus mutates very
quickly and can become resistant to treatment. In addition, the virus
can also become resistant to other treatments not currently being used
through mutations, which is known in the clinical research community
as cross-resistance. Since a single HIV strain can be resistant to multiple
drugs, this problem is naturally represented as a multi-label classifica-
tion problem. Given this multi-class relationship, traditional single-label
classification methods usually fail to effectively identify the drug resis-
tances that may develop after a particular virus mutation. In this paper,
we propose a novel multi-label Robust Sample Specific Distance (RSSD)
method to identify multi-class HIV drug resistance. Our method is novel
in that it can illustrate the relative strength of the drug resistance of a
reverse transcriptase sequence against a given drug nucleoside analogue
and learn the distance metrics for all the drug resistances. To learn the
proposed RSSDs, we formulate a learning objective that maximizes the
ratio of the summations of a number of �1-norm distances, which is diffi-
cult to solve in general. To solve this optimization problem, we derive an
efficient, non-greedy, iterative algorithm with rigorously proved conver-
gence. Our new method has been verified on a public HIV-1 drug resis-
tance data set with over 600 RT sequences and five nucleoside analogues.
We compared our method against other state-of-the-art multi-label clas-
sification methods and the experimental results have demonstrated the
effectiveness of our proposed method.
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1 Introduction

According to estimations by the World Health Organization, around 35 million
people suffer from the Human immunodeficiency virus (HIV). HIV is a serious
virus that attacks cells in the human immune system. During the later stages of
the virus it can critically weaken the immune system and increase the patient’s
susceptibility to serious infection and disease. Fortunately, with the advent of
antiretroviral therapies, we have been able to stem the progression of HIV and
extend the lifespan of individuals affected by the virus. Unfortunately, the high
mutation rates of HIV Type 1 (HIV-1) can produce viral strains that adapt very
quickly to new drugs [24]. The mutation of HIV-1 during antiretroviral treat-
ments can lead to a phenomenon called “cross-resistance” [7,23]. Cross-resistance
of HIV-1 occurs when the virus develops resistance against the drugs which are
currently being used in addition to other drugs that have not yet been used in
the treatment of a particular patient. This can make the treatment of HIV-1 sig-
nificantly more difficult, because a collection of drugs may not be effective after
the initial treatment regimen due to the cross-resistance phenomenon observed
in HIV-1. In order to address this problem, it is important that we develop auto-
matic methods that can associate genetic strains of HIV to their corresponding
drug resistances.

Recently, experimental testing of viral resistance in patients has been widely
used in research as well as in clinical settings to gain insight into the ways in
which the drug resistance evolves. For example, large-scale pharmacogenomic
screens have been conducted to explore the relationships between drug resis-
tances and genomic sequences [21]. Furthermore, many clinical trials have been
performed to discover mutation rates of the genetic subtypes of HIV-1 and how
they develop resistances against various drug treatments [19]. In addition to
these experimental phenotypic studies, computational approaches that use var-
ious machine learning methods offer the possibility to predict drug resistance
in HIV-1 by using short sequence information of the viral genotype, such as
the genetic sequence of the viral reverse transcriptase (RT). For example, Rhee
et al . [22] used five different machine learning methods, including decision trees,
artificial neural networks, support-vector machines, least-square regression and
least-angle regression, to investigate drug resistance in HIV-1 based on the RT
sequences. Besides, genotype and phenotype features of HIV-1 extracted from
RT sequences have been studied to predict drug resistance [9]. Additionally, a
Bayesian algorithm that combines kernel-based nonlinear dimensionality reduc-
tion and binary classification has been proposed to predict drug susceptibility
of HIV within a multi-task learning framework [5]. A critical drawback of these
existing studies lies in the fact that they routinely consider HIV-1 drug resis-
tance prediction as a single-label classification problem. This approach has been
recognized to be inappropriate since HIV strains can develop resistances against
multiple drugs at once due to their high mutation rate [7,23]. To tackle this dif-
ficulty, in this paper we propose to solve the problem of HIV-1 drug resistance
prediction as a multi-label classification problem.
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Multi-label classification is an emerging research topic in machine learning
driven by the advances of modern technologies in recent years [27–32,39]. As a
generalization of traditional single-label classification that requires every data
sample to belong to one and only one class, multi-label classification relaxes this
restriction and allows a data sample to belong to multiple different classes at
the same time. As a result, the classes in single-label classification problems are
mutually exclusive, while those in multi-label classification problems are inter-
dependent on one another. Although the labeling relaxation in multi-label clas-
sification problems have brought a number of successes in a variety of real-world
applications [29,30,32], it also causes labeling ambiguity that inevitably compli-
cates the problem [27,28]. In the context of predicting drug resistance developed
by HIV-1, some HIV strains can develop the capability to resist multiple drugs,
including those currently being used and those that have not yet been applied in
a clinical setting. As a result, it is often unclear how to utilize a data sample that
belongs to multiples classes to train a classifier for a given class [27,28]. A simple
strategy to solve this problem is to use such data samples as the training data
for all the classes to which they belong [27,29], which is equivalent to assume
that every data sample contributes equally to a trained classification model [28].
However, this is not true in most real-world multi-label classification problems.
For example, some RT sequences natively resist against a certain drug. On the
other hand, the same RT sequences can develop resistances against other drugs
through mutations, which is assumed to be not as strong as native resistances.
Simply put, in order to create an effective multi-label classifier to predict HIV-1
resistances, it is critical to clarify the labeling ambiguity on data samples that
belong to multiple classes and learn an appropriate scaling factor when we train
the classifiers for different classes [28].

In this paper we propose a novel Robust Sample Specific Distance (RSSD) for
multi-label data to predict HIV-1 drug resistance, which, as illustrated in Fig. 1,
is able to explicitly rank the relevance of a training sample with respect to a spe-
cific class and characterize the second-order data-dependent statistics of all the
classes. To learn the sample relevances and the class-specific distance metrics,
we formulate a learning objective that simultaneously maximizes and minimizes
the summations of the �1-norm distances. To solve the optimization problem of
our objective, using the same method in our previous works [6,15], we derive an
efficient iterative algorithm with theoretically guaranteed convergence, which,
different from our previous works [35,37], is a non-greedy algorithm such that it
has a better chance to find the optima of the proposed objective. In addition,
as an important theoretical contribution of this paper, our new algorithm solves
the general optimization problem that maximizes the ratio of the summations
of the �1-norm distances in a non-greedy way, which can find many applica-
tions to improve a number of machine learning models. We applied our new
method to predict the HIV-1 drug resistance on a public benchmark data set.
The experimental results have shown that our new RSSD method outperforms
other state-of-the-art competing methods.
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Fig. 1. The illustration of the proposed RSSD method. The small squares in the same
color represent the data samples (RT sequences) that belong to one same class (e.g.,
resistance to a specific nucleoside analogue). Two HIV RT sequences are listed in
the right panel, which correspond to the data samples shown by the small squares
(connected by the dash lines). The top sequence in the right column only resists against
drug 1, while the bottom sequence resists against both drug 1 and drug K, i.e., it is
a multi-label data sample. Ideally, the learned Significance Coefficients for each data
sample should be different with respect to different classes. For example, the bottom
RT sequence is associated with si1 for class 1 and siK for class K, which could be
different depending on how the resistances evolved. (Color figure online)

2 Learning Robust Sample Specific Distances (RSSDs)
for Multi-label Classification

In this section, we first formalize the problem of predicting the drug resistance
of HIV-1. Then we derive a novel RSSD to solve the problem following previous
works [26,33–35,38] that solve multi-instance problems.

Throughout this paper, we write matrices as bold uppercase letters and
vectors as bold lowercase letters. The �1-norm of a vector v is defined as
‖v‖1 =

∑
i |vi| and the �2-norm of v is defined as ‖v‖2 =

√∑
i v2

i . Given a
matrix M = [mij ], we denote its Frobenius norm as ‖M‖F and we define its �1-
norm as ‖M‖1 =

∑
i

∑
j |mij |. The trace of M is defined as tr (M) =

∑
i mii.

In a multi-label classification problem, we are given a data set with n samples
(n RT sequences) {xi,yi}n

i=1 and K classes (resistances to K target nucleoside
analogues). Here xi ∈ �d, and yi ∈ {0, 1}K such that yi(k) = 1 if xi belongs to
the k-th class, and yi(k) = 0 otherwise. Our goal is to learn from the training
data {xi,yi}n

i=1 a classifier that is able to predict which nucleoside analogues
(drug variants) a HIV-1 RT sequence is resistant to.

2.1 The Class-to-Sample (C2S) Distance

To learn the distance from a class to a data sample, we first represent each
class as a bag that consists of all samples that belong to this class, i.e.,
Ck = {xi|i ∈ πk}, where πk = {i|Yik = 1} is the set of indices of all training
samples that belong to the k-th class. The number of samples in Ck is denoted
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as mk, i.e., |Ck| = mk. Note that, in a single-label classification problem, a data
sample precisely belongs to one and only one class at a time. It follows that∑K

i=1 Yik = 1 and Ck ∩ Cl = ∅ (∀k �= l). In contrast, in a multi-label classifi-
cation problem, a data sample may belong to more than one class at the same
time. It can happen that Ck ∩ Cl �= ∅ (∃k �= l), i.e., different class bags may
overlap and an individual data sample xi may appear in multiple class bags.

We first define the elementary distance from a sample xi in the k-th class
bag Ck to a data sample xi′ as the squared Euclidean distance between the two
involved vectors in the d-dimensional Euclidean space:

dk(xi,xi′) = ‖xi − xi′‖22, ∀ i ∈ πk, ∀ k 1 ≤ k ≤ K. (1)

We then compute the C2S distance from Ck to xi′ by summing all the ele-
mentary distances from the samples that belong to the k-th class to the data
sample xi′ as following:

D(Ck,xi′) =
∑

xi∈Ck

dk(xi,xi′) =
∑

xi∈Ck

‖xi − xi′‖22. (2)

2.2 Parameterized C2S Distance

Because the C2S distance in Eq. (2) does not take into account the resistance
strength against a certain nucleoside analogue, we further develop it by weighting
the samples in a class bag by their relevance to this class.

Due to the ambiguous associations between the samples and the labels in
a multi-label classification problem [27,28], some samples in a class may char-
acterize that particular class more strongly than the others from the statistical
point of view. For example [23], some viral RT sequences may develop a stronger
drug resistance, while other viral RT sequences may be less resistant to a drug
but may still be considered to be resistant. We must capture both of these in
order for our method to be effective. As a result, we should assign less weight to
less resistant RT sequences when determining whether to apply the “resistant”
label to a query viral RT sequence.

Because we assume that counter-resistance against a target nucleoside ana-
logue does not exist, we define sik ≥ 0 as a nonnegative constant that assess
relative importance of xi with respect to the k-th class, by which we can further
develop the C2S distance as following:

D(Ck,xi′) =
∑

xi∈Ck

s2ik‖xi − xi′‖2. (3)

Because sik reflects the relative importance of a sample xi when we train a clas-
sifier for the k-th class, we call it the Significance Coefficient (SC) of xi with
respect to the k-th class. Obviously, the SCs quantitatively assess the resistances
developed by the training viral RT sequences against the target nucleoside ana-
logues during the learning process.
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2.3 Parameterized C2S Distance Refined by Class Specific Distance
Metrics

The RSSD defined in Eq. (3) is simply a weighted Euclidean distance that does
not take into account the information conveyed by the input data other than
the first-order statistics. Similar to many other statistical models in machine
learning, using the Mahalanobis distances with appropriate distance metrics is
recommended in order to capture the second-order statistics of the input data.
Instead of learning one single global distance metric for all the classes as in many
existing statistical studies, we propose to learn K different class-specific distance
metrics {Mk � 0}K

k=1 ∈ �d×d, one for each class. Thus we further develop the
parameterized C2S distance as:

D(Ck,xi′) =
∑

xi∈Ck

s2ik (xi − xi′)T Mk (xi − x′
i) . (4)

Because the class-specific distance metric Mk is a positive definite matrix, we
can reasonably write it as Mk = WkWT

k , where Wk ∈ �d×r is an orthonormal
matrix such that WT

k Wk = I. Here we can also reasonably assume that d > r,
because Mk = WkWT

k is a d × d matrix and its maximum rank is d. Thus we
can rewrite Eq. (4) as follows:

D(Ck,xi′) =
∑

xi∈Ck

s2ik (xi − xi′)T WkWT
k (xi − xi′)

=
∑

xi∈Ck

∥
∥WT

k (xi − xi′) sik

∥
∥2

2
.

(5)

A critical problem of D(Ck,xi′) defined in Eq. (5) lies in that it computes the
summation of a number of squared �2-norm distances. These squared terms are
notoriously known to be sensitive to both outlying samples and features [2,37].
Due to the cross-resistance phenomenon [7], this problem is particularly critical
for identifying HIV-1 drug resistance. To promote the robustness of D(Ck,xi′)
against outliers, following many previous works [11,12,17,18,36,37,40], we define
it using the �1-norm distance as follows:

D(Ck,xi′) =
∑

xi∈Ck

∥
∥WT

k (xi − xi′) sik

∥
∥
1
, (6)

which we call the proposed Robust Sample Specific Distance (RSSD).
To use RSSD defined in Eq. (6), we need to learn two sets of parameters

sik and Wk for every class. Following the most broadly used machine learning
strategy to maximize data discriminativity for classification, such as Fisher’s
linear discriminant [4], for a given class Ck we simultaneously maximize the
overall RSSDs from every class bag to all its non-belonging samples and minimize
the overall RSSDs from every class bag to all the samples belonging to that class:

max

∑
x′
i /∈Ck

∑
xi∈Ck

∥
∥WT

k (xi − xi′) sik

∥
∥
1

∑
x′
i∈Ck

∑
xi∈Ck

∥
∥WT

k (xi − xi′) sik

∥
∥
1

, s.t. WT
k Wk = I, sik ≥ 0. (7)
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Algorithm 1. Algorithm to solve Eq. (8).
1. Randomly initialize v0 ∈ Ω and set t = 1.
while not converge do

2. Calculate λt = h(vt−1)

m(vt−1)
.

3. Find a vt ∈ Ω satisfying h(vt) − λtm(vt) > h(vt−1) − λtm(vt−1) = 0.
4. t = t + 1.

Output: v.

Learning the RSSDs by solving Eq. (7) and classifying query viral RT
sequences using the adaptive decision boundary method [29], our proposed RSSD
method can be used for identifying HIV-1 drug resistance, as well as general
multi-label classification problems.

3 An Efficient Solution Algorithm

Our new objective in Eq. (7) maximizes the ratio of the summations of a number
of �1-norm distances, which is obviously not smooth and therefore difficult to
solve in general. To solve this challenging optimization problem, we use the
optimization method proposed in our previous works in [6,15].

We first turn to solve the following generalized the objective:

vopt = arg max
v∈Ω

h(v)
m(v)

, ∀v ∈ Ω

{
C2 ≥ m(v) ≥ C1 > 0,

C4 ≥ h(v) ≥ C3 > 0,
(8)

where Ω is the feasible domain. Next, we propose a simple, yet efficient, iterative
framework in Algorithm1 to solve the objective in Eq. (8). The convergence of
Algorithm 1 is rigorously guaranteed by Theorem 1. Due to space limit, the
proofs of all the theorems in this paper are provided in the extended journal
version of this paper.

Theorem 1. In Algorithm 1, for each iteration we have h(vt)
m(vt) ≥ h(vt−1)

m(vt−1) and

∀δ, there must exist a t̂ such that ∀t > t̂ h(vt)
m(vt) − h(vt−1)

m(vt−1) < δ.

3.1 Fixing sik to Solve Wk

According to Step 3 in Algorithm 1, we can easily write the corresponding
inequality of our objective in Eq. (7) as:

F (Wk) = H(Wk) − λtM(Wk) ≥ 0, (9)

where λt is computed by

λt =

∑
x′
i /∈Ck

∑
xi∈Ck

∥
∥(Wt−1

k )T (xi − xi′)sik

∥
∥
1

∑
x′
i∈Ck

∑
xi∈Ck

∥
∥(Wt−1

k )T (xi − xi′)sik

∥
∥
1

. (10)
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In Eq. (10), Wt−1
k denotes the projection matrix in the (t−1)-th iteration. Here,

we define the following:

H(Wk) =
∑

x′
i /∈Ck

∑

xi∈Ck

∥
∥WT

k (xi − xi′) sik

∥
∥
1
,

M(Wk) =
∑

x′
i∈Ck

∑

xi∈Ck

∥
∥WT

k (xi − xi′) sik

∥
∥
1
.

(11)

Now we need solve the problem in Eq. (9), for which we first introduce the
following two lemmas:

Lemma 1. [16, Theorem 1]. For any vector ξ = [ξ1, · · · , ξm]T ∈ �m, we have
‖ξ‖1 = max

η∈�m
(sign(η))T

ξ, where the maximum value is attained if and only if

η = a × ξ, where a > 0 is a scalar.

Lemma 2. [10, Lemma 3.1] For any vector ξ = [ξ1, · · · , ξm]T ∈ �m, we have

‖ξ‖1 = min
η∈�m

+

1
2

m∑

i=1

ξ2i
ηi

+
1
2
‖η‖1, where the minimum value is attained if and only

if ηj = |ξj |, j ∈ {1, 2, · · · ,m}.
Motivated by Lemmas 1 and 2, we construct the following objective:

L(Wk,Wt−1
k ) = K(Wk) − λtN(Wk), (12)

where K(Wk) and N(Wk) are defined as:

K(Wk) =
r∑

g=1

wT
g B sign

(
BTwt−1

g

)
,

N(Wk) =
1
2

r∑

g=1

wT
g Agwg +

(
wt−1

g

)T
Agwt−1

g .

(13)

Here wg and wt−1
g denote the g-th column of matrices Wk and Wt−1

k , respec-
tively; B and Ag for g = 1, 2, · · · , r are defined as follows:

B = [x̄1 − x̄, x̄2 − x̄, · · · , x̄n − x̄] ,

Ag =
n∑

i=1

∑

xj∈{Ni∪{xi}}

(xj − x̄i) (xj − x̄i)
T

∣
∣
∣
(
wt−1

g

)T
(xj − x̄i)

∣
∣
∣
,

(14)

and sign(x) is the sign function.
Then, using the definition of L(Wk,Wt−1

k ) in Eq. (12) and Lemmas 1 and
2, we can prove the following theorem:

Theorem 2. For any Wk ∈ �d×r, we have:

L(Wk,Wt−1
k ) ≤ F (Wk). (15)

The equality holds if and only if Wk = Wt−1
k .
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Algorithm 2. Algorithm to maximize F (Wk).
Input: Wt−1

k and Armijo parameter 0 < β < 1.
1. Calculate λk by Eq. (10).
2. Calculate the subgradient
Gk−1 = ∂L(Wt−1

k ,Wt−1
k ) = B sign

(
BTWt−1

k

) − λk [A1w1,A2w2, · · · ,Arwr].
3. Set t = 1.

while not F (Wt
k) > F (Wt−1

k ) = 0 do
4. Calculate Wt

k = P (Wt−1
k + βmGt−1).

5. Calculate F (Wt
k) by Eq. (9).

6. t = t + 1.

Output: Wk
k.

Algorithm 3. Algorithm for non-greedy ratio maximization of the �1-norm
distances.
1. Randomly initialize W0

k satisfying
(
W0

k

)T
W0

k = I and set t = 1.
while not converge do

2. Calculate λt by Eq. (10).

3. Find a Wt
k satisfying F (Wt

k) > F (Wt−1
k ) = 0 by Algorithm 2.

4. t = t + 1.

Output: W.

Now we continue to solve our objective. Let Wk = Wt−1
k , by substitut-

ing it into the objective, we have L(Wk,Wk−1
k ) = F (Wt−1

k ) = 0. In the k-
th iteration in solving the objective in Eq. (7), W�

k satisfies L(W�
k,Wt−1

k ) ≥
L(Wt−1

k ,Wt−1
k ) = 0. Then, we have:

F (W�
k) ≥ L(W�

k,Wt−1
k ) ≥ L(Wt−1

k ,Wt−1
k ) = F (Wt−1

k ) = 0. (16)

Lemma 1 and Eq. (16) indicate that the solution of the objective function in
Eq. (9) can be transformed to solve the objective function L(Wk,Wt−1

k ) ≥ 0,
which can be easily solved by the projected subgradient method with Armijo
line search [25]. Note that, for any matrix Wk the operator P (Wk) =

Wk

(
WT

k Wk

)− 1
2 can project it onto an orthogonal cone. This guarantees the

orthogonality constraint of the projection matrix, i.e. (Wt
k)T (Wt

k) = I. Algo-
rithm 2 summarizes the algorithm to solve the objective in Eq. (9).

Finally, based on Algorithm2, we can derive a simple yet efficient iterative
algorithm as summarized in Algorithm 3 to solve our objective in Eq. (7) when
sik is fixed. In addition, Theorem 3 indicates that our proposed Algorithm 3
monotonically increase the objective function value in each iteration. Theorem 4
indicates that the objective function is upper bounded, which, together with
Theorem 3, indicates that Algorithm 3 converges to a local optimum.

Theorem 3. If Wt
k is the solution of the objective function in Eq. (9) and

satisfies (Wt
k)T (Wt

k) = I, then we have J (Wt
k) ≥ J (Wt−1

k ).
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Theorem 4. The objective in Eq. (7) is upper bounded.

3.2 Fixing Wk to Solve sik

When Wk is fixed, we define a scalar dii′k =
∥
∥WT

k (xi − xi′)
∥
∥
1
. Then we write

Eq. (7) as:

max

∑
x′
i /∈Ck

∑
xi∈Ck

sikdii′k
∑

x′
i∈Ck

∑
xi∈Ck

sikdii′k
, s.t. sik ≥ 0. (17)

Defining that dw
ik =

∑

i′∈πk

dii′k and db
ik =

∑

i′ /∈πk

dii′k, we can further rewrite

the objective as:

max

∑
xi /∈Ck

sikdw
ik∑

xi∈Ck
sikdb

ik

, s.t. sik ≥ 0. (18)

Again, to solve Eq. (18), to Step 3 in Algorithm 1, we solve the following
optimization problem:

max
∑

xi∈Ck

sikdw
ik − λ

∑

xi∈Ck

sikdb
ik, s.t. sik ≥ 0, (19)

where λ is computed as Eq. (10) in the t-th iteration.
Define that dik = dw

ik − λdb
ik, we can rewrite the optimization problem in

Eq. (19) as:
max

∑

xi∈Ck

sikdik, s.t. sik ≥ 0, (20)

The problem in Eq. (20) can be decoupled to solve the following subproblems
separately for each xi ∈ Ck:

max sikdik, s.t. sik ≥ 0, (21)

which is a convex linear programming problem [41] and can be solved effi-
ciently by many off-the-shelf solution algorithms [41]. By inserting the solution
to Eq. (21) after Step 3 of Algorithm 3, we can finally solve our objective in
Eq. (7), which is equivalent to perform alternative optimization. Therefore, the
algorithm is guaranteed to converge to a local optimum.

4 Experimental Results

We evaluate the proposed RSSD method using a publicly available HIV drug
resistance database [22], which contains HIV-1 RT sequences with associated
resistance factors measured by IC50 ratios. We analyze the drug resistance of
these RT sequences against five nucleoside analogues: Lamivudine (3TC), Aba-
cavir (ABC ), Zidovudine (AZT ), Stavudine (d4T ) and Didanasine (ddI ). Fol-
lowing [8], although the Tenofovir (TDF ) nucleoside analogue is included in this
database, it is not used in our study, because the number of the RT sequences
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resistant to this nucleoside analogue is very low. As a result, we end up with 623
RT sequences for our experiments.

Drug resistance of a particular HIV strain is measured by the IC50 ratio
[7]. We label the viral RT sequences as “resistant” using the same drug-specific
IC50 ratio cutoff thresholds as in [7], which are set to 3.0 for 3TC and AZT,
2.0 for ABC, and 1.5 for ddI and d4T. We use hydrophobicity characteristics
[13] to represent the RT sequences, which has demonstrated good prediction
performance in many protein classification studies [8]. For each RT sequence, we
extract a hydrophobicity vector, which is obtained from the amino acid sequence
and smoothed within a window. The length of the original hydrophobicity vectors
may be different due to the different lengths of the RT sequences. In this study,
following [7] we set a fixed window size of 11 and interpolate all hydrophobicity
vectors to length 230 using the spline interpolation method [13].

4.1 Comparative Studies

Predicting drug resistance for HIV-1 RT sequences is a multi-label classifica-
tion problem. Therefore, we evaluate the proposed method by two broadly used
multi-label performance metrics [14]: Hamming loss and average precision. The
Hamming loss is computed over all instances over all classes. The average pre-
cision is calculated for both the micro and macro averages. In multi-label clas-
sification, the macro average is computed as the average of the precision values
over all the classes, thus it attributes equal weights to every individual class.
In contrast, the micro average is obtained from the summation of contingency
matrices for all binary classifiers, thus it gives equal weight to all classifiers and
emphasizes the accuracy of categories with more positive samples.

Fig. 2. Multi-label classification performance of the proposed method on the HIV-1
drug resistance data with respect to r (the dimensionality of Wk).

Parameter Selection. The proposed RSSD has only one parameter: the
dimensionality r of Wk. Ideally, each class can have its own fine tuned parame-
ter. Although, to reduce the experimental effort, we fix the parameter r across
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all classes in our studies. We evaluate the impacts of the parameter in a stan-
dard 5-fold cross-validation experiment, where we select r in the range from 10
to 100. The classification performance measured by the three aforementioned
performance metrics are reported in Fig. 2, when we vary r. The results in these
experiments show that the classification performance of the proposed method is
reasonably stable when we vary r in a considerably large selection range. This
illustrates that tuning parameters in our proposed method is not a difficult task;
this property adds to the practical value of our method to solve real-world prob-
lems. Based on these observations, we fix r = 50 in all our future experiments
for simplicity.

Comparative Studies. We use a standard 5-fold cross-validation to evalu-
ate the predictive capability of the proposed RSSD method. We implement two
versions of our proposed method, one version that defines D(Ck,xi′) using the
�1-norm distances as in Eq. (6) (denoted as “Ours-�1”) and another that defines
D(Ck,xi′) using the squared �2-norm distances as in Eq. (5) (denoted as “Ours-
�22”). We compare our new method to two broadly evaluated multi-label classifi-
cation methods in literature: the Green’s Function method [29] and the Sylvester
Equation (SMSE) method [1]. We also compare the proposed method against two
multi-label classification methods designed to study drug resistance in HIV-1:
the Classifier Chain (CC) method and its ensemble version [7,20] (denoted as the
ECC method). Finally, we also compare our method to two recent multi-instance
classification methods: the multi-task learning (MTL) method [42] designed to
study general drug resistance study and the deep MIML method [3] designed
to study general multi-instance data. The Green’s Function method and the
Sylvester Equation methods are implemented following their original papers in
[29] and [1] respectively, where the parameters are set to the suggested values.
The CC method is implemented with logistic regression, where the chaining
order for the CC method is 3TC → ABC → AZT → d4T → ddI as suggested
in [7]. Following [7,23], we implement the ECC method by using both random
forests and logistic regression as base classifiers, which are denoted as “ECC-RF”
and “ECC-LR” respectively. The MTL method and the deep MIML method are
implemented using the code published by the respective authors. The resistance
prediction performances of the compared methods are reported in Table 1.

The comparison results in Table 1 show that the �1-norm version of the pro-
posed method consistently outperforms all competing methods in terms of all
the three performance metrics, sometime very significantly. The squared �2-norm
version of our new method is, as expected, not as effective as its counterpart using
the �1-norm distance, but it still provides adequate performance when compared
to the other methods in Table 1.

4.2 A Case Study

We explore the learned distances by our method between RT sequence pairs
and compared them with the Euclidean distances for the same RT sequence



Learning Multi-label RSSD for Identifying HIV-1 Drug Resistance 63

Table 1. Performance of the compared methods by standard 5-fold cross validations,
where “↓” means that smaller is better and “↑” means that bigger is better.

Compared methods Hamming loss (↓) Micro precision (↑) Macro precision (↑)

Green’s 0.450 ± 0.040 0.319 ± 0.046 0.241 ± 0.033

SMSE 0.385 ± 0.020 0.402 ± 0.032 0.241 ± 0.020

CC 0.302 ± 0.028 0.467 ± 0.046 0.434 ± 0.037

ECC-LR 0.313 ± 0.014 0.481 ± 0.011 0.442 ± 0.012

ECC-RF 0.301 ± 0.005 0.476 ± 0.020 0.461 ± 0.021

MTL 0.382 ± 0.010 0.475 ± 0.021 0.461 ± 0.010

Deep MIML 0.315 ± 0.010 0.478 ± 0.042 0.474 ± 0.022

Ours-�22 0.322 ± 0.015 0.505 ± 0.040 0.492 ± 0.050

Ours-�1 0.282 ± 0.007 0.518 ± 0.012 0.527 ± 0.013

pairs. The distance between two RT sequences by our method is defined as the
sum of the two learned RSSDs: for the k-th class, the pairwise distance between
sequence xi and xi′ is the sum of D(Ck,xi) and D(Ck,xi′). Because we learn a
distance metric and significance coefficients for each class, this distance is class-
dependent. Under this definition, the distances given by our method between
sample pairs that belong to the same class are expected to be small and those
between sample pairs not belonging to the same class are expected to be large.
Using the learned class specific metrics and significance coefficients, we compute
the pairwise distances between the RT sequences for every class (nucleoside
analogue), which are plotted in Fig. 3. The Euclidean distances are also plotted
for comparison.

To demonstrate the effectiveness of the proposed method, we study the dis-
tances between two example RT sequences, which are listed at the top of Fig. 3.
These two RT sequences are known to be resistant to all five nucleoside ana-
logues. As a result, the pairwise distance between these two RT sequences are
expected to be small. However, as can be seen in top left panel of Fig. 3, the
Euclidean distance between these two RT sequences is ranked at the 1855-th
smallest distance among all pairwise Euclidean distances, which is not in accor-
dance with the clinical evidences. In contrast, we can see that the pairwise dis-
tances between these RT sequences computed by our learned RSSDs for the five
classes are small, which are at the 138-th smallest distance for 3CT, the 525-
th smallest distance for ABC, the 574-th smallest distance for AZT, the 406-th
smallest distance for d4T, and 678-th smallest distance for ddI, respectively. This
observation clearly demonstrates that the learned distances by our new meth-
ods, can better capture the relationships between data samples in terms of class
membership.
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Fig. 3. Exploration of the learned sample-to-sample distance between RT sequence
pairs for each class. Top panel: The two RT sequences (with known drug resistance)
we are comparing; Top Left Heatmap: the Euclidean distances between RT sequence
pairs. Remaining Heatmaps: the learned sample-to-sample distances between RT
sequence pairs for each of the five classes. We can see that the sample-to-sample distance
between the two RT sequences in the top panel for 3CT nucleoside analogue is ranked
as the 138-th smallest pairwise distance among all 1722 RT sequence pairs. Compared
to the Euclidean distance, which is ranked as 1855-th smallest distance, the pairwise
distance computed by the projection and significance coefficients learned for this class
is more clinically meaningful.

5 Conclusions

In this paper, we proposed a novel RSSD method for multi-label classification. To
learn the parameters of the proposed RSSDs, we formulated a learning objective
that maximizes the ratio of the summations of a number of �1-norm distances;
this problem is difficult to solve in general. To solve this problem we derived a new
efficient iterative algorithm with rigorously proved convergence. The promising
experimental results have demonstrated the effectiveness of our new method for
identifying HIV-1 drug resistances.
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Abstract. Whole-genome bisulfite sequencing (WGBS) provides a pre-
cise measure of methylation across the genome, yet presents a challenge
in identifying regions that are differentially methylated (DMRs) between
different conditions. Many methods have been developed, which focus
primarily on the setting of two-group comparison. We develop a DMR
detecting method MethCP for WGBS data, which is applicable for a wide
range of experimental designs beyond the two-group comparisons, such as
time-course data. MethCP identifies DMRs based on change point detec-
tion, which naturally segments the genome and provides region-level dif-
ferential analysis. For simple two-group comparison, we show that our
method outperforms developed methods in accurately detecting the com-
plete DM region on a simulated dataset and an Arabidopsis dataset.
Moreover, we show that MethCP is capable of detecting wide regions with
small effect sizes, which can be common in some settings but existing
techniques are poor in detecting such DMRs. We also demonstrate the
use of MethCP for time-course data on another dataset following methy-
lation throughout seed germination in Arabidopsis.

Availability: The package MethCP has been submitted to Biocon-
ductor, and is currently available at https://github.com/boyinggong/
MethCP.

Keywords: Differential methylation · Bisulfite sequencing ·
Change point detection

1 Introduction

DNA methylation is an important epigenetic mechanism for regulation of gene
expression. Methylation is a process by which methyl groups are added to DNA
cytosine (C) molecules. The methylation of promoter sites, in particular, is
negatively correlated with gene expression while methylation in gene bodies
is positively correlated with gene expression. Whole-genome bisulfite sequenc-
ing (WGBS) allows for precise measurement of DNA methylation across the
genome. Briefly, when DNA is treated with bisulfite, the unmethylated cytosines
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are converted to uracil (U) leaving methylated cytosines unchanged. Sequenc-
ing of bisulfite-treated DNA and mapping of the sequenced reads to a reference
genome then provides a quantification of the level of methylation at each cyto-
sine. Methylation occurs in three different contexts: CG, CHG and CHH (where
H corresponds to A, T or C). We will just refer to methylation of individual
cytosine nucleotides.

In the analysis of BS-Seq data, a common interest is to identify regions of the
genome where methylation patterns differ across populations of interest. Such
regions are called differentially methylated regions (DMRs). Identifying DMRs
are generally considered preferable than detection of individually differentially
methylated cytosines (DMCs) from both statistical and biological perspective
[22]. DNA methylation shows strong local patterns, and it is believed that region-
level differences are more biologically important. Because of the low coverage and
the fact that nearby cytosines usually have similar levels, combining them into
regions substantially improves statistical power and lowers the false discovery
rate. For the downstream analysis, reporting regions also reduces the redundancy.

A number of methods have been developed to identify regions from BS-
Seq data that show differential methylation between two groups of samples (see
[19] for a detailed review). One common strategy is to perform a test at every
cytosine that appropriately accounts for the proportions and then use these sig-
nificant results to determine the DMRs. For example, methylKit [1] performs
either a logistic regression test or Fisher’s exact test per cytosine; RADMeth
[6] uses a beta-binomial regression, and a log-likelihood ratio test; DSS [8,17,24]
uses a Bayesian hierarchical model with beta-binomial distribution to model
the proportions and tests for per-cytosine significance with a Wald test. Other
methods use the local dependency between neighboring cytosines to improve
their per-cytosine test. BSmooth [10] and BiSeq [11] both use local likelihood
regression to estimate an underlying methylation curve, and then test for differ-
ences in the smoothed methylation ratios between populations. HMM-DM [25,26]
and HMM-Fisher [21,25] both use Hidden Markov Models along the genome to
account for the dependency between cytosines. For many of these methods, the
region is often either predefined or determined by merging adjacent DMCs based
on specific criteria such as distance.

Another approach is to directly segment the methylation levels to find DMRs.
The method metilene [13] uses a modified circular binary segmentation algo-
rithm with statistics based on the mean differences in methylation ratios between
two groups. The segments are tested for significance using Kolmogorov-Smirnov
or Mann-Whitney U tests until the test results do not improve or the number of
cytosines is too small.

We, too, propose a segmentation approach, MethCP, for finding DMRs from
BS-Seq data. MethCP uses as input the results of a per-cytosine test statistic,
like one of the methods described above, uses this input to segment the genome
into regions, and then identifies which of those regions are DMRs. Our method,
therefore, takes into account the coverages and biological variance between sam-
ples. Furthermore, all of the previously mentioned methods, including existing
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segmentation methods, are developed for simple two group comparisons, and are
not straightforward to extend to more general experimental designs. MethCP, on
the other hand, can be used in a wide variety of experimental designs.

We show via simulations that our method more accurately identifies regions
differentially methylated between groups, as compared to competing methods.
We illustrate the performance of MethCP on experimental data and show that
its behavior on experimental data mirrors that of the simulations. We further
demonstrate the flexibility of MethCP for use beyond the two-group setting by
applying it to a time-course study.

2 Methods

MethCP assumes as input the results of a per-cytosine test of significance, such
as those mentioned previously in the introduction. The main steps of MethCP
are to (1) segment the test statistics into regions of similar values, and then (2)
assign a p-value per region as to whether the region is a DMR.

Let Tk, k = 1, · · · ,K, be per-cytosine statistics for each of K cytosines,
ordered by the location of the cytosines. We assume for now that the test statis-
tics are independent (asymptotically) normally distributed, such as z-statistics or
Wald statistics for testing equality of a proportion between two populations, and
in Sect. 2.1 we extend this approach for other test statistics. We segment the Tk

into regions of similar levels of significance based on the Circular Binary Segmen-
tation (CBS) algorithm of [16], which was originally developed for segmentation
of DNA copy number data. Note that MethCP applies the segmentation to test-
statistics Tk, which is a summary per cytosine as to the difference of interest
across the samples, so that it finds regions of similar population significance.

Briefly, binary segmentation methods involve testing over all of the possi-
ble breakpoints (cytosines) for whether there is a change in the mean of T at
location i ∈ [K]; in the case of genomic data, the segmentation is applied per
chromosome. The CBS algorithm performs a binary segmentation and adapts
the algorithm so as to view the data from a chromosome as if it lies on a circle,
segmenting the circle into two arcs. The segmentation procedure of CBS is then
as follows: for each possible arc defined by, 1 ≤ i < j ≤ K, the likelihood ratio
test statistic Zij is calculated by comparing the mean value of Tk found in the
arc from i + 1 to j with that found in the remaining circle. To find a signifi-
cant breakpoint, CBS determines whether the statistic Z = max1≤i<j≤K |Zij | is
significantly larger than 0. If so, this implies a detection that the arc (i + 1, j)
has a significantly different mean than the remaining arc and the two arcs are
declared to be separate segments. The procedure is then applied recursively on
each resulting segment until no more significant segments are detected.

The number of computation required for the segmentation is O(K2). How-
ever, due to the uneven distribution of methylation cytosine across the genome,
“gaps” where nearby methylation cytosines are far from each other and almost
uncorrelated naturally presegment the genome. Like other methods [13], MethCP
can optionally presegment the genome and apply the algorithm separately to
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these highly separated segments. This reduces the computation to O(KM),
where M � K is the maximum number of cytosines in these segments.

The underlying purpose of the segmentation step is to segment the differential
region from the undifferentiated regions. After the completion of the segmenta-
tion, it remains to determine which of these segmented regions correspond to sig-
nificant DMRs, rather than their surrounding undifferentiated regions. To clas-
sify these regions, we use meta-analysis principles to aggregate the per-cytosine
statistics and obtain one single statistic per region, to which we apply significance
tests.

We assume that for each cytosine the calculated statistic Tk can be written as
Tk = ek

σ̂(ek) , where ek is the effect size that has approximate normal distribution
with estimated variance σ̂2(ek). For a region i with a set of cytosines Si, the
weighted effect size is given by

e∗
i =

∑
k∈Si

wkek
∑

k∈Si
wk

, (1)

where the weights wk signify the contribution of cytosine k. Typically in meta-
analysis applications, wk is set to be σ̂(ek)−1 [2]. In the case of WGBS, assuming
that appropriate methods which account for the variability in the counts are used
to calculate Tk, σ̂(ek)−1 will be closely related to the coverage of the cytosine,
which we designate as Ck. Alternatively, for example, when σ̂(ek) is not available,
we can use wk = Ck, explicitly giving larger weights for high coverage cytosines.

A test statistic for a region found after segmentation is therefore calculated by
T ∗

i = e∗
i

σ̂(e∗
i ) , where σ̂(e∗

i ) is the estimated variance of e∗
i . Based on our Gaussian

distribution assumptions on the individual ek, we call the region significant if
|T ∗

i | > zα/2, where α is the significance level.
In the standard meta-analysis, the individual Tk are often assumed to be

independent so that the estimated variance of e∗
i is given by

σ̂2(e∗
i ) =

∑
k∈Si

w2
kσ̂2(ek)

(
∑

k∈Si
wk)2

. (2)

In the setting of methylation analysis, we have noted that the individual loci
statistics are not independent. Even so, we show via simulation study (Sect. 3.1)
that in using this estimate of σ̂2(e∗

i ), we still control the false discovery rate per
region.

2.1 Generalizing Beyond z-statistics

The above approach relies on input statistics that are Gaussian. This can
be limiting, since methods often produce other types of statistics, such as
Fisher’s exact test implemented by methylKit and log-likelihood ratio test
from RADMeth. For this reason, we give a further adaptation in MethCP so as
to be applicable for any cytosine-based parametric statistics that result in valid
p-values. Let p1, p2, · · · , pK be the p-values indexed by the location of cytosines.
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For segmenting the genome into regions, we use the standard transform of the
p-values to Z-scores,

zk =
[
21(ek ≥ 0) − 1

]
Φ−1(1 − pk/2), (3)

where Φ is the cumulative distribution function of standard Gaussian. MethCP
then performs CBS on the zi’s to segment the genome.

Region-level statistics can be obtained by aggregating p-values using Fisher’s
combined probability test [9] or Stouffer’s weighted Z-method [20,23]. Namely,
for a region i with a set of cytosines Si, let

TFisher
i = −2

∑

k∈Si

log pk, (4)

T Stouffer
i =

∑
k∈Si

wkΦ−1(1 − pk)
√∑

k∈Si
w2

k

, (5)

where wk can be chosen to be constant or given by coverage Ck. We test TFisher
i

against χ2
2|r|, and T Stouffer

i against standard Gaussian for significance.

2.2 Quantifying Region Alignment

To quantify the performance of the methods or similarity of DMR sets detected
by different methods, we need to define some measures for whether a region
was successfully detected. One simple solution is just to calculate measures of
specificity and sensitivity based on the percentage of individual cytosines were
correctly called to be in a DMR or not. However, since our goal is to detect
regions, this is unsatisfactory. Thus, we extend the specificity and sensitivity
to region detection problem. Our framework of evaluation is closely related to
supervised measures such as directional Hamming distance and segmentation
covering in the image segmentation literature [12,18]. Specifically, to determine
whether a detected region is considered a true or false positive, we set a parame-
ter α ∈ (0, 1] that is the percentage of overlap required in order to be considered
as having successfully detected a region. We then calculate true positive rates
(TPR) and false positive rates (FPR) that vary with α.

Furthermore, we will see that some DMR methods are biased toward longer
or shorter regions (Sect. 3), which can make comparing methods difficult. In
order to account for different biases of regions found (in the following, we refer
to number of cytosines in a region as the length of the region), we calculate the
percent overlap between a detected region and a true region using three different
denominators: that of the detected region, that of the true region and that of the
union of the detected and true ones. The three measures can be interpreted as
the local measures of precision, recall and Jaccard index. The first two allowed
us to distinguish as to whether methods detected a high percentage of the true
regions, versus if a high proportion of the detected regions were truly DMRs.
The local Jaccard index allows us to measure the similarity between detected
and true regions symmetrically.
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We demonstrate our definitions using the local measure of precision – i.e., the
overlap is determined by the proportion of the detected region that intersects
the truth. Denote the detected and true region set as Rd and St, respectively.
To determine whether a detected region Rd

i ∈ Rd was a true positive (TP), we
calculate the true positive indicator for Rd

i :

TP d
i (α) = I

{

max
St
j∈St

|Rd
i ∩ St

j |
|Rd

i | ≥ α

}

, (6)

where |Rd
i | is the length of the detected region Rd

i , and maxSt
j∈St |Rd

i ∩ St
j |

is the maximum overlapping cytosines of Rd
i with a true region. Note that

we take the maximum over all true regions to account for the fact that a
detected region may overlap multiple true regions (and vice versa). From the
TP d

i definitions, we calculate the total true positive (TP) as a function of α:
TP d(α) =

∑
Rd

i ∈Rd TP d
i (α).

The above formulas for TP can be extended to local measure of recall or
Jaccard index by adjusting the denominator in Eq. (6), from |Rd

i | to |Rt
i| and

|Rd
i ∪ St

j |, respectively, for calculating overlap. Similarly, we can calculate the
false positive (FP), false negative (FN) and true negatives (TN). Please refer to
AppendixC.1 for detailed formulations.

3 Results

3.1 Simulation Study

In this section, we applied our method as well as five representative methods [19]
BSmooth, HMM-Fisher, DSS, methylKit and metilene on simulated data with
two population groups. Our method, MethCP, was run using the statistics of both
DSS and methylKit as input (hereinafter referred to as MethCP-DSS and MethCP-
methylKit). We evaluated their performances with the measures described in
Sect. 2.2. The data simulation procedure and details of applying these methods
can be found in AppendixB.

A Simulation for Comparing Two Population Groups. Figure 1 shows the sum-
mary of the length of the DMRs detected by the six methods using the default
significance level (or test statistic thresholds); we also show the distribution
of the lengths of true regions. MethCP and metilene gives the closest length
distribution to that of the true regions. Although we shortened the smoothing
window compared to the default, BSmooth and DSS detect much larger regions.
In contrast, HMM-Fisher and methylKit both detect small, fragmented regions.

To evaluate the accuracy of the methods on the simulated data, we plot the
ROC curve for both the local precision (Fig. 2a) and the local recall (Fig. 2b).
The local precision requires that a large percent of the detected region overlap a
true DMR (easier for shorter detected regions and conservative methods), while
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Fig. 1. Boxplot of number of CpGs in the DMRs. Number of CpGs in the true DMRs
and in the DMRs detected by the seven methods compared for the simulated data.

the local recall requires that a large percent of the true region be overlapped by
a detected region (easier for longer detected regions).

MethCP-DSS and MethCP-methylKit detect highly similar regions despite
using different test statistics as input. For small α, MethCP and metilene achieve
the highest true positive rate across all of the methods. And both TPRd and
TPRt are close to 1, which suggests that most true and detected regions match
in pairs, with slight disagreement in the region border. This is not the case for
other four methods, which for a given FPR are usually strong in either TPRd or
TPRt, but not both, which is evidence that either a proportion of the ground-
truth regions are not detected (TPRd high but TPRt low), or a proportion of
detected regions are not overlapping the ground-truth (TPRt high but TPRd

low). DSS and BSmooth behave similarly in that TPRt varies little with α while
TPRd decreases dramatically with the increase of α. This is an indication that
both methods detect larger regions than the truth, which has been shown in
Fig. 1. Despite detecting regions wider than the true regions, BSmooth misses at
least 20% of the true regions, as indicated by the values of TPRt, while DSS
misses a smaller proportion.

HMM-Fisher and methylKit exhibit the opposite behavior, calling fewer and
smaller regions significant, but as a result not obtaining good coverage of the
true regions. The DMRs identified by these two methods are generally a subset
of the true regions as indicated by the high values of TPRd regardless of the
significance level α. However, they also miss a good number of regions as shown
in their lower TPRt (Fig. 2b). metilene and MethCP both rely on segmentation
procedures, and metilene achieves better performance than the other competing
methods, with high levels of both FPRd and FPRt, though metilene still gives
smaller TPR than MethCP.

However, in addition to assessing their overall sensitivity and specificity,
we can consider whether the methods actually control the false positive rate
at the desired level, and here we can see an even stronger difference between
metilene and MethCP. In particular, for Fig. 2a and b, the sold portions of the
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Fig. 2. ROC curve: method comparison on the simulated data. False positive rate
(FPR) versus true positive rate (TPR) as we change the parameter α for (a) local pre-
cision measure and (b) local recall measure. The solid lines indicate significance levels
smaller than 0.05 for HMM-Fisher, DSS, metilene, MethCP-DSS and MethCP-methylKit,
statistics threshold larger than 4 for BSmooth (the author recommendation is 4.6), and
q-values cutoffs less than 0.05 for methylKit. Thus, in real applications, we only focus
on the regions of solid curves. For the completeness of the graph, we extend the curve
to larger significance levels. methylKit uses an FDR correction procedure and only
report q-values. Their false positive rate is reasonably controlled especially when we
use the detected length as the denominator of our measure (FPRd).
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precision-recall curves indicate where the cutoff was due to the p-value cutoff
being less than 0.05, meaning that control of the FPR at level 0.05 would be
indicated by solid portion of the curve not extending beyond the true FPR of
0.05 given in the x-axis. For metilene, however, the solid curve continues beyond
true FPR of 0.1 (see “Unzoomed” metilene plot), indicating that metilene is
not accurately controlling the FPR. MethCP, on the other hand, does not have
this property, and is quite conservative, despite having a higher TPR than the
other methods.

A Simulation for Small Effect Size Regions. Recent studies [3,7,15] have shown
that small-magnitude effect sizes are functionally important for DNA methyla-
tion and are associated with specific phenotypes. Furthermore, in plants, there
exist other contexts of methylation other than CpG pairing (CHG and CHH
methylation), where the baseline levels can be much lower, and hence their
changes are also much smaller in scale, usually less than 10%. However, related
discoveries have been hampered by a lack of DMR-calling tool addressing this
issue [3,7]. We now show via a simulation study that MethCP is the only method
of those we consider that is capable of accurately detecting regions with small
(<10%) changes in DNA methylation. In fact, none of the DMR detection meth-
ods we consider here, other than metilene, even identify any regions with
methylation differences smaller than 10%, so we focus our comparison only on
metilene. We simulated data sets with DMRs that have 2.5%, 5%, 10%, 20%
changes in methylation, and their lengths vary from 25 methylation cytosines
to 400 cytosines. As shown in Fig. 3, MethCP achieves a high true positive rate
while keeping the false positive rate low. MethCP consistently has higher TPR
and lower FPR throughout the range of values.

Fig. 3. A comparison between metilene and MethCP for the small effect size simula-
tion. Upper panel shows TPRJ , and the lower panel shows FPRJ (α = 0.5). On the
x-axis are the simulated methylation differences between control and treatment group.
The five columns show simulated DMR length from short DMRs (25 cytosines) to large
DMRs (400 cytosines).
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3.2 Arabidopsis Dataset

To further illustrate the performance of MethCP on real datasets, we consider
their performance on actual WGBS dataset. We do not have WGBS with actual
ground truth (i.e., knowledge of where DMR regions are and are not located),
so we use a dataset with a relatively large number of replicates that allow us to
use permutation methods to give some idea of the performance of the tests; we
combine this with a consideration of whether the important features seen in our
simulation results are mimicked in real data. We use a WGBS on Arabidopsis
Thaliana ([4], GEO accession number GSE39045) which contained six biological
replicates each of a wild-type control line and an H2A.Z mutant line.

Figure 4a shows the boxplot of the size of the DMRs detected (i.e., number of
CpGs) under significance level 10−2 and FDR corrected level 10−2. We see that
the sizes of the regions are mostly fairly consistent across the different significance
levels, and that the relative sizes between methods resemble that of the simulated
data. Namely, DSS and BSmooth detect large regions, HMM-Fisher and methylKit
identified small ones, and MethCP-DSS and MethCP-methylKit identified highly
similar regions despite different test statistics they use. metilene, stands out
as sensitive to the significance level, with smaller required significance levels
resulting in more small regions being reported (and HMM-Fisher finds no DMRs
at more stringent significance levels).

To compare the false positives produced by six methods, we create a null
dataset, i.e., one with no region of cytosines different between the two groups,
by randomly assigning the six controls into two groups of three. Individual differ-
ences between the mean methylation levels, combined with the fact that nearby
sytosines have similar methylation levels in a sample, meaning that by chance
there are regions of cytosines that are different between the two random groups.
Therefore, we further permute the data in two different ways to create null data
sets that have no DMRs between the two groups. The first method permutes the
sequencing counts (methylated and unmethylated count pairs) across the sam-
ples for each CpG position (Permutation 1). The second method permutes the
cytosine positions but keeps the sample labels, thus breaking any residual spatial
signal between neighboring CpGs (Permutation 2). Figure 4 shows the number
of DMRs and proportion of CpGs detected by each method. In both permuta-
tions, MethCP has a small number of DMRs relative to the other methods. Indeed
for the second permutation, MethCP detects 0 DMRs. For the first permutation,
only HMM-Fisher finds fewer, but HMM-Fisher also appears to have less power
in detecting the real differences, Fig. 4b. If we further consider how well MethCP
assigns individual cytosines correctly to DMRs (i.e. its ability to detect of DMCs),
then MethCP also results in fewer false assignments of individual cytosines than the
other methods, which is surprising since it is not a DMC method.

We would note that despite detecting fewer false positive DMRs in our permu-
tation analysis, MethCP still remains competitive, as compared to the other meth-
ods, in terms of the number of DMRs it finds on the real data (Fig. 4b), indicating
that it is not suffering from a lack of power. DSS and methylKit both find more
regions, but we see from our permutation analysis that DSS and methylKit tend
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to find many more false positives than MethCP. Furthermore, the regions found by
methylKit are small (Fig. 4a), suggesting that like in the simulations methylKit
may be missing or fragmenting large parts of the true DMRs.

Fig. 4. (a, b) Summary of DMRs detected for Arabidopsis dataset. (a) Boxplot of the
number of CpGs in the DMRs. (b) Number of DMRs detected by different methods.
We summarize the results under significance level 10−2 and FDR corrected level 10−2.
BSmooth and HMM-Fisher are colored because we use the author recommended test
statistic cutoff (4.6) for BSmooth and significance level 0.05 for HMM-Fisher on three
plots (Small significance level for HMM-Fisher returns no DMR). (c,d, e, f) Permuta-
tion results for Arabidopsis dataset. (c) Permutation 1, number of DMRs detected.
(d) Permutation 2, number of DMRs detected. (e) Permutation 1, the proportion of
significant CpGs. (f) Permutation 2, the proportion of significant CpGs. Methods other
than BSmooth uses significance level 0.01, and BSmooth uses the author recommended
test statistic cutoff (4.6).

3.3 Time-Course Dataset

A strength of MethCP is that it is flexible for a wide variety of experimental
designs, because it only requires an appropriate per-cytosine test-statistic, which
can be calculated by standard tests on a per-cytosine basis. We demonstrate this
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utility on a seed germination dataset from Arabidopsis thaliana ([14], GEO acces-
sion number GSE94712). The data is generated from tracking over time germi-
nating seeds after the dry seeds are given water. Two experimental conditions are
considered: wild-type plants (Col-0 ) and ros1, dml2, and dml3 triple demethy-
lase mutants plants (rdd). ROS1, DML2 and DML3 are closely related DNA
demethylation enzymes that mainly act in vegetative tissues. Two replicates
were collected at each of 0–4 days after introduction of water (DAI), resulting
in six time points, including the dry seed.

Fig. 5. Heatmap of DMRs for the seed germination dataset. Heatmap of average methy-
lation levels in the DMRs detected. Here we show the results for CpG context. For each
condition and each DMR, we subtract the ratios by the average dry seed methylation
ratios, so that the heatmap better shows the changes with time. We annotate the DMRs
with greater than 200 CpGs as large regions.

The original authors did not conduct a DMR analysis between these groups.
Rather they did a two-group test of the overall methylation levels by grouping
together the summarized methylation ratios and testing for the difference in
distributions at each time point. They saw a modest overall increase between
the two groups at each time point. We perform a DMR analysis with MethCP by
fitting per CpG a linear model on the arcsine-transformed methylation ratios and
choosing the statistic Tk to be the difference between the time coefficient of Col-0
and rdd groups. Figure 6 shows the histogram of DMR length. Unlike the length
distribution in Sect. 3.2, we detect some very large DMRs with small changes of
methylation over time. Our ability to pick up both small and long regions gives
us the ability to see multiple effects. We see the overall general increase, reported
by the authors, represented by the long regions of small increase (Fig. 5, regions
colored black). But we also detect some smaller regions with an opposite pattern
of decrease in methylation in the mutant samples (Fig. 5, regions colored grey).
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4 Conclusion

We proposed a method MethCP for identifying differentially methylated regions.
We presented the results of MethCP-methylKit and MethCP-DSS on simulated
and real datasets. And we showed that MethCP gives better accuracy and a
lower number of false positives, as compared to existing methods. We also show
that MethCP is the only method that detects large DMRs with small effect sizes,
which is prevalent in DMR methylation data. Other than comparing two groups,
we presented an example of a time-course study with MethCP. Our framework
is in principle flexible for general experimental design assuming an appropriate
single-cytosine test statistic can be calculated. Thus the method can be expanded
immediately to more complicated situations, such as comparing multiple groups
or measurements of methylation status over time or developmental progression.

Funding. This work has been supported in part by a DOE BER grant, DE-SC0014081.

A Quantifying Region Alignment: Measurement
Formulations

Similar to TP d
i definitions, we calculate the total false positive (FP), and false

negative (FN) as a function of α:

FP d
i (α) = I

{

max
St
j∈St

|Rd
i ∩ St

j |
|Rd

i | < α

}

, FP d(α) =
∑

Rd
i ∈Rd

FP d
i (α), (7)

FNd
j (α) = I

{

max
Rd

i ∈Rd

|Rd
i ∩ St

j |
|Rd

i | < α

}

, FNd(α) =
∑

St
j∈St

FNd
j (α), (8)

where the false negative is interpreted as the number of true regions that do
have overlap greater than α with any detected positives.

The above formula can be extended to use local measure of recall or Jaccard
index by adjusting the denominator in Eq. 6, from |Rd

i | to |Rt
i| and |Rd

i ∪ St
j |,

respectively, for calculating overlap.
For example, measuring the number of true positives, we have:

TP t
j (α) = I

{

max
Rd

i ∈Rd

|Rd
i ∩ St

j |
|St

j |
≥ α

}

, TP t(α) =
∑

St
j∈St

TP t
j (α), (9)

TP J
i (α) = I

{

max
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j∈St

|Rd
i ∩ St

j |
|Rd

i ∪ St
j |

≥ α

}

, TP J(α) =
∑

Rd
i ∈Rd

TP J
i (α). (10)

Calculating True Negatives. Calculating the total number of true negatives
would require a calculation of the number of detected regions that were truly not
significant (i.e. equally methylated). However, an equally methylated region is a
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more nebulous quantity for a region (unlike for cytosines). Unlike the different
DMRs, all equally methylated regions are equivalent from the point of view of
all of these methods: arbitrarily defining separate regions within a large block
of equally methylated regions could not be detected by any method. Instead,
we use the following formula to get an estimation of the total number of true
negatives:

# CpGs in Total − # CpGs in (TP + FP + FN)
Average True DMR Length

(11)

B Simulation Study

How We Applied Other Methods. We applied our method as well as five represen-
tative methods [19] BSmooth, HMM-Fisher, DSS, methylKit and metilene on both
real and simulated data. Our method, MethCP, was run using the statistics of both
DSS and methylKit as input. To be fair between methods, we remove the cover-
age filter for individual cytosines, as it varies by methods. Furthermore, the reads
in symmetric CpG sites are collapsed. We set the same length filter (3 cytosines)
and absolute mean methylation level difference filter (0.1) for DMRs, where the
numbers are the default of the majority of methods. We shorten the smoothing
window of BSmooth from default 1000 bps to 500 bps, which gives better results
for our simulated dataset. For DSS, we use moving average smoothing, which is rec-
ommended in the documentation. For methylKit, the output is DMCs rather than
DMRs. We combine adjacent DMCs to DMRs. Resulting DMRs that are smaller
than 3 cytosines are discarded. All other parameters other than the significance
level (test statistics cutoffs) were left at the default values.

Generation of Simulated Data. We generate simulated BS-Seq data by the fol-
lowing procedure adapted from [25]. We assume there are K cytosines in the
simulated genome and two groups of samples (“treatment” and “control”), each
of size n = 3 to compare; this is similar to the level of replication that is often
seen in WGBS. We designate regions within this genome to be classified as DMR
by generating region size (number of CpGs) from a negative binomial distribu-
tion NB(r = 6, p = 0.25). We further require that the number of CpGs to be
greater than 3 in each region. The starting positions of the DMR were chosen by
random sampling. This divided the genome into differentially methylated and
equally methylated regions.

To mimic the read coverage and the methylation ratio in real datasets,
the actual sequencing counts were generated based on a human senescent cells
dataset [5] available from the Gene Expression Omnibus (GEO) with accession
number GSE48580. To determine the total read coverage, we randomly sampled
from the observed coverage distribution of each cytosine in the human dataset.
The number of reads determined to be methylated per cytosine was based on
a binomial distribution, with the probability of proportion depending on what
treatment group the sample was in and if the cytosine was in a DMR or not. For
samples in the control group or for cytosines in the equally methylated regions,
the binomial probability parameter was chosen from the observed distribution
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of the per-cytosine average methylation ratio in the senescent cells dataset. For
DM regions, each DM region was randomly assigned one of five beta distribu-
tions from which the methylation probability of the treatment samples would
follow; in addition, we require that the absolute difference between the mean of
binomial distribution in treatment and in the corresponding control group is at
least 0.2, which eliminated some of the five beta distributions from consideration.
These beta distributions represent five different methylation levels, from poorly
methylated to highly methylated (specific parameters of the beta distribution
are given in Table 1). Then the cytosine methylation probability for samples in
the treatment group was generated according to the beta distribution chosen
for that DMR region. To take into account the high correlation of methylation
levels between neighboring CpGs, we simulate smoothing DMR boundaries. For
a DMR of length l, a region of length w ∼ Unif(0.1l, 0.3l) is added to each side of
the DMR where the methylation probability is given by a mixture of treatment
and control. The weights of the treatment group decrease as we move to the edge
of the DMR. In this paper, we show only results with the smoothing boundary,
but simulation without smoothing boundaries give similar results.

Table 1. Parameters of beta distributions for simulating the methylated counts in the
treatment group.

Distribution (a) (b) (c) (d) (e)

α 2 6 10 14 18

β 18 14 10 6 2

Mean probability 0.1 0.3 0.5 0.7 0.9

C Figures

C.1 DMR Lengths in the Time-Course Dataset

Fig. 6. Lengths (number of methylation cytosine) of DMRs detected in the seed ger-
mination dataset (CpG context).



MethCP: DMR Detection 83

References

1. Akalin, A., et al.: MethylKit: a comprehensive R package for the analysis of genome-
wide DNA methylation profiles. Genome Biol. 13(10), R87 (2012)

2. Borenstein, M., Hedges, L.V., Higgins, J., Rothstein, H.R.: Introduction to Meta-
Analysis. Wiley, Hoboken (2009)

3. Breton, C.V., et al.: Small-magnitude effect sizes in epigenetic end points are impor-
tant in children’s environmental health studies: the children’s environmental health
and disease prevention research centers epigenetics working group. Environ. Health
Perspect. 125(4), 511 (2017)

4. Coleman-Derr, D., Zilberman, D.: Deposition of histone variant H2a. Z within gene
bodies regulates responsive genes. PLoS Genet. 8(10), e1002988 (2012)

5. Cruickshanks, H.A., et al.: Senescent cells harbour features of the cancer
epigenome. Nat. Cell Biol. 15(12), 1495 (2013)

6. Dolzhenko, E., Smith, A.D.: Using beta-binomial regression for high-precision dif-
ferential methylation analysis in multifactor whole-genome bisulfite sequencing
experiments. BMC Bioinform. 15(1), 215 (2014)

7. Eichten, S.R., Springer, N.M.: Minimal evidence for consistent changes in maize
DNA methylation patterns following environmental stress. Front. Plant Sci. 6, 308
(2015)

8. Feng, H., Conneely, K.N., Wu, H.: A Bayesian hierarchical model to detect differ-
entially methylated loci from single nucleotide resolution sequencing data. Nucleic
Acids Res. 42(8), e69 (2014)

9. Fisher, R.A.: Statistical methods for research workers (1934)
10. Hansen, K.D., Langmead, B., Irizarry, R.A.: Bsmooth: from whole genome bisulfite

sequencing reads to differentially methylated regions. Genome Biol. 13(10), R83
(2012)

11. Hebestreit, K., Dugas, M., Klein, H.-U.: Detection of significantly differentially
methylated regions in targeted bisulfite sequencing data. Bioinformatics 29(13),
1647–1653 (2013)

12. Huang, Q., Dom, B.: Quantitative methods of evaluating image segmentation. In:
Proceedings of International Conference on Image Processing, vol. 3, pp. 53–56.
IEEE (1995)

13. Jühling, F., Kretzmer, H., Bernhart, S.H., Otto, C., Stadler, P.F., Hoffmann, S.:
metilene: fast and sensitive calling of differentially methylated regions from bisulfite
sequencing data. Genome Res. 26(2), 256–262 (2016)

14. Kawakatsu, T., Nery, J.R., Castanon, R., Ecker, J.R.: Dynamic DNA methylation
reconfiguration during seed development and germination. Genome Biol. 18(1),
171 (2017)

15. Leenen, F.A.D., Muller, C.P., Turner, J.D.: DNA methylation: conducting the
orchestra from exposure to phenotype? Clin. Epigenetics 8(1), 92 (2016)

16. Olshen, A.B., Venkatraman, E.S., Lucito, R., Wigler, M.: Circular binary segmen-
tation for the analysis of array-based DNA copy number data. Biostatistics 5(4),
557–572 (2004)

17. Park, Y., Hao, W.: Differential methylation analysis for BS-seq data under general
experimental design. Bioinformatics 32(10), 1446–1453 (2016)

18. Pont-Tuset, J., Marques, F.: Supervised evaluation of image segmentation and
object proposal techniques. IEEE Trans. Pattern Anal. Mach. Intell. 38(7), 1465–
1478 (2016)



84 B. Gong and E. Purdom

19. Shafi, A., Mitrea, C., Nguyen, T., Draghici, S.: A survey of the approaches for iden-
tifying differential methylation using bisulfite sequencing data. Briefings Bioinform.
19, 737–753 (2017)

20. Stouffer, S.A., Suchman, E.A., DeVinney, L.C., Star, S.A., Williams Jr., R.M.: The
American Soldier: Adjustment During Army Life. (Studies in Social Psychology in
World War II), vol. 1 (1949)

21. Sun, S., Yu, X.: HMM-Fisher: identifying differential methylation using a hidden
Markov model and fisher’s exact test. Stat. Appl. Genet. Mol. Biol. 15(1), 55–67
(2016)

22. Teschendorff, A.E., Relton, C.L.: Statistical and integrative system-level analysis
of DNA methylation data. Nat. Rev. Genet. 19(3), 129 (2018)

23. Whitlock, M.C.: Combining probability from independent tests: the weighted Z-
method is superior to fisher’s approach. J. Evol. Biol. 18(5), 1368–1373 (2005)

24. Wu, H., et al.: Detection of differentially methylated regions from whole-genome
bisulfite sequencing data without replicates. Nucleic Acids Res. 43(21), e141 (2015)

25. Xiaoqing, Y., Sun, S.: Comparing five statistical methods of differential methyla-
tion identification using bisulfite sequencing data. Stat. Appl. Genet. Mol. Biol.
15(2), 173–191 (2016)

26. Xiaoqing, Y., Sun, S.: HMM-DM: identifying differentially methylated regions
using a hidden Markov model. Stat. Appl. Genet. Mol. Biol. 15(1), 69–81 (2016)



On the Complexity of Sequence to Graph
Alignment

Chirag Jain, Haowen Zhang, Yu Gao, and Srinivas Aluru(B)

College of Computing, Georgia Institute of Technology, Atlanta, USA
aluru@cc.gatech.edu

Abstract. Availability of extensive genetics data across multiple indi-
viduals and populations is driving the growing importance of graph based
reference representations. Aligning sequences to graphs is a fundamental
operation on several types of sequence graphs (variation graphs, assem-
bly graphs, pan-genomes, etc.) and their biological applications. Though
research on sequence to graph alignments is nascent, it can draw from
related work on pattern matching in hypertext. In this paper, we study
sequence to graph alignment problems under Hamming and edit distance
models, and linear and affine gap penalty functions, for multiple variants
of the problem that allow changes in query alone, graph alone, or in both.
We prove that when changes are permitted in graphs either standalone
or in conjunction with changes in the query, the sequence to graph align-
ment problem is NP-complete under both Hamming and edit distance
models for alphabets of size ≥2. For the case where only changes to the
sequence are permitted, we present an O(|V | + m|E|) time algorithm,
where m denotes the query size, and V and E denote the vertex and
edge sets of the graph, respectively. Our result is generalizable to both
linear and affine gap penalty functions, and improves upon the run-time
complexity of existing algorithms.

1 Introduction

Aligning sequences to graphs is becoming increasingly important in the con-
text of several applications in computational biology, including variant call-
ing [6,7,9,22], genome assembly [2,8,33], long read error-correction [28,32,34],
RNA-seq data analysis [4,13], and more recently, antimicrobial resistance pro-
filing [27]. Much of this has been driven by the growing ease and ubiquity of
sequencing at personal, population, and environmental-scale, leading to signif-
icant growth in availability of datasets. Graph based representations provide a
natural mechanism for compact representation of related sequences and vari-
ations among them. Some of the most useful graph based data structures are
de-Bruijn graphs [25], variation graphs [23], string graphs [19], and partial order
graphs [14].
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Decades of progress made towards designing provably good algorithms for
the classic sequence to sequence alignment problems serves as the foundation for
mapping tools currently used in genomics, and similar efforts are necessary for
sequence to graph alignment. To address the growing list of biological applica-
tions that require aligning sequences to a graph, several heuristics [9,11,12,15,16]
and a few provably good algorithms [26,29,31] have been developed in recent
years. In addition, sequence to graph alignment has been studied much earlier
in the string literature through its counterpart, approximate pattern matching
to hypertext [17]. Since then, important complexity results and algorithms have
been obtained for different variants of this problem [1,20,30].

Many versions of the classic sequence to sequence alignment problem were
considered in the literature, e.g., different alignment modes – local/global, scor-
ing functions – linear/affine/arbitrary gap penalty, and so on [21]. The list fur-
ther proliferates when considering a graph-based reference. This is because the
nature of the problem changes depending on whether the input graphs are cyclic
or acyclic [20], and whether edits are allowed in the graph, or query, or both [1].

In this paper, we present new complexity results and improved algorithms
for multiple variants of the sequence to graph alignment problem. Consider a
query sequence of length m and a directed graph G(V,E) with string-labeled
vertices, over the alphabet Σ. We make the following contributions:

• The problem variants that allow changes to the graph labels are known to
be NP-complete [1], via proofs that assume |Σ| ≥ |V |. To date, tractability
of these problems remains unknown for the case of constant sized alphabets,
which is an important consideration when aligning DNA, RNA, or protein
sequences to corresponding graphs. We close this knowledge gap by proving
that four variants of the problem, characterized by changes to graph alone or
both graph and query, under the Hamming or edit distance models, remain
NP-complete for |Σ| ≥ 2.

• Allowing changes to the query sequence alone makes the problem polynomi-
ally solvable. For graphs with character-labeled vertices, we propose an algo-
rithm that achieves O(|V | + m|E|) time bound for both linear and affine gap

Table 1. Comparison of run-time complexity achieved by different algorithms for the
sequence to graph alignment problem when changes are allowed in the query sequence
alone.

Linear gap penalty Affine gap penalty

Edit distance Arbitrary costs

Amir et al. [1] O(m(|V | log |V | + |E|)) O(m(|V | log |V | + |E|)) -

Navarro [20] O(m(|V | + |E|)) - -

HybridSpades [2]O(m(|V | log(m|V |) + |E|)) O(m(|V | log(m|V |) + |E|)) -

V-ALIGN [31] O(m|V ||E|) O(m|V ||E|) O(m|V ||E|)
Rautiainen and

Marschall [26]

O(|V | + m|E|) O(m(|V | log |V | + |E|)) O(m(|V | log |V | + |E|))

This work O(|V | + m|E|) O(|V | + m|E|) O(|V | + m|E|)
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penalty cases, superior to the best existing algorithms (Table 1). An impor-
tant attribute of the proposed algorithm is that it achieves the same time and
space complexity as required for the easier problem of sequence alignment to
acyclic graphs [17,20], under both scoring models.

2 Preliminaries

Let Σ denote an alphabet, and x and y be two strings over Σ. We use x[i] to
denote the ith character of x, and |x| to denote its length. Let x[i, j] (1 ≤ i ≤ j ≤
|x|) denote x[i]x[i + 1] . . . x[j], the substring of x beginning at the ith position
and ending at the jth position. Concatenation of x and y is denoted as xy. Let
xk denote string x concatenated with itself k times.

Definition 1. Sequence Graph: A sequence graph G(V,E, σ) is a directed graph
with vertices V and edges E. Function σ : V → Σ+ labels each vertex v ∈ V
with string σ(v) over the alphabet Σ.

Naturally, path p = vi, vi+1, . . . , vj in G(V,E, σ) spells the sequence σ(vi)
σ(vi+1) . . . σ(vj). Given a query sequence q, we seek its best matching path
sequence in the graph. Alignment problems are formulated such that distance
between the computed path and the query sequence is minimized, subject to
a specified distance metric such as Hamming or edit distance. Typically, an
alignment is scored using either a linear or an affine gap penalty function. The
cost of a gap is proportional to its length, when using a linear gap penalty
function. An affine gap penalty function imposes an additional constant cost to
initiate a gap.

3 Complexity Analysis

3.1 Asymmetry of Edit Locations

An alignment between two sequences also specifies possible changes to the
sequences (e.g. substitutions, insertions, deletions) to make them identical,
with alignment distance specifying the cumulative penalty for the changes. The
changes can be individually applied either to the first or the second sequence,
or any combination thereof. Such a symmetry is no longer valid when aligning
sequences to graphs [1]. This is because alignments can occur along cyclic paths
in the graph. If the label of a vertex in the graph is changed, then an alignment
path visiting that vertex k times reflects the same change at k different positions
in the alignment. On the other hand, a change in one position of the sequence
only reflects that change in the corresponding position in the alignment. As such,
optimal alignment scores vary depending on whether changes are permitted in
just the sequence, just the graph, or both (see Fig. 1 for an illustration). This
characteristic leads to three different problems, with each potentially resulting in
a different optimal distance.
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Sequence:   AGAG

Graph:

AGAG

AGAG

or

Sequence I:    AGAG

Sequence II:   ACAC

ACAC

ACAC

ACAC
or

AGAG

Input:

Alignment:

CA

CA GA

Fig. 1. Asymmetry w.r.t. the location of changes in sequence to graph alignment
illustrated using Hamming distance. Two substitutions are required in the sequence,
whereas just one is sufficient if made in the graph.

Consider the sequence to graph alignment problem under the Hamming or
edit distance metrics. For each distance metric, there are three versions of the
problem depending on whether changes are allowed in query alone, graph alone,
or both in the query and graph. Consider the decision versions of these problems,
which ask whether there exists an alignment with ≤ d modifications (substitu-
tions or edits), as per the distance metric. Restricting substitutions or edits to
the query sequence alone admits polynomial time solutions [1,20,26]. In the pio-
neering work of Amir et al. [1] in the domain of string to hypertext matching,
it has been proved that the other problem variants which permit changes to
graph are NP-complete. The proofs provided in their work assume an alpha-
bet size ≥ |V |. To date, tractability of these problems remains unknown for the
case of constant sized alphabets (e.g., for DNA, RNA, or protein sequences). In
what follows, we close this knowledge gap by showing that the problems remain
NP-complete for any alphabet of size at least 2.

3.2 Alignment Using Hamming Distance

Theorem 1. The problem “Can we substitute a total of ≤ d characters in graph
G and query q such that q will have a matching path in G?” is NP-complete for
|Σ| ≥ 2.

Proof. The problem is in NP. Given a solution, the set of substitutions can
be used to obtain the corrected graph and query. Next, we can leverage any
polynomial time algorithm [1,20,24] to verify if the corrected query matches a
path in the corrected graph.

To show that the problem is NP-hard, we perform a reduction using the
directed Hamiltonian cycle problem. Suppose G′(V,E) is a directed graph in which
we seek a Hamiltonian cycle. Let n = |V |. We transform it into a sequence graph
G(V,E, σ) over the alphabet Σ = {α, β} by simply labeling each vertex v ∈ V
with αn (Fig. 2). Note that the graph structure remains unchanged. Next, we con-
struct query sequence q. Let token ti be the sequence of n characters αn−i−1βαi.
We choose query q to be the n2(2n+2) long sequence: (t0t1 . . . tn−1)2n+2. We claim
that a Hamiltonian cycle exists in G′(V,E) if and only if q can be matched after
substituting a total of ≤ n characters in G(V,E, σ) and q.
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Suppose there is a Hamiltonian cycle in G′(V,E). We can follow the cor-
responding loop in G(V,E, σ) from the first character of any vertex label. To
match each token in the query q, we require one α → β substitution per vertex.
Thus, the query q matches G(V,E, σ) after making exactly n substitutions in
the graph.

Conversely, suppose the query q matches the graph G(V,E, σ) after making
≤ n substitutions in the query and the graph. Consider the following substring
qsub of q: t0t1 . . . tn−1t0t1. Note that there are n+1 non-overlapping instances of
qsub in q. Even if all the n substitutions occur in the query, at least one instance
of qsub must remain unchanged. As a result, qsub must match to a path in the
corrected G(V,E, σ).

Case 1: qsub starts matching from the first character of a vertex label. Note that
the first n tokens qsub[1, n] = t0, qsub[n+1, 2n] = t1, . . ., qsub[n2−n+1, n2] = tn−1

are all unique followed by qsub[n2 + 1, n2 + n] = t0. Therefore, this requires a
Hamiltonian cycle in G(V,E, σ). Accordingly, there is a Hamiltonian cycle in
G′(V,E).

Case 2: qsub starts somewhere other than the starting position within a vertex
label. Let qsub[k] (1 < k ≤ n) be the first character that matches at the beginning
of the next vertex on the path matching q. Similar to the previous case, the
following n sequences qsub[k, n + k − 1], qsub[n + k, 2n + k − 1], . . . , qsub[n2 −
n + k, n2 + k − 1] are unique due to the spacing between β characters in qsub.
Therefore, the matching path must yield a Hamiltonian cycle.

Corollary 1. The problem “Can we substitute ≤ d characters in graph G such
that q will have a matching path in G?” is NP-complete for |Σ| ≥ 2.

Proof. The setup used in the proof of Theorem1 can be trivially extended to
prove the above claim. Alternatively, we can simplify the proof by using the
query sequence q = (t0t1 . . . tn−1)2 since only one instance of the substring qsub

in q is needed for the subsequent arguments. This is because substitutions in the
query sequence are not permitted.

Using the above two results, we conclude that Hamming-distance based deci-
sion formulations of sequence to graph alignment problems are NP-complete
when substitutions are allowed in graph labels, for |Σ| ≥ 2. In fact, it can be
easily shown that |Σ| ≥ 2 reflects a tight bound. Using |Σ| = 1, all the problem
instances can be decided in polynomial time using straightforward application
of standard graph algorithms.

3.3 Alignment Using Edit Distance

We next show that edit distance based decision problems that permit changes
in graph labels are NP-complete if |Σ| ≥ 2. Similar to our previous claims,
allowing edits in the graph makes the sequence to graph alignment problem
intractable. Proofs used for Hamming distance do not apply here as edits also
permit insertions and deletions. Length of vertex labels can grow or shrink using
insertion and deletion edits respectively.
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Fig. 2. The constructs used for reductions in proofs of Theorems 1 and 2.

Theorem 2. The problem “Can we perform a total of ≤ d edits in graph G and
query q so that q will match in G?” is NP-complete for |Σ| ≥ 2.

Proof. Clearly the problem is in NP. We again use the directed Hamiltonian
cycle problem for reduction. Given an instance G′(V,E) of the directed Hamil-
tonian cycle problem, we design an instance G(V,E, σ) using Σ = {α, β}.
Let n = |V |. Label each vertex v in V using a sequence of 6n characters
α2nβ2nα2n (Fig. 2). Let token ti be a sequence of length 6n: α2n βiαβ2n−1−i α2n.
Using such tokens, we build a query sequence q of length 6n2(2n + 2) as
(t0t1 . . . tn−1)2n+2. We claim that a Hamiltonian cycle exists in G′(V,E) if and
only if we can match the sequence q to the graph G(V,E, σ) using ≤ n total
edits.

If there is a Hamiltonian cycle in G′(V,E), we can follow the same loop
in G(V,E, σ) to align q. The alignment requires one substitution per vertex.
To prove the converse, suppose query q matches graph G(V,E, σ) after mak-
ing a total of ≤ n edits in q and G(V,E, σ). Consider the substring qsub of q:
t0t1 . . . tn−1t0. Note that there are n + 1 non-overlapping instances of qsub in q,
at least one of which must remain unchanged. Accordingly, the substring qsub

must match corrected G(V,E, σ).
For the token ti, let ki = βiαβ2n−1−i be its kernel sequence of length 2n.

It follows that ti = α2nkiα
2n. We show that a kernel must be matched entirely

within a vertex in G(V,E, σ) using the following two arguments. First, since
any vertex label cannot shrink from length 6n to < 5n, a kernel cannot be
matched to an entire vertex after the edits. It implies that a kernel must match
to ≤ 2 vertices. Second, if a kernel aligns across two vertices, (2n − 1) β’s must
be required in place of α’s at the two vertex ends, thus requiring > n edits.
Therefore, a kernel can only be matched within a single vertex label. Finally, it
is easy to observe that any vertex label after ≤ n edits cannot be matched to
more than one kernel. When combining these arguments with the fact that all
n consecutive kernels in qsub are unique, we establish that the alignment path
of qsub must follow a Hamiltonian cycle in G(V,E, σ). Accordingly, there is a
Hamiltonian cycle in G′(V,E).
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Corollary 2. The problem “Can we perform ≤ d edits in graph G so that q will
match in G?” is NP-complete for |Σ| ≥ 2.

Proof. The setup used to prove Theorem 2 can be trivially extended to prove
the above claim.

It is straightforward to prove that other problem variants, e.g., with linear
gap penalty or affine gap penalty scoring functions are at least as hard as the
edit-distance based formulations. Therefore, the sequence to graph alignment
problem remains NP-complete even on constant sized alphabets for these classes
of scoring functions also if changes are permitted in the graph.

4 Sequence-to-Graph Alignment with Edits in Sequence

The sequence to graph alignment problem is polynomially solvable when changes
are allowed on the query sequence alone [1,20]. Here, we improve upon the
state-of-the-art by presenting an algorithm with O(|V | + m|E|) run-time. Our
algorithm matches the run-time complexity achieved previously by Rautiainen
and Marschall [26] for edit distance, while improving that for linear and affine
gap penalty functions. In addition, it is simpler to implement because it only
uses elementary queue data structures. Note that edit distance is a special case
of linear gap penalty when cost per unit length of the gap is 1, and substitution
penalty is also 1. We first present our algorithm for the case of a linear gap
penalty function, and subsequently show its generalization to affine gap penalty.
From hereon, we assume that the sequence graph G(V,E, σ) is a character labeled
graph, i.e., σ(v) ∈ Σ, v ∈ V . This assumption simplifies the description of the
algorithm. Note that it is straightforward to transform a graph from string-
labeled form to character-labeled form, and vice versa.

4.1 Linear Gap Penalty

Alignment Graph. In the literature on the classic sequence to sequence align-
ment problem, the problem is either formulated as a dynamic programming
problem or an equivalent graph shortest-path problem in an appropriately con-
structed edge-weighted edit graph or alignment graph [18]. However, formulating
the sequence to graph alignment problem as a dynamic programming recursion,
while easy for directed acyclic graphs through the use of topological ordering,
is difficult for general graphs due to the possibility of cycles. As it turns out,
formulation as a shortest-path problem in an alignment graph is still rather
convenient, even for graphs with cycles [1,26]. The alignment graph, described
below, is constructed using the given query sequence, the sequence graph and
the scoring parameters.

The alignment graph is a weighted directed graph which is constructed such
that each valid alignment of the query sequence to the sequence graph corre-
sponds to a path from source vertex s to sink vertex t in the alignment graph,
and vice versa (Fig. 3). The alignment cost is equal to the corresponding path
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Fig. 3. An example to illustrate the construction of an alignment graph from a given
sequence graph and a query sequence. Multiple colors are used to show weighted
edges of different categories in the alignment graph. The red, blue and green edges
are weighted as insertion, deletion and substitution costs respectively. (Color figure
online)

distance from the source to the sink. Note that the alignment graph is a multi-
layer graph containing m ‘copies’ of the sequence graph, one in each layer. A
column of dummy vertices is required in addition to accommodate the possibil-
ity of deleting a prefix of the query sequence. Edges that emanate from a vertex
are equivalent to the choices available while solving the alignment problem. A
formal definition of the alignment graph follows:

Definition 2. Alignment graph: Given a query sequence q, a sequence graph
G(V,E, σ), linear gap penalty parameters Δdel,Δins, and a substitution cost
parameter Δsub, the corresponding alignment graph is a weighted directed graph
Ga(Va, Ea, ωa), where Va =

({1, . . . , m} × (V ∪ {δ})
) ∪ {s, t} is the vertex set,

and ωa : Ea → R≥0 is the weight function defined as

ωa(x, y)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δi,v x = (i − 1, u), y = (i, v) 1 < i ≤ m & (u, v) ∈ E

Δins x = (i, u), y = (i, v) 1 ≤ i ≤ m & (u, v) ∈ E

Δdel x = (i − 1, v), y = (i, v) 1 < i ≤ m & (v, v) /∈ E

min(Δdel,Δi,v) x = (i − 1, v), y = (i, v) 1 < i ≤ m & (v, v) ∈ E

for source and sink vertices:
Δ1,v x = s, y = (1, v) v ∈ V

Δdel x = s, y = (1, δ)
0 x = (m, v), y = t v ∈ V ∪ {δ}
for dummy vertices:
Δdel x = (i − 1, δ), y = (i, δ) 1 < i ≤ m

Δi,v x = (i − 1, δ), y = (i, v) 1 < i ≤ m & v ∈ V

Edges (x, y) ∈ Ea are defined implicitly, as those pairs (x, y) for which ωa is
defined above. Δi,v = Δsub if q[i] �= σ(v), v ∈ V , and 0 otherwise. Δsub denotes
the cost of substituting q[i] with σ(v).



Sequence to Graph Alignment 93

Existing definitions of the alignment graph [1,26] did not include the dummy
vertices, and were incomplete. Using the alignment graph, we reformulate the
problem of computing an optimal alignment to finding the shortest path in the
alignment graph. Even though the alignment graph defined by Amir et al. [1]
has minor differences, proof in their work can be easily adapted to state the
following claim:

Lemma 1 (Amir et al. [1]). Shortest distance from the source vertex s to
the sink vertex t in the alignment graph Ga(Va, Ea, ωa) equals cost of optimal
alignment between the query q and the sequence graph G(V,E, σ).

One way of solving the above shortest path problem is to directly apply
Dijkstra’s algorithm [1,2]. However, it results in an O

(
m|V | log(m|V |) + m|E|)

time algorithm. We next show how to solve the problem in O(|V | + m|E|) time.

Proposed Algorithm. While searching for a shortest path from the source to
the sink vertex, we compute the shortest distances from the source to interme-
diate vertices Va\{s, t} in the alignment graph. An edge from a vertex in layer i
is either directed to a vertex in the same layer or to a vertex in the next layer.
As a result, the shortest distances to nodes in a layer can be computed once the
distances for the previous layer are known. This also makes it feasible to solve
for the layers 1 to m, one by one [20]. We use a two-stage strategy to achieve
linear O(|V | + |E|) run-time per layer. Before describing the details, we give an
outline of the algorithm and its two stages.

Any path from the source vertex to a vertex v in a layer must extend a
path ending in the previous layer using either a deletion or a substitution cost
weighted edge. Afterwards, a path that ends in the same layer but not at v can
be further extended to v using the insertion cost weighted edges if it results in
the shortest path to the source. Roughly speaking, the first stage executes the
former task, while the second takes care of the latter. The two stages together
are invoked m times during the algorithm until the optimal distances are known
for the last layer (Algorithm 1). Input to the first stage InitializeDistance is an
array of the shortest distances of the vertices in previous layer sorted in non-
decreasing order. This stage computes the ‘tentative’ distances of all vertices in
the current layer because it ignores the insertion cost weighted edges during the
computation. It outputs the sorted tentative distances as an input to the second
stage PropagateInsertion. The PropagateInsertion stage returns the optimal dis-
tances of all vertices in the current layer while maintaining the sorted order for
a subsequent iteration.

The following are two important aspects of our algorithm. First, we are able
to maintain the sorted order of vertices by spending O(|V |) time per layer during
the first stage (Lemma 2). Secondly, we propagate insertion costs through the
edges in O(|V | + |E|) time per layer during the second stage by eluding the
need for standard priority queue implementations (Lemmas 3–5). Both of these
features exploit characteristics specific to the alignment graphs.
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Algorithm 1. Algorithm for sequence to graph alignment
Result: The length of shortest path from s to t

1 PreviousLayer = [s];
2 s.distance = 0;
3 for i = 1 to m do /* Do the computation layer by layer */

4 CurrentLayer = [(i, v1), (i, v2), . . . , (i, vn), (i, k)];
5 x.distance = ∞ ∀x ∈ CurrentLayer;
6 InitializeDistance(PreviousLayer,CurrentLayer);
7 PropagateInsertion(CurrentLayer);
8 PreviousLayer = CurrentLayer;

9 return Min(PreviousLayer.distance);

Algorithm 2. Algorithm to initialize and sort layer before insertion
propagation
Result: A sorted layer CurrentLayer with distances initialized using

PreviousLayer
1 Function InitializeDistance(PreviousLayer, CurrentLayer)
2 foreach x ∈ PreviousLayer do
3 foreach y ∈ x.neighbor & y ∈ CurrentLayer do
4 if y.distance > x.distance + ωa(x, y) then
5 y.distance = x.distance + ωa(x, y);

6 Sort(CurrentLayer);

The InitializeDistance Stage. We compute tentative distances for each vertex
in the current layer by using shortest distances computed for the previous
layer (Algorithm 2). Because all deletion and substitution cost weighted edges
are directed from the previous layer towards the current, this only requires a
straightforward linear O(|V | + |E|) time traversal (lines 2–5). In addition, we
are required to maintain the current layer as per sorted order of distances. Note
that vertices in the previous layer are already available in sorted order of their
shortest distances from s. A vertex v in the previous layer can assign only three
possible distance values (v.distance, v.distance + Δsub, or v.distance + Δdel) to
a neighbor in the current layer. By maintaining three separate lists for each of
the three possibilities, we can create the three lists in sorted order and merge
them in O(|V |) time. The relative order of vertices in the current layer can be
easily determined in linear time by tracking the positions of their distance values
in the merged list. As a result, the current layer can be obtained in sorted form
in O(|V |) time and O(|V |) space, leading to the following claim.

Lemma 2. Time and space complexity of the sorting procedure in Algorithm2
is O(|V |).

The PropagateInsertion Stage. Note that the tentative distance computed for a
vertex is sub-optimal if its shortest path from the source vertex traverses any
insertion cost weighted edge in the current layer. One approach to compute
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Algorithm 3. Algorithm to propagate insertions in the same layer
Result: A sorted layer CurrentLayer with optimal distance values

1 Function PropagateInsertion(CurrentLayer)
2 x.resolved = false ∀x ∈ CurrentLayer;
3 Queue q1 = ∅, q2 = ∅;
4 q1.Enqueue(CurrentLayer);
5 CurrentLayer = [ ];
6 while q1 �= ∅ or q2 �= ∅ do
7 qmin = q1.Front() < q2.Front() ? q1 : q2;
8 x = qmin.Dequeue();
9 if x.resolved = false then

10 x.resolved = true;
11 CurrentLayer.Append(x);
12 foreach y ∈ x.neighbor & y.layer = x.layer do
13 if y.distance > x.distance + Δins then
14 y.distance = x.distance + Δins;
15 q2.Enqueue(y);

optimal distance values is to process vertices in their sorted distance order (min-
imum first) and update the neighbor vertices, similar to Dijkstra’s algorithm.
When processing vertex v, the distance of its neighbor should be adjusted such
that it is no more than v.distance+Δins. Selecting vertices with minimum scores
can be achieved using a standard priority queue implementation (e.g., Fibonacci
heap); however, it would require O(|E|+ |V | log |V |) time per layer. A key prop-
erty that can be leveraged here is that all edges being considered in this stage
have uniform weights (Δins). Therefore, we propose a simpler and faster algo-
rithm using two First-In-First-Out queues (Algorithm 3). The first queue q1 is
initialized with sorted vertices in the current layer, and the second queue q2 is
initialized as empty (line 4). The minimum distance vertex is always dequeued
from either of the two queues (line 8). As and when distance of a vertex is
updated by its neighbor, it is enqueued to q2 (line 15). Following lemmas estab-
lish the correctness and an O(|E| + |V |) time bound for the PropagateInsertion
stage in the algorithm.

Lemma 3. In each iteration at line 8, Algorithm3 dequeues a vertex with the
minimum overall distance in q1 and q2.

Proof. The queue q1 always maintains its non-decreasing sorted order at the
beginning of each loop iteration (line 6) in Algorithm3 as we never enqueue new
elements into q1. We prove by contradiction that q2 also maintains the order.
Maintaining this invariant would immediately imply the above claim. Let i be
the first iteration where q2 lost the order. Clearly i > 1. Because i is the first
such iteration, new vertices (say y1, y2, . . . , yk) must have been enqueued to q2

in the previous iteration (line 15), and the vertex (say x) which caused these
additions must have been dequeued (line 8). Note that the distance of all the new
vertices, the yi’s, equals x.distance+Δins. Therefore, the vertex prior to y1 (say
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ypre) must have a distance higher than y1. However, this leads to a contradiction
because if we consider the iteration when ypre was enqueued to q2, the distance
of the vertex that caused addition of ypre could not be higher than the distance
of the vertex x.

Lemma 4. Once a vertex is dequeued in Algorithm3, its computed distance
equals the shortest distance from the source vertex.

Proof. Lemma 3 establishes that Algorithm 3 processes all vertices that belong
to the current layer in sorted order. Therefore, it mimics the choices made by
Dijkstra’s algorithm [5].

Lemma 5. Algorithm3 uses O(|V | + |E|) time and O(|V |) space to compute
shortest distances in a layer.

Proof. Each vertex in the current layer enqueues its updated neighbor vertices
into q2 at most once. Note that distance of a vertex can be updated at most
once, therefore the maximum number of enqueue operations into q2 is |V |. In
addition, enqueue operations are never performed in q1. Accordingly, the number
of outer loop iterations (line 6) is bounded by O(|V |). The inner loop (line 12) is
executed at most once per vertex, therefore the amortized run-time of the inner
loop is O(|V | + |E|).

The above claims yield an O(m(|V | + |E|)) time algorithm for aligning the
query sequence to sequence graph. Assuming a constant alphabet, we can further
tighten the bound to O(|V | + m|E|) by using a simple preprocessing step sug-
gested in [26]. This step transforms the sequence graph by merging all vertices
with 0 in-degree into ≤ |Σ| vertices. As a result, the preprocessing ensures that
the count of vertices in the new graph is no more than |E| + |Σ| without affect-
ing the correctness. Summary of the above claims is presented as a following
theorem:

Theorem 3. Algorithm1 computes the optimal cost of aligning a query sequence
of length m to graph G(V,E, σ) in O(|V | + m|E|) time and O(|V |) space using
a linear gap penalty cost function.

It is natural to wonder whether there exist faster algorithms for solving
the sequence to graph alignment problem. As noted in [26], the sequence to
sequence alignment problem is a special case of the sequence to graph align-
ment problem because a sequence can be represented as a directed chain
graph with character labels. As a result, existence of either O(m1−ε|E|) or
O(m|E|1−ε), ε > 0 time algorithm for solving the sequence to graph alignment
problem is unlikely because it would also yield a strongly sub-quadratic algorithm
for solving the sequence to sequence alignment problem, further contradicting
SETH [3].
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4.2 Affine Gap Penalty

Supporting affine gap penalty functions in the dynamic programming algorithm
for sequence to sequence alignment is typically done by using three rather than
one scoring matrix [10]. Similarly, the alignment graph can be extended to con-
tain three sub-graphs with substitution, deletion, and insertion cost weighted
edges respectively [26]. The edge weights are adjusted for the affine gap penalty
model such that a cost for opening a gap is penalized whenever a path leaves
the match sub-graph to either the insertion or the deletion sub-graph (Appendix
Fig. 4). The properties that were leveraged to design faster algorithm for linear
gap penalty functions continue to hold in the new alignment graph. In partic-
ular, the sorting still requires linear time during the InitializeDistance stage,
and insertion propagation is still executed over uniformly weighted edges in the
insertion sub-graph. As a result, the two-stage algorithm can be extended to
operate using affine gap penalty function in the same time and space complexity
as with the linear gap penalty function.

5 Conclusions and Open Problems

In this paper, we show that the sequence to graph alignment problem is NP-
complete when changes are allowed in the sequence graph, for any alphabet of
size ≥2. When changes are allowed in the query sequence alone, we provide a
faster polynomial time algorithm that generalizes to linear gap penalty and affine
gap penalty functions. The proposed algorithms use elementary data structures,
therefore are simple to implement. Overall, the theoretical results presented in
this work enhance the fundamental understanding of the problem, and will aid
the development of faster tools for mapping to graphs. The alignment problem for
sequence graphs is a rich area with several unsolved problems. For the intractable
problem variants, development of faster exact and approximate algorithms are
fertile grounds for future research. In addition, working towards robust indexing
schemes and heuristics that scale to large input graphs and different sequencing
technologies remains an important direction.
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A Appendix

See Fig. 4.
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and extend it. The weight of magenta colored edges is the sum of gap open penalty
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online)
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2017. LNCS, vol. 10252, pp. 49–61. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-58163-7 3

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press, Cambridge (2009)

https://doi.org/10.1007/978-3-319-58163-7_3
https://doi.org/10.1007/978-3-319-58163-7_3


Sequence to Graph Alignment 99

6. Dilthey, A., Cox, C., Iqbal, Z., Nelson, M.R., McVean, G.: Improved genome infer-
ence in the MHC using a population reference graph. Nat. Genet. 47(6), 682 (2015)

7. Eggertsson, H.P., et al.: Graphtyper enables population-scale genotyping using
pangenome graphs. Nat. Genet. 49(11), 1654 (2017)

8. Garg, S., Rautiainen, M., Novak, A.M., Garrison, E., Durbin, R., Marschall, T.:
A graph-based approach to diploid genome assembly. Bioinformatics 34(13), i105–
i114 (2018)

9. Garrison, E., et al.: Variation graph toolkit improves read mapping by representing
genetic variation in the reference. Nat. Biotechnol. 36, 875–879 (2018)

10. Gotoh, O.: An improved algorithm for matching biological sequences. J. Mol. Biol.
162(3), 705–708 (1982)

11. Heydari, M., Miclotte, G., Van de Peer, Y., Fostier, J.: BrownieAligner: accurate
alignment of illumina sequencing data to de Bruijn graphs. BMC Bioinform. 19(1),
311 (2018)

12. Huang, L., Popic, V., Batzoglou, S.: Short read alignment with populations of
genomes. Bioinformatics 29(13), i361–i370 (2013)

13. Kuosmanen, A., Paavilainen, T., Gagie, T., Chikhi, R., Tomescu, A., Mäkinen, V.:
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Abstract. Protein design algorithms that model continuous sidechain
flexibility and conformational ensembles better approximate the in vitro
and in vivo behavior of proteins. The previous state of the art, iMinDEE-
A∗-K∗, computes provable ε-approximations to partition functions of
protein states (e.g., bound vs. unbound) by computing provable, admis-
sible pairwise-minimized energy lower bounds on protein conformations
and using the A∗ enumeration algorithm to return a gap-free list of
lowest-energy conformations. iMinDEE-A∗-K∗ runs in time sublinear in
the number of conformations, but can be trapped in loosely-bounded,
low-energy conformational wells containing many conformations with
highly similar energies. That is, iMinDEE-A∗-K∗ is unable to exploit
the correlation between protein conformation and energy: similar confor-
mations often have similar energy. We introduce two new concepts that
exploit this correlation: Minimization-Aware Enumeration and Recursive
K∗. We combine these two insights into a novel algorithm, Minimization-
Aware Recursive K∗ (MARK ∗), that tightens bounds not on single con-
formations, but instead on distinct regions of the conformation space.
We compare the performance of iMinDEE-A∗-K∗ vs. MARK ∗ by run-
ning the BBK∗ algorithm, which provably returns sequences in order
of decreasing K∗ score, using either iMinDEE-A∗-K∗ or MARK ∗ to
approximate partition functions. We show on 200 design problems that
MARK ∗ not only enumerates and minimizes vastly fewer conformations
than the previous state of the art, but also runs up to two orders of
magnitude faster. Finally, we show that MARK ∗ not only efficiently
approximates the partition function, but also provably approximates the
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energy landscape. To our knowledge, MARK ∗ is the first algorithm to
do so. We use MARK ∗ to analyze the change in energy landscape of
the bound and unbound states of the HIV-1 capsid protein C-terminal
domain in complex with camelid VHH, and measure the change in confor-
mational entropy induced by binding. Thus, MARK ∗ both accelerates
existing designs and offers new capabilities not possible with previous
algorithms.

1 Introduction

The objectives of computational structure-based protein design algorithms are
(1) to accurately calculate properties of a protein or protein complex (e.g., sta-
bility, binding affinity, etc.), and (2) to efficiently search for optimal sequences
given an objective function defined on these properties. These algorithms search
over a space defined by a user-specified input model (i.e., a structural model,
allowed sidechain and backbone flexibility, allowed mutations, energy function,
etc.). Designs for ensemble-average, macromolecular properties like binding affin-
ity and stability are more biophysically accurate when modeling thermody-
namic, conformational ensembles [3,13,15,18,33,44,48,49,53]. However, accu-
rately modeling these ensembles can be challenging: the space of possible con-
formations available in vitro and in vivo to a protein can be massive, and fur-
thermore grows exponentially with the number of residues.

Various simplifications to the input model and the search methodology have
been used in order to reduce the complexity of this problem, of which we will
discuss three: (1) discretized, rigid sidechain and backbone flexibility; (2) design
to a single, static global minimum energy conformation (GMEC); and (3) non-
provable search over possible conformations and sequences. (1) Although amino
acid sidechains are continuously flexible, sidechains are often modeled as discrete,
frequently observed low-energy states called rotational isomers, or rotamers [36].
Furthermore, protein backbone flexibility is frequently modeled as fixed, or
restricted to a small set of discrete alternate conformations [30,50,52,55].
Designs made with these simplifications do not model small, commonly observed
sidechain and backbone movements, much less larger structural rearrangements.
Even under these simplifications, calculating the partition function for a protein
remains #P-hard [37,54,55]. Moreover, the conformation space grows exponen-
tially with the number of residues. (2) As a result, many design algorithms
optimize the energy of a single, static GMEC structure [2,4,14,21,22,29,52].
GMEC-based algorithms do not model conformational entropy, which can con-
tribute significantly to protein structure and function [7,8], and as a result can
overlook thermodynamically favorable sequences [44]. (3) Finally, some algo-
rithms attempt to estimate the partition function by stochastically sampling the
conformation space for low-energy microstates [28,30,31]. These algorithms pro-
vide no guarantees on the quality of the lowest-energy conformation returned,
much less on the quality of the approximation of the overall partition function.
Indeed, [50] demonstrated that as the size of the search space increases, the
probability that stochastic methods find even the GMEC falls rapidly to zero.
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Furthermore, because these methods are non-deterministic, it is profoundly dif-
ficult to deconvolve methodological error (i.e., undersampling) from input model
error [6,10].

Fig. 1. Provably computing the best-
binding sequences with respect to the
input model. When designing for macromolec-
ular, ensemble-average properties such as bind-
ing affinity Ka, provable algorithms such as K∗

[15,33,44] and BBK∗ [40] take as input an
input structure, energy function, allowed back-
bone and sidechain flexibility, and allowed muta-
tions which define the sequence space. Both
algorithms used the previous state of the art,
iMinDEE-A∗-K∗, to provably approximate parti-
tion functions (with respect to the input model)
and combined these partition function approxi-
mations into a K∗ score [33], which approximates
Ka. By approximating Ka, designers can rank
candidate sequences in order of binding affinity,
and identify the best-binding sequence (green)
with respect to the input model. In this design
protocol, MARK ∗ replaces iMinDEE-A∗-K∗ as a
provable partition function approximation mod-
ule. (Color figure online)

Algorithms distributed in
the osprey [24] package effi-
ciently solve protein design prob-
lems without the above sim-
plifications, provably returning
the optimal sequences and con-
formations without sacrificing
accuracy. osprey models not
only continuous sidechain flex-
ibility [11,15,21,22], but also
discrete and continuous back-
bone flexibility [12,13,20,23].
Additionally, the BBK∗ algo-
rithm [40] provably returns pro-
tein sequences in order of decreas-
ing binding affinity and runs in
time sublinear in the number
of sequences. These algorithms
have been used to prospectively
predict drug resistance [9,39,
43] and design enzymes [3,12,
15,33,51], new drugs [19], pep-
tide inhibitors of protein-protein
interactions [44], epitope-specific
antibody probes [16], and broadly-
neutralizing antibodies [17,47].
These designs have been exper-
imentally validated in vitro, some in vivo, and one designed anti-HIV broadly-
neutralizing antibody, VRC07-523LS, is currently in 6 clinical trials [1].

The K∗ algorithm in osprey estimates binding affinity with the K∗

score [33], a ratio of ε-approximate, Boltzmann-weighted partition functions for
bound and unbound states. These partition functions are computed by com-
bining an admissible lower bound on conformational energy with the A∗ search
algorithm to quickly and provably enumerate a gap-free list of the lowest energy
conformations [25,29,46]. We will refer to algorithms that compute K∗ scores
using A∗ as A∗-K∗ algorithms. While significantly more efficient than exhaus-
tive enumeration, A∗-K∗ algorithms are guaranteed to return the GMEC first,
and therefore focus on efficiently finding low-energy conformations. However, a
GMEC-first enumeration strategy may not efficiently approximate the full parti-
tion function. Modeling continuous flexibility further compounds the difficulties
of partition function approximation. Previous A∗-K∗ algorithms [11,15] that
incorporate continuous flexibility, such as iMinDEE-A∗-K∗ [11], enumerate con-
formations in order of energy lower bounds on the minimized energy. However,
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when these bounds are loose, iMinDEE-A∗-K∗ must perform many computa-
tionally expensive full minimizations (wherein all mutable and flexible residues
minimize simultaneously) to provably approximate the partition function. In the
worst case, A∗-K∗ algorithms must minimize a combinatorial number of confor-
mations that are loosely bounded at the same residues.

To overcome the limitations of A∗-K∗, we present a novel algorithm that
combines two new concepts: Recursive K∗ (RK∗) and Minimization-Aware
Enumeration (MAE). RK∗ prioritizes low-entropy regions of the energy land-
scape, instead of prioritizing low-energy conformations (Fig. 2D vs. C), and
MAE tightens bounds on a combinatorial number of conformationally simi-
lar loosely bounded conformations (Fig. 2E). This combination, Minimization-
Aware Recursive K∗ (MARK ∗), achieves significant efficiency and runtime
improvements for large protein design problems that confound previous A∗-K∗

algorithms, as well as algorithms that call A∗-K∗ algorithms as a subroutine,
such as BBK∗ [40] (Fig. 1). Because MARK ∗ replaces iMinDEE-A∗-K∗, we
ran BBK∗ with iMinDEE-A∗-K∗ as a control, and compared it to the perfor-
mance of BBK∗ with MARK ∗ on 200 protein design problems. We found that
MARK ∗ accelerates BBK∗ by up to 2 orders of magnitude, efficiently com-
pleting designs an order of magnitude larger than was possible using BBK∗

with iMinDEE-A∗-K∗. Finally, we show that MARK ∗ not only outperforms
the previous state of the art in speed, but also offers new design capabilities.
Because MARK ∗ tightly bounds low-entropy regions of the conformation space
instead of low-energy conformations, it computes a provable approximation of
the energy landscape, which bounds the energy of every conformation in the
conformation space. MARK ∗ is, to our knowledge, the first provable algorithm
to do so. In contrast, previous algorithms (provably or non-provably) returned
only low-energy conformations, and do not tightly and provably approximate
the energy landscape. This energy landscape approximation provides additional
insight into the higher-energy regions between tightly-bounded low-energy con-
formational wells (Fig. 2D). Using MARK ∗ to compute the partition function
and energy landscape for the design problem of an HIV-related protein-protein
interface, we demonstrate the ability of MARK ∗ to reveal components of bind-
ing thermodynamics. That is, we show that MARK ∗ not only approximates the
partition function more efficiently, but also computes an entire energy landscape
that enables insight into thermodynamics.

By presenting this algorithm, our paper makes the following contributions:

1. A novel algorithm that more quickly and efficiently predicts binding affinity
using partition functions over molecular ensembles.

2. Proofs of correctness and admissibility of the bounds used in the branch and
bound strategy by MARK ∗, as well as the optimality of MARK ∗ for a given
energy bounding function.

3. 200 designs showing that BBK∗ with MARK ∗ returned the five best
sequences up to two orders of magnitude faster, minimized 685-fold fewer
conformations, and completed designs up to an order of magnitude larger
than was possible using BBK∗ with iMinDEE-A∗-K∗.
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4. An application of MARK ∗ to compute a provable approximation of the energy
landscape for an HIV-related protein-protein interface, revealing components
of binding thermodynamics.

5. An implementation of MARK ∗ in our lab’s open-source protein design soft-
ware, osprey [24].

2 Background

To accurately model macroscopic properties like binding affinity, design algo-
rithms must approximate the Boltzmann-weighted partition function over bound
and unbound states. For a protein design with n residues, let the sequence s be
a set of n ordered pairs (i, a), each containing the residue index i and an amino
acid a. For a sequence s, we can define the conformation space Q(s) to be the set
of conformations defined by s. Additionally, we denote the maximum number of
rotamers (at any one residue) to be q. Let E

X
(c) be the minimized energy of a

conformation c in state X (e.g., bound or unbound). Under this formulation, the
partition function Z

X
(s) for a protein with sequence s in state X can be defined

as
Z

X
(s) =

∑

c∈Q(s)

exp(−E
X

(c)/RT ). (1)

Notably, the set of all conformations Q(s) grows exponentially with the
number of residues n, and therefore the exact value of the partition func-
tion becomes intractable to compute as n increases. As a result, many pro-
tein design algorithms instead approximate Z

X
with stochastic [26,32,35,38] or

provable [15,33,34,39,44,49,55] methods. Provable algorithms have mathemat-
ical guarantees on their computed approximation of Z

X
, and thus obviate any

need for deconvolution of error in the output.
One class of provable algorithms computes an ε-approximation of the parti-

tion function by using the A∗ search algorithm to enumerate a gap-free list of
conformations in order of increasing energy [11,15,33,40,44]. By enumerating a
gap-free list of low-energy conformations, A∗-K∗ algorithms compute both upper
and lower bounds on the overall partition function, and return a partition func-
tion approximation that is guaranteed to be within a (1 − ε) factor of the true
partition function. When incorporating continuous flexibility, A∗-K∗-based enu-
meration proceeds in order of a provable lower bound E� on the full-minimized
energy of a conformation. By minimizing the enumerated conformations, A∗-K∗

algorithms tighten the upper and lower bounds on the partition function.
In practice, A∗-K∗ algorithms have been shown to run in time sublinear in the

number of conformations [33]. However, in their focus on returning the lowest-
energy conformations, these algorithms can tightly bound the energy of a large
number of low-energy conformations while still achieving only a loose energy
lower bound on the unenumerated conformations, and thus the overall partition
function upper bound. In the worst case, A∗-K∗ algorithms must enumerate a
large number of conformations to compute an ε-approximate partition function.
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This issue is especially common when a design problem contains many low-
energy conformations with similar energies. Furthermore, when the energy lower
bounds are loose, the difference between the partition function upper and lower
bounds can remain large, even after enumerating and minimizing a large number
of conformations. As a result, A∗-K∗ algorithms can be trapped in loosely-
bounded low-energy wells, enumerating and minimizing a combinatorial number
of low-energy conformations without efficiently tightening the partition function
bounds. To overcome the limitations of A∗-K∗-based methods, we introduce two
concepts: Minimization-Aware Enumeration and Recursive K∗, both of which
exploit the correlation between protein structure and energy to efficiently bound
a combinatorial number of conformations.

3 Algorithm

3.1 Recursive K∗ (RK∗): Enumerating in Order of Z-error

It may at first seem counter-intuitive to tightly bound the partition function of
a protein conformation space without computing the energies of any one con-
formation. Indeed, previous provable algorithms have efficiently approximated
the partition function by computing a gap-free list of the lowest-energy con-
formations [15,33,40,44]. The key insight is that structurally similar conforma-
tions are often energetically similar : although a set of low-energy conformations
may constitute the vast majority of the partition function, these conformations
may in fact be both structurally and energetically similar (Fig. 2A). Therefore,
computing one upper and one lower bound on a set of similar conformations
can efficiently bound the partition function contribution of the entire set. More
formally, when the energy upper and lower bounds on a set C of structurally
similar conformations are very close, the statistical weight of the set may be
tightly approximated by simply scaling the upper and lower bounds by |C|. The
following definitions of these new bounds are sufficient for the theorems pro-
vided in the main paper – the precise definitions involve some subtleties, which
are deferred to Section A of the Supplementary Information (SI) [27]. For a
set of conformations C that all share the partial conformation c′, we can define
partition function upper and lower bounds as follows:

U(c′) = exp(−E�(c′)/RT )τ(c′) (2)

L(c′) = exp(−E⊕(c′)/RT )τ(c′) (3)

where E� and E⊕ are lower and upper energy bounds on the best and worst
energies of any conformation in C, respectively, and τ(c′) = |C|.

Fundamentally, computing K∗ scores for a sequence can be formulated as
computing energy upper and lower bounds on the conformation spaces (one for
each state, e.g., bound and unbound) in order to reduce the difference between
partition function upper and lower bounds. We will refer to this difference as
Z-error. To directly explore the conformation space in order of Z-error, RK∗
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Fig. 2. Recursive K ∗ and Minimization-Aware Enumeration exploit positive
correlation between conformation and energy to efficiently bound the par-
tition function. (A) Structurally similar conformations within the same energy well
often have similar energies, shown as two points in the black energy landscape. (B)
When the conformation space is represented as a conformation tree, some conforma-
tions (white leaf nodes) may be tightly bounded by computing bounds on their parent
nodes (colored internal nodes). (C) Previous provable partition function approxima-
tion algorithms tightly bounded all conformations within some energy window of the
GMEC. To decrease the error bound ε (colored by the scale beside D), these algorithms
incrementally increased the energy window, computing exact energies for more and
more conformations (colored curves). (D) Recursive K∗ instead exploits the correspon-
dence between conformation and energy to more efficiently bound similar conformations
with bounds on regions of the energy landscape. As the error bound ε decreases and
the approximation becomes more accurate (colored step curves), Recursive K∗ itera-
tively tightens bounds on loosely bounded (and often low-entropy) regions of the land-
scape, rather than tightly bounding low-energy conformations. (E) Loosely-bounded
pairwise-minimized bounds can affect a combinatorial number of conformations, shown
as an ensemble of conformations that share the same sidechain assignments at the blue
residues. Although the blue residues have favorable pairwise-minimized lower bounds,
when all three are minimized in concert, their post-minimized energy is higher. (F) By
computing a tighter bound on the three blue residues, Minimization-Aware Enumera-
tion tightens the bounds on the combinatorial number of conformations containing the
sidechain assignments at the blue residues. Thus, a loosely-bounded energy well (black
curve vs. dotted blue curve) may be bounded more tightly (solid blue curve) without
minimizing all conformations in the well. (Color figure online)

calculates the Z-error of a full or partial conformation c by computing the differ-
ence between the upper and lower bounds on its partition function contribution:

γ(c) = U(c) − L(c). (4)

In effect, RK∗ divides the conformation space into smaller subspaces along the
allowed rotamers at a residue, and bounds regions of the conformation space
rather than tightly bounding the next best unenumerated conformation. By
using γ(c) to explore the conformation space in order of Z-error, RK∗ approx-
imates the partition function by branching and bounding the most loosely-
bounded regions first, rather than enumerating the next-lowest energy confor-
mation as A∗ does.
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We now give a theorem that shows γ(c) never underestimates the Z-error:

Theorem 1. Given a set C of all conformations containing a partial conforma-
tion c′, γ(c′) ≥ γ(c) for all c ∈ C.

We can further show that, when the energy lower and upper bounds on all con-
formations are tight (e.g., when using a pairwise-decomposable energy function
for a rigid-rotamer, rigid-backbone design), the number of nodes expanded by
RK∗ is optimal.

Theorem 2. Let T be a conformation tree where each conformation in the con-
formation space corresponds to a leaf node in T . For any given upper bounding
function U(c′) and lower bounding function L(c′) over T , RK∗ expands the min-
imum number of nodes required to compute a provable ε-approximation of the
partition function Z using those bounding functions.

For details on these bounds and the full proofs of Theorems 1 and 2, see Section A
in the SI [27].

Figure 2C and D illustrate this strategy, showing how RK∗ can use lower
bounds on partial conformations (shown as colored step curves) to efficiently and
incrementally bound regions of the energy landscape (black curve). For clarity,
the figure omits upper bounds, but the same strategy can be applied. MARK ∗

computes one upper bound and one lower bound on a combinatorial number of
energetically similar conformations that contain the same partial conformation
c′, whereas in the worst case A∗-K∗ must enumerate all qn−|c′| conformations,
where |c′| is the number of residues whose sidechain conformations are assigned
by c′.

3.2 Minimization-Aware Enumeration (MAE): Tightening Loose
Bounds During Enumeration

Minimization-Aware Enumeration exploits the conformational similarity
between loosely-bounded conformations to tighten loosely-bounded pairwise-
minimized lower bounds as they are encountered during conformation enumer-
ation. Upon encountering a loosely-bounded pair, a tighter bound is computed
by minimizing the pair in the presence of a third witness residue (Fig. 2E). For
a pairwise-decomposable energy function, a loosely bounded residue pair is only
overly optimistic when the presence of the other flexible residues changes the
post-minimization conformation and energy of that pair. As has been shown
previously, these higher-order interactions are often represented with high accu-
racy by simply modeling three-residue interactions as well, as is done by the
LUTE [22] algorithm. Indeed, the HOT/PartCR [45] algorithm has identi-
fied both overly flexible residues whose pairwise-minimized conformation varies
widely depending on the conformation of nearby residues, and higher-order clash-
ing tuples whose pairwise-minimized conformation are clash-free, but cannot be
achieved when all residues in the tuple are minimized together. While these
algorithms both successfully tighten pairwise-minimized lower bounds, both
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are effectively preprocessing algorithms. HOT/PartCR changes the conforma-
tion space each iteration, repeatedly restarting A∗ search, whereas LUTE is
run before A∗-K∗ enumeration. In effect, both HOT/PartCR and LUTE must
be run to satisfactory energy bound tightness before any approximation of the
partition function can be computed. MAE instead computes LUTE-like energy
corrections when a conformation with a loose lower bound is encountered, and
applies all computed corrections to unexplored regions of the conformation space.
Notably, MAE combines LUTE-like corrections with HOT/PartCR-like lowest
lower bound-first tightening, thus correcting only loosely-bounded conformations
that also share rotamer assignments with other conformations with low lower
bounds. Unlike either algorithm, MAE can then incorporate these corrections
into its partition function computation without restarting A∗ search: that is, it
corrects the energy of a combinatorial number of conformations online. Thus,
MAE provides an efficient way to tighten conformational lower bounds during
partition function approximation, further reducing computational cost.

3.3 Minimization-Aware Recursive K∗ (MARK ∗)

In combination, the improvements of MAE and RK∗ are further enhanced. RK∗

not only prioritizes low-entropy regions of the conformation space, it is able to
also weigh the potential benefits of full minimization vs. branching and bound-
ing. MAE converts the tighter bounds on each full minimization into tighter
bounds on a region of the conformation space (i.e., a combinatorial number
of conformations). Thus, MARK ∗ chooses the most effective of both possible
bound-tightening strategies: recursively bounding one region of the conformation
space, or minimizing another. In doing so, MARK ∗ distinguishes itself from the
GMEC-first, A∗-K∗-based previous state of the art: rather than enumerating or
minimizing one conformation at a time, it bounds and minimizes regions of the
conformation space. For a full description of the algorithm, see Section A of the
SI [27].

4 Computational Experiments

We implemented MARK ∗ in our laboratory’s open source osprey [24] pro-
tein design package and compared our algorithm to the previous state-of-the-
art, iMinDEE-A∗-K∗. To do so, we first measured performance of the BBK∗

[40] algorithm with either iMinDEE-A∗-K∗ (A∗-BBK∗) or MARK ∗ (MARK ∗-
BBK∗) as its partition function approximation subroutine. Using A∗-BBK∗

and MARK ∗-BBK∗, we computed the 5 best-binding sequences for 200 dif-
ferent protein design problems from 38 different protein-ligand complexes used
in [40]. This was a head-to-head comparison: for both A∗-BBK∗ and MARK ∗-
BBK∗, we measured performance using the BBK∗ implementation from [24].
The size of the resulting design problems ranged from 18 to 400 sequences, and
the number of conformations over all sequences (which is the total size of a design
problem) ranged from 1.62 × 103 to 3.26 × 1017 conformations. In all cases, we
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modeled continuous sidechain flexibility using continuous rotamers [11,45]. As
in [11,15,40], rotamers from the Penultimate Rotamer Library [36] were allowed
to minimize to any conformation plus or minus 9◦ of their modal χ-angles (18◦

of dihedral angle flexibility). Next, to investigate the comparative advantage of
RK∗ over A∗-K∗, we performed additional computational experiments designed
to deconvolve the challenge of minimizing conformations from the challenge of
exploring the conformation space. We computed the wildtype K∗ scores for 344
rigid rotamer, rigid backbone design problems, created from 38 protein struc-
tures used in [40]. For each rigid design problem, we selected up to 29 residues
at a protein-protein interface to be flexible. The size of the resulting design
problems ranged from 3.46 × 103 to 6.76 × 1025 conformations.

For all design problems, each algorithm computed ε-approximate bounds to
an accuracy of ε < 0.683 (as was derived in [40]) or was terminated after 7 days
for the continuous design problems and 6 days for the rigid design problems.
All continuous designs were run on 40–48 core Intel Xeon nodes with up to 200
GB of memory, and rigid designs were run on the same machines with 60 GB of
memory. A detailed description of the 544 total protein design problems, the 38
protein-ligand systems they are based on, and our continuous and rigid sidechain
flexibility experimental protocols is in Section B of the SI [27].

5 Results

Fig. 3. Speed: MARK ∗ is up to 135 times
faster than iMinDEE- A∗ -K ∗, and its
speedups increase as iMinDEE- A∗ -K ∗

takes longer. (A,B) Times to return the 5 best
sequences for MARK ∗ (blue, red) and iMinDEE-
A∗-K∗ (green) are shown. (A) Times for all
200 continuous design problems are shown, plot-
ted against conformation space size. MARK ∗

completes 15 challenging design problems (size
larger than 1010 conformations, red triangles)
that iMinDEE-A∗-K∗ cannot. (B) Runtimes for
the 185 designs completed by iMinDEE-A∗-K∗,
sorted along the x-axis by iMinDEE-A∗-K∗ run-
time (ranks for designs in Table 1 of the SI [27])
are shown. For all designs that required longer
than 146 min, MARK ∗ required less time (up to
135 times faster). (Color figure online)

We first compared overall run-
time and demonstrated that, for
large designs, MARK ∗-BBK∗

completed designs faster than
A∗-BBK∗ (Fig. 3A). Notably,
MARK ∗-BBK∗ completes designs
that were previously too large or
memory-intensive for the previ-
ous state of the art. Out of 200
total designs, iMinDEE-A∗-K∗

computed an ε-approximation to
the partition function within 7
days for only 185. For 10 design
problems, iMinDEE-A∗-K∗ ran
for more than 7 days and was
terminated, and for 5 other
cases iMinDEE-A∗-K∗ ran out of
200 GB of memory. In particu-
lar, iMinDEE-A∗-K∗ was unable
to complete any of the largest
designs which contained more
than 1017 conformations. In con-
trast, MARK ∗ provably returned
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the 5 best sequences for all 200 in under 6 days, including the 15 for which
iMinDEE-A∗-K∗ could not (Fig. 3A). The largest design, a 17-residue design of
llama antibody in complex with the C. Botulinum neurotoxin serotype A cat-
alytic domain (PDB id: 3k3q), contained 3.26 × 1017 conformations, which is an
order of magnitude larger than the largest design completed by iMinDEE-A∗-K∗.
Whereas iMinDEE-A∗-K∗ ran out of memory after 5 days, MARK ∗ returned
the 5 best-binding sequences in 55 h. Furthermore, the advantage of MARK ∗

over iMinDEE-A∗-K∗ grew as designs became more complex. As can be seen in
Fig. 3A, although the performance of iMinDEE-A∗-K∗ varied as conformation
space size increased, the design problems for which iMinDEE-A∗-K∗ performed
slowly are the very designs where MARK ∗ demonstrated the largest improve-
ments (Fig. 3B). For design problems for which iMinDEE-A∗-K∗ required longer
than 146 min, MARK ∗ required less time (completing up to two orders of mag-
nitude faster) to calculate an ε-approximation to the K∗ score for the best 5
sequences. In one design at the binding interface between HIV-1 capsid protein
C-terminal domain in complex with a camelid VHH (PDB id: 2xxm), the con-
formation space was 1.14× 1012 conformations, and iMinDEE-A∗-K∗ computed
provable ε-approximate K∗ scores for the 5 best sequences in 4.5 × 103 min.
In contrast, MARK ∗ completed in 33 min, 135 times faster than iMinDEE-A∗-
K∗. To further elucidate the improvements of MARK ∗, we measure the effects
of RK∗ and MAE separately. While, for reasons of accuracy, we recommend
always using continuous flexibility, we show that the speed improvements for
rigid rotamer, rigid backbone wildtype K∗ score computation is even more dra-
matic. Results from these simplified design problems suggest that design with
continuous flexibility considerably increases the challenge of the design problem.
In particular, MARK ∗, with its RK∗ bounding strategy, is able to efficiently
bound the conformation space when the conformational energy upper and lower
bounds are tight, but cannot avoid minimizing conformations with loose energy
bounds.

5.1 RK∗ Is Orders of Magnitude More Efficient and Faster than
A∗-K∗

For the 344 rigid rotamer, wildtype-only design problems, we compared overall
runtime and the number of conformations enumerated, shown in Fig. 4. Notably,
RK∗ computed the K∗ score for all 344 design problems, whereas A∗-K ∗ was
only able to do so for 321. Of the 30 largest design problems (conformation space
size of 4.5×1022 or more conformations), A∗-K∗ completed only 8. In fact, A∗-K∗

was unable to compute any K∗ scores for design problems containing more than
1025 conformations, showing that RK∗ is able to complete designs larger than
was possible with the previous state of the art. For the largest design problem,
a 24-residue design of the Llama VHH-02 binder of ORF49 (PDB id: 4hem), the
conformation space was 6.76 × 1025 conformations, and A∗-K∗ timed out after
6 days, whereas RK∗ finished in merely 4.7 min. Furthermore, RK∗ finishes
up to 3 orders of magnitude faster than A∗-K∗. In the case of the 24-residue
design of HIV-1 capsid protein bound to camelid VHH (PDB id: 2xxm), A∗-K∗
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Fig. 4. RK ∗ and MAE both significantly improve efficiency over iMinDEE-
A∗ -K ∗. (A,B) Times and conformations enumerated by MARK ∗ (blue, red) and
iMinDEE-A∗-K∗ (green) plotted against conformation space size. When computing
wildtype K∗ scores with rigid backbones and rigid rotamers, MARK ∗ not only com-
putes ε-approximate scores 3 orders of magnitude faster and 5 orders of magnitude more
efficiently, it also completes design problems larger than was possible with iMinDEE-
A∗-K∗ (red triangles). (C,D) Number of conformations minimized by MARK ∗ (blue,
red) and iMinDEE-A∗-K∗ (green) are shown, plotted against conformation space size
(C) or full minimizations computed by iMinDEE-A∗-K∗ (D, ranks for designs in Table 1
of the SI [27]). MARK ∗ completes 15 challenging design problems (size larger than 1010

conformations, red triangles) that iMinDEE-A∗-K∗ cannot. MARK ∗ minimizes up to
685-fold fewer conformations than iMinDEE-A∗-K∗, and is more efficient on the prob-
lems for which iMinDEE-A∗-K∗ minimizes the most conformations. (E) Log Z-error
reduction achieved by full minimization (blue) and corrections from partial minimiza-
tions (yellow) are shown as stacked bar charts. x-axis shows design problems, sorted
by Z-error reduction attributable to full minimization (ranks for designs in Table 1 of
the SI [27]). As the number of full minimizations increases, MAE efficiency increases,
reducing Z-error by up to three orders of magnitude more than full minimization does.
(Color figure online)

enumerated more than 162 million conformations, taking 5.4 days, whereas RK∗

enumerated merely 11,699 conformations in under 75 seconds, finishing 6,230
times faster than the previous state of the art. RK∗ also enumerated far fewer
conformations than A∗-K∗. In the case of a 29-residue design of the TRF2 TRFH
domain bound to Apollo peptide, A∗-K∗ took 2.2 days to enumerate over 52
million conformations. In contrast, RK∗ enumerated merely 576 conformations
in 2.2 min, and was over 90,800 times more efficient.
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5.2 MAE Is More Efficient and Effective than Full Minimization
Alone

Using MAE, MARK ∗ tightens bounds on a potentially exponential number
(up to O(qn−3)) of conformations by performing a merely polynomial number
(O(

(
n
3

)
q3)) of minimizations. In contrast, iMinDEE-A∗-K∗ must, in the worst

case, minimize the same (potentially exponential) number of loosely-bounded
conformations. In our experiments, the energy bounds were often very loose.
The median energy difference between pairwise-minimized lower bounds and
full-minimized energy was 4.9 kcal/mol, leading to overestimation of statisti-
cal weight by orders of magnitude for many conformations. To measure the
efficiency of MAE, first we compared the number of full conformations mini-
mized by MARK ∗ and by iMinDEE-A∗-K∗. Then, to analyze the benefits of
the partial minimizations performed by MAE, we measured the reduction of Z-
error (Z-error reduction) from full minimizations and MAE corrections for each
of the 200 continuous design problems. Figure 4 illustrates the improvement in
efficiency of MARK ∗ over iMinDEE-A∗-K∗: MARK ∗ minimizes up to 685-fold
fewer leaf nodes. As can be seen in Fig. 4D, MARK ∗ minimizes fewer conforma-
tions than iMinDEE-A∗-K∗ for all designs in which iMinDEE-A∗-K∗ minimizes
more than 1344 conformations. Additionally, the bound-correcting effect of MAE
increases as the conformation space grows larger and more complex. For one
design of a Scribble PDZ34 domain complexed with its target peptide (PDB
id: 4wyu), total Z-error reduction from full minimizations was 4.12 × 1097, and
total Z-error reduction from partial minimizations was 8.36 × 10100. Thus, for
every full minimization computed by MARK ∗, MAE achieved Z-error reduction
equivalent to 2030 additional minimizations. The trend in Fig. 4E emphasizes the
increasing number of loosely-bounded conformations as the conformation space
grows, showing that for every conformation MARK ∗ minimizes, it also tightens
the bound on a combinatorial number of conformations.

6 Discussion

6.1 MARK ∗ Reveals Components of Binding Thermodynamics

To test the ability of MARK ∗ to approximate the energy landscape, we ran
MARK ∗ on a 10-residue design problem at the protein-protein interface of HIV-
1 capsid protein C-terminal domain bound to camelid VHH and compared the
partition functions of the wildtype sequence for both proteins in the bound (PDB
id: 2xxm), unbound camelid VHH (PDB id: 2xxc), and unbound HIV-1 capsid
protein C-terminal domain (PDB id: 3ds2) states with continuous sidechain flex-
ibility, in a similar fashion as was done in [41] (Fig. 5). For these three states,
we modeled bound and unbound backbones using the three separate bound and
unbound structures described above. We computed a provable ε-approximation
of ε < 0.01 for the partition functions of the bound and unbound states for
both proteins, and computed the corresponding energy landscapes, where the
energies of all conformations within 5 kcal/mol of the GMEC were computed
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exactly. Next, for each protein we computed bounds on its binding-competent
ensemble, which is the ensemble consisting of all conformations that exist in the
bound state, modeled with the energies of the unbound state.

As has been observed in [24,43], the correlation between K∗ scores and Ka

is not yet quantitative, although it is good enough for ranking. In particular, for
current K∗ computations only a subset of biologically available structural flex-
ibility is allowed and waters are not explicitly modeled, both of which lead to
underestimated entropy. Additionally, most physical effective energy functions
are based on small-molecule energetics, which can overestimate van der Waals
terms and thereby overestimate internal energy. Despite these input model lim-
itations, in [24,43] significant changes in energy corresponded to large changes
in K∗ score, and correlated well with experimental measurements. Therefore, in
our comparisons we expect K∗ scores to (1) correctly predict if one state is more
favorable than another, and (2) compute free energy terms that are comparable
within an order of magnitude. For our analysis, scaling entropy up by a factor
of 2 and internal energy down by a factor of 8 resulted in energies within the
range of typical experimental measurements for 10 residues at a protein-protein
interface. We report all computed energies after scaling.

Using the results from MARK ∗, we computed the ensemble-weighted internal
energy and entropy for both binding partners in their bound and unbound states.
At the computed temperature of ∼298 K, HIV-1 capsid protein undergoes a
change in its conformational distribution upon binding. This entails a decrease
in entropy, lowering TΔS by 3.06 kcal/mol. TΔS decreases by 1.74 kcal/mol
for camelid VHH, as well. To compensate, the complex internal energy decreases
upon binding. Whereas the unbound protein and the ligand have a combined
ensemble-weighted internal energy of −8.69 kcal/mol, the internal energy of the
complex is −14.0 kcal/mol, which is 5.31 kcal/mol lower than the combined
internal energy of unbound HIV capsid protein and camelid VHH. The change in
Helmholtz free energy ΔF is therefore −0.51 kcal/mol. Importantly, the internal
energy of the binding-competent HIV-1 capsid protein ensemble is only 0.044
kcal/mol less than the internal energy of its free ensemble, which agrees with the
unfavorable overall increase in Helmholtz free energy of 3.01 kcal/mol between
the free ensemble and the binding-competent ensemble. Similarly, the internal
energy of the binding-competent camelid VHH ensemble is 0.939 kcal/mol higher
than the energy of the free ensemble, for a total increase in Helmholtz free energy
of 2.68 kcal/mol. As this data shows, both binding partners incur an energy
penalty when assuming the binding-competent ensemble, which is overcome by
favorable interactions gained upon binding.

Thus, MARK ∗ reveals the loss of entropy, and its commensurate increase in
internal energy upon binding. Figure 5 shows the change in the conformational
ensemble between the free and binding-competent ensemble, followed by internal
energy change upon binding. As can be seen in Fig. 5, there are many low-
energy states in the free ensemble of camelid VHH, shown as numerous blue
and purple arcs, and by the comparatively small green arc for the GMEC of the
free ensemble. In contrast, both the binding-competent ensemble and the bound
ensemble show significantly fewer low-energy states, and in both ensembles the
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Fig. 5. MARK ∗ reveals components of binding thermodynamics. Upper
bounds on the Boltzmann-weighted partition function for a 10-residue design at the
protein-protein interface between HIV-1 capsid protein and camelid VHH domain are
shown as colored ring charts (explained in panels A–D). For context, secondary struc-
ture near the design problem is shown when identifying conformations (colored pro-
teins), but the full protein is not shown. (A) The conformation space can be represented
as a tree, where leaf nodes correspond to full conformations, and each node c in the tree
is colored by the smallest energy difference min

c∗∈C
E(c∗)− min

c′∈C′ E(c′) between the GMEC

c∗ and the lowest-energy conformation c′ contained in the subtree beneath c. (B,C,D)
The partition function can be projected onto the tree, in the form of concentric ring
charts. Each node of the tree in (A) corresponds to an arc in (D). Arc angle for each
node is proportional to the partition function contribution of all nodes in a subtree
(80% vs. 20% for rotamer W1 vs. rotamer W2). Notably, high-energy conformations
are shown as white gaps in (D). (E) For HIV-1 capsid protein bound to camelid VHH
domain, the binding reaction is broken down into two parts: change in conformational
ensembles of HIV-1 capsid protein and camelid VHH from R1 and L1 (conformational
ensembles when not bound) to R2 and L2 (conformational ensembles when bound),
and the formation of the protein-protein interface. The order of events is arbitrary and
the overall binding mechanism can be deconstructed without regard to mechanism.
The left ring charts (R1 + L1) show the distribution of the free conformational ensem-
bles for HIV-1 capsid protein and camelid VHH. The middle charts (R2 + L2) show
the change in conformational distribution, where non-binding low-energy states have
reduced statistical weight, and the right ring chart (R2 ·L2) represents the the bound
conformational ensemble, where the internal energy of the bound complex increases
due to binding. When energetic contributions from the conformational change and
interface formation reactions are added, they give the thermodynamics of the over-
all coupled binding reaction. As described in the text (Sect. 6.1), bounds on ΔUconf,
ΔSconf, ΔUinterface, and ΔSinterface can all be estimated from the energy landscape
approximation returned by MARK ∗. (Color figure online)

GMEC comprises a much larger fraction of the corresponding partition function.
Accordingly, our novel ring charts for the energy landscapes of the free, binding-
competent, and bound states show visually how the bound and unbound states
differ, emphasizing the novel capabilities of MARK ∗, and the significance of
modeling more than just the lowest-energy conformations when designing for
affinity.
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7 Conclusion

We presented a novel algorithm that not only efficiently bounds the partition
function, but also computes a provably good approximation of the energy land-
scape, which bounds the energy of every conformation in the conformation space.
MARK ∗ is, to our knowledge, the first algorithm to do so. Previously, design-
ers were limited to optimizing for the lowest-energy conformations for a limited
number of predefined states, and could only approximate aggregate values such
as internal energy or Ka. With MARK ∗, we showed that designers can directly
measure changes to the entire energy landscape, such as conformational rear-
rangement upon binding. With this capability, it even becomes possible to com-
pare the energy landscapes of different sequences. That is, MARK ∗ empowers
designers to evaluate sequences not by low-energy conformations, but instead by
energy landscape. Thus, MARK ∗ enables not only faster design, but also a new
potential strategy to design for conformational dynamics [5,42]. We believe that
MARK ∗ will not only accelerate existing designs, it will enhance future designs,
and enable a novel, dynamics-based strategy for computational structure-based
protein design.
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52. Traoré, S., et al.: A new framework for computational protein design through cost
function network optimization. Bioinformatics 29(17), 2129–2136 (2013). https://
doi.org/10.1093/bioinformatics/btt374

53. Tzeng, S.R., Kalodimos, C.G.: Protein activity regulation by conformational
entropy. Nature 488(7410), 236–240 (2012). https://doi.org/10.1038/nature11271

54. Valiant, L.G.: The complexity of computing the permanent. Theoret. Comput. Sci.
8(2), 189–201 (1979)

55. Viricel, C., Simoncini, D., Barbe, S., Schiex, T.: Guaranteed weighted counting for
affinity computation: beyond determinism and structure. In: Rueher, M. (ed.) CP
2016. LNCS, vol. 9892, pp. 733–750. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-44953-1 46

https://doi.org/10.1073/pnas.1411548112
https://doi.org/10.1073/pnas.1411548112
https://doi.org/10.1371/journal.pcbi.1002477
https://doi.org/10.1371/journal.pcbi.1002477
https://doi.org/10.1002/prot.24808
https://doi.org/10.1002/prot.24808
https://doi.org/10.1002/prot.24870
https://doi.org/10.1128/JVI.02213-14
https://doi.org/10.1002/prot.22145
https://doi.org/10.1021/ct400383v
https://doi.org/10.1021/acs.jctc.5b00594
https://doi.org/10.1021/bi061788m
https://doi.org/10.1093/bioinformatics/btt374
https://doi.org/10.1093/bioinformatics/btt374
https://doi.org/10.1038/nature11271
https://doi.org/10.1007/978-3-319-44953-1_46
https://doi.org/10.1007/978-3-319-44953-1_46


Sparse Binary Relation Representations
for Genome Graph Annotation

Mikhail Karasikov1,2,3 , Harun Mustafa1,2,3 , Amir Joudaki1,2 ,
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Abstract. High-throughput DNA sequencing data is accumulating in
public repositories, and efficient approaches for storing and indexing such
data are in high demand. In recent research, several graph data struc-
tures have been proposed to represent large sets of sequencing data and
to allow for efficient querying of sequences. In particular, the concept
of labeled de Bruijn graphs has been explored by several groups. While
there has been good progress towards representing the sequence graph in
small space, methods for storing a set of labels on top of such graphs are
still not sufficiently explored. It is also currently not clear how charac-
teristics of the input data, such as the sparsity and correlations of labels,
can help to inform the choice of method to compress the graph labeling.
In this work, we present a new compression approach, Multi-BRWT,
which is adaptive to different kinds of input data. We show an up to
29% improvement in compression performance over the basic BRWT
method, and up to a 68% improvement over the current state-of-the-art
for de Bruijn graph label compression. To put our results into perspec-
tive, we present a systematic analysis of five different state-of-the-art
annotation compression schemes, evaluate key metrics on both artificial
and real-world data and discuss how different data characteristics influ-
ence the compression performance. We show that the improvements of
our new method can be robustly reproduced for different representative
real-world datasets.

Keywords: Sparse binary matrices · Binary relations ·
Genome graph annotation · Compression

1 Introduction

Over the past decade, there has been an exponential growth in the global
capacity for generating DNA sequencing data [23]. Various sequencing efforts
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have started to amass data from populations of humans [1] and other organ-
isms [24,25]. For these well studied organisms, already assembled reference
sequences are the common starting point for comparative and functional anal-
yses. Unfortunately, a large proportion of DNA sequencing data, in particular
data originating from non-model organisms or collected in metagenomics stud-
ies, are lacking a genome reference. Whereas general guidelines exist for the
former case [9], genome assembly for metagenomics is much less well defined.
Its vastness and the currently lacking standards for indexing such data make an
integrated analysis daunting even for field experts.

To make this host of data efficiently searchable, it is necessary to employ
a search index. However, when building an index on the sequence data alone,
only presence or absence of a query can be tested. To support relating queries
to information such as source genomes, haplotypes, or functional annotations,
additional labels must be associated with the index. To facilitate this, approaches
for storing additional data on an indexed graph have been suggested, such as
the gPBWT [17] for storing haplotype information as genome graphs or succinct
representations of labeled de Bruijn graphs [4,12,14] for the representation of
sets of sequences. In this context, dynamic representations of such data have
also recently received attention [15,20].

The problem of efficiently representing these types of relations is also
addressed in other fields. Commonly referred to as compressed binary relations,
a growing body of theoretical work addresses such approaches [7]. Successful
applications of similar techniques include the efficient representation of large
web-graphs [8] and RDF data sets [5]. We will provide a more detailed descrip-
tion of some of these approaches in Sect. 2.

In this work, we present a new method for compressing abstract binary rela-
tions. Providing as background a comprehensive benchmark of existing com-
pression schemes, we show that our approach has superior performance on both
artificial and real-world data sets.

Our paper has the following structure: After introducing our notation, we
begin by defining the abstract graph, and the associated annotation structures
that we wish to compress (Sect. 2.1). We then provide descriptions of our pro-
posed compression technique and competing methods (Sect. 2.2). Finally, we
compare the compression performance of these methods on different types of
graph annotations (Sect. 3) and close with a brief discussion of our results and
an outlook on future work (Sect. 4).

2 Methods

After introducing our notation, we will give an overview of all methods
implemented for this work and provide a description of our methodological
contributions.
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2.1 Preliminaries

We will operate in the following setting. We are given a k-dimensional de Bruijn
graph over a set of given input sequences S. The node set V shall be defined as
the set of all consecutive sub-sequences of length k (k-mers) of sequences in S

V = {si:i+k−1 | s ∈ S, i = 1, . . . , |s| − k + 1}, (1)

where si:j denotes the sub-sequence of s from position i up to and including
position j, and |s| is the length of s. A directed edge exists from node u to node
v, if u2:k = v1:k−1.

In order to represent relations between sources of the input sequences S and
the nodes V , we now define the concept of a labeled de Bruijn graph and proceed
by discussing the more general problem of representing a graph labeling.

Each node v ∈ V that we refer to as an object is assigned a finite set of
labels �(v) ⊂ L. We represent this graph labeling as a binary relation R ⊂ V ×L.
A trivial representation of R taking |V | · |L| bits of space is a binary matrix A ∈
{0, 1}|V |×|L|. We will use Ai and Aj to denote its rows and columns, respectively.

In the following sections, we will discuss various methods described in the
recent literature and present our improvements in efficiently representing R. In
addition to minimal space, we also require that the following set of operations
can be carried out efficiently on the compressed representation of R:

query labels(v) = {l ∈ L | (v, l) ∈ R} Given an object v ∈ V (a k-mer in the
underlying de Bruijn graph), return the set of labels �(v) assigned to it.

query objects(l) = {v ∈ V | (v, l) ∈ R} Given a label l ∈ L (e.g., a genome or
sample ID), return the set of objects assigned to that label.

query relation(v, l) Given an object v ∈ V and a label l ∈ L, check whether
(v, l) is in the relation R, query relation(v, l) = 1{(v,l)∈R}.

2.2 Binary Relation Representation Schemes

For compressing the binary relation R, we consider the following representations
suggested in recent literature. As an abstraction, we will use the representation
of R as a binary matrix A ∈ {0, 1}|V |×|L| (referred to as the binary relation
matrix) to illustrate the individual methods.

Column-Major Sparse Matrix Representation. As a simple baseline tech-
nique, we compress the positions of the non-zero indices in each column inde-
pendently using Elias-Fano encoding [18]. While this method does not take into
account correlations between columns for compression, this feature allows for a
trivial parallel construction implementation in which each column is computed
in a separate process. For our experiments, this serves as the initial representa-
tion of the binary matrix, which is then queried during the construction of all
other matrix representations.
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Flat Row-Major Representation. As a second baseline method, this rep-
resentation concatenates all rows of A into a joint vector that is subsequently
compressed using Elias-Fano encoding. This approach, for instance, is used by
VARI [14] and its extensions [3].

Rainbowfish. The current state-of-the-art for genome graph labeling is a row-
major representation of the binary relation matrix A in which an optimal coding
is constructed for the set of rows in A [4]. More precisely, let Ai1 , . . . , Air ∈
{0, 1}|L| denote the unique rows of A, sorted by their number of occurrences in
A in non-increasing order, where r ≤ |V |. To encode A, we start by forming a
matrix A′ ∈ {0, 1}r×|L| of sorted unique rows, A′t

j = Ait
j . Then we compress A′

with the flat row-major representation using an RRR vector (named after the
initials of the three original authors [21]) as the underlying storage technique
and construct a coding vector (i(v) − 1)v∈V , where i(v) maps each node v ∈ V
to the index of the row in A′ corresponding to the labeling of v. The coding
vector is represented in a variable-length packed binary coding with a delimiter
vector [4] compressed into an RRR vector [21].

Binary Relation Compressed with Wavelet Trees (BinRel-WT). This
method involves a translation of the |R| non-zero elements of A into a string,
which is then represented using a conventional wavelet tree [7]. Given the binary
relation matrix, its set bits are iterated in row-major order and their respective
column indices are stored contiguously in a string over the alphabet {1, . . . , |L|}
represented with a wavelet tree that enables efficient queries. The numbers of
set bits in each row of A are stored in a delimiter vector using unary coding and
compressed into an RRR vector.

Hierarchical Compressed Column-Major Representation (BRWT).
Described as Binary Relation Wavelet Trees (BRWT) in the original litera-
ture [7], in contrast to BinRel-WT, this representation directly acts on binary
matrices without translation into a sequence. First, an index vector I with ele-
ments Ii =

∨
j Ai

j is computed by merging all matrix columns through bitwise-
OR operations on the rows and stored to represent the root of the tree. Then, the
rows composed entirely of 0s are discarded from A and two equal-sized subma-
trices A′ and A′′ (which may contain rows composed entirely of 0s) of the binary
relation matrix A are constructed by splitting A and are passed to the left and
right children of the root. The compression proceeds recursively. Construction
terminates when a node is assigned a single column, which is stored as its index
column (see Fig. 1(a)). For reconstruction of the matrix elements, it is sufficient
to only store the index vectors associated with each node of the BRWT tree.

In the next section we consider the problem of topology optimization during
BRWT tree construction and propose Multi-BRWT, an extension of BRWT that
allows its nodes to have arbitrary numbers of children as well as to arbitrarily
distribute the columns of a parent node to its children. Afterwards, we pro-
pose a two-step approach for Multi-BRWT construction along with two specific
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Fig. 1. Schematic of hierarchical compressed column-major representations—(a)
BRWT for the binary case. Grey rows correspond to all-zero rows, also indicated
through the vector to the right of each matrix. Each child encodes only non-zero rows of
the submatrix passed to it by its respective parent. Numbers to the left of each matrix
are the respective row-indices in the initial matrix. (b) Multi-BRWT in the multiary
case. Notation is as in the binary case. Stored vectors are shown in red (Color figure
online).

algorithms as its implementation for improving the compression performance of
Multi-BRWT.

2.3 Multiary, Topology-Optimized BRWTs

Our first extension to the BRWT scheme is the introduction of an n-ary tree
topology, Multi-BRWT (Split n), allowing for matrices to be vertically split
into more than two submatrices (see Fig. 1(b)). The construction and querying
for Multi-BRWT (Split n) is analogous to the case of binary BRWT. In com-
putational experiments on artificial and real-world data we show that in most
cases, Multi-BRWT (Split n) with arity greater than two provides a higher com-
pression ratio than the simple binary BRWT scheme (see Sect. 3). Note that
Multi-BRWT (Split n) with the maximum allowed arity n = |L| is equivalent to
the baseline column-major sparse matrix representation as it keeps all columns
of the input binary relation matrix unchanged except for the case when the input
matrix has all-zero rows.

To proceed with our second extension, let us consider binary relations with
far fewer labels than objects, |L| � |V |, a condition that is commonly met in
annotated genome graphs from biological data. In these contexts, the number
of k-mers is usually in the billions and the number of labels is on the order of
thousands (see Sect. 3.2).
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Our second extension consists in introducing arbitrary assignments of
columns from the matrices encoded in the nodes of the Multi-BRWT to their
children. These assignments are represented by dictionaries stored in the Multi-
BRWT nodes, but the |L| � |V | constraint makes the space overhead from stor-
ing these negligible compared to the space needed to encode the index vectors.
Thus, we exclude the problem of representing these assignments from further
consideration and leave that as a small technical detail.

We now focus on the problem of constructing a Multi-BRWT tree structure
that satisfies certain local optimality conditions with respect to compression
ratio.

Problem Setting. Let us set this problem formally. Given a binary matrix A,
let T be the set of all Multi-BRWT trees representing A (i.e., the set of all rooted
trees with |L| labeled leaves). Let Size(I) denote the size of a compressed binary
vector I in bits. For instance, if I is of length n with m set bits, Size(I) = n for
an uncompressed bit vector, and Size(I) ≈ �log2

(
n
m

)
� for RRR vectors [21]. We

then neglect the space required for dictionaries defining the column assignments
and we define the size of the Multi-BRWT tree T ∈ T as the space required to
store all its index vectors including the vectors in leaves:

Size(T ) :=
∑

i∈N

Size(Ii), (2)

where N is the set of all nodes of the Multi-BRWT tree T and Ii corresponds to
the index vector stored in node i. Thus, we wish to find an optimal Multi-BRWT
tree by minimizing the storage space,

T ∗ = arg min
T∈T

Size(T ). (3)

We will refer to this as the Multi-BRWT problem.

Optimized Multi-BRWT Construction. By analogy to the NoSQL table
compaction problem [10], it can be shown that Multi-BRWT constrained on
the space of binary trees with the uncompressed bit vector representation as
the underlying structure for storing the index vectors is NP-hard. Thus, we
propose a two-step approach for finding a good Multi-BRWT structure (see
Fig. 2). First, we build a binary Multi-BRWT tree by hierarchical clustering of
the index vectors according to their similarity, the number of shared set bits.
Then, we optimize the arity of the chosen Multi-BRWT by selecting a node
subset N ′ which includes the root and leaves of the base Multi-BRWT tree,
{r, v1, . . . , v|L|} ⊂ N ′ ⊂ N . To keep the resulting Multi-BRWT tree valid (allow-
ing for reconstruction of the initial matrix A), we reassign all nodes in N ′ to
their nearest common ancestors remaining in N ′.

As a specific implementation of the proposed two-step construction approach,
we consider two heuristic greedy optimization procedures. In the first step, we
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Fig. 2. Schematic describing the construction of Multi-BRWT—(a) The columns of the
input binary matrix depicted as numbered black dots are considered independently.
(b/c) Columns are hierarchically pair-matched based on number of shared entries,
forming the base Multi-BRWT topology. (d) Pruning internal nodes of Multi-BRWT
to optimize the tree structure for a smaller representation size.

perform greedy matching of the index vectors starting from the columns of the
input binary relation matrix, and repeat recursively for the aggregated parent
index vectors until we merge all into a single index vector placed in the root.
In the second step of the construction approach, we consider another greedy
algorithm for optimizing the size of the Multi-BRWT tree by removing some of
its internal nodes and thereby increasing the arity of the tree.

Greedy Pairwise Matching for Finding a Base Multi-BRWT Approximation. To
find an initial approximate solution to the Multi-BRWT problem (base Multi-
BRWT), we propose a greedy algorithm in which an initial greedy pairwise
matching (GPM) step is performed on the columns of the input binary relation
matrix A to optimize their initial order prior to construction (see Fig. 2(a–c)).
Given the input columns A1, . . . , A|L| and their corresponding object queries
oi = query objects(i), we first compute cardinalities of their pairwise inter-
sections sij = |oi ∩ oj |. Then, we sort all the computed similarities {sij} in
non-increasing order and match pairs of columns greedily. Afterwards, we com-
pute the aggregated index columns by merging the matched columns through
bitwise-OR operations to form the index vectors and repeat this algorithm
recursively.

Efficient Pairwise Distance Estimation. The proposed greedy approximation
method takes as input a matrix of pairwise column similarities {sij}. For m input
columns of length n, computing each entry of this matrix costs O(n), and thus,
the time complexity of computing the full similarity matrix is O(nm2), which is a
considerable overhead for datasets with a typical size of m ∼ 103 and n ∼ 109. To
make the estimation of the pairwise similarities cheaper, we approximate these on
a submatrix composed of rows sampled randomly from matrix A. Moreover, we
prove the following lemma to show that using just O

(
log(m)/ε2

)
random rows is

sufficient for approximating the pairwise similarities with a small relative error ε
with high probability, if each column has a sufficiently large number of set bits.

Lemma 1 (Subsampling Lemma). Suppose we are given subsets of a uni-
verse set, o1, . . . , om ⊂ {1, . . . , n}, with the minimum cardinality d = minm

i=1 |oi|,
d > 0. We sample the elements of {1, . . . , n} independently with the same prob-
ability p, to form a sampled set of objects S ⊂ {1, . . . , n} and define subsampled



Sparse Binary Relation Representations 127

sets as õi = oi ∩ S. Consider the union cardinalities uij = |oi ∪ oj | with their
approximators ûij = 1

p |õi ∪ õj |. For all 0 < ε < 1, 0 < δ < 1, and

p ≥ min{
3 ln(m2+m

δ )
dε2

, 1},

we claim

Pr
( m⋂

i,j=1

{
|ûij − uij | < εuij

})
≥ 1 − δ.

See Supplementary Section 2 for proof.
According to Lemma 1, with the subsampling technique we can approximate

the union cardinalities up to an ε-fraction with high probability. Similar bounds
can be obtained for sufficiently large intersection cardinalities, estimated in the
proposed greedy pairwise matching algorithm.

Refining Multi-BRWT by Pruning. Starting the procedure in the leaves’ parents
and applying it to each node except for the root recursively, we estimate the cost
of removing each current node by the following formula

CostRem(v) =
∑

c∈Children(v)

Size(I ′(c))

−

⎡

⎣Size(I(v)) +
∑

c∈Children(v)

Size(I(c))

⎤

⎦ , (4)

where I(v) denotes the index vector stored in the node v and I ′(c) denotes the
updated index vector that would be stored in the node c if its parent v was
removed and the node c was reassigned to its grandparent. Now we simplify
the formula for estimating the cost of removing a node in Multi-BRWT by
introducing an assumption that the size of bit vector I of length n with m set
bits is fully defined by these two parameters, i.e. Size(I) = Size(n,m). Now,
it is easy to see that after reassigning the node c with the index vector I(c) of
length nc with mc set bits to the parent of its parent v with index vector I(v)
of length nv with mv set bits, the node c updates and replaces its index vector
I(c) with a vector I ′(c) of length nv with mc set bits. This provides us with the
following simplified formula for estimating the cost of removing a node from the
Multi-BRWT tree

CostRem(v) =
∑

c∈Children(v)

Size(nv,mc)

−

⎡

⎣Size(nv,mv) +
∑

c∈Children(v)

Size(nc,mc)

⎤

⎦ . (5)

Formula (5) can be efficiently computed without rebuilding the current structure
of the Multi-BRWT. As a result, a decision about removing node v from the
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Multi-BRWT is made if the cost CostRem(v) is negative, leading thereby to a
decrease of the Multi-BRWT in size. In our practical implementation we use the
following formula for approximating the size required for storing an RRR bit
vector [16] with block size t: Size(n,m) = �log2

(
n
m

)
� + n�log2(t + 1)/t�.

2.4 Implementation Details

We implement the underlying de Bruijn graph as a hash table storing k-mers
packed into 64bit integers with 64bit indexes assigned to the k-mers, or as a
complete de Bruijn graph represented by a mapping of k-mers to 4k row indexes
of the binary relation matrix.

In the column-major representation, the columns of the binary relation
matrix are stored using SD vectors implemented in sdsl-lite [11]. The
same data structure is used for storing the single long vector in the row flat
representation.

BinRel-WT (sdsl) compressor uses the implementation of wavelet tree from
the sdsl-lite library, using an RRR vector to store its underlying bit vector.
The delimiter vector uses the RRR vector implementation from sdsl-lite.

The BinRel-WT compressor uses the binary relation implementation from
https://github.com/dieram3/binrel wt. This implementation stores the under-
lying bit vector of the wavelet tree in uncompressed form.

Our BRWT is implemented as a tree in memory, compressing the index
vectors as RRR vectors. To avoid multiple passes through the matrix rows, we
construct the BRWT using a bottom-up approach. Given a fixed clustering of the
matrix columns, the leaves of the BRWT are constructed first, followed by their
parents constructed for the index vectors propagated from the children nodes.
To speed up the greedy matching algorithm, we sample randomly 106 rows in
each experiment and use those to approximate the number of bits shared in
the input columns and the index vectors during the Multi-BRWT construction.
When optimizing the tree arity (as described in Sect. 2.3), we use the formula
Size(n,m) = �log2

(
n
m

)
� + n�log2(t + 1)/t� as an estimate for the size of bit vec-

tor I of length n with m set bits, which is provided by the authors of sdsl-lite
for the implementation of RRR vectors [11]. We use a block size of t = 63.

All SD vectors are constructed with default template parameters, while all
RRR vectors are constructed with a block size of 63.

Code Availability. All methods implemented and evaluated in this paper are
available at https://github.com/ratschlab/genome graph annotation.

2.5 Data

Simulated Data. To profile our compressors, we generated several differ-
ent series of synthetic binary matrices of varying densities (see Supplementary
Section 1 for a more detailed description). In total we generated three different

https://github.com/dieram3/binrel_wt
https://github.com/ratschlab/genome_graph_annotation
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kinds of series: (i) random matrices with uniformly distributed set bits, (ii) ini-
tially generated random matrix rows duplicated and permuted randomly, (iii)
initially generated random matrix columns duplicated and permuted randomly.
The motivation behind these series is the following. The best performing state-
of-the-art compressors exploit redundancy between rows of the binary relation
matrix [20]. However, the usual structure of annotated de Bruijn graphs often
implies a correlation structure on the columns not necessarily leading to redun-
dant rows, for instance when the sequences of many similar or closely related
samples are inserted. While for a small (and sufficiently highly correlated) num-
ber of columns this correlation translates into rows and increases the number of
redundant ones, for larger label sets this is usually not the case. Thus, approaches
exploiting correlation structure on the columns might fare better. To test this
hypothesis, we generated three different kinds of synthetic data, reflecting uncor-
related rows/columns, redundant rows, and redundant columns for series (i), (ii),
and (iii), respectively. Please note, that approach (ii) is the most favorable for
the state-of-the-art, as row redundancy rather then high correlation is simulated.

Real-World Data. For evaluating all approaches in a real-world setting, we
have chosen two data sets well-known in the community and representative of
typical applications.

Kingsford Human RNA-Seq. This dataset consists of 2,652 Human RNA-
Seq experiments originally drawn from [22] and subsequently used in [20] for
comparison.

NCBI RefSeq. This dataset consists of all 79,448 reference sequences from
Release 88 of the NCBI RefSeq database [19]. Each sequence has been anno-
tated with its associated family rank taxonomic ID from the NCBI Taxon-
omy [2]. This results in a total of 3,173 unique labels for the sequences.

3 Results and Discussion

3.1 Experiments on Artificial Data

Based on the artificial dataset described in Sect. 2.5, we evaluated how the
compression performance changes depending on the characteristics of the input
binary relation matrix A of a simple structure.

Dependency of Compression Ratio on Matrix Structure. One of the
key characteristics of the binary relation matrix A is its density, the number of
set bits divided by the total number of entries in A. For reference, the labels
for a sequencing-based de Bruijn graphs typically exhibit very low densities,
commonly <0.5%. Especially in this low-density region, we find that the prop-
erties of the binary relation matrix have a strong effect on the compression ratio
of individual methods. A second determinant of performance is whether any
assumptions are made on the properties of the data.
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Fig. 3. Size of the representation of A ∈ {0, 1}106×3·103 with densities d < 0.01 using
different approaches: (a) uniformly random bits; (b) uniformly random rows with mul-
tiplicity 5; (c) uniformly random columns with multiplicity 5. We expect approach (c)
to be best reflecting the real-world data of a de Bruijn graph built on related sequences.

On sparse, fully random data, the baseline compressors fare very well
(Fig. 3(a)), as no assumptions can be made about relationships. Notably, Rain-
bowfish, which exploits redundancy among the rows, generates considerable over-
head for very low densities. In the field of BRWT methods, the Multi-BRWT is
closest to the best performing choices.

In the setting of redundant rows (data set ii; Fig. 3(b)), as expected, Rain-
bowfish shows the strongest performance, clearly exploiting the row redundancy.
Again, among the BRWT methods the Multi-BRWT performs best.

Finally, in the setting that comes closest to a typical task of labeling de Bruijn
graphs derived from sequencing data (Fig. 3(c)), the Multi-BRWT approach
shows superior performance. Exploiting the correlated columns of the matrix,
Multi-BRWT achieves a 5-fold improvement in compression ratio compared to
Rainbowfish and more than 2-fold compared to the closest competitor. Notably,
the baseline binary BRWT has no advantage over the other baseline methods.
Further, we observe that this performance gain increases with the total number
of columns in the matrix (Supplemental Figures 1 and 2).

3.2 Experiments on Real-World Data

To compare the compression performance of the considered methods under a
variety of conditions, we have constructed two test datasets that exhibit different
matrix sparsity characteristics.

Kingsford Human RNAseq (2,652 Read Sets). We filtered the 2,652 raw
sequencing read sets with the KMC [13] tool to extract frequent unique canonical
k-mers (defined as the lexicographical minimum of the k-mer and its reverse
complement) from each (k = 20). We used the same k value and thresholds for
the k-mer frequency level as [20]. Using the k-mers extracted, we constructed
a de Bruijn graph with 3,693,178,415 nodes and annotated these with their
source read sets, which resulted in 2,586 labels (66 filtered read sets were empty)
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and a binary relation (annotation) matrix of density ∼0.19%. As a baseline for
comparison, we used the straightforward column-compressed annotation, which
required a total of 36.56 Gigabytes (Gb) of space. We used this as a starting
point to convert the annotation into the other formats.

Table 1. The measured size of the compressed binary relation matrix for different
representations, in Gigabytes (Gb).

Methods Kingsford RefSeq

Column 36.56 80.18

Flat 41.21 121.60

Rainbowfish 23.16 136.65

BinRel-WT 49.57 N/A

BinRel-WT (sdsl) 31.44 150.59

BRWT 14.05 57.24

Multi-BRWT (Split 3) 13.20 53.95

Multi-BRWT (Split 5) 13.01 53.09

Multi-BRWT (Split 7) 13.27 53.54

Multi-BRWT (Split 10) 13.54 54.77

Multi-BRWT (Split 13) 14.10 56.25

Multi-BRWT (GPM) 10.60 50.13

Multi-BRWT (GPM + Relax 3) 10.16 47.20

Multi-BRWT (GPM + Relax 5) 9.94 44.22

Multi-BRWT (GPM + Relax 7) 9.94 44.03

Multi-BRWT (GPM + Relax 10) 9.95 43.73

Multi-BRWT (GPM + Relax 20) 9.95 43.62

The results are summarized in Table 1. As expected, the simple row-based
and BinRel-WT representations require more than 30 Gb in total. The current
state-of-the-art method, Rainbowfish, reduces this by 23% to 23.16 Gb, exploit-
ing the redundancy of rows in the input matrix. The basic BRWT benefits from
the column correlation and drastically improves on Rainbowfish, showing a 39%
lower size. We further reduce this size through our generalized approach using
Multi-BRWT. While some increase in arity reduces size compared to the binary
case, a higher arity does not necessarily translate into lower space, as certain
submatrices do not benefit from being grouped. The smallest fixed-arity repre-
sentation is Multi-BRWT (Split 5), requiring 13 Gb of storage space and 222 min
of compute time to construct with four threads.

We improved the compression performance of a binary BRWT through the
greedy pairwise matching (GPM) procedure described in Sect. 2.3. This strategy
further decreases the size by another 18% to 10.6 Gb. Finally, optimizing the
tree topology using the GPM procedure and selectively removing internal nodes
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(reassigning children to their grandparents) while maintaining a constraint on
each node’s maximum number of children, leads to the smallest space achieved
in our experiments. By applying this technique, we decrease the required space
to 9.94 Gb (Multi-BRWT (GPM + Relax 5), with at most 5 children for each
node). This is a 29% improvement over the basic BRWT representation and
a 57% improvement over Rainbowfish. The Multi-BRWT (GPM + Relax 5)
representation took 187 and 141 min of the compute time with 30 threads for
the first and the second stages of the construction algorithm, respectively.

RefSeq Reference Genomes. Compression of the complete RefSeq genome
annotation (release 88) resulted in a de Bruijn graph of dimension k = 15 con-
taining n = 1, 073, 741, 824 nodes, leading to a binary relation matrix of n rows
and m = 3, 173 columns with density ∼3.8%, which is relatively high for a
genome graph annotation and can be explained by the small k-mer size used.

This is a substantially larger dataset with less dependency between labels
(columns). With the Multi-BRWT (GPM + Relax 20) representation, we were
able to achieve a compressed storage size of only 43.6 Gb (Table 1). Conversion
from the column-compressed representation to Multi-BRWT (GPM + Relax 20)
took 625 and 733 min of the compute time with 30 threads for the first and the
second Multi-BRWT construction stages, respectively, which is quite reasonable
for a real-world setting.

Also here, the basic BRWT method improves drastically over the column
compressed baseline (29%), and the Multi-BRWT approach considerably sur-
passes the basic BRWT method (24% redunction in size). One can see that
the state-of-the-art method Rainbowfish performs very poorly on the RefSeq
dataset, which can be explained by the high density of the annotation matrix.

The construction of the BinRel-WT representation exceeded our available
RAM (2Tb).

All experiments were performed on a Intel(R) Xeon(R) CPU E7-8867 v3
(2.50 GHz) processor from ETH’s shared high-performance compute systems.

Supplementary Results. Compression ratios for methods using RRR vectors
of block size 127 can be found in the Supplementary Materials.

4 Conclusion

We have presented a series of compressed representation methods for binary
relations, building upon and improving on the existing literature. By generalizing
BRWTs to multiary trees with improved partitioning schemes and adaptive arity
to reduce data representation overhead, we have improved on state-of-the-art
compression techniques for both simulated and real-world biological datasets.

We have shown that the structure of the input data has a strong influence
on the compression performance and methods such as Rainbowfish benefit from
presence of redundancy in rows or their correlations (when multiple objects carry
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a similar set of labels). It is noteworthy that in a real-world setting, where more
and more labels are added to the set, the number of redundant rows decreases
(ultimately leading to a set of mostly independent rows) and these methods
work less well. Interestingly, it is especially this setting that regularly occurs in
the labeling of genome graphs, where an underlying set of (related) sequences is
assigned a growing set of different labels.

We have presented a method that copes very well with an increasing number
of related columns as well as with the increasing density of the compressed binary
matrix, and we showed that this results in considerable performance gains on
both synthetic and typical real-world data. Our method, Multi-BRWT, led to
a 24–29% reduction in size compared to the basic BRWT scheme on real-world
data, and to a 57–68% reduction compared to the closest state-of-the-art method
for compressing graph annotations, Rainbowfish.

A natural extension of this work will involve the utilization of dynamic vec-
tors in the underlying storage of BRWTs to allow for their use in dynamic
database contexts. Of particular interest are the ability to rearrange columns
and use of dynamic compressed structures to avoid expensive decompression
and recompression steps when performing updates.

Another interesting direction is the development of hybrid BRWT schemes
that take the shape of Multi-BRWT but assign multiple columns to the leaves of
the tree, using arbitrary schemes for compressing these. This would take advan-
tage of both column and row structure in the binary relation matrix. These
approaches are also beneficial for tackling the problem of achieving similar time
complexities for both object and label queries on the compressed representation
of the binary relations.

Overall, we conclude that, despite the advancements in compression over the
recent years, there is still much room and many degrees of freedom in compressor
design for further improvement.

Supplementary Materials. Supplementary materials may be accessed via the
bioRxiv pre-print located at https://doi.org/10.1101/468512.
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Abstract. Reconstruction of population histories is a central problem
in population genetics. Existing coalescent-based methods, like the semi-
nal work of Li and Durbin (Nature, 2011), attempt to solve this problem
using sequence data but have no rigorous guarantees. Determining the
amount of data needed to correctly reconstruct population histories is
a major challenge. Using a variety of tools from information theory, the
theory of extremal polynomials, and approximation theory, we prove new
sharp information-theoretic lower bounds on the problem of reconstruct-
ing population structure—the history of multiple subpopulations that
merge, split and change sizes over time. Our lower bounds are exponen-
tial in the number of subpopulations, even when reconstructing recent
histories. We demonstrate the sharpness of our lower bounds by provid-
ing algorithms for distinguishing and learning population histories with
matching dependence on the number of subpopulations.

Keywords: Population size histories · Mixtures of exponentials ·
Sample complexity

1 Introduction

1.1 Background: Inference of Population Size History

A central task in population genetics is to reconstruct a species’ effective popu-
lation size over time. Coalescent theory [20] provides a mathematical framework
for understanding the relationship between effective population size and genetic
variability. In this framework, observations of present-day genetic variability—
captured by DNA sequences of individuals—can be used to make inferences
about changes in population size over time.

There are many existing methods for estimating the size history of a sin-
gle population from sequence data. Some rely on Maximum Likelihood methods
[14,21–23] and others utilize Bayesian inference [5,8,19] along with a variety of
simplifying assumptions. A well-known work of Li and Durbin [14] is based on
c© Springer Nature Switzerland AG 2019
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using sequence data from just a single human (a single pair of haplotypes) and
revolves around the assumption that coalescent trees of alleles along the genome
satisfy a certain conditional independence property [15]. By and large, meth-
ods such as these do not have any associated provable guarantees. For example,
Expectation-Maximization (EM) is a popular heuristic for maximizing the like-
lihood but can get stuck in a local maximum. Similarly, Markov Chain Monte
Carlo (MCMC) methods are able to sample from complex posterior distributions
if they are run for a long enough time, but it is rare to have reasonable bounds
on the mixing time. In the absence of provable guarantees, simulations are often
used to give some sort of evidence of correctness.

Under what sorts of conditions is it possible to infer a single population
history? Kim, Mossel, Rácz and Ross [11] gave a strong lower bound on the
number of samples needed even when one is given exact coalesence data. In
particular, they showed that the number of samples must be at least exponential
in the number of generations. Thus there are serious limitations to what kind
of information we can hope to glean from (say) sequence data from a single
human individual. In a sense, their work provides a quantitative answer to the
question: How far back into the past can we hope to reliably infer population
size, using the data we currently have? We emphasize that although they work
in a highly idealized setting, this only makes their problem easier (e.g. assuming
independent inheritance of loci along the genome and assuming that there are
no phasing errors) and thus their lower bounds more worrisome.

1.2 Our Setting: Inference of Multiple Subpopulation Histories

A more interesting and challenging task is the reconstruction of population struc-
ture, which refers to the sub-division of a single population into several subpop-
ulations that merge, split, and change sizes over time. There are two well-known
works that attack this problem using coalescent-based approaches. Both use
sequence data to infer population histories where present-day subpopulations
were formed via divergence events of a single, ancestral population in the distant
past. The first is Schiffels and Durbin [21], who used their method to infer the
population structure of nine human subpopulations up to about 200,000 years
into the past. More recently, Terhorst, Kamm and Song [23] inferred population
structures of up to three human subpopulations. Just as in the single population
case, these methods do not come with provable guarantees of correctness due to
the simplifying assumptions they invoke and the heuristics they employ.

As for theoretical work, the lower bounds proven for single population triv-
ially carry over to the setting of inferring population structure. However, the
lower bound in [11] only applies when we are trying to reconstruct events in the
distant past, leading us to a natural question: can we infer recent population
structure, but, when there are multiple subpopulations?

In this paper, we establish strong limitations to inferring the population
sizes of multiple subpopulation histories using pairwise coalescent trees. We
prove sample complexity lower bounds that are exponential in the number of
subpopulations, even for reconstructing recent histories. Our results provide a
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quantitative answer to the question, Up to what granularity of dividing a pop-
ulation into multiple subpopulations, can we hope to reliably infer population
structure?

Our methods incorporate tools from information theory, approximation the-
ory, and analysis (from [25]). To complement our lower bounds, we also give
an algorithm for hypothesis testing based on the celebrated Nazarov-Turán
lemma [18]. Our upper and lower bounds match up to constant factors and
establish sharp bounds for the number of samples needed to distinguish between
two known population structures as a function of the number of subpopula-
tions. Finally, for the more general problem of learning the population structure
(as opposed to testing which of two given population structures is more accu-
rate) we give an algorithm with provable guarantees based on the Matrix Pencil
Method [9] from signal processing. We elaborate on our results in Sect. 1.4.

1.3 Modeling Assumptions

Our results will apply under the following assumptions: (1) individuals are hap-
loids1, (2) the genome can be divided into known allelic blocks that are inherited
independently and (3) for each pair of blocks, we are given the exact coales-
cence time. Indeed, in practice, one must start with sequenced genomes—and in
the context of recovering events in human history, (potentially unphased) geno-
types of diploid individuals. The problem of recovering coalescence times from
sequences provides a major challenge and often requires one to either know the
population history beforehand, or leverage simultaneous recovery of history and
coalescence times using various joint models that enable probabilistic inference.

But since the main message of our paper is a lower bound on the number of
exact pairwise coalescent samples needed to recover population history, in prac-
tice it would only be harder. Even in our idealized setting, handling 7 or 8 sub-
populations already requires more data than one could reasonably be assumed to
possess. Thus, our work provides a rather direct challenge to empirical work in
the area: Either results with 7 or 8 subpopulations are not to be trusted or there
must be some biological reason why the types of population histories that arise
in our lower bounds, that are information-theoretically impossible to distinguish
from each other using too few samples, can be ruled out.

The Multiple-Subpopulation Coalescent Model. Consider a panmictic
haploid2 population, such that each subpopulation evolves according to the stan-
dard Wright-Fisher dynamics3—we direct the reader to [3] for an overview. For
simplicity, we assume no admixture between distinct subpopulations as long as

1 Alternatively, diploids whose phasing is provided.
2 In a diploid population, the exponents are scaled by a constant factor 2. This can

be handled easily via scaling and therefore makes little difference in the analysis.
3 The distinction between the Wright-Fisher and Moran models is of no consequence

in this work, as the latter also yields an exponential model in the limit as population
size increases [3].
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they are separated in the model (i.e. they have not merged into a single popula-
tion in the time period under consideration).

As a reminder, if one assumes that a single population has size N which is
large and constant throughout time, then the time to the most recent common
ancestor (TMRCA) of two randomly sampled individuals closely follows the
Kingman coalescent [3] with exponential rate N :

Pr(T > t) = exp(−t/N). (1)

where T , the coalescence time for two randomly chosen individuals, is measured
in generations. Henceforth, we will assume that this is the distribution of T in
the single-component case.

If instead we have a population which is partitioned into a collection of
distinct subpopulations with non-constant sizes, let N(t) be the function that
describes the sub-population sizes over time. As in [11], we will assume that the
function N(t) is piecewise constant with respect to some unknown collection of
intervals I1, I2, . . . partitioning the real line. In particular, for each t ∈ Ik, there
is an associated vector of effective subpopulation sizes N(t) = (N (k)

1 , . . . , N
(k)
Dk

),
indexed by the Dk subpopulations present at time t. The indexing need not be
consistent across different intervals, as their semantic meaning will change as
subpopulations merge and split. For example, N

(k)
1 and N

(k+1)
1 need not always

represent the sizes of the same subpopulation.
Consider the case where N(t) is constant for all t ∈ I = [a, b], where 0 <

a < b, with no admixture and no migration in-between subpopulations in the
time interval I. In this case, the coalescence time follows the law of a convex
combination of exponential functions:

Pr(T > a + t
∣
∣ T > a) =

D∑

�=0

p�e
−λ�t (2)

where p0 + p1 + · · ·+ pD = 1, λ0 = 0 and the other λi are 1
Ni

(refer to Appendix
A for a more careful treatment).

The population structure is assumed to undergo changes over time, where
the positive direction points towards the past. The three possible changes are:

1. (Split) One subpopulation at time t− becomes two subpopulations at time t
(i.e. Dk = Dk−1 + 1).

2. (Merge) Two subpopulations at time t− join to form one subpopulation at
time t (i.e. Dk = Dk−1 − 1).

3. (Change Size) An arbitrary number of subpopulations change size at time t.

Figure 1 provides an illustrative example of a population history with all of these
events.

If a lineage at time t− is from a subpopulation of size M which splits into
two subpopulations of sizes M1,M2 at time t, then its ancestral subpopulation
is random: for i ∈ {1, 2}, subpopulation i is chosen with probability Mi/M . In
our model, we only allow at most one of these events at any particular time
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point. For us, a “split” looking backward in time refers to a convergence event of
two subpopulations going forward in time, while a “merge” refers to a divergence
event. This convention is chosen because we think of reconstruction as proceeding
backwards in time from the present.

Fig. 1. An example of population structure history, illustrating merges and splits start-
ing with three present-day subpopulations.

Since we are only considering piecewise constant population histories, know-
ing the exponential mixture for each interval I1, I2, . . . provides a complete
description. Namely, if t lies in the interval Ij = [a, b], one can compute the
unconditioned probability as Pr(T > t) = Pr(T > t|T > a) Pr(T > a) and
iterating on Pr(T > a) with respect to the interval Ij−1.

1.4 Our Results

The main theoretical contribution of this work is an essentially tight bound
on the sample complexity of learning population history in the multiple-
subpopulation model. In particular, we show sample complexity lower bounds
which are exponential in the number of subpopulations k. Here is an organized
summary of our results:

– First, we show a two-way relationship between the problem of learning a
population history (in our simplified model) and the problem of learning a
mixture of exponentials. Recall that when the effective subpopulation sizes
are all constant, the distribution of coalescence times follows Eq. (2) and thus
is equivalent to learning the parameters pt and λt in a mixture of exponen-
tials. Conversely, we show how to use an algorithm for learning mixtures
of exponentials to reconstruct the entire population history by locating the
intervals where there are no genetic events and then learning the associated
parameters in each, separately. (Sect. 2.1 with some details in Appendix B
and full details in Appendices B and C of [12]).

– (Main Result) Using this equivalence, we show an information-theoretic lower
bound on the sample complexity that applies regardless of what algorithm
is being used. In particular, we construct a pair of population histories that
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have different parameters but which require Ω((1/Δ)4k) samples in order to
tell apart. This lower bound is exponential in the number of subpopulations k.
Here, Δ ≤ 1/k is the smallest gap between any pair of the λt’s. The proof of
this result combines tools spanning information theory, extremal polynomials,
and approximation theory. (Sect. 2.3 with details in Appendix D of [12]).

– In the hypothesis testing setting where we are given a pair of population his-
tories that we would like to use coalescence statistics to distinguish between,
we give an algorithm that succeeds with only O((1/Δ)4k) samples. The key
to this result is a powerful tool from analysis, the Nazarov-Turán Lemma
[18] which lower bounds the maximum absolute value of a sum of exponen-
tials on a given interval in terms of various parameters. This result matches
our lower bounds, thus resolving the sample complexity of hypothesis testing
up to constant factors. (Sect. 2.4 with details in Appendix E of [12]).

– In the parameter learning setting when we want to directly estimate popu-
lation history from coalescence times, we give an efficient algorithm which
provably learns the parameters of a (possibly truncated) mixture of expo-
nentials given only O((1/Δ)6k) samples. We accomplish this by analyzing
the Matrix Pencil Method [9], a classical tool from signal processing, in the
real-exponent setting. (Sect. 2.2 with details in Appendix F of [12]).

– Finally, we demonstrate using simulated data that our sample complexity
lower bounds really do place serious limitations on what can be done in prac-
tice. From our plots we see that the sample complexity grows exponentially
in the number of subpopulations even in the optimistic case where we have
separation Δ = 1/k which minimizes our lower bounds. In particular, the
number of samples we need very quickly exceeds the number of functionally
relevant genes (on the order of 104) and even the number of SNPs available in
the human genome (on the order of 107). In fact, via direct numerical analysis
of our chosen instances, we can give even stronger sample-complexity lower
bounds: for 5 populations, we construct population histories that require over
10 trillion samples to distinguish (Sect. 3, with details in Appendix C.2).

Discussion of Results: In summary, this work highlights some of the funda-
mental difficulties of reconstructing population histories from pairwise coales-
cence data. Even for recent histories, the lower bounds grow exponentially in
the number of subpopulations. Empirically, and in the absence of provable guar-
antees, and even with much noisier data than we are assuming, many works
suggest that it is possible to reconstruct population histories with as many as
nine subpopulations. While testing out heuristics on real data and assessing
the biological plausibility of what they find is important, so too is delineating
sharp theoretical limitations. Thus we believe that our work is an important
contribution to the discussion on reconstructing population histories. It points
to the need for the methods that are applied in practice to be able to justify
why their findings ought to be believed. Moreover they need to somehow pre-
clude the types of population histories that arise in our lower bounds and are
genuinely impossible to distinguish between given the finite amount of data we
have access to.
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1.5 Related Works

As mentioned in Sect. 1.1, existing methods that attempt to empirically estimate
the population history of a single population from sequence data generally fall
into one of two categories: Many are based on (approximately) maximizing the
likelihood [14,21–23] and others perform Bayesian inference [5,8,19]. Generally,
they are designed to recover a piecewise constant function N(t) that describes
the size of a population, with the goal of accurately summarizing divergence
events, bottleneck events and growth rates throughout time.

Many notable methods that fall into the first category rely on Hidden Markov
Models (HMMs), which implicitly make a Markovian assumption on the coales-
cent trees of alleles across the genome. One notable work is Li and Durbin [14],
which gave an HMM-based method (PSMC) that reconstructs the population
history of a single population using the genome of a single diploid individual.
Later related works gave alternative HMMs that incorporate more than two
haplotypes (diCal [22] and MSMC [21]) and improve robustness under phasing
errors (SMC++ [23]).

Methods in the second category operate under an assumption about the prob-
ability distribution of coalescence events and the observed data. For instance,
Drummond [5] prescribes a prior for the distribution of coalescence trees and
population sizes, under which MCMC techniques are used to compute both an
output and a corresponding 95% credibility interval. However, given the highly
idealized nature of their models and the limitations of their methodology (for
example, there is no guarantee their MCMC method has actually mixed), it is
unclear whether the ground truth actually lies in those credibility intervals.

In the multiple subpopulations case, there are two major coalescent-based
methods. The first is Schiffels and Durbin [21], which introduced the MSMC
model as an improvement over PSMC. These authors used their method to infer
the population history of nine human subpopulations up to about 200,000 years
into the past. Terhorst, Kamm and Song [23] introduced a variant (SMC++)
that was directly designed to work on genotypes with missing phase informa-
tion. In particular, they demonstrate the potential dangers of relying on phase
information, by showing that MSMC is sensitive to such errors. In an experi-
ment, SMC++ was used to perform inference of population histories of various
combinations of up to three human subpopulations. In these experiments, indi-
viduals are purposefully chosen from specific subpopulations. We emphasize that
in our model, due to the presence of population merges and splits, one does not
always know what subpopulation an ancestral individual is from.

As a side remark, there are approaches that attempt to infer a (single-
component) population history using different types of information. We briefly
touch upon some of these known works. One alternative strategy is to use the
site frequency spectrum (SFS), e.g. [2,6]. The earliest theoretical result regard-
ing SFS-based reconstruction is due to Myers, Fefferman and Patterson [17],
who proved that generic 1-component population histories suffer from unidenti-
fiability issues. Their lower bound constructions have a caveat: They are patho-
logical examples of oscillating functions which are unlikely to be observed in a
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biological context. Later works [1,24] prove both identifiability and lower bounds
for reconstructing piecewise constant population histories using information from
the SFS. (In contrast, as our algorithms show, reconstruction from coalescence
data does not suffer from the same lack of identifiability issues.)

Most recently, Joseph and Pe’er [10] developed a Bayesian time-series model
that incorporates data from ancient DNA to recover the history for multiple
subpopulations only under size changes, without considering merges or splits.
While our analysis does not directly account for such data, the necessity of con-
sidering such models is consistent with our assertion: extra information about the
ground truth, such as directly observable information about the past (e.g. ances-
tral DNA), is probably required in order for the problem to even be information-
theoretically feasible. In addition, [10] does not solve for subpopulation sizes, but
rather subpopulation proportions, which contains less information than what we
are after.

Remarks and Comparisons. In the aforementioned works that use genetic
sequence data to perform inference, it becomes necessary to consider mutation
rates and the genetic identity of ancestral alleles. However, in our version of
the problem, each sample is a hypothetical perfect measurement of a pairwise
coalescence time. For this setting, alternative models such as Kimura-Crow’s
infinite alleles model [13] which first condition on coalescent trees, do not provide
extra power for inferring population structure.

Looking ahead, we emphasize that our results about hardness rely on a reduc-
tion to a statistical problem of learning a certain type of mixture distribution.
Informally, such a distribution arises from uncertainty regarding the following
query: Given an individual locus and its lineage, which subpopulation is it con-
tained in at any given moment in time? This uncertainty is attributed to the
following: (1) in the coalescent model, the assumption that a lineage randomly
chooses an ancestral subpopulation in the case of a convergence event (split), and
(2) the lack of explicit knowledge of which present-day subpopulation the locus
belongs to. Statistical approaches to resolving these are confounded by admix-
ture and migration, and ought to be accounted for in any model that attempts
to solve this problem. Our model is a natural extension of Kingman’s coalescent
which inherently incorporates both uncertainties, assuming no admixture only
for the sake of theoretical analysis. Previous works such as [10,21] attempt to
correct for admixture during inference and solely consider divergence events.

If the only possible population structure histories are treelike due to the
absence of splits—e.g. histories that resemble Fig. 4d of Schiffels and Durbin
[21]—and one explicitly knows what subpopulation each lineage belongs to at
every point in time, then the problem is significantly easier. However, such recon-
structions likely do not provide the complete picture. It is natural to consider
more complex histories, and ask how fine-grained of a structure one can obtain
from data.
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2 Theoretical Discussion

2.1 Reductions Between Mixtures of Exponentials and Population
History

In the rest of our theoretical analysis, we will focus on the mixture of expo-
nentials viewpoint of population history. To justify this, note that if we can
learn truncated mixtures of exponentials, then we can easily learn population
history. Details are given in the full version (Appendix F of [12]), including a
concrete algorithm based on our analysis of the Matrix Pencil Method. Con-
versely, we observe that an arbitrary mixture of exponentials can be embedded
as a sub-mixture of a simple population history with two time periods, so that
recovering the population history requires in particular learning the mixture of
exponentials. The following theorem makes this precise; its proof is delegated to
Appendix B.

Theorem 1. Let P with P (T > t) =
∑k

i=1 pie
−λit be the distribution of an

arbitrary mixture of k exponentials (over random variable T ) with all λi > 0
and

∑

i pi = 1. Then for any t0 > 0, there exists a two-period population history
with k populations which induces a distribution Q on coalescence times such that

Q(T > t + t0|T �= ∞, T > t0) = P (T > t).

Remark 1. By choosing a small value for t0, we ensure that very few coalesence
times occur in the more recent period, so that the reconstruction algorithm must
rely on the information from the second (less recent) period with our planted
mixture of exponentials.

Additionally, we provide a more sophisticated version of this reduction which
maps two mixtures of exponentials to different population histories simultane-
ously, while preserving statistical indistinguishability.

Theorem 2. Let P with P (T > t) =
∑k

i=1 pie
−λit and Q with Q(T > t) =

∑�
j=1 qje

−μjt be arbitrary mixtures of exponentials with all λi, μj > 0. Then for
all sufficiently small t0 > 0, there exist two distinct 2-period population histories
R with k + 2 subpopulations and S with � + 2 subpopulations such that:

1. For any t > 0:

R(T > t + t0 | T �= ∞, T > t0) = P (T > t)

and
S(T > t + t0 | T �= ∞, T > t0) = Q(T > t).

2. R[T = t0] = S[T = t0] and R[T = ∞] = S[T = ∞].

Again, if we take t0 small enough, we ensure that any distinguishing algorithm
must rely on information from the second (less recent) period, and hence because
the probability of all other events match, must distinguish between the mixtures
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of exponentials Q and R. The main idea is to use the construction from The-
orem 1 on both mixtures of exponentials, and ensure that the two population
histories cannot be distinguished via coalescence statistics by adding extra sub-
populations as necessary. We give some high-level details about Theorem 2 and
its proof in Appendix B.2. A proof of Theorem 2 can be found in the full version
of our paper [12].

2.2 Guaranteed Recovery of Exponential Mixtures via the Matrix
Pencil Method

Given samples from a probability distribution

Pr(T > t) =
k∑

i=1

pie
−λit, (3)

can we learn the parameters p1, . . . , pk, λ1, . . . , λk? In Sect. 2.1, we established
the equivalence between solving this problem and learning population history.
Suppose for now we we are given access to the exact values of probabilities
vt := Pr(T ≥ t) for t ∈ R≥0, i.e. vt =

∑k
j=1 piα

t
i where αi = e−λi . The Matrix

Pencil Method is the following linear-algebraic method, originating in the signal
processing literature [9], which solves for the parameters {pi, λi}k

i=1:

1. Let A,B be k × k matrices where Aij = vi+j−1 and Bij = vi+j−2.
2. Solve the generalized eigenvalue equation det(A−γB) = 0 for the pair (A,B).

The γ which solve det(A − γB) = 0 are the α’s.
3. Finish by solving for the p’s in a linear system of equations v = V p, where v =

(v0, . . . , vk−1), V is the k × k Vandermonde matrix generated by α1, . . . , αk

and p is the vector of unknowns (p1, . . . , pk).

To understand why the algorithm works in the noiseless setting, consider the
decomposition A = V DpDαV T and B = V DpV

T where V = Vk(α1, . . . , αk) is
the k×k Vandermonde matrix whose (i, j) entry is αi−1

j , Dα = diag(α1, . . . , αk)
and Dp = diag(p1, . . . , pk). Then it’s clear that the αi are indeed the generalized
eigenvalues of the pair (A,B). However, in our setting, we do not have access to
the exact measurements vt, but instead have noisy empirical measurements ṽt;
in practice, the output of the MPM can be very sensitive to noise.

Analysis of MPM Under Noise. We now describe our analysis of the MPM in
the more realistic setup where the CDF is estimated from sample data. First note
that the model (Eq. 3) is statistically unidentifiable if there exist two identical
λ’s. Indeed, the mixture 1

2e−λt + 1
2e−λt is exactly same as the single-component

model e−λt, as is any other re-weighting of the coefficients into arbitrarily many
components with exponent λ. Therefore it is natural to introduce a gap parameter
Δ := mini�=j |λi − λj | which is required to be nonzero, as in the work on super-
resolution (e.g. [4,16]).
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Without loss of generality, we also assume that: (1) the components are sorted
in decreasing order of exponents, so that λ1 > · · · > λk > 0, and (2) time has
been re-scaled4 by a constant factor, so that λi ∈ (0, 1) for each i. Now we can
state our guarantee for the MPM under noise:

Theorem 3. Let Δ = mini�=j |λi − λj | and let pmin = mini pi. For all δ > 0,

there exists N0 = O
(

k10

p4
min

(
2e
Δ

)6k log 1
δ

)

such that, with probability 1 − δ, using
empirical estimates ṽ0, . . . , ṽ2k−1 from N ≥ N0 samples, the matrix pencil
method outputs {(λ̃j , p̃j)}k

j=1 satisfying

|˜λj−λj |=O

(

k3.5

p2
min

(

2e

Δ

)2k
√

1

N
log

1

δ

)

and |p̃j−pj | = O

(

k5

p2
min

(

2e

Δ

)3k
√

1

N
log

1

δ

)

for all j.

Remark 2. Letting αi denote e−λi , we note that we can equivalently focus on
learning the αi’s, and that guarantees for recovering λi and αi are equivalent
up to constants: e−1|αi − α̃i| ≤ |λi − λ̃i| ≤ |αi − α̃i|. since e−x is monotone
decreasing on [0, 1] with derivative lying in [−1,−1/e].

The full proof of Theorem 3 is given in the full version [12]. As in previous
work analyzing the MPM in the super-resolution setting with imaginary expo-
nents [16], we see that the stability of MPM ultimately comes down to analyzing
the condition number of the corresponding Vandermonde matrix, which in our
case is very well-understood [7].

2.3 Strong Information-Theoretic Lower Bounds

In this section we describe our main results, strong information theoretic lower
bounds establishing the difficulty of learning mixtures of exponentials (and
hence, by our reductions, population histories). The full proofs of all results
found in this section are given in Appendix D of [12]. First, we state a lower
bound on learning the exponents λj .

Theorem 4. For any k > 1, there exists an infinite family of parameters
a1, . . . , ak, λ1, . . . , λk and b1, . . . , bk, μ1, . . . , μk parametrized by integers m >
2(k − 1) and α ∈ (0, 1

2 ) such that:

1. Each λi and μj is in (0, 1], λ1 = μ1, and the elements of {λi}k
i=2∪{μi}k

i=2 are
all distinct and separated by at least Δ = 1/(m + 2k). Furthermore λ2, μ2 >
α/k.

4 In practice, even if this scaling is unknown, this is easily handled by e.g. trying
powers of 2 and picking the best result in CDF distance, for instance ‖F − G‖∞ =
supt |F (t) − G(t)|.
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2. Let H1 and H2 be hypotheses, under which the random variable T respectively
follows the distributions

Pr
H1

[T ≥ t] =
k∑

i=1

aie
−λit and Pr

H2
[T ≥ t] =

k∑

i=1

bie
−μit.

If N samples are observed from either H1 or H2, each with prior probability
1/2, then the Bayes error rate for any classifier that distinguishes H1 from
H2 is at least 1−δ

2 , where

δ =
α
√

2N

2k − 3
[Δ(2k − 3)]2k−4. (4)

Remark 3. From the square-root dependence of N in Theorem 3, the required
number of samples N0 has rate 4k in the exponent of 2e

Δ if one just wants to
learn the λ’s, and Theorem 4 confirms that the exponent 4k is tight for learning
the λ’s.

Table 1. Sample lower bound from Theorem 4 illustrated for k = 5, 7, and 9. We
instantiate Theorem 4 with α = 1/k, m = 2k, Δ = 1/(4k), and δ = 1/2, and solve for
N in Eq. 4 to get the required number of samples N0.

k Sample lower bound (from Theorem 4)

5 4.531 × 107

7 9.665 × 1010

9 1.008 × 1014

In Table 1, we give a table illustrating the theoretical sample lower bound
from Theorem 4 for a few sample values of k, the number of distinct exponentials
in the mixture. It can be easily verified that the number of samples required to
hypothesis test two mixtures of exponentials blows up exponentially as the num-
ber of exponentials in the mixture increases, quickly getting completely infeasible
at k = 9. The parameters in Table 1 are selected to approximately match the
parameters of our simulated findings in Sect. 3. In fact, while the sample com-
plexity in Theorem 4 has a tight exponent, for k = 5 we manage to get stronger
lower bounds via a direct analysis of simple mixtures found via simulation (in
Sect. 3). Indeed, we find a pair of mixtures for k = 5 that requires at least
≈ 1.4 × 1013 samples to distinguish, which is much greater than the value in
Table 1. We refer the reader to Sect. 3 and Appendix C.2 for details.

Next we state an additional information-theoretic lower bound showing that
the information-theoretic (minimax) rate is necessarily of the form 1√

N
Δ−O(k)

up to lower order terms, even if all of the λi are already known and we are only
asked to reconstruct the mixing weights pj .
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Theorem 5. Let m, k be positive integers such that m > k > 3 and let Δ =
2/(m + k). There exists a fixed choice of λ1, . . . , λk which are Δ-separated such
that

inf
p̂

max
p

Ep‖p − p̂‖1 ≥ 1
4

min

(

1,
k − 3√

2N

(
2

Δ(k − 3)

)k−4
)

(5)

where the max is taken over feasible choices of p, and the infimum is taken over
possible estimators p̂ from N samples of the mixture of exponentials with CDF
F (t) = 1 − ∑

j pje
−λjt.

Remark 4. Recall that in Theorem 3, the number of samples needed was expo-
nential in 4k when learning just the λ’s and in 6k for learning both the λ’s and
the p’s. The exponent of 2k in Theorem 5 suggests that the discrepancy of 2k
for MPM in Theorem 3 is tight.

As expected, our lower bounds show that the learning problem becomes
harder as Δ approaches 0. The “easiest” case, then, ought to be when Δ is
as large as possible, so that the λi are equally spaced apart in the unit inter-
val. This raises the following question: as Δ grows, does the sample complexity
remains exponential in k, or is there a phase transition (as in super-resolution
[16]) where the problem becomes easier? In the full version of our paper [12], we
completely resolve this question: the sample complexity still grows exponentially
in 4k when Δ is maximally large.

2.4 A Tight Upper Bound: Nazarov-Turán-Based Hypothesis
Testing

As an alternative to the learning problem that the Matrix Pencil Method solves,
we also consider the hypothesis testing scenario in which we want to test if
the sampled data matches a hypothesized mixture distribution. In this case, we
can give guarantees from weaker assumptions and requiring smaller numbers
of samples. To state our guarantee, we need the following additional notation:
for P a mixture of exponentials, let pλ(P ) denote the coefficient of e−λt, which
is 0 if this component is not present in the mixture. We study the following
simple-versus-composite hypothesis testing problem using N samples:

Problem 1. Fix k0, k1, δ,Δ > 0 and let P be a known mixture of k0 exponentials.

– H0: The sampled data is drawn from P .
– H1: The sampled data is drawn from a different, unknown mixture of at most

k1 exponentials Q. Let ν1 := max{λ : pλ(P ) > pλ(Q)} and ν2 := max{λ :
pλ(Q) > pλ(P )}. We assume that min{|pν1(P )−pν1(Q)|, |pν2(P )−pν2(Q)|} ≥
δ and |ν1 − ν2| ≥ Δ.

Henceforth, we will refer to H0 as the null hypothesis and H1 as the alternative
hypothesis (note that H1 is a composite hypothesis). To solve this hypothesis
testing problem, we propose a finite-sample variant of the Kolmogorov-Smirnov
test:
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1. Let α > 0 be the significance level.
2. Let FN be the empirical CDF and let F be the CDF under the null hypoth-

esis H0.
3. Reject H0 if supt |Fn(t) − F (t)| >

√

log(2/α)/2N .

We show that this test comes with a provable finite-sample guarantee.

Theorem 6. Consider the problem setup as in Problem 1 and fix a significance
level α > 0. Let k := k0+k1

2 and cΔ = 8e2/min(1/Δ, 2k − 1). Then:

1. (Type I Error) Under the null hypothesis, the above test rejects H0 with prob-
ability at most α.

2. (Type II Error) There exists N0(α) = O((cΔ/Δ)4k−2 log(2/α)/δ2) such that
if N ≥ N0, then the power of the test at significance level α is at least:

Pr
Q∈H1

[Reject H0] ≥ 1 − 2 exp
(−Nδ2(Δ/cΔ)4k−2/8

)

. (6)

The full proof of Theorem 6 is given in the full version [12]. The key step in
the proof is a careful application of the celebrated Nazarov-Turán Lemma [18].

Remark 5. This improves upon the Matrix Pencil Method upper bound (The-
orem 3), in terms of the exponent found above Δ (Δ−6k versus Δ−4k) and
above the mixing weights (p4min versus δ2). Even when the alternative Q is fixed
and known, we see from Theorem 4 that Ω((1/δ2)(1/Δ)4k) many samples are
information-theoretically required, which matches Theorem 6.

3 Simulations and Indistinguishability in Simple
Examples

Our theoretical analysis rigorously establishes the worst-case dependence on the
number of samples needed in order to learn the parameters of a single period of
population history under our model – recall the construction of Theorem 4 of two
hard-to-distinguish mixtures of exponentials and the result Theorem Theorem 2
converting these to population histories.

In our simulations, we will analyze both the performance and information-
theoretic difficulty of learning not a specially constructed worst-case instance,
but instead an extremely simple population history with k populations. More
precisely we consider the following instance:

Simulation Instance(k):

Population history description: We consider reconstructing a single
period model with k populations in which the ratio of the population sizes
is 1 : 2 : · · · : k and the relative probability of tracing back to each of these
populations (i.e. Pr(Ei,i|T > t0) from Appendix A) are all equal to 1/k2. This
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can easily be realized as a one period of a 2-period population history model,
in which in the second (more recent) era all populations are the same size5

Mixture of exponentials description: We consider the following mixture
of exponentials:

Pr(T > t) = (1 − 1/k) +
k∑

i=1

(1/k2)e−t/k.

The constant term represents atomic mass at ∞ and corresponds to no coa-
lescence. When k = 1 this is a standard exponential distribution, otherwise
it is a mixture of k + 1 exponentials, counting the degenerate constant term.

We do not believe that this is an unusually difficult instance of a mixture of
exponentials on k components. If anything, the situation is likely the opposite:
our worst-case analysis (Theorems 5, 3) suggests that this is comparatively easy
as the gap parameter Δ is maximally large.

In order to evaluate the error in parameter space from the result of the
learning algorithm, we adopted a natural metric, the well-known Earthmover’s
distance. Informally, this measures the minimum distance (weighted by pi and
recovered p̃i) that the recovered exponents must be moved to agree with the
ground truth; we give the precise definition in Appendix C.2.

For a point of comparison to MPM, we also tested a natural convex pro-
gramming formulation which essentially minimizes ‖ ∫

e−λtdμ(λ)− (1− F̃ (t))‖∞
over probability measures μ on R≥0, where F̃ is the empirical CDF – refer to
Appendix C.1 for details.

The results of running both the convex program and the MPM are shown in
Fig. 2 (blue and green lines) plotted on a log (base 10) scale; details of the setup
are provided in Appendix C.2. As expected based on our theoretical analysis, the
number of samples needed scaled exponentially in k, the number of populations
in our instance. Details of the setup are provided in Appendix C.2; due to limi-
tations of machine precision, the convex program could not reliably reconstruct
at 5 components with any noise level and so this point is omitted.

Besides showing the performance of the algorithms, we were able to deduce
rigorous, unconditional lower bounds on the information-theoretic difficulty of
these particular instances. Each point on the red line corresponds to the existence
of a different mixture of exponentials (found by examining the output of the
convex program), with a comparable number of mixture components6, which is
far in parameter space7 from the ground truth and yet the distribution of N

5 As in Remark 1, we can optionally make the more recent era short so that almost
all samples will be from the earlier period.

6 The alternative hypothesis had no more than a few additional mixture components.
A byproduct of this analysis is that even estimating the number of populations is in
these examples requires a very large number of samples.

7 More precisely, with Earthmover’s distance in parameter space greater than 0.01.
For comparison, an estimator which only gets the (easy) constant component correct
already has Earthmover distance at most 1/k.
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Fig. 2. Plot of #components versus log (base 10) number of samples needed for accu-
rate reconstruction (parameters within Earthmover’s distance 0.01). Below the red line,
it is mathematically impossible for any method to distinguish with greater than 75%
success between the ground truth and a fixed alternative instance which has signifi-
cantly different parameters. (Color figure online)

samples from this model (where N = 10y and y is the y-coordinate in the plot)
has total-variation (TV) distance at most 0.5 from the distribution of N samples
from the true distribution. By the Neyman-Pearson Lemma, this implies that if
the prior distribution is

(
1
2 , 1

2

)

between these two distributions, then we cannot
successfully distinguish them with greater than 75% probability. We describe
the mathematical derivation of the TV bound in Appendix C.2, and illustrate
such a hard-to-distinguish pair in Example 1. Recall that by Theorem 2, such a
hard to distinguish pair of mixtures can automatically be converted into a pair
of hard-to-distinguish population histories.

Notably, the lower bound shows that reliably learning the underlying param-
eters in this simple model with 5 components necessarily requires at least 10
trillion samples from the true coalescence distribution. In reality, since we do
not truly have access to clean i.i.d. samples from the distribution, this is likely
a significant underestimate.

Example 1. Consider the mixtures of exponentials with CDFs F (t) and G(t),
where 1 − F (t) = 0.5 + 0.25e−0.5t + 0.25e−t and

1−G(t) = 0.49975946+0.15359557e−0.45t+0.30642727e−0.81t+0.0402177e−1.55t.

Despite being very different in parameter space, their H2 distance is 7.9727 · 10−6

so any learning algorithm requires at least 15660 samples to distinguish them
with better than 75% success rate.
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A Derivation of the Multiple-Subpopulation Coalescent
Model

For b > a > 0, let I = [a, b] be an interval such that the population structure N is
constant over I. Then Eq. (1), together with the Markov property of Kingman’s
coalescent model tells us that the coalescence time T of two randomly sampled
individuals in the ith sub-population is given, for any t ∈ [0, b − a], by

Pr
(

T > a + t
∣
∣ Ei,i ∧ {T > a}) = exp

(

− 1
Ni

t

)

. (7)

Here, Ei,j represents the event where the ancestry of one of the individuals traces
back to subpopulation i, and the other traces back to j.

Let D be the number of subpopulations restricted to the interval I. By the law
of total probability, the random variable T satisfies, again for any t ∈ [0, b − a],

Pr(T > a+t
∣
∣ T > a) =

∑

i<j

Pr(Ei,j

∣
∣ T > a)+

D∑

i=1

Pr(Ei,i

∣
∣ T > a) Pr(T > a+t

∣
∣ Ei,i∧{T > a})

The first summation over i < j uses the fact that Pr(T > a+t
∣
∣ Ei,j ∧{T > a}) =

1, via the “no admixture” assumption; whenever the two individuals’ lineages
at time a lie in distinct subpopulations, they do not coalesce anywhere in I. Via
Eq. (7), the right hand side can be re-written as seen in Eq. (2), i.e.

Pr(T > a + t
∣
∣ T > a) =

D∑

�=0

p�e
−λ�t.

B Reduction from Mixtures of Exponentials to
Population History

B.1 Proof of Theorem1

Proof. We consider the following population history:

– In the (more recent) period [0, t0] there are k populations and population i
has size

√
qi, where qi is the (unique) nonnegative solution to

pi = qie
−t0/

√
qi .

To see that the solution exists and is unique, observe that the rhs of this
equation is a strictly increasing function in qi which maps (0,∞) to (0,∞).
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– In the (less recent) period [t0,∞) each of the k populations changes to size
1/λi.

By construction, the probability of two independently sampled individuals being
in the same population is proportional to

√
qi · √qi = qi, and conditioned on no

coalescence before time t0 this probability is proportional to pi (since the event
of no coalescence before time t0 given that the two individuals come from pop-
ulation i is e−t0/

√
qi). Therefore the distribution Q of coalescence times satisfies

Q(T > t + t0|T > t0) = q0 +
1

1 − q0

k∑

i=1

pie
−λit (8)

where q0 is the probability that the two individuals sampled were in different
populations.

B.2 Hardness for Distinguishing Population Histories

Theorem 1 shows that any arbitrary mixture of exponentials can be embedded
as a sub-mixture of a simple population history with two time periods. We can
leverage this equivalence to reduce distinguishing two mixtures of exponentials
to distinguishing two population histories, and hence conclude from Theorem 4
that distinguishing two population histories is exponentially hard in the number
of subpopulations.

The high-level idea is to take the reduction from Theorem 1 and apply it to
two arbitrary mixtures of exponentials, and argue that the problem of distin-
guishing the resulting two population histories is at least as hard as distinguish-
ing the two mixtures they came from. This suffices to achieve Condition 1 of
Theorem 1.

The problem that arises is that other statistics about coalescence can still
distinguish the two population histories; at a high level, Condition 2 of Theorem 1
is meant to rule this out. In particular, note that the constant term (q0 in Eq. 8)
is exactly the probability of no coalescence, which is fixed by the subpopulation
sizes, and therefore fixed by the desired mixture. Therefore, if we are not careful,
the probability of no coalescence will be significantly different between our two
population histories, making them easily distinguishable.

To remedy this, we add extra “dummy” subpopulations to the two popu-
lation histories, with sizes that we set in order to equalize the probabilities of
no coalescence (i.e. make R[T = ∞] = S[T = ∞]). In order to prevent these
dummy subpopulations from affecting condition 1 (i.e. that R[T = t|t > t0] =
S[T = t|t > t0]), we ensure that coalescence in these subpopulations cannot
occur at a time greater than t0 by shrinking these subpopulations to size zero
at time t0 (and therefore forcing coalescence). However, this means that we will
additionally have a lot of coalescence occurring at exactly t0 from these dummy
subpopulations, and so this introduces yet another constraint: we have to ensure
that R[T = t0] = S[T = t0]. Once again, we need to tune the sizes of the dummy
subpopulations correctly so that this happens.

The proof of Theorem 2 can be found in the full version of our paper [12].
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C Simulation Methods

C.1 A Convex Programming Approach to Learning

In addition to using the Matrix Pencil Method to learn mixtures of exponentials
in each interval, we also implemented a convex program. Here, the goal is to learn
a mixture of exponentials, whose support is perhaps restricted to an interval
I = [a, b]. The idea is as follows: assume that we know the interval Λ = [0, c] for
which we can assume λ1, . . . , λn ∈ Λ. We first discretize the space of possible
exponents by choosing n equally spaced points λ1, . . . , λn inside Λ. Solve the
convex program

minimize
p

sup
t∈I

∣
∣
∣
∣
∣

n∑

i=1

pie
λit − vt

∣
∣
∣
∣
∣

subject to
∑

i

pi = 1

pi ≥ 0, i = 1, . . . , n.

In practice, we replace supt∈I with the discretization maxt∈S , where S ⊂ I is a
finite mesh of points in I. Since we are learning from samples, we also substitute
vt with ṽt, the empirical estimate of the tail probability Pr[T = t | T ≥ a].
Since the �1-norm of the pi is fixed to be 1, we do not expect to need additional
regularization to get sparse output.

For small instances (see Sect. 3), the convex program is more sample-efficient
than the Matrix Pencil Method. In the context of this paper, however, it does not
come with robustness guarantees. Results on convex programming approaches
for super-resolution are known, due to Candès and Fernandez-Granda [4]; for our
(real-exponent) setting, a different analysis will be required and we leave this to
future work. If we assume that the program does return a sparse output (which
occurs in practice), some guarantees for the accuracy of the output follow auto-
matically from the analysis of Theorems 3 and 6, since for sparse mixtures they
(implicitly) bound parameter error in terms of the closeness in CDF-distance.

Implementation in Simulations: In our experiments, we solved the above
convex program using the barrier method of CPLEX version 12.8 with numerical
emphasis enabled.

C.2 Simulations: Additional Details

Earthmover’s Distance Between Parameters: The Earthmover’s (or 1-
Wasserstein) distance between P and Q measures the minimum transport cost
to move the “mass” corresponding to probability distribution P to that of Q.
Rigorously, in one dimension it can be defined by

EMD(P,Q) := min
π:π|X=P,π|Y =Q

E(X,Y )∼π[|X − Y |]
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where here π ranges over all possible couplings of marginal distributions P and
Q. The following definition makes the notion of Earthmover’s distance between
the parameters of two mixtures of exponentials precise:

Definition 1. Let P and Q be two mixtures of exponentials P (T > t) =
∑

i pie
−λit and Q(T > t) =

∑

i qie
−γit. The Earthmover’s distance in parame-

ter space between P and Q is the Earthmover’s distance between corresponding
atomic measures μP :=

∑

i piδλi
and μQ :=

∑

i qiδγi
where δx represents a Dirac

mass at point x.

Derivation of Per-Instance Information-Theoretic Lower bounds:
Given the alternative instance, we derived the bound by computing the H2

(Hellinger squared) distance between the true distribution and the alternative
distribution, and then applying standard tensorization and comparison inequal-
ities to bound the TV.

Upper Bound Simulations: We ran 300 trials for each setting of k and number
of samples; in order to run the simulation for very large numbers of samples, we
directly generated the corresponding noisy CDF estimates by adding Gaussian
noise of order O(1/

√
N) where N is the number of samples. For reasonable size

N we also ran the methods using actual sample-estimated CDFs and the results
were consistent with the simulated Gaussian-noise CDFs. The lower bound is
analytically computed, not simulated, so it is unaffected by this Gaussian-noise
approximation.

Plotted Data: Here we provide the data plotted in Fig. 2, that was found via
simulation as described above (Table 2).

Table 2. Values plotted on a log (base 10) scale in Fig. 2.

k CVX MPM LB

1 2.98 × 105 9.28 × 104 1.34 × 104

2 3.25 × 108 3.45 × 1010 8.18 × 106

3 3.55 × 1011 3.87 × 1014 1.44 × 108

4 1.21 × 1014 1.40 × 1019 1.13 × 109

5 N/A 4.89 × 1022 1.43 × 1013
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Abstract. While short read aligners, which predominantly use the FM-
index, are able to easily index one or a few human genomes, they do not
scale well to indexing databases containing thousands of genomes. To
understand why, it helps to examine the main components of the FM-
index in more detail, which is a rank data structure over the Burrows-
Wheeler Transform (BWT) of the string that will allow us to find the
interval in the string’s suffix array (SA) containing pointers to starting
positions of occurrences of a given pattern; second, a sample of the SA
that—when used with the rank data structure—allows us access to the
SA. The rank data structure can be kept small even for large genomic
databases, by run-length compressing the BWT, but until recently there
was no means known to keep the SA sample small without greatly slow-
ing down access to the SA. Now that Gagie et al. (SODA 2018) have
defined an SA sample that takes about the same space as the run-
length compressed BWT—we have the design for efficient FM-indexes
of genomic databases but are faced with the problem of building them.
In 2018 we showed how to build the BWT of large genomic databases
efficiently (WABI 2018) but the problem of building Gagie et al.’s SA
sample efficiently was left open. We compare our approach to state-of-
the-art methods for constructing the SA sample, and demonstrate that
it is the fastest and most space-efficient method on highly repetitive
genomic databases. Lastly, we apply our method for indexing partial
and whole human genomes and show that it improves over Bowtie with
respect to both memory and time.
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Availability: The implementations of our methods can be found at
https://gitlab.com/manzai/Big-BWT (BWT and SA sample construc-
tion) and at https://github.com/alshai/r-index (indexing).

1 Introduction

The FM-index, which is a compressed subsequence index based on Burrows
Wheeler transform (BWT), is the primary data structure of the majority of short
read aligners—including Bowtie [19], BWA [13] and SOAP2 [21]. These align-
ers build a FM-index based data structure of sequences from a given genomic
database and then use the index to perform queries that find approximate
matches of sequences to the database. While these methods can easily index
one or a few human genomes, they do not scale well to indexing the databases
of thousands of genomes. This is problematic in analysis of the data produced
by consortium projects, which routinely have several thousand genomes.

In this paper, we address this need by introducing and implementing an algo-
rithm for efficiently constructing the FM-index, which allows for the FM-index
construction to scale to larger sets of genomes. To understand the challenge
and solution behind our method, consider the two principal components of the
FM-index: first, a rank data structure over the BWT of the string that enables
us to find the interval in the string’s suffix array (SA) containing pointers to
starting positions of occurrences of a given pattern (and to compute how many
such occurrences there are); second, a sample of the SA that, when used with
the rank data structure, allows us access the SA (so we can list those starting
positions). Searching with an FM-index can be summarized as follows: starting
with the empty suffix, for each proper suffix of the given pattern we use rank
queries at the ends of the BWT interval containing the characters immediately
preceding occurrences of that suffix in the string, to compute the interval con-
taining the characters immediately preceding occurrences of the suffix of length 1
greater; when we have the interval containing the characters immediately preced-
ing occurrences of the whole pattern, we use a SA sample to list the contexts of
the corresponding interval in the SA, which are the locations of those occurrences.

Although it is possible to use a compressed implementation of the rank data
structure that does not become much slower or larger even for thousands of
genomes, the same cannot be said for the SA sample. The product of the size and
the access time must be at least linear in the length of the string for the standard
SA sample. This implies that the FM-index will become much slower and/or
much larger as the number of genomes in the databases grows significantly. This
bottleneck has forced researchers to consider variations of FM-indexes adapted
for massive genomic datasets, such as Valenzuela et al.’s pan-genomic index [32]
or Garrison et al.’s variation graphs [7]. Some of these proposals use elements
of the FM-index, but all deviate in substantial ways from the description above.
Not only does this mean they lack the FM-index’s long and successful track
record, it also means they usually do not give us the BWT intervals for all
the suffixes as we search (whose lengths are the suffixes’ frequencies, and thus

https://gitlab.com/manzai/Big-BWT
https://github.com/alshai/r-index
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a tightening sequence of upper bounds on the whole pattern’s frequency), nor
even the final interval in the suffix array (which is an important input in other
string processing tasks).

Recently, Gagie, Navarro and Prezza [11] proposed a different approach to
SA sampling, that takes space proportional to that of the compressed rank data
structure while still allowing reasonable access times. While their result yields
a potentially practical FM-index on massive databases, it does not directly lead
to a solution since the problem of how to efficiently construct the BWT and SA
sample remained open. In a direction toward to fully realizing the theoretical
result of Gagie et al. [11], Boucher et al. [2] showed how to build the BWT of
large genomic databases efficiently. We refer to this construction as prefix-free
parsing. It takes as input string S and in one-pass generates a dictionary and a
parse of S with the property that the BWT can be constructed from dictionary
and parse using workspace proportional to their total size and O(|S|) time. Yet,
the resulting index of Boucher et al. [2] has no SA sample, and therefore, it only
supports counting and not locating. This makes this index not directly applicable
to many bioinformatic applications, such as sequence alignment.

Our Contributions. In this paper, we present a solution for building the FM-
index1 for very large datasets by showing that we can build the BWT and Gagie
et al.’s SA sample together in roughly the same time and memory needed to
construct the BWT alone. We note that this algorithm is also based on prefix-
free parsing. Thus, we begin by describing how to construct the BWT from the
prefix-free parse, and then we show that it can be modified to build the SA sample
in addition to the BWT in roughly the same time and space. We implement this
approach, and we refer to the resulting implementation as bigbwt. We compare it
to state-of-the-art methods for constructing the SA sample and demonstrate that
bigbwt is currently the fastest and most space-efficient method for constructing
the SA sample on large genomic databases.

Next, we demonstrate the applicability of our method to short read align-
ment. In particular, we compare the memory and time needed by our method to
build an index for collections of chromosome 19 with that of Bowtie. Through
these experiments, we show that Bowtie was unable to build indexes for our
largest collections (500 or more) because it exhausted memory, whereas our
method was able to build indexes up to 1,000 chromosome 19s (and likely
beyond). At 250 chromosome 19 sequences, our method required only about
2% of the time and 6% the peak memory of Bowtie’s. Lastly, we demonstrate
that it is possible to index collections of whole human genome assemblies with
sub-linear scaling as the size of the collection grows.

Related Work. The development of methods for building the FM-index on
large datasets is closely related to the development short-read aligners for pan-
genomics—an area where there is growing interest [5,12,27]. Here, we briefly
describe some previous approaches to this problem and detail their connection
to the work in this paper. We note that majority of pan-genomic aligners require

1 With the SA sample of Gagie et al. [11], this index is termed the r-index.
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building the FM-index for a population of genomes and thus could increase
proficiency by using the methods described in this paper.

GenomeMapper [27], the method of Danek et al. [5], and GCSA [29] represent
the genomes in a population as a graph and then reduce the alignment problem
to finding a path within the graph. Hence, these methods require all possible
paths to be identified, which is exponential in the worst case. Some of these
methods—such as GCSA—use the FM-index to store and query the graph and
could capitalize on our approach by building the index in the manner described
here. Another set of approaches [8,12,24,33] considers the reference pan-genome
as the concatenation of individual genomes and exploits redundancy by using a
compressed index. The hybrid index [8] operates on a Lempel-Ziv compression of
the reference pan-genome. An input parameter M sets the maximum length of
reads that can be aligned; the parameter M has a large impact on the final size of
the index. For this reason, the hybrid index is suitable for short-read alignment
only, although there have been recent heuristic modifications to allow longer
alignments [9]. In contrast, the r-index, of which we provide an implementation
in this work, has no such length limitation. The most recent implementation of
the hybrid index is CHIC [32]. Although CHIC has support for counting multiple
occurrences of a pattern within a genomic database, it is an expensive operation,
namely O(� log log n), where � is the number of occurrences in the databases and
n is the length of the database. However, the r-index is capable of counting all
occurrences of a pattern of length m in O(m) time up to polylog factors. There
are a number of other approaches building off the hybrid index or similar ideas
[5,34]; for an extended discussion, we refer the reader to the survey of Gagie and
Puglisi [12].

Finally, a third set of approaches [14,23] attempts to encode variants within
a single reference genome. BWBBLE by Huang et al. [14] follows this by supple-
menting the alphabet to indicate if multiple variants occur at a single location.
This approach does not support counting of the number of variants matching a
specific alignment; also, it suffers from memory blow-up when larger structural
variations occur.

2 Background

2.1 BWT and FM Indexes

Consider a string S of length n from a totally ordered alphabet Σ, such that the
last character of S is lexicographically less than any other character in S. Let F
be the list of S’s characters sorted lexicographically by the suffixes starting at
those characters, and let L be the list of S’s characters sorted lexicographically
by the suffixes starting immediately after those characters. The list L is termed
the Burrows-Wheeler Transform [3] of S and denoted BWT. If S[i] is in position
p in F then S[i − 1] is in position p in L. Moreover, if S[i] = S[j] then S[i] and
S[j] have the same relative order in both lists; otherwise, their relative order in
F is the same as their lexicographic order. This means that if S[i] is in position
p in L then, assuming arrays are indexed from 0 and ≺ denotes lexicographic
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precedence, in F it is in position ji = |{h : S[h] ≺ S[i]}|+|{h : L[h] = S[i], h ≤
p}| − 1. The mapping i �→ ji is termed the LF mapping. Finally, notice that the
last character in S always appears first in L. By repeated application of the LF
mapping, we can invert the BWT, that is, recover S from L. Formally, the suffix
array SA of the string S is an array such that entry i is the starting position in
S of the ith largest suffix in lexicographical order. The above definition of the
BWT is equivalent to the following:

BWT[i] = S[(SA[i] − 1) mod n]. (1)

The BWT was introduced as an aid to data compression: it moves charac-
ters followed by similar contexts together and thus makes many strings encoun-
tered in practice locally homogeneous and easily compressible. Ferragina and
Manzini [10] showed how the BWT may be used for indexing a string S: given
a pattern P of length m < n, find the number and location of all occurrences of
P within S. If we know the range BWT(S)[i..j] occupied by characters immedi-
ately preceding occurrences of a pattern Q in S, then we can compute the range
BWT(S)[i′..j′] occupied by characters immediately preceding occurrences of cQ
in S, for any character c ∈ Σ, since

i′ = |{h : S[h] ≺ c}| + |{h : S[h] = c, h < i}|
j′ = |{h : S[h] ≺ c}| + |{h : S[h] = c, h ≤ j}| − 1 .

Notice j′ − i′ + 1 is the number of occurrences of cQ in S. The essential com-
ponents of an FM-index for S are, first, an array storing |{h : S[h] ≺ c}| for
each character c and, second, a rank data structure for BWT that quickly tells
us how often any given character occurs up to any given position2. To be able
to locate the occurrences of patterns in S (in addition to just counting them),
the FM-index uses a sampled3 suffix array of S and a bit vector indicating the
positions in the BWT of the characters preceding the sampled suffixes.

2.2 Prefix-Free Parsing

Next, we give an overview of prefix-free parsing, which produces a dictionary D
and a parse P by sliding a window of fixed width through the input string S and
dividing it into variable-length overlapping with delimiting prefixes and suffixes.
We refer the reader to Boucher et al. [2] for the formal proofs and Sect. 3.1 for the
algorithmic details. A rolling hash function identifies when substrings are parsed
into elements of a dictionary, which is a set of substrings of S. Intuitively, for a
repetitive string, the same dictionary phrases will be encountered frequently.

We now formally define the dictionary D and parse P. Given a string4 S of
length n, window size w ∈ N and modulus p ∈ N, we construct the dictionary D of
2 Given a sequence (string) S[1, n] over an alphabet Σ = {1, . . . , σ}, a character c ∈ Σ,

and an integer i, rankc(S, i) is the number of times that c appears in S[1, i].
3 Sampled means that only some fraction of entries of the suffix array are stored.
4 For technical reasons, the string S must terminate with w copies of lexicographically

least $ symbol.
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substrings of S and the parse P as follows. We let f be a hash function on strings
of length w, and let T be the sequence of substrings W = S[s, s+w−1] such that
f(W ) ≡ 0 (mod p) or W = S[0, w−1] or W = S[n−w+1, n−1], ordered by ini-
tial position in S; let T = (W1 = S[s1, s1 + w − 1], . . . , Wk = [sk, sk + w − 1]).
By construction, the strings

S[s1, s2 + w − 1], S[s2, s3 + w − 1], . . . , S[sk−1, sk + w − 1]

form a parsing of S in which each pair of consecutive strings S[si, si+1+w−1] and
S[si+1, si+2+w−1] overlaps by exactly w characters. We define D = {S[si, si+1+
w − 1] : 1 ≤ i < k}; that is, D consists of the set of the unique substrings s of
S such that |s| > w and the first and last w characters of s form consecutive
elements in T . If S has many repetitions we expect that |D| � k. With a little
abuse of notation we define the parsing P as the sequence of lexicographic ranks
of substrings in D: P = (rankD(S[si, si+1 + w − 1]))k−1

i=1 . The parse P indicates
how S may be reconstructed using elements of D. The dictionary D and parse
P may be constructed in one pass over S in O (n + |D| log |D|) time if the hash
function f can be computed in constant time.

2.3 r-Index Locating

Policriti and Prezza [26] showed that if we have stored SA[k] for each value
k such that BWT[k] is the beginning or end of a run (i.e., a maximal non-
empty unary substring) in BWT, and we know both the range BWT[i..j] occupied
by characters immediately preceding occurrences of a pattern Q in S and the
starting position of one of those occurrences of Q, then when we compute the
range BWT[i′..j′] occupied by characters immediately preceding occurrences of
cQ in S, we can also compute the starting position of one of those occurrences
of cQ. Bannai et al. [1] then showed that even if we have stored only SA[k] for
each value k such that BWT[k] is the beginning of a run, then as long as we
know SA[i] we can compute SA[i′].

Gagie, Navarro and Prezza [11] showed that if we have stored in a predecessor
data structure SA[k] for each value k such that BWT[k] is the beginning of a run
in BWT, with φ−1(SA[k]) = SA[k + 1] stored as satellite data, then given SA[h]
we can compute SA[h+1] in O(log log n) time as SA[h+1] = φ−1(pred(SA[h]))+
SA[h] − pred(SA[h]), where pred(·) is a query to the predecessor data structure.
Combined with Bannai et al.’s result, this means that while finding the range
BWT[i..j] occupied by characters immediately preceding occurrences of a pattern
Q, we can also find SA[i] and then report SA[i+1..j] in O((j − i) log log n)-time,
that is, O(log log n)-time per occurrence.

Gagie et al. gave the name r-index to the index resulting from combining a
rank data structure over the run-length compressed BWT with their SA sample,
and Bannai et al. used the same name for their index. Since our index is an
implementation of theirs, we keep this name; on the other hand, we do not
apply it to indexes based on run-length compressed BWTs that have standard
SA samples or no SA samples at all.
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3 Methods

Here, we describe our algorithm for building the SA or the sampled SA from the
prefix free parse of a input string S, which is used to build the r-index. We first
review the algorithm from [2] for building the BWT of S from the prefix free
parse. Next, we show how to modify this construction to compute the SA or the
sampled SA along with the BWT.

3.1 Construction of BWT from Prefix-Free Parse

We assume we are given a prefix-free parse of S[1..n] with window size w con-
sisting of a dictionary D and a parse P. We represent the dictionary as a string
D[1..�] = t1#t2# · · · td−1#td# where ti’s are the dictionary phrases in lexico-
graphic order and # is a unique separator. We assume we have computed the
SA of D, denoted by SAD[1..�] in the following, and the BWT of P, denoted
BWTP , and the array Occ[1, d] such that Occ[i] stores the number of occur-
rences of the dictionary phrase ti in the parse. These preliminary computations
take O(|D| + |P|) time.

By the properties of the prefix-free parsing, each suffix of S is prefixed by
exactly one suffix α of a dictionary phrase tj with |α| > w. We call αi the rep-
resentative prefix of the suffix S[i..n]. From the uniqueness of the representative
prefix we can partition S’s suffix array SA[1..n] into k ranges

[b1, e1], [b2, e2], [b3, e3], . . . , [bk, ek]

with b1 = 1, bi = ei−1 + 1 for i = 2, . . . , k, and ek = n, such that for i = 1, . . . , k
all suffixes

S[SA[bi]..n], S[SA[bi + 1]..n], . . . , S[SA[ei]..n]

have the same representative prefix αi. By construction α1 ≺ α2 ≺ · · · ≺ αk.
By construction, any suffix D[i..�] of the dictionary D is also prefixed by the

suffix of a dictionary phrase. For j = 1, . . . , �, let βj denote the longest prefix
of D[SAD[j]..�] which is the suffix of a phrase (i.e. D[SAD[j] + |βj |] = #). By
construction the strings βj ’s are lexicographically sorted β1 ≺ β2 ≺ · · · ≺ β�.
Clearly, if we compute β1, . . . , β� and discard those such that |βj | ≤ w, the
remaining βj ’s will coincide with the representative prefixes αi’s. Since both
βj ’s and αi’s are lexicographically sorted, this procedure will generate the repre-
sentative prefixes in the order α1, α2, . . . , αk. We note that more than one βj can
be equal to some αi since different dictionary phrases can have the same suffix.

We scan SAD[1..�], compute β1, . . . β� and use these strings to find the rep-
resentative prefixes. As soon as we generate an αi we compute and output the
portion BWT[bi, ei] corresponding to the range [bi, ei] associated to αi. To imple-
ment the above strategy, assume there are exactly k entries in SAD[1..�] prefixed
by αi. This means that there are k distinct dictionary phrases ti1 , ti2 , . . . , tik that
end with αi. Hence, the range [bi, ei] contains zi = ei − bi + 1 =

∑k
h=1 Occ[ih]
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elements. To compute BWT[bi, ei] we need to: (1) find the symbol immediately
preceding each occurrence of αi in S, and (2) find the lexicographic ordering of
S’s suffixes prefixed by αi. We consider the latter problem first.

Computing the Lexicographic Ordering of Suffixes. For j = 1, . . . , zi consider the
j-th occurrence of αi in S and let ij denote the position in the parsing of S of the
phrase ending with the j-th occurrence of αi. In other words, P[ij ] is a dictionary
phrase ending with αi and i1 < i2 < · · · < izi

. By the properties of BWTP the
lexicographic ordering of S’s suffixes prefixed by αi coincides with the ordering
of the symbols P[ij ] in BWTP . In other words, P[ij ] precedes P[ih] in BWTP if
and only if S’s suffix prefixed by the j-th occurrence of αi is lexicographically
smaller than S’s suffix prefixed by the h-th occurrence of αi.

We could determine the desired lexicographic ordering by scanning BWTP
and noticing which entries coincide with one of the dictionary phrases ti1 , . . . , tik
that end with αi but this would clearly be inefficient. Instead, for each dictionary
phrase ti we maintain an array ILi of length Occ[i] containing the indexes j such
that BWTP [j] = i. These sorts of “inverted lists” are computed at the beginning
of the algorithm and replace the BWTP which can be discarded.

Finding the Symbol Preceding αi. Given a representative prefix αi from SAD
we retrieve the indexes i1, . . . , ik of the dictionary phrases ti1 , . . . , tik that end
with αi. Then, we retrieve the inverted lists ILi1 , . . . ILik and we merge them
obtaining the list of the zi positions y1 < y2 < · · · < yzi

such that BWTP [yj ] is a
dictionary phrase ending with αi. Such list implicitly provides the lexicographic
order of S’s suffixes starting with αi.

To compute the BWT we need to retrieve the symbols preceding such occur-
rences of αi. If αi is not a dictionary phrase, then αi is a proper suffix of the
phrases ti1 , . . . , tik and the symbols preceding αi in S are those preceding αi in
ti1 , . . . , tik that we can retrieve from D[1..�] and SAD[1..�]. If αi coincides with a
dictionary phrase tj , then it cannot be a suffix of another phrase. Hence, the sym-
bols preceding αi in S are those preceding tj in S that we store at the beginning
of the algorithm in an auxiliary array PRj along with the inverted list ILj .

3.2 Construction of SA and SA Sample Along with the BWT

We now show how to modify the above algorithm so that, along with BWT,
it computes the full SA of S or the sampled SA consisting of the values
SA[s1], . . . ,SA[sr] and SA[e1], . . . ,SA[er], where r is the number of maximal non-
empty runs in BWT and si and ei are the starting and ending positions in BWT
of the i-th such run, respectively. Note that if we compute the sampled SA the
actual output will consist of r start-run pairs 〈si,SA[si]〉 and r end-run pairs
〈ei,SA[ei]〉 since the SA values alone are not enough for the construction of
the r-index.

We solve both problems using the following strategy. Simultaneously to each
entry BWT[j], we compute the corresponding entry SA[j]. Then, if we need the
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sampled SA, we compare BWT[j − 1] and BWT[j] and if they differ, we output
the pair 〈j − 1,SA[j − 1]〉 among the end-runs and the pair 〈j,SA[j]〉 among
the start-runs. To compute the SA entries, we only need d additional arrays
EP1, . . . EPd (one for each dictionary phrase), where |EPi| = |ILi| = Occ[i], and
EPi[j] contains the ending position in S of the dictionary phrase which is in
position ILi[j] of BWTP .

Recall that in the above algorithm for each occurrence of a representative
prefix αi, we compute the indexes i1, . . . , ik of the dictionary phrases ti1 , . . . , tik
that end with αi. Then, we use the lists ILi1 , . . . , ILik to retrieve the positions
of all the occurrences of ti1 , . . . , tik in BWTP , thus establishing the relative
lexicographic order of the occurrences of the dictionary phrases ending with αi.
To compute the corresponding SA entries, we need the starting position in S of
each occurrence of αi. Since the ending position in S of the phrase with relative
lexicographic rank ILih [j] is EPih [j], the corresponding SA entry is EPih [j] −
|αi| + 1. Hence, along with each BWT entry we obtain the corresponding SA
entry which is saved to the output file if the full SA is needed, or further processed
as described above if we need the sampled SA.

4 Time and Memory Usage for SA and SA Sample
Construction

We compare the running time and memory usage of bigbwt with the following
methods, which represent the current state-of-the-art.

bwt2sa Once the BWT has been computed, the SA or SA sample may be com-
puted by applying the LF mapping to invert the BWT and the application of
Eq. 1. Therefore, as a baseline, we use bigbwt to construct the BWT only, as
in Boucher et al. [2]; we use bigbwt since it seems best suited to the inputs
we consider. Next, we load the BWT as a Huffman-compressed string with
access, rank, and select support to compute the LF mapping. We step back-
wards through the BWT and compute the entries of the SA in non-consecutive
order. Finally, these entries are sorted in external memory to produce the SA
or SA sample. This method may be parallelized when the input consists of
multiple strings by stepping backwards from the end of each string in parallel.

pSAscan A second baseline is to compute the SA directly from the input; for
this computation, we use the external-memory algorithm pSAscan [17], with
available memory set to the memory required by bigbwt on the specific input;
with the ratio of memory to input size obtained from bigbwt, pSAscan is
the current state-of-the-art method to compute the SA. Once pSAscan has
computed the full SA, the SA sample may be constructed by loading the input
text T into memory, streaming the SA from the disk, and the application of
Eq. 1 to detect run boundaries. We denote this method of computing the SA
sample by pSAscan+.

We compared the performance of all the methods on two datasets:
(1) Salmonella genomes obtained from GenomeTrakr [31]; and (2) chromo-
some 19 haplotypes derived from the 1000 Genomes Project phase 3 data
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[4]. The Salmonella strains were downloaded from NCBI (NCBI BioProject
PRJNA183844) and preprocessed by assembling each individual sample with
IDBA-UD [25] and counting k-mers (k = 32) using KMC [6]. We modified IDBA
by setting kMaxShortSequence to 1024 per public advice from the author to
accommodate the longer paired end reads that modern sequencers produce. We
sorted the full set of samples by the size of their k-mer counts and selected 1,000
samples about the median. This avoids exceptionally short assemblies, which
may be due to low read coverage, and exceptionally long assemblies which may
be due to contamination.

Next, we downloaded and preprocessed a collection of chromosome 19 hap-
lotypes from 1000 Genomes Project. Chromosome 19 is 58 million base pairs in
length and makes up around 1.9% of the total human genome sequence. Each
sequence was derived by using the bcftools consensus tool to combine the
haplotype-specific (maternal or paternal) variant calls for an individual in the
1KG project with the chr19 sequence in the GRCH37 human reference, produc-
ing a FASTA record per sequence. All DNA characters besides A, C, G, T and
N were removed from the sequences before construction.

We performed all experiments in this section on a machine with Intel(R)
Xeon(R) CPU E5-2680 v2 @ 2.80 GHz and 324 GB RAM. We measured running
time and peak memory footprint using /usr/bin/time -v, with peak mem-
ory footprint captured by the Maximum resident set size (kbytes) field and
running time by the User Time and System Time field.

We witnessed that the running time of each method to construct the full SA
is shown in Figs. 1(a)–(c). On both the Salmonella and chr19 datasets, bigbwt
ran the fastest, often by more than an order of magnitude. In Fig. 1(d), we show
the peak memory usage of bigbwt as a function of input size. Empirically, the
peak memory usage was sublinear in input size, especially on the chr19 data,
which exhibited a high degree of repetition. Despite the higher diversity of the
Salmonella genomes, bigbwt remained space-efficient and the fastest method for
construction of the full SA. Furthermore, we found qualitatively similar results
for construction of the SA sample, shown in Fig. 2. Similar to the results on
full SA construction, bigbwt outperformed both baseline methods and exhibited
sublinear memory scaling on both types of databases.

Fig. 1. Runtime and peak memory usage for construction of full SA.
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Fig. 2. Runtime and peak memory usage for construction of SA sample.

5 Application to Many Human Genome Sequences

We studied how the r-index scales to repetitive texts consisting of many similar
genomic sequences. Since an ultimate goal is to improve read alignment, we
benchmark against Bowtie (version 1.2.2) [19]. We ran Bowtie with the -v 0
and --norc options; -v 0 disables approximate matching, while --norc causes
Bowtie (like r-index) to perform the locate query with respect to the query
sequence only and not its reverse complement.

5.1 Indexing Chromosome 19s

We performed our experiments on collections of one or more versions of chromo-
some 19. These versions were obtained from 1000 Genomes Project haplotypes in
the manner described in the previous section. We used 10 collections of chromo-
some 19 haplotypes, containing 1, 2, 10, 30, 50, 100, 250, 500, and 1000 sequences,
respectively. Each collection is a superset of the previous. Again, all DNA char-
acters besides A, C, G, T and N were removed from the sequences before con-
struction. All experiments in this section were ran on a Intel(R) Xeon(R) CPU
E5-2680 v3 @ 2.50 GHz machine with 512 GB memory. We measured running
time and peak memory footprint as described in the previous section.

First we constructed r-index and Bowtie indexes on successively larger chro-
mosome 19 collections (Fig. 3(a) and (b)). The r-index’s peak memory is sub-
stantially smaller than Bowtie’s for larger collections, and the gap grows with
the collection size. At 250 chr19s, the r-index procedure takes about 2% of the
time and 6% the peak memory of Bowtie’s procedure. Bowtie fails to construct
collections of more than 250 sequences due to memory exhaustion.

Next, we compared the disk footprint of the index files produced by Bowtie
and r-index (Fig. 3(c)). The r-index currently stores only the forward strand
of the sequence, while the Bowtie index stores both the forward sequence and
its reverse as needed by its double-indexing heuristic [19]. Since the heuristic is
relevant only for approximate matching, we omit the reverse sequence in these
size comparisons. We also omit the 2-bit encoding of the original text (in the
*.3.ebwt and *.4.ebwt files) as these too are used only for approximate match-
ing. Specifically, the Bowtie index size was calculated by adding the sizes of
the forward *.1.ebwt and *.2.ebwt files, which contain the BWT, SA sample,
and auxiliary data structures for the forward sequence. The size of the r-index
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Fig. 3. Scalability of r-index and bowtie indexes against chr19 haplotype collection
size and total sequence length (megabases) with respect to index construction time
(seconds) (a), index construction peak memory (megabytes) (b), index disk space
(megabytes) (c), and locate time (seconds) of 100,000 100bp queries (d).

increased more slowly than Bowtie’s, though the r-index was larger for the small-
est collections. This is because, unlike Bowtie which samples a constant fraction
of the SA elements (every 32nd by default), the density of the r-index SA sample
depends on the ratio n/r. When the collection is small, n/r is small and more
SA samples must be stored per base. At 250 sequences, the r-index index takes
6% the space of the Bowtie index.

We then compared the speed of the locate query for r-index and Bowtie. We
extracted 100,000 100-character substrings from the chr19 collection of size 1,
which is also contained in all larger collections. We queried these against both
the Bowtie and r-indexes. We used the --max-hits option for r-index and the
-k option for Bowtie to set the maximum number of hits reported to be equal
to the collection size. The actual number of hits reported will often equal this
number, but could be smaller (if the substring differs between individuals due
to genetic variation) or larger (if the substring is from a repetitive portion of
the genome). Since the source of the substrings is present in all the collections,
every query is guaranteed to match at least once. As seen in Fig. 3(d), the r-
index locate query was faster for the collection of 250 chr19s. No comparison
was possible for larger collections because Bowtie could not build the indexes.

5.2 Indexing Whole Human Genomes

Lastly, we used r-index to index many human genomes at once. We repeated
our measurements for successively larger collections of (concatenated) genomes.
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Thus, we first evaluated a series of haplotypes extracted from the 1000 Genomes
Project [4] phase 3 callset (1KG). These collections ranged from 1 up to 10
genomes. As the first genome, we selected the GRCh37 reference itself. For the
remaining 9, we used bcftools consensus to insert SNVs and other variants
called by the 1000 Genomes Project for a single haplotype into the GRCh37
reference.

Second, we evaluated a series of whole-human genome assemblies from 6 dif-
ferent long-read assembly projects (“LRA”). We selected GRCh37 reference as
the first genome, so that the first data point would coincide with that of the previ-
ous series. We then added long-read assemblies from a Chinese genome assembly
project [28], a Korean genome assembly project [16] a project to assemble the
well-studied NA12878 individual [15], a hydatidiform mole (known as CHM1)
assembly project [30] and the Celera human genome project [20]. Compared to
the series with only 1000 Genomes Project individuals, this series allowed us
to measure scaling while capturing a wider range of genetic variation between
humans. This is important since de novo human assembly projects regularly
produce assemblies that differ from the human genome reference by megabases
of sequence (12 megabases in the case of the Chinese assembly [28]), likely due
to prevalent but hard-to-profile large-scale structural variation. Such variation
was not comprehensively profiled in the 1000 Genomes Project, which relied on
short reads.

The 1KG and LRA series were evaluated twice, once on the forward genome
sequences and once on both the forward and reverse-complement sequences. This
accounts for the fact that different de novo assemblies make different decisions
about how to orient contigs. The r-index method achieves compression only with
respect to the forward-oriented versions of the sequences indexed. That is, if two
contigs are reverse complements of each other but otherwise identical, r-index
achieves less compression than if their orientations matched. A more practical
approach would be to index both forward and reverse-complement sequences, as
Bowtie 2 [18] and BWA [22] do.

We measured the peak memory footprint when indexing these collections
(Fig. 4). We ran these experiments on an Intel(R) Xeon(R) CPU E5-2650 v4 @
2.20 GHz system with 256 GB memory. Memory footprints for LRA grew more
quickly than those for 1KG. This was expected due to the greater genetic diver-
sity captured in the assemblies. This may also be due in part to the presence
of sequencing errors in the long-read assembles; long-read technologies are more
prone to indel errors than short-read technologies, for examples, and some may
survive in the assemblies. Also as expected, memory footprints for the LRA series
that included both forward and reverse complement sequences grew more slowly
than when just the forward sequence was included. This is due to sequences
that differ only (or primarily) in their orientation between assemblies. All series
exhibit sublinear trends, highlighting the efficacy of r-index compression even
when indexing genetically diverse whole-genome assemblies. Indexing the for-
ward and reverse complement strands of 10 1KG individuals took about 6 h and
20 min and the final index size was 36 GB.
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Table 1. Sequence length and n/r
statistic with respect to number
of whole genomes for the first 6
collections in the 1000 Genomes
(1KG) and long-read assembly
(LRA) series.

# Genomes Sequence

Length (MB) n/r

1KG LRA 1KG LRA

1 6,072 6,072 1.86 1.86

2 12,144 12,484 3.70 3.58

3 18,217 17,006 5.38 4.83

4 24,408 22,739 7.13 6.25

5 30,480 28,732 8.87 7.80

6 36,671 34,420 10.63 9.28

Fig. 4. Peak index-building memory for
r-index when indexing successively large
collections of 1000-Genomes individuals
(1KG) and long-read whole-genome assem-
blies (LRA).

We also measured lengths and n/r ratios for each collection of whole genomes
(Table 1). Consistent with the memory-scaling results, we see that the n/r ratios
are somewhat lower for the LRA series than for the 1KG series, likely due to
greater genetic diversity in the assemblies.

6 Conclusions and Future Work

We give an algorithm for building the SA and SA sample from the prefix-free
parse of an input string S, which fully completes the practical challenge of build-
ing the index proposed by Gagie et al. [11]. This leads to a mechanism for building
a complete index of large databases—which is the linchpin in developing practi-
cal means for pan-genomics short read alignment. In fact, we apply our method
for indexing partial and whole human genomes, and show that it scales better
than Bowtie with respect to both memory and time. This allows for an index
to be constructed for large collections of chromosome 19s (500 or more); a task
that is out of reach of Bowtie—as exceeded our limit of 512 GB of memory.

Even though this work opens up doors to indexing large collections of
genomes, it also highlights problems that warrant further investigation. For
example, there still remains a significant amount of work in adapting the index
to work well on large sets of sequence reads. This problem not only requires the
construction of the r-index but also an efficient means to update the index as
new datasets become available. Moreover, there is interest in supporting more
sophisticated queries than just pattern matching, which would allow for more
complex searches of large databases.
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33. Valenzuela, D., Mäkinen, V.: CHIC: a short read aligner for pan-genomic references.
Technical report, biorxiv.org (2017)

34. Wandelt, S., Starlinger, J., Bux, M., Leser, U.: RCSI: scalable similarity search in
thousand(s) of genomes. Proc. VLDB Endow. 6(13), 1534–1545 (2013)

http://arxiv.org/abs/1303.3997
https://doi.org/10.1007/978-3-319-43681-4_18
http://biorxiv.org/


Tumor Copy Number Deconvolution
Integrating Bulk and Single-Cell

Sequencing Data

Haoyun Lei1, Bochuan Lyu2, E. Michael Gertz3,4, Alejandro A. Schäffer3,4,
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Abstract. Characterizing intratumor heterogeneity (ITH) is crucial to
understanding cancer development, but it is hampered by limits of avail-
able data sources. Bulk DNA sequencing is the most common technology
to assess ITH, but mixes many genetically distinct cells in each sample,
which must then be computationally deconvolved. Single-cell sequencing
(SCS) is a promising alternative, but its limitations—e.g., high noise,
difficulty scaling to large populations, technical artifacts, and large data
sets—have so far made it impractical for studying cohorts of sufficient
size to identify statistically robust features of tumor evolution. We have
developed strategies for deconvolution and tumor phylogenetics combin-
ing limited amounts of bulk and single-cell data to gain some advan-
tages of single-cell resolution with much lower cost, with specific focus
on deconvolving genomic copy number data. We developed a mixed mem-
bership model for clonal deconvolution via non-negative matrix factor-
ization (NMF) balancing deconvolution quality with similarity to single-
cell samples via an associated efficient coordinate descent algorithm. We
then improve on that algorithm by integrating deconvolution with clonal
phylogeny inference, using a mixed integer linear programming (MILP)
model to incorporate a minimum evolution phylogenetic tree cost in the
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problem objective. We demonstrate the effectiveness of these methods on
semi-simulated data of known ground truth, showing improved deconvo-
lution accuracy relative to bulk data alone.

Keywords: Cancer · Heterogeneity · Genomic deconvolution ·
Copy number alteration (CNA) ·
Non-negative matrix factorization (NMF)

1 Introduction

Cancer is one of the most lethal terminal diseases in the world, resulting for
example in approximately 600,000 deaths in the U.S.A. in the past year [34]. Nev-
ertheless, the age-adjusted rate of cancer deaths in the U.S.A. has been declining,
partly due to the invention of new cancer treatments. Recent work in developing
cancer therapeutics is based on the notion of personalized or precision medicine
[6] to target driver alterations in specific cancer genes. Such targeted treatments
have shown success in prolonging life but rarely lead to durable cures [12], largely
because tumors are not normally static or homogeneous entities [8]. Most cancers
exhibit phenotypes of hypermutability [20] that result in a process of continuing
evolution of clonal populations of tumor cells [27], creating the opportunity for
continuing acquisition of adaptive mutations as well as putatively selectively neu-
tral genetic variants [41]. As a consequence, different cells in the same tumor may
acquire distinct sets of somatic alterations, including single nucleotide variants
(SNVs), copy number alterations (CNAs), and structural variations (SVs) such
as gene fusions or chromosomal rearrangements. This phenomenon, called intra-
tumor heterogeneity (ITH) [24], allows tumors to develop resistance to targeted
treatments, as treatment-resistant subclones emerge within the tumor [12,27]
or expand from initially rare subpopulations within the tumor’s clonal diver-
sity. Considerable recent research into the molecular mechanisms of cancer has
concentrated on characterizing ITH and reconstructing the processes of clonal
evolution by which it develops across tumor progression (see, for example, [30]).

Currently, the most common technology to profile ITH is bulk DNA sequenc-
ing, which allows one to observe aggregate genetic variation in tumors and possi-
bly matched normal tissue from the same patients. Bulk DNA sequencing allows
one to identify reasonably common genetic lesions and estimate their variant
allele fractions (VAFs). Resolving these VAFs into models of clonal heterogene-
ity, however, requires solving a challenging computational inference problem,
known as genomic deconvolution, which strives to explain VAFs as mixtures of
unobserved clonal sequences occurring at varying frequencies within the tumor.
These methods have limited accuracy and resolution, particularly with respect
to rare clonal subpopulations [1], and reveal far less clonal heterogeneity than is
evident from direct single-cell analysis (e.g., [13,26]). Genomic deconvolution is
particularly challenging in cancers exhibiting CNAs [38], a significant limitation
given that CNAs are the primary mechanism of functional adaptation in at least
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some cancer types [21,44] and that CNAs at specific loci can have important
consequences for treatment outcome (e.g., [25]).

Single cell sequencing (SCS) has emerged as an alternative allowing for the
direct inference of clonal genotypes [26]. SCS itself is limited by difficult technical
artifacts, however, such as the phenomenon of allelic dropout [14] and distortion
of copy numbers due to the amplification steps used in most SCS methods to
date [19]. Moreover, SCS is relatively costly in comparison to bulk sequencing.
As a result, SCS studies to date have involved only small cohorts [28].

The tradeoffs between bulk sequencing and SCS have recently led to the
idea that we might combine them to reconstruct ITH with both accuracy and
scale [22,23], yielding improved performance in bulk data deconvolution and
relative to using SCS data alone. To date, though, such work has focused on
SNVs specifically. There is substantial value in developing comparable methods
for CNAs given their biological importance, the greater difficulty of CNA decon-
volution, and their suitability for phylogenetics from low-coverage SCS [26].

In this work, we develop methods for combining bulk and single-cell data to
characterize ITH by CNAs specifically, both as a stand-alone inference and joint
with phylogenetic inference on clonal subpopulations. We pose the problem of
inferring the tumor subpopulations and their representation across genomic sam-
ples using a variant of non-negative matrix factorization (NMF). We seek solu-
tions that deconvolve bulk data while achieving consistency between inferred sin-
gle cells and limited SCS data. We consider two problem variants, one minimizing
genomic distance between SCS-observed single-cells and inferred clones and the
other explicitly incorporating a tumor phylogeny model to favor solutions that
yield parsimonious evolution models relating observed cells and inferred clones.
We characterize performance of the methods on semi-simulated data generated
from low-coverage SCS. We show that both methods are effective at improving
clonal deconvolution of CNAs with limited amounts of SCS data, with increas-
ing accuracy as the number of genomic samples grows. We further show that
explicitly modeling clonal evolution notably improves accuracy, suggesting the
value of accounting for the process of tumor evolution in characterizing clonal
structure.

2 Methods

2.1 Non-negative Matrix Factorization (NMF) Deconvolution
Model

As in previous work [31], we formalize the generic problem of genomic deconvolu-
tion in terms of a mixed membership model but here relating bulk and SCS data.
We focus here specifically on deconvolution of copy number data, as in [38,43],
which we assume is profiled on a set of m genomic regions. In the pure decon-
volution problem, we assume a set of n bulk samples, which might correspond
to measurements from distinct tumor sites or regions in one patient. These bulk
samples are collectively encoded in an m×n matrix B, where element bij corre-
sponds to the mean copy number of locus i in sample j. Our goal is to identify an
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m × k matrix of mixture components C, representing copy numbers of inferred
common clones, and a k×n matrix of mixture fractions, F , describing the degree
to which each column of C is represented in each column of B. B is presumed to
be approximated by the product of C and F . We seek to minimize the deviation
between B and C ×F by some measure, such as the Frobenius norm. With the
additional constraints that B, C, and F are non-negative, the problem is known
as non-negative matrix factorization (NMF) [40]. More formally, we seek:

min
C,F

||B − CF ||2Fr (1)

where || · ||Fr is the Frobenius norm of the matrix,

||B −CF ||Fr =

√∑m
i=1

∑n
j=1

(
bij − ∑k

�=1 ci� · f�j

)2

, subject to the constraints

f�j ≥ 0,∀� ∈ {1, ..., k}, j ∈ {1, ..., n};
∑k

�=1 f�j = 1,∀j ∈ {1, ..., n}; ci� ∈ N0,∀i ∈
{1, ...,m}, � ∈ {1, ..., k}.

This optimization problem is non-convex, but prior work showed that the
Euclidean distance between B and CF is non-increasing under the following
multiplicative update rules [18]:

f�j ← f�j
(CTB)�j

(CTCF )�j
, ci� ← ci�

(BF T )i�

(CFF T )i�
,

providing formulas for iterative local optimization by fixing C or F on alternate
steps. In practice, we modify this process heuristically to renormalize columns
of F after each iteration to ensure they add to 1. Since this heuristic might
undermine the guarantee of monotonicity, we manually verify that ||B−CF ||Fr
decreases on each iteration, terminating the optimization if it fails to yield con-
tinuing improvements. More details are provided in the Supplementary Methods.

Figure 1 provides an illustrative example of the deconvolution model. Suppose
we have a possible B, C, and F . The two data points B1 and B2 represent bulk
tumor samples combining three mixture components C1, C2 and C3. For ease of
illustration, we assume data are assayed on the copy numbers of just two genomic
loci, G1 and G2. The matrix B represents the average copy numbers of G1 and
G2 in the bulk tumor samples B1 and B2. In each component of C, the copy
numbers should be integers, but since the bulk tumors are weighted mixtures
of components, the values in B need not be integers. The matrix F represents
the fractional weights used to generate B1 and B2 from the pure components in
C. For example, the first column of F indicates that B1 is a mixture of equal
parts of C1 and C2. This relationship can be expressed via matrix multiplication,
B = CF , as shown in the right part of Fig. 1.

2.2 Extending NMF with Single Cell Sequence (SCS) Data

The multiplicative update algorithm is a standard method for the pure NMF
optimization problem, provided the number of samples n is large compared to
the intrinsic dimension k of the mixture. We would, however, expect it to perform
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Fig. 1. Illustration of the mathematical formulation for the mixed membership model-
ing problem. The model implies that each entry of B, C and F is non-negative, each
entry of C is integer, and each column of F must sum up to 1. (Color figure online)

poorly for our problem, in part because real tumor data generally include few
samples per patient and in part because deconvolution of copy numbers is an
underdetermined problem. We sought to improve the optimization by biasing the
objective function to favor inferred clones similar to the observed SCS data via
an auxiliary penalty in the objective function, similar to the approach of [22,23].
Intuitively, we assume that the inferred clones (C) should be closely related to
one or more of the observed single cells, which we call observed cell components
(C(observed)). While any given single cell may not exactly match a consensus
clone, we propose that the method will be able to approximately infer mixture
components reflecting dominant clones by balancing quality of deconvolution
against similarity to observed single cells. We quantify this intuition using the
Euclidean distance between the inferred clones and observed cells, introducing
a regularization parameter α to balance the weight of this penalty relative to
the prior cost based on deconvolution quality. The resulting combined objective
appears as (Eq. (2)):

min
C,F

||B − CF ||2Fr +
1
2
α||C − C(observed)||2Fr (2)

which we optimize subject to the constraints f�j ≥ 0,∀� ∈ {1, ..., k}, j ∈
{1, ..., n};

∑k
�=1 f�j = 1,∀j ∈ {1, ..., n}; ci� ∈ N0,∀i ∈ {1, ...,m}, � ∈ {1, ..., k}.

We solve for the revised model through an extension of the iterative update
algorithm [3,18]:

f�j ← f�j
(CTB)�j

(CTCF )�j
, ci� ← ci�

(BF T )i�

(CFF T + α(C − C(observed)))i�
,

adding the constraints on C and F to the update rules [37]. We further heuris-
tically improve on the standard practice of random initialization by initializing
the cell component matrix C with true SCS data. Pseudocode for the complete
algorithm is provided in Supplementary Methods as Algorithm 1. Collectively,
these additions to the pure NMF iterative update algorithm constitute our first
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approach to integrating SCS data for improved deconvolution of CNAs from
bulk DNA-seq, which we dub our phylogeny-free method.

2.3 Extending the NMF Model with a Single-Cell Phylogeny
Objective

We next developed an alternative phylogeny-based approach, seeking to decon-
volve the bulk data into clonal subpopulations while simultaneously inferring
a phylogeny on those deconvolved clones, similar to the SNV PHiSCS method
of Malikic et al. [22]. Intuitively, evolutionary distance provides a more biologi-
cally motivated measure of what we mean in asserting that inferred single cells
should be similar to observed single cells. As with the phylogeny-free method,
we would expect that any small sample of single cells will not exactly reflect the
spectrum of dominant clones, but that the method will be able to approximately
infer dominant clones by balancing deconvolution quality against evolutionary
distance of mixture components to observed single cells. This approach trades off
a more principled measure of solution quality for a harder optimization problem.

We quantify phylogenetic distance as the minimum over evolutionary trees
incorporating both observed single cells and inferred clones of the L1 dis-
tance between copy number vectors describing each tree edge. Let C∗ =
[C,C(observed)] be a m × k∗ matrix consisting of columns representing inferred
clonal copy numbers followed by columns representing the copy numbers of the
observed cells. Let c∗

u denote column u of C∗. We introduce a k∗ × k∗ matrix of
binary variables S. A value of suv = 1 indicates the existence of a directed edge
from node u to node v, and a value suv = 0 indicates the absence of such a edge;
we set suu = 0 to avoid self loops. In other words, S is an adjacency matrix for
a directed graph; in the full formulation (Supplementary Methods) we introduce
constraints that ensure the graph is a tree. We define our measure of tree cost
to be

J(S,C,C(observed)) =
k∗∑

u=1

k∗∑
v=1

suv · ‖c∗
u − c∗

v‖1. (3)

Intuitively, J(S,C,C(observed)) is a form of minimum evolution model on a phy-
logeny defined by S. While there are more sophisticated and realistic models for
CNA distance (e.g., [4,5,10]), we favored L1 distance here as a tractable approxi-
mation easily incorporated into the overall ILP framework. Similarly, while there
are now a number of sophisticated methods available specifically for phylogenet-
ics of single-cell sequences (c.f., [17]) these are largely focused on SNV rather
than CNA phylogenetics (e.g.,[15,29,45]) with limited exceptions [36,39].

More specifically, we modify the NMF objective function as follows:

min
C,F,S

(
||B − CF ||1 + β · J(S,C,C(observed))

)
, (4)

where ||B − CF ||1 =
∑m

i=1

∑n
j=1

∣∣∣bij − ∑k
�=1 ci� · f�j

∣∣∣ and β is a regularization
parameter to balance deconvolution quality against parsimony of the evolution-
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ary model. The norm || · ||1 is the element-wise L1 matrix norm, i.e., the sum of
the absolute values of matrix elements, rather than the induced L1 matrix norm
for which the same notation is sometimes used. These are optimized subject to
the same constraints as in the previous formulations: f�j ≥ 0,∀� ∈ {1, ..., k}, j ∈
{1, ..., n};

∑k
�=1 f�j = 1,∀j ∈ {1, ..., n}; ci� ∈ N,∀i ∈ {1, ...,m}, � ∈ {1, ..., k}.

The discrete tree optimization term lacks an analytic expression and hence
does not lend itself to the prior iterative update strategy. We therefore employ
a different computational strategy based on integer linear programming (ILP)
to replace the linear algebra steps of the Lee and Seung method [18], similar to
other recent work in joint deconvolution and phylogenetics [9,43].

For this optimization problem, we use an iterative coordinate descent app-
roach. There are three sets of variables over which to optimize: the weight matrix
F , the tree structure S, and the inferred copy numbers C. We solve for variables
F , S, and C alternately, in this order, while holding all other variables as con-
stant. The iterative coordinate descent continues until the decrease between suc-
cessive values of C falls below some threshold. To initialize C, we used observed
single cell data. Whenever two of the three sets of variables is held constant, the
resulting optimization problems can each be expressed as either a linear program
(LP) or an integer linear program (ILP).

When certain subsets of the variables are fixed, the resulting LP or ILP
may be simplified. When solving for F with fixed values of S and C, the term
J(S,C,C(observed)) is constant and the value of S is irrelevant. Similarly, when
solving for S for fixed values of F and C, the term ||B − CF ||1 is constant
and therefore F is irrelevant. The optimal value of C for fixed values of F and
S, however, depends both on F and S. We note that in the limit of using no
single-cell data, our problem statement and method is similar to that of Zaccaria
et al. [43] for incorporating tree mixtures into purely-bulk CNA deconvolution.

We solve for S via an ILP that uses a flow model to constrain solutions to a
minimum evolution tree, adapting a similar ILP method originally developed for
finding maximum parsimony character-based phylogenies [35]. Intuitively, the
model forces a tree structure by setting up a flow from an arbitrary root to each
other clone in the tree and minimizing the cost of edges needed to accommodate
all such flows. The full ILP is described in the Supplementary Methods.

2.4 Validation via Observed Single-Cell Data

To validate the method, we require bulk data for which clone copy number
vectors and frequencies are known. As this is unavailable for any real dataset,
we use semi-simulated data generated from CNV calls [2] from real SCS data
from two human glioblastoma cases [42]. The full single cell data set consists of
low-depth SCS DNA-seq used to establish mean copy numbers at 9934 genomic
positions throughout the genome, at intervals of approximately 40 kbp. Each
tumor was subdivided into three regions (i.e., samples), with each single cell
labeled by its region (1, 2, or 3) of origin. We used these true SCS CNA data
to generate a series of synthetic bulk data sets, simulating either one, two, or
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Fig. 2. Work-flow for the simulation and validation. We separate the whole process
into 5 main steps: in step 1, we randomly chose k total single cells from each region
(indicated by the black frames), where we can pick k̂ dominant clones (indicated by
red circles, also called true cells); in step 2, we simulated n̂ tumor samples from each
region using the k cells; in step 3, we combined the n̂ tumor samples to get a simulated
bulk tumor; in step 4, we deconvolved the bulk tumor integrating observed cells to get
k′ = 3k̂ inferred clones; and in step 5, we assessed the performance using the k′ inferred
clones and 3k̂ true cells. (Color figure online)

three bulk samples from each region for a total of three, six, or nine bulk samples
per trial. Each simulated sample is generated by sampling two dominant cells
from a region to represent major clones, twenty three other cells from the same
region to represent minor clones, and 50 cells from the other regions to repre-
sent contamination, which are mixed with Dirichlet-sampled proportions with
weight parameters for dominant, minor, and contaminant clones in the ratio 10
to 0.1 to 0.01. We then assessed our ability to deconvolve the bulk data across
a range of regularization parameter values and random replicates of the chosen
single cells. We assessed accuracy by the fraction of genomic positions assigned
correct copy number and by the root mean square deviation (RMSD) between
true and inferred cell components and mixture fractions. Figure 2 summarizes
the overall experimental design, which is described in more detail in the Supple-
mentary Methods in Sect. A.4. This design treats observed SCS as the ground
truth, allowing us to ignore the problem of doublet cells that typically must
be addressed with SCS data. We would normally require that likely doublets
be removed from SCS data in preprocessing before applying our method. This
design also does not explicitly include calling CNA markers on bulk data, itself a
hard problem that would need to be performed in preprocessing before applying
our method.

We were unable to identify any competitive tool for bulk deconvolution of
purely CNA data applicable to small numbers of bulk samples and for which
software is publicly available. We therefore compare our methods to standard
NMF, as implemented by our code with zero regularization parameters.
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2.5 Implementation

The methods described in Methods and refined below were all implemented in
Python3, using Gurobi. One practical change from the formulation above is that
we replaced the theoretical f�j ≥ 0 with f�j > 10−4 to avoid having the f values
trapped at 0. The observed human subjects data cannot be redistributed, but
code for the methods is available along with artificial data on Github (https://
github.com/CMUSchwartzLab/SCS deconvolution).

3 Results

3.1 Phylogeny-Free Method

We first assessed the accuracy of the phylogeny-free method relative to pure NMF
and simple heuristic improvements. Figure 3 provides a summary of accuracy
and RMSD for inference of true SCS components via the method of Sect. 2.2 for
variations in the number of tumor samples (3, 6, 9) and regularization parameter
α (0–1) over 40 replicates per condition. To provide a baseline for comparison,
each plot provides equivalent accuracy measures for NMF [18] (i.e., Algorithm
1 with α = 0) with random initial integer valued C (red dashed line in Fig. 3)
and with the proposed solution that all copy numbers have the normal value
of 2, which we call the “all-diploid baseline” (black dashed line in Fig. 3 and
Fig. S3). In each case, the bulk data is simulated from k′ = 6 fundamental cell
components (2 out of a random 25 cells selected in each region).

Pure NMF with random initialization performed poorly, which is unsurpris-
ing since NMF on CNA data is an underdetermined problem, although the simple
heuristic of biasing the search toward biologically plausible solutions by initial-
izing with real SCS data improves accuracy. Bringing true SCS data into the
objective function yielded modest improvements in accuracy over using SCS
data solely for initialization for at least some values of the regularization param-
eter. The phylogeny-free method with α = 0 corresponds to pure NMF initialized
with true SCS data, and this performed slightly worse than the all-diploid base-
line solution. Modestly increasing α led to some improvement in accuracy, but
above some value, α put too much weight on similarity to observed SCS data
and too little weight on quality of the deconvolution, giving worse overall results.
The best value of α depended on sample size, which we attribute again to NMF
being underdetermined if the number of desired components is larger than the
number of samples. The plots suggest that the method is fairly robust to α if the
number of samples exceeds the intrinsic dimension of the data (six), but that
SCS data can overcome that limit for small numbers of samples with a well-tuned
regularization term. Additional Supplementary Results show minimal additional
improvement even with unrealistically large sample sizes (Fig. S4), and also show
the performance is consistent across individual inferred clones (Fig. S5).

Figure 4 provides an illustrative example of performance for a single selected
clone inferred from three, six, or nine samples, intended to demonstrate kinds
of errors the method tends to produce. We chose the one cell component with

https://github.com/CMUSchwartzLab/SCS_deconvolution
https://github.com/CMUSchwartzLab/SCS_deconvolution
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Fig. 3. Accuracy and RMSD of the phylogeny-free method as functions of tumor sam-
ples and regularization parameter. The red dashed line shows average overall accuracy
(left panel) or RMSD (center and right panels) of NMF with random initialization. The
black dashed line shows the performance of the all-diploid baseline solution. Since we
cannot resolve mixture fractions for an all-diploid solution, we omit it from the mix-
ture fraction results. Different bars show performance as a function of regularization
parameter α of Eq. 2 from 0.0 to 1.0 in increments of 0.2. The X-axis shows the number
of tumor samples and the Y-axis the average accuracy or RMSD. (Color figure online)

Fig. 4. Visualization of copy number as a function of genomic locus for single exam-
ples of inferred and true clones for the phylogeny-free method for three, six, and nine
samples. The figure uses the minimum-RMSD pair for each case. The black dashed line
shows the copy number inferred by modified NMF and the orange bar shows the true
copy number in that position. (Color figure online)

smallest RMSD for each sample size to simplify visual inspection. We see that
at least in these high-quality cases, the distributions of copy numbers are similar
for the inferred and true cells. For loci at or just above diploid, the modified
NMF can usually infer the exact copy number. Where errors occur, they tend
to be in loci with large (5–10) or smaller copy numbers (0–1).

3.2 Phylogeny-Based Method

We next examined results of the phylogeny-based method of Sect. 2.3 under the
same conditions used to assess the phylogeny-free method. Figure 5 summarizes
average accuracy and RMSD as a function of regularization parameter β. The
figure compares the results of pure NMF with the all-diploid baseline. Setting
β = 0 provides poor performance, substantially below the all-diploid baseline
solution. Making β = 0 for Fig. 5 represents the same optimization problem as
α = 0 for Fig. 3, but solved by the coordinate descent method we developed
to accommodate the ILP phylogeny objective rather than by the modified iter-
ative update algorithm with the simpler L2 objective. Figure 5 thus suggests
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Fig. 5. Average accuracy and RMSD for the phylogeny-based method as functions of
tumor samples and regularization parameter. The left panel shows the average accu-
racy of inferred copy numbers, the center panel average RMSD between inferred and
true copy numbers, and the right panel average RMSD between the inferred and true
mixture fractions. The black dashed line shows the performance of the all-diploid base-
line solution. Since we cannot resolve mixture fractions for an all-diploid baseline, we
omit it from the mixture fraction results. Bar plots show performance with different
regularization parameters β of Eq. 3 from 0.0 to 1.0 with increment of 0.2. The X-axis
shows the number of tumor samples and the Y-axis the average accuracy or RMSD.
(Color figure online)

Fig. 6. Visualization of copy number as a function of genomic locus for single examples
of inferred and true clones for the phylogeny-based method for three, six, and nine
samples. The figure uses the minimum-RMSD pair for each case. The black dashed
line shows the inferred copy number and the orange bars show the true copy number
in each position. (Color figure online)

that the new coordinate descent method is less effective at pure NMF than is
the prior iterative update algorithm. Despite that observation, the results on
β ≥ 0.2 show substantially better accuracy than was achieved by pure NMF
or the phylogeny-free algorithm. Further, the results appear robust to variation
in β across the range examined. Supplementary Results distinguishing accuracy
across cells (Fig. S6) support the robustness of the phylogeny-based method to
a range of β values in cell-to-cell inferences.

Figure 6 shows copy numbers for a single minimum-RMSD pair for inferred
and true clones for each number of samples, again to visualize the nature of infer-
ence errors. The results again show exact fitting for most loci, as well as better
fitting for both large (5–10) and small (0–1) copy numbers than the phylogeny-
free method of Fig. 4. There is no evident pattern to the smaller number of errors
that do occur for the phylogeny-based versus phylogeny-free method, which are
observed for a range of low and high copy number values.
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Fig. 7. Comparison between phylogeny-free and phylogeny-based methods. Bar graphs
show average accuracy and RMSD over all cell components and replicates using the
optimal regularization parameter for the given method, measure, and number of sam-
ples. The left panel shows accuracy in copy numbers for α = 0.2, 0.2, 0.4 for the
phylogeny-free method and β = 0.2, 0.4, 0.4 for the phylogeny-based method for 3, 6
and 9 tumor samples, respectively. The center panel shows RMSD of copy numbers for
α = 0.2, 0.2, 0.2 for the phylogeny-free method and β = 0.2, 0.4, 0.4 for the phylogeny-
based method for 3, 6, and 9 tumor samples, respectively. The right panel shows RMSD
of mixture fractions for α = 0.2, 0.2, 0.2 for the phylogeny-free method and β=0.2, 0.2,
0.2 for the phylogeny-based method for 3, 6, and 9 tumor samples, respectively. The
X-axis shows the number of tumor samples and the Y-axis the average accuracy or
RMSD. (Color figure online)

Figure 7 compares the two methods at their optimal regularization parame-
ters for three, six, and nine tumor samples. The phylogeny-based method out-
performs the phylogeny-free method in accuracy and copy number RMSD in all
cases. It is slightly better in mixture fraction RMSD for three samples, but worse
for six and nine samples. Figure S7 in the Supplementary Results shows com-
parative performance of the two methods in individual cell components. Given
the poorer performance at pure NMF of the phylogeny-based method’s algo-
rithm versus the phylogeny-free method’s algorithm, we tentatively attribute
the phylogeny-based method’s better overall performance to better evolutionary
distance estimates and not to a better optimization algorithm.

The phylogeny-based method also provides as output the phylogeny. While
we cannot exhaustively show trees across all replicates, we provide three rep-
resentative examples in Fig. 8. Because we use true SCS data to generate our
synthetic mixtures, we do not know the full ground truth trees for the data and do
not attach any biological meaning to the inferred trees. We can partially validate
correctness of the trees using the fact that the cells were gathered from distinct
tumor regions, and while we would not expect clonal ancestry to segregate per-
fectly by region we should see a trend towards closer evolutionary relationship
among cells in spatial proximity. We tested whether pairs of cells from distinct
regions cluster together in disjoint subtrees (a kind of partial-information quar-
tet distance); we found that a significant majority of pairs-of-pairs do (79% for
3-sample data, 74% each for 6- or 9-sample data) providing some support for
the biological relevance of the trees.
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Fig. 8. Tree structure inferred via the phylogeny-based method ILP method for three
problem instances. The examples come from the same instances used to pick the rep-
resentative copy number profiles in Fig. 6. In each tree, nodes 0–5 are inferred cells,
nodes 6–11 are observed cells, and node 12 is the diploid root.

4 Conclusions and Discussion

We presented two novel methods for deconvolving clonal copy number variation
from bulk tumor genomic data assisted by small amounts of SCS data. The work
is intended to provide a practical strategy for producing high-quality clonal
CNA deconvolution scalable to large tumor cohorts in the face of still high
costs of single-cell DNA sequencing. Validation on semi-simulated data shows
that limited amounts of SCS copy number data can be productively used to
improve upon pure bulk deconvolution, as assessed by accuracy in inferring clonal
copy number profiles and their proportions in single- or multi-sample tumor
genomic data. We showed substantial improvement by explicitly constructing
clonal phylogenies jointly with deconvolution, suggesting the value of a principled
evolutionary model in inferring accurate clonal structure.

While this work provides a proof-of-principle demonstration for combining
bulk and SCS data for CNA deconvolution, it also suggests a need for future
work. Data of the kind needed by this study remain rare, largely because cur-
rent SCS studies have not been designed for such a hybrid approach. Most studies
to date have profiled many single cells from few patients rather than few cells
from larger cohorts, as the current work proposes. We hope that demonstrating
the effectiveness of the strategy will promote its use in future study designs,
and stimulate new thinking on how most effectively to use single-cell sequenc-
ing technologies to solve the underlying data science problems, in turn creating
more data on which similar algorithms can be improved. The framework might
also be improved in a variety of ways, including more realistic tree models and
consideration of other constraints one can extract from SCS data. For example,
we considered only penalty terms on C but might also use SCS to improve esti-
mates of the clonal frequency matrix F [33]. The method might also be improved
by replacing L1 distance with measures reflecting more sophisticated models of
CNA-driven evolution [4,5,10,32]. It could be useful to identify minor clones
that have likely loss of heterozygosity events, since these may influence clini-
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cal outcomes, and to automate inference of the number of dominant clones. It
would also be useful to combine the CNAs of this work with the SNVs of Malikic
et al. [22,23], as is commonly done now for bulk deconvolution (e.g., [7,11,16]),
and to leverage more effectively data from new low-coverage SCS DNA-seq meth-
ods [46] or long-read sequencing. In addition, our algorithms for solving for these
models are heuristic and we might productively consider alternative methods to
approach true global optima or to improve scalability to larger datasets.
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Abstract. Due to the current limitations of sequencing technologies,
de novo genome assembly is typically carried out in two stages, namely
contig (sequence) assembly and scaffolding. While scaffolding is com-
putationally easier than sequence assembly, the scaffolding problem
can be challenging due to the high repetitive content of eukaryotic
genomes, possible mis-joins in assembled contigs and inaccuracies in
the linkage information. Genome scaffolding tools either use paired-
end/mate-pair/linked/Hi-C reads or genome-wide maps (optical, physi-
cal or genetic) as linkage information. Optical maps (in particular Bio-
nano Genomics maps) have been extensively used in many recent large-
scale genome assembly projects (e.g., goat, apple, barley, maize, quinoa,
sea bass, among others). However, the most commonly used scaffolding
tools have a serious limitation: they can only deal with one optical map
at a time, forcing users to alternate or iterate over multiple maps. In this
paper, we introduce a novel scaffolding algorithm called OMGS that for
the first time can take advantages of multiple optical maps. OMGS solves
several optimization problems to generate scaffolds with optimal conti-
guity and correctness. Extensive experimental results demonstrate that
our tool outperforms existing methods when multiple optical maps are
available, and produces comparable scaffolds using a single optical map.
OMGS can be obtained from https://github.com/ucrbioinfo/OMGS.

Keywords: De novo genome assembly · Scaffolding · Optical maps ·
Combinatorial optimization

1 Introduction

Genome assembly is a fundamental problem in genomics and computational
biology. Due to the current limitations of sequencing technologies, the assembly
is typically carried out in two stages, namely contig (sequence) assembly and
scaffolding. Scaffolds are arrangements of oriented contigs with gaps represent-
ing the estimated distance separating them. The scaffolding process can vastly
improve the assembly contiguity and can produce chromosome-level assemblies.
Despite significant algorithmic progress, the scaffolding problem can be challeng-
ing due to the high repetitive content of eukaryotic genomes, possible mis-joins
in assembled contigs and the inaccuracies of the linkage information.
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Genome scaffolding tools either use paired-end/mate-pair/linked/Hi-C reads
or genome-wide maps. The first group includes scaffolding tools for second
generation sequencing data, such as Bambus [17,29], GRASS [13], MIP [31],
Opera [12], SCARPA [11], SOPRA [8] and SSPACE [5] and the scaffolding
modules from assemblers ABySS [35], SGA [34] and SOAPdenovo2 [22]. Since
the relative orientation and approximate distance between paired-end/mate-
pair/linked/Hi-C reads are known, the consistent alignment of a sufficient num-
ber of reads to two contigs can indicate their relative order, their orientation and
the distance between them. An extensive comparison of scaffolding methods in
this first group of tools can be found in [14].

The second group uses genome-wide maps such as genetic maps [37], physical
maps, or optical maps. According to the markers provided by these maps, contigs
can be anchored to specific positions so that their order and orientations can be
determined. The distance between contigs can also be estimated with varying
degree of accuracy depending on the density of the map.

The optical mapping technologies currently on the market (e.g., BioNano
Genomics Irys systems, OpGen Argus) allow computational biologists to pro-
duce genome-wide maps by fingerprinting long DNA molecules (up to 1 Mb),
via nicking restriction enzymes [32]. Linear DNA fragments are stretched on a
glass surface or in a nano-channel array, then the locations of restriction sites are
identified with the help of dyes or fluorescent labels. The results are imaged and
aligned to each other to map the locations of the restriction sites relative to each
other. While the assembly process for optical molecules is highly reliable, there
is clear evidence that a small fraction of the optical molecules is chimeric [15].

A few scaffolding algorithms that use optical maps are available. SOMA
appears to be the first published tool that can take advantage of optical maps
but it can only deal with a non-fragmented optical map [25]. The scaffolding tool
proposed in [30] was used for two bacterial genomes Yersinia pestis and Yersinia
enterocolitica, but the software is no longer publicly available. In the last few
years, Bionano optical maps have become very popular, and have been used to
improve the assembly contiguity in many large-scale de novo genome assembly
projects (e.g., goat, apple, barley, maize, quinoa, sea bass [4,7,23,28]). To the
best of our knowledge, the main tools used to generate scaffolds using Bionano
optical maps are SewingMachine from KSU [33] and HybridScaffold from
Bionano Genomics (unpublished, 2016). SewingMachine seems to be favored
by practitioners over HybridScaffold.

Both HybridScaffold and SewingMachine have, however, a serious lim-
itation: they can only deal with one optical map at a time, forcing users to
alternate or iterate over optical maps when multiple maps are available. In this
paper, we introduce a novel scaffolding algorithm called OMGS that for the
first time can take advantage of any number of optical maps. OMGS solves
several optimization problems to generate scaffolds with optimal contiguity and
correctness.
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2 Problem Definition

The input to the problem is the genome assembly to be scaffolded (represented
by a set of assembled contigs), and one or more optical maps (represented by a
set of sets of genomic distances). We use C = {ci|i = 1, . . . , l} to denote the set
of contigs in the genome assembly, where each ci is a string over the alphabet
{A,C,G, T}. Henceforth, we assume that the contigs in C are chimera-free.

An optical map is composed by a set of optical molecules, each of which is
represented by an ordered set of positions for the restriction enzyme sites. As
said, optical molecules are obtained by an assembly process similar to sequence
assembly, but we will reserve the term contig for sequenced contigs. We use
M = {mi|i = 1, . . . , n} to denote the optical map, where each optical molecule
mi is an ordered set of integers, corresponding to the distances in base pairs
between two adjacent restriction enzyme sites on molecule mi. By digesting in
silico the contigs in C using the same restriction enzyme used to produce the
optical map and matching the sequence of adjacent distances between sites, one
can align the contigs in C to the optical map M . If one is given multiple optical
maps obtained using different restriction enzymes, M will be the union of the
molecules from all optical maps. In this case, each genomic location is expected
to be covered by multiple molecules in M . As said, high quality alignments
allows one to anchor and orient contigs to specific coordinates on the optical
map. When multiple contigs align to the same optical map molecule, one can
order them and estimate the distance between them. By filling these gaps with
a number of N ’s equal to the estimated distance, longer DNA sequences called
scaffolds can be obtained.

A series of practical factors make the problem of scaffolding non-trivial. These
factors include imprecisions in optical maps (e.g., mis-joins introduced during
the assembly of the optical map [15]), unreliable alignments between contigs and
optical molecules, and multiple inconsistent anchoring positions for the same
contigs. As a consequence, it is appropriate to frame this scaffolding problem as
an optimization problem.

We are now ready to define the problem. We are given an assembly repre-
sented by a set of contigs C, a set of optical map molecules M and a set of
alignments A = {a1,1, a1,2, . . . al,n} of C to M , where ai,j is the alignment of
contig ci to optical map molecule oj . The problem is to obtain a set of scaffolds
S = {s1, s2, . . . sk} where each si is a string over the alphabet {A,C,G, T,N},
such that (i) each contig ci is contained/assigned to exactly one scaffold, (ii)
the contiguity of S is maximized and (iii) the conflicts of S with respect to A
are minimized. This optimization problem is not rigorously defined unless one
defines precisely the concepts of contiguity and conflict, but this description
captures the spirit of what we want to accomplish. In genome assembly, the
assembly contiguity is usually captured by statistical measures like the N50/L50
or the NG50/LG50. The notion of conflict is not easily quantified, and even if it
was made precise, this multi-objective optimization problem would be hard to
solve. We decompose this problem into two separate steps, namely (a) scaffold
detection and (b) gap estimation, as explained below.



OMGS: Optical Map-Based Genome Scaffolding 193

3 Method

As said, our proposed method is composed of two phases: scaffold detection and
gap estimation. In the first phase, contigs are grouped into scaffolds and the
order of contigs in each scaffold is determined. In the second phase, distances
between neighboring contigs assigned to scaffolds are estimated. The pipeline of
the proposed algorithm is illustrated in Fig. 1.

3.1 Phase 1: Detecting Scaffolds

Phase 1 has three major steps. In Step 1, we align in silico-digested chimeric-
free contigs to the optical maps (e.g., for a Bionano optical map, we use
RefAligner), but not all alignments are used in Step 2. We only consider
alignments that (i) exceed a minimum confidence level (e.g., confidence 15 in
the case of RefAligner); (ii) do not overlap each other more than a given
genomic distance (e.g., 20 kbp) and (iii) do not create conflict with each other.
The method we use here to select conflict-free alignments was introduced in our
previous work [27]. In Step 2, we compute candidate scaffolds by building the
order graph and formulating an optimization problem on it. In Step 3, either
the exhaustive algorithm or a log n-approximation algorithm is used to solve the
optimization problem (depending on the size of the graph) and produce the final
scaffolds.

input 
contigs

aligned 
contigs

order subgraphs of all molecules

conflict-free 
aligned 
contigs

merged 
order graph

contig listsoutput 
scaffolds

Phase 1, Step1: Pre-process data

Phase 1, Step 3: Solve Min-EUL

Phase 1, 
Step 2: Build 
order graph

align to 
optical map

build order 
graph

resolve
conflict

solve Min-EUL

merge order 
subgraphs

repetitive 
regions

recognize
repeats

estimate gaps

Phase 2: Estimate gaps

Fig. 1. Pipeline of the proposed algorithm
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3.1.1 Building the Order Graph
The order graph O is a directed weighted graph in which each vertex represents
a contig. Given two contigs ci and cj aligned to an optical molecule o with
alignments ai and aj , we create a directed edge (ci, cj) in O if (i) the starting
coordinate of alignment ai (that we call ai.start henceforth) is smaller than the
starting coordinate of alignment aj (that we call aj .start henceforth) and (ii)
there is no other alignment ak such that ak.start is between ai.start and aj .start
and (iii) there are no conflict sites between ai.end and aj .start on the optical
molecule, as defined below. For each alignment a between optical molecule o
and contig c, we compute the left overhang lo and right overhang ro from o and
the left overhang lc and right overhang rc from c. The left-end of alignment a
is declared a conflict site if (i) both lo and lc are longer than some minimum
length (e.g., 50 kbp) and (ii) at least one restriction enzyme sites appear in both
lo and lc. A symmetric argument applies to the right-end of the alignment, which
determines the values for ro and rc.

Directed edge (ci, cj) is assigned a weight equal to qual(o, ai.end, aj .start) *
(conf(ai)+conf(aj)), where (i) qual(o, ai.end, aj .start) is the quality of the region
between ai.end and aj .start on molecule o (higher is better, defined next) and
(ii) conf(a) is the confidence score provided by RefAligner alignment a (higher
is better). The quantity qual(o, s, t) is defined based on the length of a repetitive
region between coordinates (s, t). Based on our experience, assembly mis-joins on
optical molecule almost always happen in repetitive regions [15]. Given the length
of repetitive region len rep(o, s, t) in base pairs (defined below), we define the
quality of o in the interval (s, t) as qual(o, s, t) = e−len rep(o,s,t)/100000. When ai

and aj have a small overlap (e.g., shorter than 20 kbp), we set len rep(o, s, t) = 0.
We recognize repetitive regions in optical molecules based on the distribution

of restriction enzyme sites. For a molecule o with n sites, let mi be the coordinate
of the i-th site for i = 1, . . . , n. As said, molecule o can be represented as a list
of positions {mi|i = 1, . . . , n}. In order to determine the repetitive regions in
o, we slide a window that covers k sites (e.g., k = 10 sites). At each position
j = 1, . . . , n− k +1, we select window wj = {mj , . . . ,mj+k−1}. While repetitive
regions in genome can be highly complex (see, e.g., [40]), we observed only
two types of repetitive regions in optical molecules, namely single-site repetitive
region (see Fig. 2-A) and two-site repetitive region (see Fig. 2-B). It is entirely
possible that more complex repetitive regions exist: if they do, they seem rare.
Based on this observation, in order to decide whether window wj is repetitive,
we first compute two lists of pairwise distances between sites, namely Dj,1 =
{mj+l −mj+l−1|l = 1, . . . , k −1} and Dj,2 = {mj+l+1 −mj+l−1|l = 1, . . . , k −2}
that we call distance lists, then we apply the statistical test described next.

In our statistical test we assume that the values in the distance lists that
belong to repetitive regions are independent and identically distributed as a
Gaussian. We further assume that each specific distance list (Dj,1 or Dj,2) is asso-
ciated with a Gaussian with a specific mean μj,q (q ∈ {1, 2}). Finally, we assume
that the variance σ2 is globally shared by all molecules. An estimator of the mean
is μj,q is μ̂j,q =

∑k−q
i=1 di/(k − q), where di ∈ Dj,q and k is the window size. To



OMGS: Optical Map-Based Genome Scaffolding 195

(A)

(B)

Fig. 2. Examples of single-site repetitive region (A) and two-site repetitive region (B)
in optical maps. Observe the small variations in the repetitive patterns in (B)

estimate σ2, we first get an initial (rough) estimate of the repetitive regions on
all molecules. Given a particular Dj,q, let dmax and dmin be the maximum and
minimum distance in Dj,q. We declare a distance list Dj,q to be estimated repet-
itive if dmax −dmin is smaller than a given distance (e.g., 1.5 kbp). We collect all
estimated repetitive lists in set R = {Dp is estimated repetitive|p = 1, . . . , P}
and the estimated mean μ̂p for each distance list Dp in the set R, where P is
the total number of estimated repetitive lists. Then, we define the log likelihood
function L as follows (additional details can be found in Appendix, Sect.B)

log L(σ2) = − log σ2

2

P∑

p=1

|Dp| − 1
2σ2

P∑

p=1

∑

di∈Dp

(di − μ̂p)2.

By maximizing log L(σ2), the estimator for the variance becomes

σ̂2 =
P∑

p=1

∑

di∈Dp

(di − μ̂p)2/
P∑

p=1

|Dp|.

Then, we carry out the test on the statistic dmax −dmin for each Dj,q. The joint
density function of (dmax, dmin) is

fdmax,dmin
(u, v) = n(n − 1)fdi

(u)fdi
(v)[Fdi

(v) − Fdi
(u)]n−2

for −∞ < u < v < +∞, where Fdi
and fdi

are the distribution function and
density function of di ∼ N(μ̂j,q, σ̂

2), respectively. The density function of dmax−
dmin is

fdmax−dmin
(x) =

∫ +∞

−∞
n(n − 1)fdi

(y)fdi
(x + y)[Fdi

(x + y) − Fdi
(y)]n−2dy,

defined when x ≥ 0 (additional details can be found in Appendix, Sect.C). Let
now X be a random variable associated with the distribution fdmax−dmin

. If the
p-value P (X > dmax −dmin) is greater than a predefined threshold (e.g., 0.001),
we accept the null hypothesis and declare that window wj is repetitive. The
repetitive regions for the entire molecule o is the union of all the windows wj ’s
recognized as repetitive according to the test above.

Once the order graph of each optical molecule is built, we connect all the
order graphs which share the same contigs using the association graph intro-
duced in [27]. The association graph is an undirected graph in which each vertex
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represents an optical molecule and an edge indicates that the two molecules share
at least one contig aligned to both of them. We use depth first search (DFS) to
first build a spanning forest of the association graph. Then, we traverse each
spanning tree and connect the corresponding order subgraph to the final order
graph. Every time we add a new graph, new vertices and new edges might be
added. If an edge already exist, the weights of the new edges are added to the
weights of existing edges.

3.1.2 Generating Scaffolds
Once the order graph O is finalized, we generate the ordered sequence of contigs
in each scaffold. In the ideal case, each connected component Oi of O is a directed
acyclic graph (DAG) because the genome is one-dimensional and the order of any
pair of contigs is unique. In practice however, Oi may contain cycles caused by
the inaccuracy of the alignments and mis-joins in optical molecules. To convert
each cyclic component Oi into a DAG, we solve the Minimum Feedback Arc
Set problem on Oi. In this problem, the objective is to find the minimum subset
of edges (called feedback arc set) containing at least one edge of every cycle in
the input graph. Since the minimum feedback edge set problem is APX-hard,
we use the greedy local heuristics introduced in [2] to solve it.

We then break each DAG Gi of connected component Oi into subgraphs as
follows. In each subgraph, we require that the order of every pair of vertices
to be uniquely determined by the directed edges. This allows us to uniquely
determine the order of the contigs for each scaffold. The formal definition of this
optimization problem is as follows.

Definition 1 (Minimum Edge Unique Linearization problem). Input: A
weighted directed acyclic graph G = (V,E). Output: A subset of edges E′ ⊆ E
such that (i) in each connected component G′

i of the graph G′ = (V,E − E′)
obtained after removing E′, the order of all vertices can be uniquely determined,
and (ii) the total weights of the edges in E′ is the minimum among all the subset
of edges satisfying (i).

In Theorem 1 below, we show that the Minimum Edge Unique Lineariza-
tion problem (Min-EUL) is NP-hard by proving that it is equivalent to the
Minimum Edge Clique Partition problem (Min-ECP), which is know to be
NP-hard [10]. In Min-ECP, we are given a general undirected graph, and we
need to partition its vertices into disjoint clusters such that each cluster forms
a clique and the total weight of the edges between clusters is minimized.

Theorem 1. Min-EUL is equivalent to Min-ECP.

Proof. First, we show that Min-EUL polynomially reduces to Min-ECP. Given
an instance G = (V,E) of Min-EUL, we build an instance G′ = (V ′, E′) of
Min-ECP as follows. Let V ′ = V . For each pair of vertices u, v ∈ V ′ where v
is reachable from u, define an undirected edge between u and v in E′. For each
directed edge (u, v) ∈ E, set the weight of the corresponding undirected edge
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(u, v) ∈ E′ as 1. Set the weights of the other edges in E′ as 0. Then it is easy to
see that a Min-EUL solution to G′ is equivalent to a Min-ECP solution to G
and vice versa.

Now we show that Min-ECP polynomially reduces to Min-EUL. Given
an instance G′ = (V ′, E′) (assuming G′ is connected) of Min-ECP, we build
an instance G = (V,E) of Min-EUL as follows. Let V = V ′. Pick any total
linear order O of all vertices in V ′. For each undirected edge (u, v) ∈ E′ where
rank(u) < rank(v) in O, define a directed edge from u to v in E and set its
weight to be the same as its corresponding undirected edge in E′. For any two
vertices u, v ∈ V , where rank(u) < rank(v) and (u, v) �∈ E′, add a new vertex
xuv ∈ V with rank(xuv) = rank(v) and a directed edge u to xuv of weight 1 in E.
Now for each pair of vertices u, v ∈ V where rank(u) < rank(v) and (u, v) �∈ E,
add a directed edge u to v with weight zero in E. Then it is easy to see that
a Min-EUL solution to G corresponds to a Min-ECP solution to G′ and vice
versa. �

Given the complexity of Min-EUL, we propose an exponential time exact
algorithm and a polynomial time log n-approximation algorithm for solving it. To
describe the exact algorithm, we need to introduce some notations. A conjunction
vertex in a DAG is a vertex which has more than one incoming edge or outgoing
edge. A candidate edge is an edge which connects at least one conjunction vertex.
In Theorem 2 below, we prove that the optimal solution E′ of Min-EUL must
only contain candidate edges. Let Ec be the set of all candidate edges in the
DAG G, for each subset E′

j of Ec, we check whether the graph G′ = (V,E −E′
j)

satisfies requirement (i) in Definition 1 after removing E′
j from G. Among all the

feasible E′
j , we produce the set of edges with minimum total weights. To check

whether E′
j is feasible, we use a variant of topological sorting which requires

one to produce a unique topological ordering. To do so, we require that in every
iteration of topological sorting, the candidate node to be added to sorted graph is
always unique. Details of this algorithm are shown as Algorithm1 in AppendixA.

Theorem 2. The optimal solution E′ of Min-EUL only contains candidate
edges.

Proof. For sake of contradiction, we assume that E′ contains a non-candidate
edges (u, v). Since E′ is optimal, G′ = (V,E − E′) satisfies condition (i) in
Definition 1. Since both u and v are conjunction vertices, u has only one incoming
edge and v has only one outgoing edge. Therefore, by adding (u, v) to G′ =
(V,E − E′), we still satisfy condition (i) in Definition 1. Since the weight of
(u, v) is positive, the total weight of E − E′ + {(u, v)} is larger than E − E′.
Therefore E′ − {(u, v)} is optimal, contradicting the optimality of E′. �

As said, Min-EUL is equivalent to Min-ECP (Theorem 1). In addition, the
authors of [10] showed that for any instance of Min-ECP one can find an equiv-
alent instance of the Minimum Disagreement Correlation Clustering
problem. As a consequence, any algorithm for the Minimum Disagreement
Correlation Clustering problem could be used to solve Min-EUL. In our
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tool OMGS, we implemented a O(log n)-approximation algorithm based on lin-
ear programming, originally proposed in [9]. Standard linear programming pack-
ages (e.g., GLPK or CPLEX) are used to solve the linear program. We use the
exact algorithm for DAGs with no more than twenty candidate edges, and the
approximation algorithm for larger DAGs.

3.2 Phase 2: Estimating Gaps

Let s = {ci|i = 1, . . . , h} be one of the scaffold generated in Phase 1 where each
ci is a contig. In Phase 2, we estimate the length li of the gap between each
pair ci and ci+1 of adjacent contigs. We estimate all gap lengths L = {li|i =
1, . . . , h − 1} at the same time using the distances between the contigs provided
by the alignments and the corresponding order subgraphs. We assume that each
li is chi-square distributed with αi degrees of freedom. The choice of chi-square
distribution is due to its additive properties, namely the sum of independent chi-
squared variables is also chi-squared distributed. Recall that each order subgraph
Ok provides an unique ordering xk = {cj |j = 1, . . . , r} of the contigs aligned
to molecule ok, while the coordinates of the alignment provide the distances
between all pairs of adjacent contigs cj and cj+1 as yk = {dj |j = 1, . . . , r − 1}.
We use the distances dj as samples to estimate gap lengths li. If edge (cj , cj+1)
in Ok is removed in the order graph O when solving Min-EUL in Phase 1, dj

will be considered not reliable and removed from yk.
In the ideal case, dj should be a sample of a single li (i.e., cjcj+1 in xk

corresponds to cpcp+1 in s). In practice however, cjcj+1 in xk will corresponds
to a different pair cpcq in s where q > p + 1 (i.e., cp+1 . . . cq−1 are missing from
the order subgraph because some alignments with low confidence were removed
in Step 1 of Phase 1). In this situation, after subtracting the length of missing
contigs from dj , dj − ∑cq−1

c=cp+1
|c| is a sample of

∑q−1
i=p li where |c| represents the

length of contig c. Since lp, . . . , lq−1 are independent chi-square random variables,
∑q−1

i=p li is chi-square distributed with degree of freedom
∑q−1

i=p αi, so that the
log likelihood of this sample is

log l = (β − 1) log γ − γ

2
− β log 2 − log Γ(β).

where β =
∑q−1

i=p
αi

2 , γ = dj − ∑cq−1
c=cp+1

|c| and Γ is the gamma function (addi-
tional details can be found in Appendix, Sect.D). The total log likelihood is
the sum of the log likelihoods across all samples. To find the αi maximizing
the total log likelihood, we use the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm [1]. Since the mean of a chi-square distribution equals its degree of
freedom, we obtain the estimated gaps l̂i = α̂i. For the case in which the li are
pre-estimated as negative in the first step, the second and third steps are ignored
and the pre-estimated distances are used as final estimates.

Finally, we add �l̂i	 nucleotides (represented by Ns) between each pair of
contigs ci and ci+1. When l̂i < 0, we add exactly 100 Ns between ci and ci+1,
which is the convention for a gap of unknown length.
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4 Experimental Results

We compared OMGS against KSU SewingMachine (version 1.0.6, released in
2015) and Bionano HybridScaffold (version 4741, released in 2016) which,
to the best of our knowledge, are the only available scaffolding tools for Bio-
nano Genomics optical maps. All tools were run with default parameters, unless
otherwise specified. We collected experimental results on scaffolds of (i) cowpea
(Vigna unguiculata) and (ii) fruit fly (Drosophila melanogaster).

4.1 Experimental Results on Cowpea

Cowpea is a diploid with a chromosome number 2n = 22 and an estimated
genome size of 620 Mb. We sequenced the cowpea genome using single-molecule
real-time sequencing (Pacific Biosciences RSII). A total of 87 SMRT cells yielded
about 6M reads for a total of 56.84 Gbp (91.7x genome equivalent). We tested
the three scaffolding tool on a high-quality assembly produced by Canu [3,18]
with parameters corMhapSensitivity=high and corOutCoverage=100, then
polished it with Quiver. We used Chimericognizer to detect and break
chimeric contigs, using seven other assemblies generated by Canu, Falcon [6]
and ABruijn [20] as explained in [26].

In addition to standard contiguity statistics (N501, L502), total assembled
size and scaffold length distribution, we determined incorrect/chimeric scaffolds
by comparing them against the high-density genetic map available from [24].
We BLASTed 121bp-long design sequence for the 51,128 genome-wide SNPs
described in [24] against each assembly, then we identified which contigs had
SNPs mapped to them, and what linkage group (chromosome) of the genetic
map those mapped SNPs belonged to. Chimeric contigs were revealed when
their mapped SNPs belonged to more than one linkage group. The last line of
Tables 1 and 2 report the total size of contigs in each assembly for which (i)
they have at least one SNPs mapped to it and (ii) all SNPs belong to the same
linkage group (i.e., likely to be non-chimeric).

As said, the three scaffolding tools were run on a chimera-free assembly of
cowpea described above using two available Bionano Genomics optical maps
(the first obtained using the BspQI nicking enzyme, and the second obtained
with the BssSI nicking enzyme). Since SewingMachine can only use a single
optical map, we alternated the optical maps in input (BspQI map first, then
BssSI and vice versa). SewingMachine provides two outputs depending on
the minimum allowed alignment confidence, namely ‘default’ and ‘relax’. Mode
‘relax’ considers more alignments than ‘default’, but it has a higher chance of
introducing mis-joins. HybridScaffold failed on the BssSI map, so we could
not test it on alternating maps.

Table 1 shows that when using a single optical map, OMGS can generate
comparable or better scaffolds than SewingMachine and HybridScaffold.
1 Length for which the set of contigs/scaffolds of that length or longer accounts for at

least half of the assembly size.
2 Minimum number of contigs/scaffolds accounting for at least half of the assembly.
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With two optical maps, OMGS’ correctness (“contigs/scaffolds with 100% con-
sistent LG”) and contiguity (N50) are significantly better than other two tools.
Observe that OMGS’ correctness (“contigs/scaffolds with 100% consistent LG”)
is even better than the input assembly. This can happen when contigs with SNPs
belonging to same linkage group are scaffolded with contigs that have no SNP.

We also compared the performance of OMGS, SewingMachine and
HybridScaffold when using optical maps corrected by Chimericognizer
(on the same cowpea assembly). Observe in Table 2 that OMGS, SewingMa-
chine and HybridScaffold increased the correctness but decreased the con-
tiguity when the corrected BspQI optical map was used. The results on the
corrected BssSI optical map or both corrected optical maps did not change sig-
nificantly. But again, OMGS produced better scaffolds than SewingMachine
and HybridScaffold.

4.2 Experimental Results on D. Melanogaster

D. melanogaster has four pairs of chromosomes: three autosomes, and one pair of
sex chromosomes. The fruit fly’s genome is about 139.5 Mb. We downloaded three
D. melanogaster assemblies generated in [36] (https://github.com/danrdanny/
Nanopore ISO1). The first assembly (295 contigs, total size 141 Mb, N50 = 3 Mb)
was generated using Canu [3,18] on Oxford Nanopore (ONT) reads longer than
1 kb. The second assembly (208 contigs, total size 132 Mb, N50 = 3.9 Mb) was
generated using MiniMap and MiniAsm [19] using only ONT reads. The third
assembly (339 contigs, total size 134 Mb, N50 = 10 Mb) was generated by Pla-
tanus [16] and Dbg2Olc [39] using 67.4x of Illumina paired-end reads and
the longest 30x ONT reads. The first and third assemblies were polished using
nanopolish [21] and Pilon [38]. The Bionano optical for D. melanogaster map
was provided by the authors of [36]. This BspQI optical map (363 molecules, total
size = 246 Mb, N50 = 841 kb) was created using IrysSolve 2.1 from 78,397 raw
Bionano molecules (19.9 Gb of data with a mean read length 253 kb).

As said, all tools were run with default parameters, with the exception of
OMGS’ minimum confidence, which was set at 20 (default is 15). To evalu-
ate the performance of OMGS, HybridScaffold and SewingMachine, we
compared their output scaffolds to the high-quality reference genome of D.
melanogaster (release 6.21, downloaded from FlyBase). We reported the total
length of correct/non-chimeric scaffolds as a measure of the overall correctness.
To determine which scaffolds were incorrect/chimeric we first selected BLAST
alignments of the scaffolds against the reference genome which had an e-value
lower than 1e-50 and an alignment length higher than 30 kbp. We defined a scaf-
fold S to be chimeric if S had at least two high-quality alignments which satisfied
one or more of the following conditions: (i) S aligned to different chromosomes;
(ii) the orientation of S’s alignments were different; or (iii) the difference between
the distance of alignments on the scaffold and the distance of alignments on the
reference sequence was larger than 100 Kbp.

https://github.com/danrdanny/Nanopore_ISO1
https://github.com/danrdanny/Nanopore_ISO1
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Table 1. Comparing OMGS, SewingMachine (SM) and HybridScaffold (HS) on
a cowpea assembly using one or two optical maps. Numbers in boldface highlight the
best N50 and scaffold consistency with the genetic map for one map (BspQI and BssSI)
or two maps (‘A + B’ refers to the use of map A followed by map B, ‘A&B’ refers to
the use of both maps at the same time).

One optical map
BspQI BssSI

Input SM (default) SM (relax) HS OMGS SM (default) SM (relax) HS OMGS
contig/scaffold N50 (bp) 5,633,882 13,154,336 13,154,336 12,211,658 14,339,314 10,620,326 10,886,079 N/A 11,536,649

contig/scaffold L50 28 15 15 17 14 18 17 N/A 15
total assembled (bp) 511,101,122 521,209,608 521,210,640 516,455,893 518,265,608 518,987,660 518,945,404 N/A 518,252,638
# contigs/scaffolds 948 863 863 877 847 849 846 N/A 832

# contigs/scaffolds ≥100kbp 269 185 185 198 170 177 174 N/A 165
# contigs/scaffolds ≥1Mbp 94 59 59 63 56 63 62 N/A 59

# contigs/scaffolds ≥10Mbp 10 20 20 21 20 18 18 N/A 17
contigs/scaffolds with consistent LG (bp) 425,812,490 404,408,642 404,409,674 381,974,417 410,552,582 425,572,265 425,530,009 N/A 424,143,108

Two optical maps
BspQI+BssSI BspQI+BssSI BssSI+BspQI BssSI+BspQI BspQI&BssSI

Input SM (default) SM (relax) SM (default) SM (relax) OMGS
contig/scaffold N50 (bp) 5,633,882 14,892,230 14,892,230 13,527,997 14,892,235 16,364,046

contig/scaffold L50 28 13 13 14 13 12
total assembled (bp) 511,101,122 525,577,823 525,198,231 525,827,900 525,105,345 521,324,385
# contigs/scaffolds 948 822 823 816 814 802

# contigs/scaffolds ≥100kbp 269 149 150 145 143 137
# contigs/scaffolds ≥1Mbp 94 46 46 48 46 44

# contigs/scaffolds ≥10Mbp 10 21 21 22 22 21
contigs/scaffolds with consistent LG (bp) 425,812,490 385,449,577 385,069,985 425,678,421 403,637,207 432,639,234

Table 2. Comparing OMGS, SewingMachine (SM) and HybridScaffold (HS) on
a cowpea assembly using optical maps corrected by Chimericognizer. Numbers in
boldface highlight the best N50 and scaffold consistency with the genetic map for one
map (BspQI and BssSI) or two maps (‘A + B’ refers to the use of map A followed by
map B, ‘A&B’ refers to the use of both maps at the same time).

One optical map
BspQI BssSI

Input SM (default) SM (relax) HS OMGS SM (default) SM (relax) HS OMGS
contig/scaffold N50 (bp) 5,633,882 12,487,373 12,487,373 12,495,655 13,505,314 9,420,899 10,886,079 N/A 11,256,770

contig/scaffold L50 28 16 16 15 14 19 17 N/A 16
total assembled (bp) 511,101,122 519,785,777 519,785,777 515,519,585 518,405,022 517,678,278 517,636,022 N/A 517,318,151
# contigs/scaffolds 948 863 863 871 849 854 851 N/A 837

# contigs/scaffolds ≥100kbp 269 185 185 192 172 182 179 N/A 169
# contigs/scaffolds ≥1Mbp 94 60 60 60 58 66 65 N/A 62

# contigs/scaffolds ≥10Mbp 10 19 19 19 19 17 17 N/A 17
contigs/scaffolds with consistent LG (bp) 425,812,490 413,819,557 413,819,557 402,840,302 421,466,164 424,262,883 424,220,627 N/A 423,117,331

Two optical maps
BspQI+BssSI BspQI+BssSI BssSI+BspQI BssSI+BspQI BspQI&BssSI

Input SM (default) SM (relax) SM (default) SM (relax) OMGS
contig/scaffold N50 (bp) 5,633,882 14,354,752 14,354,752 13,527,997 14,892,235 16,364,046

contig/scaffold L50 28 14 14 14 13 12
total assembled (bp) 511,101,122 523,520,329 523,139,705 521,540,185 525,105,345 520,697,623
# contigs/scaffolds 948 823 824 817 814 805

# contigs/scaffolds ≥100kbp 269 150 151 146 143 139
# contigs/scaffolds ≥1Mbp 94 48 48 48 46 46

# contigs/scaffolds ≥10Mbp 10 21 21 21 22 21
contigs/scaffolds with consistent LG (bp) 425,812,490 402,344,751 401,964,127 420,269,616 403,637,207 431,921,182

Table 3 reports the main statistics for the three D. melanogaster scaffolded
assemblies. Even with one map, OMGS’ scaffolds are better than SewingMa-
chine and HybridScaffold.
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Table 3. Comparing OMGS, SewingMachine (SM) and HybridScaffold (HS)
on three D. melanogaster assemblies (produced by MiniAsm, Canu, and Dbg2Olc)
using the BspQI optical map. Numbers in boldface highlight the best N50 and the best
scaffold consistency with the reference genome

MiniAsm assembly
Input SM (default) SM (relax) HS OMGS

contig/scaffold N50 (bp) 3,866,686 4,494,241 4,906,224 3,866,686 4,906,224
contig/scaffold L50 9 8 8 9 8

total assembled (bp) 131,856,353 132,480,826 133,233,999 132,138,056 132,838,677
# contigs/scaffolds 208 205 203 206 206

# contigs/scaffolds ≥100kbp 85 82 80 83 83
# contigs/scaffolds ≥1Mbp 26 26 25 26 25

# contigs/scaffolds ≥10Mbp 2 2 2 2 2
non-chimeric contigs/scaffolds (bp) 131,317,873 125,305,638 132,695,519 131,174,201 132,300,197

Canu assembly
Input SM (default) SM (relax) HS OMGS

contig/scaffold N50 (bp) 3,004,953 3,004,953 3,004,953 3,918,649 5,336,340
contig/scaffold L50 11 11 11 10 7

total assembled (bp) 140,720,404 140,923,974 140,923,974 140,867,226 140,960,395
# contigs/scaffolds 295 291 291 286 280

# contigs/scaffolds ≥100kbp 111 107 107 102 96
# contigs/scaffolds ≥1Mbp 31 31 31 29 27

# contigs/scaffolds ≥10Mbp 1 1 1 1 5
non-chimeric contigs/scaffolds (bp) 140,720,404 140,923,974 140,923,974 140,867,226 140,960,395

Dbg2Olc assembly
Input SM (default) SM (relax) HS OMGS

contig/scaffold N50 (bp) 10,113,899 11,223,142 11,223,142 12,785,467 12,928,771
contig/scaffold L50 6 5 5 5 4

total assembled (bp) 134,109,164 134,164,629 134,164,629 134,162,857 134,208,377
# contigs/scaffolds 339 337 337 331 327

# contigs/scaffolds ≥100kbp 78 76 76 70 66
# contigs/scaffolds ≥1Mbp 22 22 22 17 16

# contigs/scaffolds ≥10Mbp 6 6 6 5 7
non-chimeric contigs/scaffolds (bp) 134,109,164 134,164,629 134,164,629 134,162,857 134,208,377

5 Conclusions

We presented a scaffolding tool called OMGS for improving the contiguity of
de novo genome assembly using one or multiple optical maps. OMGS solves
several optimization problems to generate scaffolds with optimal contiguity and
correctness. Experimental results on V. unguiculata and D. melanogaster clearly
demonstrate that OMGS outperforms SewingMachine and HybridScaf-
fold both in contiguity and correctness using multiple optical maps.
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Appendix

A DAG Unique Ordering

Algorithm 1. Sketch of the algorithm for checking whether a DAG provides
an unique ordering
1: procedure Order Uniqueness Check(G = (V,E))
2: S = nodes with no incoming edges
3: while S �= ∅ do
4: if |S| > 1 then
5: return False
6: remove a node n from S
7: for each node m with an edge e = (n,m) do
8: remove edge e from the E
9: if m has no other incoming edges then

10: insert m into S
11: return True

B Statistical Test for Repetitive Regions

Here we provide additional details for the estimation of σ2 during the analysis
of repetitive regions. Recall that we collect all estimated repetitive lists in set
R = {Dp is estimated repetitive|p = 1, . . . , P} and the estimated mean μ̂p for
each distance list Dp in the set R, where P is the total number of estimated
repetitive lists. For each Dp, the distances di’s are distributed as a Gaussian
with mean μ̂p and variance σ2. According to the density function of Gaussian
distribution, the log likelihood of one Dp is

−|Dp|
2

log(2π) − |Dp|
2

log σ2 − 1
2σ2

∑

di∈Dp

(di − μ̂p)2.

The total log likelihood is the sum of the log likelihoods across all Dp’s in R,
which is

log L(σ2) = −
∑P

p=1 |Dp|
2

log σ2 − 1
2σ2

P∑

p=1

∑

di∈Dp

(di − μ̂p)2,

after ignoring all terms not related to σ2. To maximize log L(σ2), we require
that the derivative of total log likelihood

∂ log L(σ2)
∂σ2

= 0,
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that is,

−
∑P

p=1 |Dp|
2σ2

+
1

2(σ2)2

P∑

p=1

∑

di∈Dp

(di − μ̂p)2 = 0.

After some simplification, the estimator for variance becomes

σ̂2 =

∑P
p=1

∑
di∈Dp

(di − μ̂p)2
∑P

p=1 |Dp|
.

C Density Function of dmax − dmin

Here we provide additional details for calculating the density function of dmax −
dmin. It is well-known that the joint density function of order statistics is

fX(i),X(j)(u, v) =
n!

(i − 1)!(j − 1 − i)!(n − j)!
fx(u)fx(v)[Fx(u)]

i−1
[Fx(v) − Fx(u)]

j−1−i
[1 − Fx(v)]

n−j

(1)

for −∞ < u < v < +∞, where X(i) and X(j) are the i-th and j-th order
statistics in X1, . . . , Xn and Fx and fx are the distribution function and den-
sity function of each Xi, respectively. Using (1), the joint density function of
(dmax, dmin) can be expressed as

fdmax,dmin
(u, v) = n(n − 1)fdi

(u)fdi
(v)[Fdi

(v) − Fdi
(u)]n−2

for −∞ < u < v < +∞, where Fdi
and fdi

are the distribution function and
density function of di ∼ N(μ̂j,q, σ̂

2), respectively.
Now, let X = dmax−dmin and Y = dmin. Then dmax = X+Y and dmin = Y ,

and the corresponding Jacobian determinant is

J =
∣
∣
∣
∣
∂dmax/∂X ∂dmax/∂Y
∂dmin/∂X ∂dmin/∂Y

∣
∣
∣
∣ =

∣
∣
∣
∣
1 1
0 1

∣
∣
∣
∣ = 1.

Thus, the joint density function of (X, Y ) is given by

fX,Y (x, y) = fdmax,dmin(x+y, y)|J | = n(n−1)fdi(y)fdi(x+y)[Fdi(x+y)−Fdi(y)]
n−2,

where x ≥ 0 and −∞ < y < +∞. By integrating over Y , the density function
of X = dmax − dmin becomes

fdmax−dmin
(x) =

∫ +∞

−∞
n(n−1)fdi

(y)fdi
(x+y)[Fdi

(x+y)−Fdi
(y)]n−2dy, x ≥ 0.
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D Gap Estimation

Here we provide additional details for calculating the log likelihood function
when estimating gaps. Recall that lp, . . . , lq−1 are independent chi-square ran-
dom variables, and

∑q−1
i=p li is chi-square distributed with degree of freedom

∑q−1
i=p αi. Since the density function of a chi-square random variable X with

degree of freedom k is

fX(x) =
1

2k/2Γ(k/2)
xk/2−1e−x/2

where Γ is the gamma function, the likelihood of
∑q−1

i=p li with observation

γ = dj −
cq−1∑

c=cp+1

|c|

is
1

2βΓ(β)
γβ−1e−γ/2,

where β =
∑q−1

i=p
αi

2 . Therefore, the log likelihood function for one sample is

log l = (β − 1) log γ − γ

2
− β log 2 − log Γ(β).

The total log likelihood is the sum of the log likelihoods across all samples.
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Abstract. Estimating the abundances of all k-mers in a set of biological
sequences is a fundamental and challenging problem with many applica-
tions in biological analysis. While several methods have been designed
for the exact or approximate solution of this problem, they all require
to process the entire dataset, that can be extremely expensive for high-
throughput sequencing datasets. While in some applications it is crucial
to estimate all k-mers and their abundances, in other situations report-
ing only frequent k-mers, that appear with relatively high frequency in a
dataset, may suffice. This is the case, for example, in the computation of
k-mers’ abundance-based distances among datasets of reads, commonly
used in metagenomic analyses.

In this work, we develop, analyze, and test, a sampling-based app-
roach, called SAKEIMA, to approximate the frequent k-mers and their
frequencies in a high-throughput sequencing dataset while providing rig-
orous guarantees on the quality of the approximation. SAKEIMA employs
an advanced sampling scheme and we show how the characterization of
the VC dimension, a core concept from statistical learning theory, of a
properly defined set of functions leads to practical bounds on the sample
size required for a rigorous approximation. Our experimental evaluation
shows that SAKEIMA allows to rigorously approximate frequent k-mers by
processing only a fraction of a dataset and that the frequencies estimated
by SAKEIMA lead to accurate estimates of k-mer based distances between
high-throughput sequencing datasets. Overall, SAKEIMA is an efficient and
rigorous tool to estimate k-mers abundances providing significant speed-
ups in the analysis of large sequencing datasets.

Keywords: k-mer analysis · Sampling algorithm · VC dimension ·
Metagenomics

1 Introduction

The analysis of substrings of length k, called k-mers, is ubiquitous in biologi-
cal sequence analysis and is among the first steps of processing pipelines for a
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wide spectrum of applications, including: de novo assembly [21,31], error cor-
rection [9,24], repeat detection [11], genome comparison [25], digital normaliza-
tion [3], RNA-seq quantification [20,33], metagenomic reads classification [30]
and binning [7], fast search-by-sequence over large high-throughput sequenc-
ing repositories [27]. A fundamental task in k-mer analysis is to compute the
frequency of all k-mers, with the goal to distinguish frequent k-mers from infre-
quent k-mers [13,15]. For example, this task is relevant in the analysis of high-
throughput sequencing data, since infrequent k-mers are often assumed to result
from sequencing errors. For several applications, the computation of k-mers fre-
quencies is among the most computationally demanding steps of the analysis.

Many algorithms have been proposed for computing the exact frequency of
all k-mers, such as Jellyfish [13], DSK [22], KMC 3 [10] and Squeakr-exact [19].
These methods typically perform a linear scan of the sequence to analyze, and
use a combination of parallelism and efficient data structures (such as Bloom
filters and Hash tables) to maintain membership and counting information asso-
ciated to all k-mers. Since the computation of exact k-mer frequencies is com-
putationally demanding, in particular for large sequence analysis or for high-
throughput sequence datasets, recent methods have focused on providing approx-
imate solution to the problem, improving the time and memory requirements.
KmerStream [14], khmer [32], Kmerlight [26] and ntCard [17] proposed stream-
ing approaches for the approximation of the k-mer frequencies histogram. Of
these, only Kmerlight and ntCard provide analytical bounds on their accuracy
guarantee. KmerGenie [4] performs a linear scan of the input to compute the
frequencies of a (random) subset of the k-mers that appear in the input, and
uses these frequencies to approximate the abundance histogram. The recently
proposed Squeakr [19] relies on a probabilistic data structure to approximate the
counts of individual k-mers. Turtle [23] focuses on finding k-mers that appear
at least twice in the dataset, but still processes all the k-mer occurrences in the
input dataset, as all the other aforementioned methods do.

All the methods cited above try to estimate the frequency of all k-mers
or of all k-mers that appear at least few times (e.g., twice) in the dataset.
While this is crucial in some applications (e.g., in genome assembly k-mers that
occur exactly once often represents sequencing errors and it is therefore impor-
tant to estimate the count of all observed k-mers), in other applications this
is less justified. For example, in the comparison of high-throughput sequenc-
ing metagenomic datasets, abundance-based distances or dissimilarities (e.g.,
the Bray-Curtis dissimilarity) between k-mer counts of two datasets are often
used [1,5,6] to assess the distance between the corresponding datasets. In con-
trast to presence-based distances [18] (e.g., Jaccard distance), abundance-based
distances take into account the frequency of each k-mer, with frequent k-mers
contributing more to the distance than k-mers that appear with low frequency,
but still more than a handful of times, in the dataset. Thus, two natural ques-
tions are (i) whether the results obtained considering all k-mers can be estimated
by considering the abundances of frequent k-mers only, and (ii) if the abun-
dances of frequent k-mers can be computed more efficiently than the counts of all
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k-mers. Recently, preliminary work [8] has shown that, for the cosine distance
and k = 12, the answer to the first question is positive, and in Sect. 4 we show
that this indeed the case for larger values of k and other abundance-based dis-
tances as well as presence-based distances (e.g., the Jaccard distance). To the
best of our knowledge, the second question is hitherto unexplored. In addition,
considering only frequent k-mers allows to focus on the most reliable information
in a metagenomic dataset, since a high stochastic variability in low frequency
k-mers is to be expected due to the sampling process inherent in sequencing.

A natural approach to reduce time and memory requirements for frequency
estimation problems is to process only a portion of the data, for example by
sampling some parts of a dataset. Sampling approaches are appealing because
infrequent k-mers naturally tend to appear with lower probability in a sample,
allowing to directly focus on frequent k-mers in subsequent steps. However, major
challenges in sampling approaches are (i) to provide rigorous guarantees relating
the results obtained by processing the sample and the results that would be
obtained from the whole dataset, and (ii) to provide effective bounds on the size
of the sample required to achieve such guarantees. The application of sampling
to k-mers is even more challenging than in other scenarios since, for values of k in
the typical range of interest to applications (e.g., 20–60), even the most frequent
k-mers have relatively low frequency in the data. To the best of our knowledge,
no approach based on sampling a portion of the input dataset has been proposed
to approximate frequent k-mers and their frequencies while providing rigorous
guarantees (Fig. 1).

Fig. 1. SAKEIMA computes a fast and rigorous approximation of the frequent k-mers in a
high-throughput sequencing dataset by sampling a fraction of all k-mer occurrences in
a dataset, providing a significant speed-up for the computation of k-mer’s abundance-
based distances between datasets of reads (e.g., in metagenomic).

Our Contribution. We study the problem of approximating frequent k-mers,
i.e., k-mers that appear with frequency above a user-defined threshold θ in a high-
throughput sequencing dataset. In these regards, our contributions are fourfold.
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First, we define a rigorous definition of approximation, governed by an accu-
racy parameter ε. Second, we propose a new method, Sampling Algorithm for
K-mErs approxIMAtion (SAKEIMA), to obtain an approximation to the set of fre-
quent k-mers using sampling. SAKEIMA is based on a sampling scheme that goes
beyond näıve sampling of k-mers and allows to estimate low frequency k-mers
considering only a fraction of all k-mers occurrences in the dataset. Third, we
provide analytical bounds to the sample size needed to obtain rigorous guar-
antees on the accuracy of the estimated k-mer frequencies, with respect to the
ones measured on the entire dataset. Our bounds are based on the notion of
VC dimension, a fundamental concept from statistical learning theory. To our
knowledge, ours is the first method that applies concepts from statistical learn-
ing to provide a rigorous approximation of the k-mers frequencies. Fourth, we
use SAKEIMA to extract frequent k-mers from metagenomic datasets from the
Human Microbiome Project (HMP) and to approximate abundance-based and
presence-based distances among such datasets, showing that SAKEIMA allows to
accurately estimate such distances by analyzing only a fraction of the entire
dataset, resulting in a significant speed-up.

Our approach is orthogonal to previous work: any exact or approximate algo-
rithm can be applied to the sample extracted by SAKEIMA, that can therefore be
used before applying previously proposed methods, thus reducing their compu-
tational requirements while providing rigorous guarantees on the results w.r.t.
to the entire dataset. While we present our methodology in the case of finding
frequent k-mers from a set of sequences representing a high-throughput sequenc-
ing dataset of short reads, our results can be applied to datasets of long reads
and to whole-genome sequences as well.

2 Preliminaries

Let a dataset D be a bag of n reads D = {r0, . . . , rn−1}, where each read ri,
0 ≤ i ≤ n−1, is a string of length ni from an alphabet Σ of cardinality |Σ| = σ.
For j ∈ {0, . . . , ni − 1}, let ri[j] be the j-th character of ri. For a given integer
k ≤ mini{ni : ri ∈ D}, we define a k-mer A as a string of length k from Σ, that
is A ∈ Σk. We say that a k-mer A appears in ri at position j ∈ {0, . . . , ni − k}
if ri[j + h] = A[h],∀h ∈ {0, . . . , k − 1}. For every i, 0 ≤ i ≤ n − 1, and every
j ∈ {0, . . . , ni − k}, we define the indicator function φri,A(j) that is 1 if the
k-mer A appears in ri at position j, while φri,A(j) = 0 otherwise. The total
number of k-mers in D is tD,k =

∑n−1
i=0 (ni − k + 1). We define the support

oD(A) of a k-mer A as the number of distinct positions in D where A appears:
oD(A) =

∑n−1
i=0

∑ni−k
j=0 φri,A(j). We define the frequency fD(A) of A in D as the

ratio between the number of distinct positions where A appears in D and the
total number of k-mers in D: fD(A) = oD(A)/tD,k.
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2.1 Frequent k-mers and Approximations

We are interested in obtaining the set FK(D, k, θ) of frequent k-mers in a dataset
D with respect to a minimum frequency threshold θ, defined as follows.

Definition 1. Given a dataset D, an integer k > 0, and a frequency threshold
θ ∈ (0, 1], the set FK(D, k, θ) of Frequent k-Mers in D w.r.t. θ is the collection
of all k-mers with frequency at least θ in D and of their corresponding frequencies
in D:

FK(D, k, θ) = {(A, fD(A)) : fD(A) ≥ θ}. (1)

FK(D, k, θ) can be computed with a single scan of all the k-mers occur-
rences in D maintaining the k-mers supports in an appropriate data structure;
however, when D is extremely large and k is not small, the exact computation
of FK(D, k, θ) is extremely demanding in terms of time and memory, since the
number of k-mers grows exponentially with k. In this case, a fast to compute
approximation of the set FK(D, k, θ) may be preferable, provided it ensures rig-
orous guarantees on its quality. In this work, we focus on the following approxi-
mation.

Definition 2. Given a dataset D, an integer k > 0, a frequency threshold θ ∈
(0, 1], and a constant ε ∈ (0, θ), an ε-approximation of FK(D, k, θ) is a collection
C = {(A, fA) : fA ∈ (0, 1]} such that:

– for any (A, fD(A)) ∈ FK(D, k, θ) there is a pair (A, fA) ∈ C;
– for any (A, fA) ∈ C it holds that fD(A) ≥ θ − ε;
– for any (A, fA) ∈ C it holds that |fD(A) − fA| ≤ ε/2.

The definition above guarantees that every frequent k-mer of D is in the
approximation and that no k-mer with frequency <θ−ε is in the approximation.
The third condition guarantees that the estimated frequency fA of A in the
approximation is close (i.e., within ε/2) to the frequency fD(A) of A in D. It
is easy to show that obtaining a ε-approximation of FK(D, k, θ) with absolute
certainty requires to process all k-mers in D.

2.2 Simple Sampling-Based Algorithms and Bounds

We aim to provide an approximation to FK(D, k, θ) with sampling, by process-
ing only randomly selected portions of D. The simplest sampling scheme is the
one in which a random sample is a bag P of m positions taken uniformly at ran-
dom, with replacement, from the set PD,k = {(i, j) : i ∈ [0, n−1], j ∈ [0, ni −k]}
(note that |PD,k| = tD,k) of all positions where k-mers occurs in the dataset
D, corresponding to m occurrences of k-mers (with repetitions) taken uniformly
at random. Given such sample P , an integer k > 0, and a minimum frequency
threshold θ ∈ (0, 1] one can define the set of frequent k-mers (and their frequen-
cies) in the sample P as FK(P, k, θ) = {(A, fP (A)) : fP (A) ≥ θ}, where fP (A)
is the frequency of k-mer A in the sample.
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Obtaining a ε-approximation from a random sample with absolute certainty
is impossible, thus we focus on obtaining a ε-approximation with probability
1− δ > 0, where δ ∈ (0, 1) is a confidence parameter, whose value is provided by
the user. Intuitively, the set FK(D, k, θ) of frequent k-mers is well approximated
by the set of frequent k-mers in a random sample P when P is sufficiently large.
One natural question regards how many samples are needed to obtain the desired
ε-approximation. By using Hoeffding’s inequality [16] to bound the deviation of
the frequency of a k-mer A in the sample from fD(A) and a union bound on
the maximum number σk of k-mers, where σ = |Σ|, we have the following result
that provides a first such bound, and a corresponding first algorithm to obtain
a ε-approximation to FK(D, k, θ). (Due to space constraints proofs are omitted
and will be provided in the full version of this extended abstract.)

Proposition 1. Consider a sample P of size m of D. If m ≥ 2
ε2(

ln
(
2σk

)
+ ln

(
1
δ

))
for fixed ε ∈ (0, θ), δ ∈ (0, 1), then, with probability ≥1 − δ,

FK(P, k, θ − ε/2) is a ε-approximation of FK(D, k, θ).

In addition, by using known results in statistical learning theory [16,29] relat-
ing the VC dimension (see Sect. 3 for its definition) of a family of functions and
a novelly derived bound on the family of functions {fD(A)}, we obtain the fol-
lowing improved bound and algorithm. (The derivation will be provided in the
full version.)

Proposition 2. Let P be a sample of size m of D. For fixed ε ∈ (0, θ), δ ∈
(0, 1), if m ≥ 2

ε2

(
1 + ln

(
1
δ

))
then FK(P, k, θ − ε/2) is an ε-approximation for

FK(D, k, θ) with probability ≥1 − δ.

3 Advanced and Practical Bounds and Algorithms
for k-mer Approximations

While the bound of Proposition 2 significantly improves the simple bounds of
Sect. 1, since the factor ln(2σk) has been reduced to 1, it still has an inverse
quadratic dependency with respect to the accuracy parameter ε, that is prob-
lematic when the quantities to estimate are small. In these cases, one needs a
small ε to produce a meaningful approximation (since ε < θ), and the inverse
quadratic dependence of the sample size from ε often results in a sample size
larger than the entire input, defeating the purpose of sampling. The case of
k-mers is particularly challenging, since the sum

∑
A∈Σk fD(A) of all k-mers

frequencies is exactly 1. Therefore the higher the number of distinct k-mers
appearing in the input, the lower their frequencies will be, with the consequence
that θ (and therefore ε) typically needs to be set to a very low value. For example,
a typical dataset from the Human Microbiome Project (HMP) has n ≈ 108 reads
of (average) length ≈100: therefore if we are interested in k-mers for k = 31, by
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setting δ = 0.05 the bound of Sect. 2.2 gives ε ≈ 10−5, that is only k-mers with
frequency ≥10−5 could be reliably reported by sampling. However, in datasets
we considered, no or a very small number (≤30) of k-mers have frequency ≥10−5,
therefore according to the result from Sect. 2.2 we cannot obtain a meaningful
approximation of k-mers and their frequencies. In the remaining of this section
we develop more refined sampling schemes and estimation techniques leading to
a practical sampling-based algorithm.

3.1 Sampling Bags of Positions and VC Dimension Bound

We propose a method to provide an efficiently computable approximation to
FK(D, k, θ) when the minimum frequency θ is low, by properly defining sam-
ples so that any k-mer A will appear in a sample with probability higher than
fD(A), thus lessening the the dependence of the sample size from 1/ε2. For this
to be achievable, we need to relax the notion of approximation defined in Sect. 2.
In particular, the guarantees, provided by our method, in such relaxed approxi-
mation are that all k-mers with frequency above θ′, with θ′ slightly higher than
θ, are reported in output, and that no k-mer having frequency below θ − ε is
reported in output. (See Proposition 5 for the definition of θ′.) Our experiments
show that the fraction of k-mers having frequency ∈[θ, θ′) which are non reported
is very small. Our method works by sampling bags of positions instead than sin-
gle positions. In particular, an element of the sample is now a set of � positions
chosen independently at random from the set PD,k of all positions.

Let I� = {(i1, j1), (i2, j2), . . . , (i�, j�)} be a bag of � positions for k-mers in D,
chosen uniformly at random from the set PD,k. We define the indicator functions
φ̂A(I�) that, for a given bag I� of � positions, is equal to 1 if k-mer A appears
in at least one of the � positions in I� and is equal to 0 otherwise. That is
φ̂A(I�) = min

{
1,

∑
(i,j)∈I�

φri,A(j)
}

. We define the �-positions sample P� as a
bag of m bags {I�,0, I�,1, . . . , I�,m−1}, where each I�,j , 0 ≤ j ≤ m − 1 is a bag of
� positions, sampled independently, and

f̂P�
(A) =

1
m

∑

I�,i∈P�

φ̂A(I�,i)
�

. (2)

Intuitively, f̂P�
(A) is the biased version of the unbiased estimator fP�

(A) =
1
m

∑
I�,i∈P�

∑
(i,j)∈I�,i

φri,A(j)

� of fD(A), where the bias arises from considering a
value of 1 every time

∑
(i,j)∈I�,i

φri,A(j) > 1.
In our analysis we use the Vapnik-Chervonenkis (VC) dimension [28,29], a

statistical learning concept that measures the expressivity of a family of binary
functions. We define a range space Q as a pair Q = (X,RX) where X is a
finite or infinite set and RX is a finite or infinite family of subsets of X. The
members of RX are called ranges. Given D ⊂ X, the projection of RX on D
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is defined as projRX
(D) = {r ∩ D : r ∈ RX}. We say that D is shattered by

RX if projRX
(D) = 2|D|. The VC dimension of Q, denoted as V C(Q), is the

maximum cardinality of a subset of X shattered by RX . If there are arbitrary
large shattered subsets of X shattered by RX , then V C(Q) = ∞.

A finite bound on the VC dimension of a range space Q implies a bound on
the number of random samples required to obtain a good approximation of its
ranges, defined as follows.

Definition 3. Let Q = (X,RX) be a range space and let D be a finite subset of
X. For ε ∈ (0, 1], a subset B of D is an ε-approximation of D if for all r ∈ RX

we have:
∣
∣
∣
|D ∩ r|

|D| − |B ∩ r|
|B|

∣
∣
∣ ≤ ε/2.

The following result [16] relates ε and the probability that a random sample
of size m is an ε-approximation for a range space of VC dimension at most v.

Proposition 3 ([16]). There is an absolute positive constant c such that if
(X,RX) is a range-space of VC dimension at most v, D is a finite subset of
X, and 0 < ε, δ < 1, then a random subset B ⊂ D of cardinality m with
m ≥ 4c

ε2

(
v + ln

(
1
δ

))
is a ε-approximation of D with probability at least 1 − δ.

The universal constant c has been experimentally estimated to be at most
0.5 [12].

We now prove an upper bound to the VC dimension V C(Q) of the range
space Q associated to the class of functions φ̂A that grows sub-linearly with
respect to �. To this aim, we first define the range space associated to bags of �
positions of k-mers.

Definition 4. Let D be a dataset of n reads and let k and � be two integers ≥1.
We define Q = (XD,k,�, RD,k,�) to be the following range space:

– XD,k,� is the set of all bags of � positions of k-mers in D, that is the set of
all possible subsets, with repetitions, of size � from from PD,k;

– RD,k,� = {PD,�(A)|A ∈ Σk} is the family of sets of starting positions of k-
mers, such that for each k-mer A, the set PD,�(A) is the set of all bags of �
starting positions in D where A appears at least once.

We prove the following results on the VC dimension of the above range space.

Proposition 4. Let Q the range space from Definition 4. Then: V C(Q) ≤

log2(�)� + 1.

Using the result above, we prove the following.

Proposition 5. Let � ≥ 1 be an integer and P� be a bag of m bags of � positions
of D with

m ≥ 2
(�ε)2

(


log2 min(2�, σk)� + ln
(

1
δ

))

. (3)

Then, with probability at least 1 − δ:
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– for any k-mer A ∈ FK(D, k, θ) such that fD(A) ≥ θ′ = 1 − (1 − �θ)1/� it
holds f̂P�

(A) ≥ θ − ε/2;
– for any k-mer A with f̂P�

(A) ≥ θ − ε/2 it holds fD(A) ≥ θ − ε;
– for any k-mer A ∈ FK(D, k, θ) it holds fD(A) ≥ f̂P�

(A) − ε/2;
– for any k-mer A with f̂P�

(A)− ε/2 ≥ 0, it holds fD(A) ≥ 1− (1− �(f̂P�
(A)−

ε/2))1/�;
– for any k-mer A with �(f̂P�

(A)+ε/2) ≤ 1 it holds fD(A) ≤ 1−(1−�(f̂P�
(A)+

ε/2))1/�.

Note that from Proposition 5 the set {(A, fP�
(A)) : f̂P�

(A) ≥ θ − ε/2} is
almost a ε-approximation to FK(D, k, θ): in particular, there may be k-mers A

for which E[f̂P�
(A)] = (1 − (1 − fD(A))�)/� < θ while fD(A) = E[fP�

(A)] ≥ θ

and such that for the given sample P� we have f̂P�
(A) ≈ E[f̂P�

(A)] − ε/2. While
this can happen, we can limit the probability of this happening by appropriately
choosing �, and still enjoy the reduction in sample size of the order of log2 �

�2 w.r.t.
Proposition 2 obtained by considering bags of bags of � positions. In particular,
this result allows the user to set θ, ε, δ, and � to effectively find, with probability
at least 1−δ, all frequent k-mers A for which fD(A) ≥ θ′ and do not report any k-
mer with frequency below θ − ε, while still being able to report in output almost
all k-mers with frequency ∈ [θ, θ′). Our experimental analysis (Sect. 4) shows
that in practice choosing � close from below to 1/θ is very effective to obtain
such result. Then, the third, fourth, and fifth guarantees from Proposition 5
state that we can use the biased estimates f̂P�

(A) to derive guaranteed upper
and lower bounds to fD(A) that will be much tighter than the one obtained
using the bounds of Sect. 2.2. We will show how to obtain further improved
upper and lower bounds to fD(A) in Sect. 3.3. Such lower bounds �bA can be
used, for example, to prove that the set {(A, fP�

(A)) : �bA ≥ θ − ε} enjoys
the same last four guarantees from Proposition 5 while the first one holds for
a θ′ < 1 − (1 − �θ)1/�; therefore, when false negatives are problematic, the set
{(A, fP�

(A)) : �bA ≥ θ − ε} can be used to obtain a different approximation of
FK(D, k, θ) with fewer false negatives.

3.2 SAKEIMA: An Efficient Algorithm to Approximate Frequent
k-mers

We now present our Sampling Algorithm for K-mErs approxIMAtion (SAKEIMA),
that builds on Proposition 5 and efficiently samples a bag P� of bags of �-positions
from D to obtain an approximation of the set FK(D, k, θ) with probability 1−δ,
where δ is a parameter provided by the user.
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Algorithm 1. SAKEIMA
Input: dataset D, total number of k-mers tD,k in D,
frequency threshold θ, accuracy parameter ε ∈ (0, θ),
confidence parameter δ ∈ (0, 1), integer � ≥ 1.
Output: approximation {(A, fA)} of FK(D, k, θ) with probability ≥ 1− δ

1 m ←
⌈

2
(�ε)2

(
log2 min(2�, σk)� + ln
(
2
δ

))⌉
; λ ← m�

tD,k
;

2 T ← empty hash table;
3 forall reads ri ∈ D do
4 forall j ∈ [0, ni − k] do
5 A ← k-mer in position j of read ri;
6 a ← Poisson(λ);
7 if a > 0 then T [A] ← T [A] + a;
8 O ← ∅; t ← ∑

A∈T T [A];
9 P� ← random partition of t occurrences in T into m bags;

10 forall k-mers A ∈ T do
11 fA ← T [A]/t;
12 PA ← bags of P� where A appears at least once;
13 f̂A ← |PA|/m;
14 if f̂A ≥ θ − ε/2 then O ← O ∪ (A, fA);
15 return O;

SAKEIMA is described in Algorithm 1. SAKEIMA performs a pass on the stream
of k-mers appearing in D, and for each position in the stream it samples the
number a of times that the position appears in the sample P� independently at
random from the Poisson distribution Poisson(λ) of parameter λ = m�/tD,k.
SAKEIMA stores such values in a counting structure T (lines 3–7) that keeps, for
each k-mer A, the total number of occurrences of A in the sample P�. (Note
that tD,k, that can be computed with a very quick linear scan of the dataset,
where ni is computed for every ri ∈ D without extracting and processing (e.g.,
inserting or updating information for) k-mers; in alternative a lower bound to
tD,k can be used, simply resulting in a number of samples higher than needed).
Then, such occurrences are partitioned into the m bags I�,0, . . . , I�,m−1 (line 9);
this can be efficiently implemented by assigning each occurrence to a random
bag while keeping the difference between the final size of the bags ≤1. For each
k-mer A appearing at least once in the sample (line 10), the unbiased estimate
fA is computed as the number T [A] of occurrences of A in the sample P� (line 11)
divided by the total number of positions in the sample, while the biased estimate
f̂A is computed as the number |PA| of distinct bags of P� where A appears at
least once divided by the number m of bags (lines 12–13). Then SAKEIMA flags A

as frequent if f̂A ≥ θ−ε/2 (line 14) and, in this case, the couple (A, fA) is added
to the output set O (line 14), since fA is the best (and unbiased) estimate to
fD(A). Note that bags for different values of � (on the same sampled positions)
can be obtained by maintaining a table T� and a set PA,� for each value � of
interest.
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Note that SAKEIMA does not sample m bags of exactly � positions each, since
the number of occurrences of each position in D in the sample P� is sampled
independently from a Poisson distribution, even if the expected number of total
occurrences sampled from the algorithm is m�. However, the independent Poisson
distributions used by SAKEIMA provide an accurate approximation of the random
sampling of exactly m� positions used in the analysis of Sect. 3.1. In particular,
this holds when one focuses on the events of interests for our approximation of
Sect. 3.1 (e.g., the event “there exists a k-mer A such that |E[f̂P�

(A)]− f̂P�
(A)| >

ε/2”). In fact, a simple adaptation of a known result (Corollary 5.11 of [16]) on
the relation between sampling with replacement and the use of independent
Poisson distributions gives the following.

Proposition 6. Let E be an event whose probability is either monotonically
increasing or monotonically decreasing in the number of sampled positions. If E
has probability p when the independent Poisson distributions are used, then E
has probability at most 2p when the sampling with replacement is used.

As a simple corollary, the output O features the guarantees of Proposition 5 with
probability ≥1 − δ′, with δ′ = 2δ.

3.3 Improved Lower and Upper Bounds to k-mers Frequencies

Note that Proposition 5 guarantees that we can obtain upper and lower bounds
to fD(A) for every A ∈ FK(D, k, θ) from the sample of bags of � positions. These
bounds are meaningful only in specific ranges of the frequencies; for example,
the lower bound from the third guarantee in Proposition 5 is meaningful when
the frequency of A is fairly low, i.e. fD(A) ≈ 1/�, while for very frequent k-mers
they could be a multiplicative factor 1/� away from than the correct value. For
example, if a k-mer is very frequent and appears in all bags of � k-mers in a
sample S, its corresponding lower bound is still only 1/� − ε/2.

However, Proposition 5 can be generalized to obtain tighter upper and lower
bounds to the frequency of all k-mers. For given �, ε, and δ, let m as given in
Proposition 5. Note that the total number of k-mer’s positions in the sample
P� is m�. Let L be a set of integer values L = {�i} with �i ∈ [1,m�],∀i =
0, . . . , |L| − 1. Now, for every �i ∈ L, we can partition the same m� k-mers that
are in P� into mi = m�/�i partitions having size �i. Let P�i

be such a random
partition of such positions into mi bags of �i positions each. Note that each
P�i

is a “valid” sample (i.e., a sample of independent bags of positions, each
obtained by uniform sampling with replacement) for Proposition 5, even if the
P�i

’s are not independent. From each P�i
, we define a maximum deviation εi

from Proposition 5 as εi = 1
�i

√
2

mi
(
log2(min(2�i, σk))� + ln (|L|/δ)). We have

the following result.

Proposition 7. With probability at least 1− δ, for all k-mers A simultaneously
and for all the random partitions induced by L it holds

– fD(A) ≥ max{f̂P�i
(A) − εi/2 : i = 0, . . . , |L| − 1};
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– fD(A) ≥ max{1 − (1 − �(f̂P�i
(A) − εi/2))1/� : i = 0, . . . , |L| − 1 and f̂P�

(A) −
εi/2 ≥ 0};

– fD(A) ≤ min{1 − (1 − �(f̂P�i
(A) + εi/2))1/� : i = 0, . . . , |L| − 1 and f̂P�

(A) +
εi/2 ≤ 1/�}.
In our experiments, we use L = {�i} with �i = �/2i,∀i ∈ [0, 
log2 �� − 1]; in

this case, note that P�0 = P�. Using this scheme, we can compute upper and
lower bounds for k-mers having frequencies of many different orders of magni-
tude, but any (application dependent) distribution can be specified by the user.
These upper and lower bounds can be used to obtain different approximations
of FK(D, k, θ) with different guarantees. For example, by reporting all k-mers
(and their frequencies) that have an upper bound ≥θ, we have an approximation
that guarantees that all k-mers A with fD(A) ≥ θ are in the approximation.

4 Experimental Results

In this section we present the results of our experimental evaluation for SAKEIMA.
Sect. 4.1 describes the datasets, our implementation for SAKEIMA1, and the base-
line for comparisons. In Sect. 4.2, we report the results for computing the approx-
imation of the frequent k-mers using SAKEIMA. Section 4.3 reports the results of
using our approximation to compute abundance-based and presence-based dis-
tances between metagenomic datasets.

4.1 Datasets and Implementation

We considered six datasets from the Human Microbiome Project (HMP)2, one
of the largest publicly available collection of metagenomic datasets from high-
throughput sequencing. In particular, we selected the three largest datasets of
stool and the three largest of tongue dorsum (Table 1). These datasets consti-
tute the most challenging instances, due to their size, and provide a test case
with different degrees of similarities among datasets.

We implemented SAKEIMA in C++ as a modification of Jellyfish [13] (the ver-
sion we used is 2.2.103), a very popular and efficient algorithm for exact k-mer
counting. Doing so, our algorithm enjoys the succinct counting data structure
provided by Jellyfish publicly available implementation. We remark that our
sampling-based approach can be used in combination with any other highly
tuned method available for exact, approximate, and parallel k-mer counting.
For this reason, we only compare SAKEIMA with the exact counting performed
by Jellyfish, since they share the underlying characteristics, allowing us to eval-
uate the impact of SAKEIMA sampling strategy. We did not include the time to
compute tD,k in our experiments since it was always negligible (i.e., less than
2 min) w.r.t. the time for counting k-mers.
1 Available at https://github.com/VandinLab/SAKEIMA.
2 https://hmpdacc.org/HMASM.
3 https://github.com/gmarcais/Jellyfish.

https://github.com/VandinLab/SAKEIMA
https://hmpdacc.org/HMASM
https://github.com/gmarcais/Jellyfish
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Table 1. Datasets for our experimental evaluation. For each dataset D the table shows:
the dataset name and site ((s) for stool, (t) for tongue dorsum); the total number
tD,k of k-mers (k = 31) in D; the number |D| of reads it contains; the maximum read
length maxni = maxi{ni|ri ∈ D}; the average read length avgni =

∑n−1
i=0 ni/n.

Dataset tD,k |D| maxni avgni

SRS024388(s) 7.92 · 109 1.20 · 108 102 97.21

SRS011239(s) 8.13 · 109 1.24 · 108 102 96.69

SRS024075(s) 8.82 · 109 1.38 · 108 96 94.88

SRS075404(t) 7.75 · 109 1.22 · 108 102 94.51

SRS062761(t) 8.26 · 109 1.18 · 108 101 101.00

SRS043663(t) 9.15 · 109 1.31 · 108 101 101.00

For the computation of the abundance-based distances from the k-mer counts
of two dataset, we implemented in C++ a simple algorithm that loads the counts
of one dataset in main memory and then performs one pass on the counts of the
other dataset, producing the distances in output. We executed all our experi-
ments on the same machine with 512 GB of RAM and a 2.30 GHz Intel Xeon
CPU, compiling both implementations with g++ 4.9.4. SAKEIMA can be used
in combination with more efficient algorithms and implementations for the com-
putation of these (and other) distances [1], resulting in speed-ups analogous to
the ones we present below. For all the experiments of SAKEIMA, given θ and a
dataset D, we fixed the parameters δ = 0.1, ε = θ − 2/tD,k, m = 100, and we fix
� to the minimum value satisfying the ε-approximation. For all the experiments
we have � close from below to 1/θ. For all the metrics we considered, we report
the results for one random run.

4.2 Approximation of the Frequent k-mers

We fixed k = 31, and we compared SAKEIMA with the exact counting of all k-mers
(from Jellyfish) in terms of: (i) running time4, including, for both algorithms,
the time required to write the output on disk; (ii) memory requirement. We also
assessed the accuracy of the output of SAKEIMA.

Figure 2 shows the running times and the peak memory as function of θ. Note
that for the exact counting algorithm these metrics do not depend on θ, since it
always counts all k-mers. SAKEIMA is always faster than the exact counting, with
a difference that increases when θ increases and a speed-up around 2 even for
θ = 2 · 10−8. The memory requirement of SAKEIMA reduces when θ increases,
and for θ = 2 · 10−8 it is half of the memory required by the exact counting.
4 Every instance of SAKEIMA and Jellyfish was executed with 1 worker, i.e., sequen-

tially. Note that the Poisson approximation employed by SAKEIMA allows multiple
workers to independently process the input k-mers, therefore SAKEIMA can be used
in a parallel scenario. We will investigate the impact of parallelism in the extended
version of this work.



Fast Approximation of Frequent k-mers and Applications to Metagenomics 221

Fig. 2. Running time, memory requirements, and number of distinct k-mers counted,
for SAKEIMA and exact counting as function of θ. (a) Running time. (b) Memory require-
ment. (c) Number of distinct k-mers counted. (d) Sample sizes of SAKEIMA, total size
tD,k of the datasets, and number (c.p.) of dataset’s distinct covered positions (i.e.,
included in SAKEIMA’s sample), as function of θ.

This is due to SAKEIMA’s sample size being much smaller than the dataset size
(Fig. 2(d)), therefore a large portion of extremely low frequency k-mers are nat-
urally left out from the random sample and do not need to be accounted for
in the counting data structure, as confirmed by counting the number of distinct
k-mers that are inserted in the counting data structure by the two algorithms
(Fig. 2(c)). (The difference between the memory requirement and the number of
distinct k-mers is given by Jellyfish’s strategy to doubles the size of the counting
data structure when it is full.)

In terms of quality of the approximation, the output of SAKEIMA satisfied
the guarantees given by Proposition 5 for all runs of our experiments, therefore
with probability higher than 1 − δ. While SAKEIMA may incur in false negatives,
its false negative ratio (i.e., the fraction of k-mers in FK(D, k, θ) not reported
by SAKEIMA) is always ≤3 · 10−4 (Fig. 3(a)), even if the sampling technique
of Sect. 3.1 does not provide rigorous guarantees on such quantity. Therefore
SAKEIMA is very effective in reporting almost all frequent k-mers. As mentioned
in Sect. 3.3, SAKEIMA can be easily modified so to report all frequent k-mers in
output, even if at the cost of reporting also more k-mers with frequency between
θ − ε and θ. In addition, the estimated frequencies fA reported by SAKEIMA
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Fig. 3. Quality of the approximation of FK(D, k, θ) produced by SAKEIMA. (a) False
negative rate, i.e., the fraction r of k-mers in FK(D, k, θ) not reported by SAKEIMA.
(b) Maximum deviation |fA − fD(A)| of the estimates reported by SAKEIMA for various
θ. (c) Average value of |fA − fD(A)| for the k-mers A reported by SAKEIMA for various
θ. (d) Frequencies and bounds for dataset SRS062761 and θ = 10−8 shown for k-mers
sorted in increasing order of exact frequencies. Red: exact frequencies fD(A). Green:
estimate fA of fD(A) from SAKEIMA. Blue: lower bound lbA to fD(A) from SAKEIMA.
Brown: upper bound ubA to fD(A) from SAKEIMA. (Color figure online)

are always close to the true values fD(A), with a small maximum deviation
|fA − fD(A)| (Fig. 3(b)), and an even smaller average deviation (Fig. 3(c)). In
addition, the upper and lower bounds computed as in Sect. 3.3 provide small con-
fidence intervals always containing the value fD(A) (e.g., Fig. 3(d) for dataset
SRS062761), and could be used to obtain sets of k-mers with various guarantees
from the sample used by SAKEIMA.

4.3 Application to Metagenomics: Computation of Ecological
Distances

We evaluate the use of SAKEIMA to speed up the computation of commonly
used k-mer based ecological distances [1] between datasets of Next-Generation
Sequencing (NGS) reads. We present results for the Bray-Curtis distance;
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Fig. 4. Results for Bray-Curtis (BC) distances of metagenomic datasets. (a) BC dis-
tance computed using k-mers with frequency ≥θ. (b) BC distances computed using
the approximation of k-mers with frequency ≥θ from SAKEIMA. (c) Comparison of the
BC distance using all k-mers with exact counts and the approximation of frequent
k-mers by SAKEIMA. (d) Total time required by SAKEIMA and the exact approach to find
frequent k-mers and compute all distances between datasets as a function of θ.

analogous results hold for other distances and will be presented in the full version
of this extended abstract.

We first investigated how the distances change when those are computed
considering only the frequent k-mers (w.r.t. a frequency threshold θ) instead
that the full spectrum of k-mers appearing in the data. Therefore, given a
pair of datasets D1 and D2 and θ, we computed the sets O1 = FK(D1, k, θ)
and O2 = FK(D2, k, θ) using Jellyfish and then computed a generalized ver-
sion of the distances for all pairs of datasets we used for our experiments. For
the Bray-Curtis distance, this generalization is defined as: BC(D1,D2,O1,O2)

= 1 − 2
∑

A∈O1∩O2
min{oD1 (A),oD2 (A)}

∑
A∈O1

oD1 (A)+
∑

A∈O2
oD2 (A) .

Note that when θ ≤ 10−10 then FK(D, k, θ) coincides with the set of all
k-mers, for any of the datasets we tested. The results (Fig. 4(a)) show that for
θ up to 5 × 10−8 the values of the distances are fairly stable and therefore one
can use only frequent k-mers for such values of θ to compute the distances,
and that for θ up to 10−7 the relation between distances of different pairs
of datasets are almost always conserved. We underline that the exact count-
ing approach needs to count all the k-mers and only afterwards can filter the
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infrequent ones before writing them to disk to compute FK(D, k, θ). We then
used SAKEIMA to extract approximations (of k-mers and their frequencies) of
FK(D1, k, θ) and FK(D2, k, θ) and used such approximations to compute the
distances among datasets (Fig. 4(b)). Strikingly, the distances computed from
the output of SAKEIMA are very close to their exact variant (Fig. 4(c)). Interest-
ingly this holds also for the Jaccard distance, a presence-based distance that does
not depend neither on k-mer abundances nor on k-mer ranking by frequencies
(detailed results will be provided in the full version of this extended abstract).

We then compared, for different values of θ, the total running time required
to compute the approximations of the frequent k-mers using SAKEIMA for all
datasets in Table 1 and all distances among such datasets using SAKEIMA approx-
imations with the running time required when the exact counting algorithm is
used for the same tasks. SAKEIMA reduces the computing time by more than 75%
(Fig. 4(d)). This result comes from both the efficiency of SAKEIMA and from the
fact that by focusing on the most frequent k-mers we greatly reduce the number
of distinct k-mers that need to be processed for computing the distances. There-
fore SAKEIMA can be used for a very fast comparison of metagenomic datasets
while preserving the ability of distinguishing similar datasets from different ones.

5 Conclusion

We presented SAKEIMA, a sampling-based algorithm to approximate frequent k-
mers and their frequencies with rigorous guarantees on the quality of the approx-
imation. We show that SAKEIMA can be used to speed up the analysis of large
high-throughput sequencing metagenomic datasets, in particular to compute
abundance-based distances among such datasets. Interestingly SAKEIMA allows
to compute accurate approximations also for presence-based distances (e.g., the
Jaccard distance), even if for such distances other, potentially faster, tools [18]
are available. SAKEIMA can be combined with any highly optimized method that
counts all k-mers in a set of strings, including recent parallel methods designed
for comparative metagenomics [1]. While we presented results for k-mers from
datasets of short reads, SAKEIMA can also be used for the analysis of spaced
seeds [2], large datasets of long reads, and whole genome sequences.
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Abstract. Long-read sequencing of transcripts with PacBio Iso-Seq and
Oxford Nanopore Technologies has proven to be central to the study
of complex isoform landscapes in many organisms. However, current de
novo transcript reconstruction algorithms from long-read data are lim-
ited, leaving the potential of these technologies unfulfilled. A common
bottleneck is the dearth of scalable and accurate algorithms for cluster-
ing long reads according to their gene family of origin. To address this
challenge, we develop isONclust, a clustering algorithm that is greedy
(in order to scale) and makes use of quality values (in order to han-
dle variable error rates). We test isONclust on three simulated and five
biological datasets, across a breadth of organisms, technologies, and read
depths. Our results demonstrate that isONclust is a substantial improve-
ment over previous approaches, both in terms of overall accuracy and/or
scalability to large datasets. Our tool is available at https://github.com/
ksahlin/isONclust.

1 Introduction

Long-read sequencing of transcripts with Pacific Biosciences (PacBio) Iso-Seq
and Oxford Nanopore Technologies (ONT) has proven to be central to the study
of complex isoform landscapes in, e.g., humans [1–4], animals [5], plants [6],
fungi [7] and viruses [8]. Long reads can reconstruct more complex regions
than can short RNA-seq reads because the often complex assembly step is not
required. However, they suffer from higher error rates, which present different
challenges. Using a reference genome can help alleviate these challenges, but,
for non-model organisms or for complex gene families, de novo transcript recon-
struction methods are required [2,9].

For non-targeted Iso-Seq data, the commonly used tool for de novo transcript
reconstruction is the ToFU pipeline from PacBio [7]. However, ToFU generates
c© Springer Nature Switzerland AG 2019
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a large number of redundant transcripts [7,10,11], and most studies have had
to resort to additional short-read sequencing [11,12] or relying on a draft ref-
erence [5]. For ONT data, there are, to the best of our knowledge, no methods
yet for de novo transcript reconstruction. Therefore, we believe that the full
potential of long-read technologies for de novo transcript reconstruction from
non-targeted data has yet to be fully realized.

Algorithms for this problem are roughly composed of two steps [2,7]. Since
most transcripts are captured in their entirety by some read, there is no need
to detect dovetail overlaps between reads (i.e. a suffix of one read matching the
prefix of another), and to perform subsequent graph construction and traversal
(as in RNA-seq assembly). Instead, the first step is to group reads together
into clusters according to their origin, and the second is to error-correct the
reads using the information within each cluster. This is the approach taken by
ToFU, but it clusters reads according to their isoform (rather than gene) of
origin. This separates reads that share exons into different clusters – reducing
the effective coverage for downstream error correction. For genes with multiple
isoforms, this significantly fragments the clustering and, we suspect, causes many
of the redundant transcripts that have been reported. For ONT data, there exists
a tool to cluster reads into their gene family of origin (carnac-lr [9]), but it
performed sub-optimally in our experiments and scales poorly for larger datasets.
Thus, better clustering methods are needed to realize the full potential of long
reads in this setting.

There exists a plethora of algorithms for de novo clustering of generic
nucleotide-[13–16], and protein-sequences [14,17–19]. Several algorithms have
also been proposed for clustering of specific nucleotide data such as barcode
sequences [20], EST sequences [21–23], full-length cDNA [24], RAD-seq [25],
genomic or metagenomic short reads [26–31], UMI-tagged reads [32], full genomes
and metagenomes [33], and contigs from RNA-seq assemblies [34,35]. However,
our clustering problem has unique distinguishing characteristics: transcripts from
the same gene have large indels due to alternative splicing, and the error rate
and profile differs both between [2] and within [36] reads. Furthermore, the large
number of reads limits the scalability of algorithms that require an all-to-all sim-
ilarity computation. De novo clustering of long-read transcript sequences has to
our knowledge only been studied in [2,7,37] for Iso-Seq data and in [9] for ONT
data. However, neither IsoCon [2] nor Cogent [37] scale to large datasets, and the
limitations of ToFu [7] and carnac-lr [9] have already been described above.
In [30], the authors demonstrated that using quality values can significantly
improve clustering accuracy, especially for higher error rates, but their method
was not designed for long reads.

Motivated by the shortcomings of the existing tools, we develop isONclust,
an algorithm for clustering long reads according to their gene family of origin.
isONclust is available at https://github.com/ksahlin/isONclust. isONclust
is greedy (in order to scale) and makes use of quality values (in order to handle
variable error rates). We test isONclust on three simulated and five biologi-
cal datasets, across a breadth of organisms, technologies, and read depths. Our

https://github.com/ksahlin/isONclust
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results demonstrate that isONclust is a substantial improvement over previ-
ous approaches, both in terms of overall accuracy and/or scalability to large
datasets. isONclust opens the door to the development of more scalable and
more accurate methods for de novo transcript reconstruction from long-read
datasets.

2 Methods

2.1 Definitions

Let r be a string of nucleotides that we refer to as a read. Let q(ri) be the
probability of base call error at position 1 ≤ i ≤ |r|. This value can be derived
from the Phred quality value Q at position i as q(ri) = 10−(Q/10). Let εr be the
average base error rate, εr =

∑|r|
i=1 q(ri)/|r|. Given two integers w and k such

that 1 ≤ k ≤ w ≤ |r|, the minimizer at position i is the lexicographically smallest
substring of r of length k that starts at a position in the interval of [i, i+w) [38].
Let M(r) be the set of ordered pairs containing all the minimizers of r and their
start positions on the read. For example, for r = ACGCCGATC, k = 2, w = 4,
we have M(r) = {(AC, 0), (CC, 3), (AT, 6)}. All the strings of M(r) are referred
to as the minimizers of r.

2.2 isONclust Overview

IsONclust is a greedy clustering algorithm. Initially, we sort the reads so that
sequences that are longer and have higher quality scores appear earlier (details
in Sect. 2.3). We then process the reads one by one, in this sorted order. At any
point, we maintain a clustering of the reads processed so far, and, for each cluster,
we maintain one of the reads as the representative of the cluster. We also maintain
a hash-table H such that for any k-mer x, H(x) returns all representatives that
have x as a minimizer.

At each point that a new read is processed, isONclust consists of three
steps. In the first step, we find the number of minimizers shared with each of the
current representatives, by querying H for each minimizer in the read and main-
taining an array of representative counts. We refer to any representative that
shares at least one minimizer with the read as a candidate. In the second step,
we use a minimizer-based method to try to assign a read to one of the candidate
representative’s cluster. To do this, we process the candidate representatives in
the order of most shared minimizers to the least. For each representative, we
estimate the fraction of the read’s sequence that is shared with it (details in
Sect. 2.3). If the fraction is above 0.7, then we assign the read to that repre-
sentative’s cluster; if not, we proceed to the next candidate. However, if the
number of shared minimizers with the current representative drops below 70%
of the top-sharing representative, or below an absolute value of 5, we terminate
the search and proceed to the third step.

In the third step, we fall back on a slower but exact Smith-Waterman align-
ment algorithm. If two transcripts have highly variable exon structure or contain
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many mutations (e.g., multi-copy genes or highly-mutated allele), then it could
create long regions of no shared minimizers and prevent the minimizer matching
approach from detecting the similarity. An alignment approach is more sensitive
and can detect that they should be clustered together. To control the run-time,
we align the read only to the representative with the most shared minimizers
(several in the case of a tie). Similar to the second step, we estimate the fraction
of the read’s sequence that is shared with the representative (details in Sect. 2.3),
and if the quality is above a threshold (details in Sect. 2.3), the read is assigned
to that representative’s cluster. Otherwise, the read is assigned to a new cluster
and made its representative.

2.3 isONclust In-Depth

Homopolymer Compression: An important aspect of isONclust is that
reads are homopolymer compressed, i.e. all consecutive appearances of a base
are replaced by a single occurrence. For example, the sequence GCCTGGG
is replaced by GCTG. When a homopolymer is compressed, the base quality
assigned to the compressed base is taken as the highest quality of the bases
in the original homopolymer region. The reason for using the highest quality
value is that it is a lower bound on the presence of at least one nucleotide in
that run. The homopolymer compression removes a large amount of homopoly-
mer indel errors during minimizer matching or alignment and at the same time
removes repetitive minimizers (from, e.g., poly-A tails). We borrowed this idea
from [39,40], where it was used to improve the sensitivity of PacBio read align-
ment.

Sorting Order: Prior to greedily traversing the reads, we sort them in decreas-
ing order of their score. We define the score s(r) of a read r as the expected
number of error-free k-mers in r. Let Xi be a binary indicator variable mod-
elling the event that the k-mer starting at position i of r has no sequencing error
(Xi = 1). Then, we have

s(r) = E

⎡

⎣
|r|−k+1∑

i=1

Xi

⎤

⎦ =
|r|−k+1∑

i=1

E[Xi] =
|r|−k+1∑

i=1

k−1∏

j=0

(1 − q(ri+j))

The score of a read can be quickly computed in a linear scan by maintaining a
running product over a sliding window of k quality scores.

The ordering produced by this score function is crucial for the accuracy of our
greedy approach. Observe that our algorithm never re-computes which read in a
cluster is the representative, and all future reads are compared only to a cluster’s
representative and not to other reads in the cluster. This is done for the sake of
efficiency, but, as a downside, once a read initiates a new cluster, it becomes its
representative forever. However, our score function guarantees that it will have
the largest expected number of error-free k-mers of any future read in the cluster.
In the case of alternatively spliced genes, this means that the representative
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likely contains the most complete exon repertoire of the gene. This allows us
to make the assumption that all exon differences during minimizer matching
or alignment are encountered as deletions with respect to the representative.
In both the matching and alignment parts, we will therefore not penalize for
long deletions in the read. We do penalize for insertions in reads with respect to
representatives because we assume that they cannot be due to exon differences.
We note that in the cases that our assumption does not hold (e.g. when several
exons are not present in the longest isoform), we may miss some matches and/or
alignments. However, we do tolerate some fraction of unmatched sequence in
later steps.

Estimating Fraction of Shared Sequence, Based on a Minimizer
Match: Consider a read r, a representative c, the set M(r), and the minimizers
of r that are shared with c. We would like to quickly estimate the fraction f
of r’s sequence that would align to c, if an alignment were to have been per-
formed. When two consecutive minimizers in M(r) match c, we simply count
the sequence spanned between their positions towards f . For the harder case,
consider a sequence of i consecutive unmatched minimizers in r that are flanked
on both sides by either a matched minimizer or the end of the read. We must
decide if this is due to the region being unalignable or due to true sequencing
errors. Let p(εr, εc) be the probability that a minimizer in a read is not matched
to another read, given that they are both generated from the same transcript
with respective error rates εr and εc. Then, the probability that i consecutive
minimizers of r are unmatched as a result of sequencing error can be estimated
as p(εr, εc)i. If this probability is above 0.1, we count the whole region towards
f , otherwise we do not.

Estimating Minimizer Mismatch Rate: Deriving an analytical formula for
p(εr, εc) is a challenge, as the probability of observing a spurious minimizer in
a window is a complex function depending on, e.g., the sequence of the true
minimizer in the window, the sequence in the window, the error profile, and the
properties of homopolymer compression. Instead, we use simulations to create
a lookup table for p. We randomly generate a transcript of length 1 kbp and,
from that transcript, two reads r and c with error rates εr and εc, respectively.
The errors are equally distributed between insertion and deletion errors since
Iso-Seq and ONT errors are dominated by indels. Further customization of the
error profile to more accurately reflect the technology is possible, but we found
that it had little effect. We then homopolymer compress the reads and count
the fraction of r’s minimizers that do not match c. We repeat the process 1,000
times, each time starting with a new transcript. The average fraction of non-
matching minimizers is used as the estimate for p(εr, εc). We pre-computed the
lookup table for a range of εr and εc values that we observe in practice, but it
can also be computed on the fly for datasets outside of these ranges.
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Estimating Fraction of Shared Sequence, Based on the Alignment:
When the minimizer matching approach fails to find a match, isONclust aligns
the read r to the most promising representative c using the parasail [41] semi-
global implementation of Smith-Waterman (start or end insertions in either
sequence are not penalized). Let ε = εr + εc be the combined error rate of r
and c. The parameters to Smith-Waterman are described in the experimental
appendix [42] and are a function of ε. Based on this alignment, we would like
to estimate the fraction of r whose alignment to c is consistent with having
the same underlying sequence but allowing sequencing errors (i.e. the same goal
as we had during minimizer matching). We aim to tolerate a mismatch rate of
ε. Consider the pairwise alignment A, represented as a matrix where the two
rows correspond to r and c, and each cell contains a symbol indicating either
a match, mismatch, or a gap. Consider a window of k columns in A starting
at position i of r. Let Wi = 1 if the number of columns in the window that
are not matches is ≤ �εk�; otherwise, let Wi = 0. We let the shared fraction
f = (

∑|r|−k+1
i=1 Wi)/|r − k + 1| and add r to the cluster of c if f is above 0.4.

Time Complexity: Our tool is a greedy heuristic, hence it is challenging
to derive a worst-case run-time that is informative. We attempt to do so by
parametrizing our analysis and fixing the number of representatives identified
as candidates for a read as d. The initial sorting step takes O(n log n) time.
Then for each read, the identification of minimizers takes O(�) time, where �
is the read length. Here, we treat w and k as constants. There are at most �
minimizers, and each one hits at most d representatives, hence identifying can-
didate representatives takes O(�d) time. Ranking the candidate representatives
can be done using counting sort in O(d) time. For minimizer matching, each
of the at most d candidates can be processed using a linear scan through the
read, leading to a total of O(�d) time. The alignment step is done only once and
is dominated by the O(�2) Smith-Waterman time. Hence, the total run-time is
O(n log n + n�d + n�2). In the worst-case, d can be Ω(n), but it is much less in
practice.

Parameters and Thresholds: The only parameters to isONclust are the
window size w and the k-mer size k. We found through trial-and-error that
k = 15 and w = 50 work well for Iso-Seq data, and k = 13 and w = 20 work well
for ONT data. Note that these lengths are applied for homopolymer compressed
reads, thus a 13-mer is likely to be much longer in the original read. There are
also several other hard thresholds used by isONclust, as described above. We
set these through a mix of intuition and testing on simulated data; nevertheless,
we found that isONclust is robust to these thresholds. In particular, we did
not vary them for any of our experiments, which included a diverse collection of
real datasets. We therefore do not recommend users to change these thresholds.
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3 Results

3.1 Experimental Setup

Datasets: We used eight datasets, in order to test the robustness of isONclust
with respect to different technologies, organisms, and read depths (Table 1). We
first simulated three Iso-Seq read datasets from 107,844 unique cDNA sequences
from ENSEMBL using SiMLOrD [43]. The datasets contained 100,000, 500,000,
and 1,000,000 reads that were simulated with uniform distribution over the
cDNA fragments. Next, we included a semi-biological Iso-Seq dataset (denoted
RC0) where the transcripts are synthetically produced but then sequenced with
Iso-Seq using the PacBio Sequel system. Then, we added three fully biological
Iso-Seq datasets: PacBio Sequel datasets from a zebrafinch (ZEB) and a hum-
mingbird (HUM), and a PacBio RSII system dataset from human brain tissue
(ALZ). Finally, we included a ONT dataset of human cDNA sequenced with
a MinION, which exhibits a different error profile and higher error rates than
Iso-Seq. The non-simulated Iso-Seq and ONT datasets are publically available
at [44] and [45], respectively.

Tools: The authors of carnac-lr [9] observed the inability of most clustering
tools designed for other purposes [14,20,25,27] to run on long-read transcrip-
tomic data. However, we did consider four additional such tools: qCluster [30],
linclust [18], DNACLUST [16], and MeShClust [15]. We also considered four
tools specifically designed for long-read transcriptome data (carnac-lr, Iso-
Con, isoseq3-cluster, and Cogent). Isoseq3-cluster (which we will refer to simply
as isoseq3) is the clustering tool used in the most recent version of PacBio’s de
novo transcript reconstruction pipeline. Out of these eight tools, we found that
only three (carnac-lr, isoseq3, and linclust) could process our two smallest
datasets (SIM-100k and RC0). We therefore only include these tools in our final
evaluations. Command lines and parameter settings for the nine tools we tried
are described in the experimental appendix [42].

Ground Truth: Since the true clustering is not known, we use a clustering
based on alignments to the reference genome as a proxy. We first align the reads
with minimap2 [40] to the reference genome (hg38 for human, Tgut diploid 1.0
for zebrafinch [46], and Canna diploid 1.0 for hummingbird [46]), with different
parameters for Iso-Seq and ONT data (for details, see [42]). The aligned reads are
then clustered greedily by merging the clusters of any two reads whose alignments
overlap. We refer to the cluster of a read obtained via this alignment to the
reference as the class of the read. Reads that could not be aligned and hence
could not be assigned to a class were excluded from all downstream accuracy
evaluations. Some class metrics for the datasets are shown in Table 1.

Using alignments to the reference to define classes is an imperfect proxy of
the true clustering. There are likely systemic misalignments due to gene sequence
content, artifacts of the aligner, or chimeric reads due to e.g. reverse transcription
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errors. Thus our approach does not yield a reliable estimate for the absolute
performance of a tool, but we believe it is a reasonable proxy to access the
relative performance between different tools.

Table 1. Datasets used for evaluation. The error rate of a read is estimated by summing
the probability of a base call error (obtained from the quality value) over all bases
in a read, divided by the read length. The error rate is estimated on original reads
(without homopolymer compression). The average error rate per dataset is computed
by averaging the estimated error rate over all reads in the dataset. A singleton class
(S) refers to a class that contains only one read and a non-singleton class (NS) refers to
a class with more than one read. †many of these originated from the synthetic spike-in
non-human transcripts.

Dataset Avg. error
rate (%)

n. classes n. reads % reads in
NS classesNS S Total Unaligned

ALZ 1.7 13,350 10,187 814,667 98 98.7

RC0 1.2 11,052 9,119 185,790 11,423† 88.9

HUM 1.8 13,683 4,450 288,699 3,882 97.1

ZEB 1.9 12,891 4,936 309,749 129 98.4

SIM-100k 1.9 9,106 3,351 100,000 4 96.6

SIM-500k 1.9 14,792 2,152 500,000 4 99.6

SIM-1000k 1.9 16,510 1,594 1,000,000 4 99.8

ONT 12.9 14,863 13,665 890,503 38,061 94.2

Evaluation Metrics: There exists several metrics to measure quality of clus-
tering. We mainly use the V-measure and its two components completeness and
homogeneity [47]. Let X be an array of n integers, where n is the number of reads
and the ith value is the cluster id given by a clustering algorithm. Similarly, let
Y be an array with the assigned ground truth class ids of the reads, ordered
as in X. Homogeneity is defined as h = 1 − H(Y |X)/H(Y ) and completeness
as c = 1 − H(X|Y )/H(X). Here, H(∗) and H(∗|∗) refer to the entropy and
conditional entropy functions, respectively [47]. Intuitively, homogeneity penal-
izes over-clustering, i.e. wrongly clustering together reads, while completeness
penalizes under-clustering, i.e. mistakenly keeping reads in different clusters. The
V-measure is then defined as the harmonic mean of homogeneity and complete-
ness. These are analogous to precision, recall, and F-score measures for binary
classification problems. We chose the V-measure metric as it is independent of
the number of classes, the number of clusters, and the size of the dataset—and
can therefore be compared across different tools [47]. Moreover, it can be decom-
posed in terms of homogeneity and completeness for a better understanding of
the algorithm behavior.

In order to avoid bias with respect to a single accuracy measure, we also
included the commonly used adjusted Rand index (ARI) [48]. Intuitively, ARI
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measures the percentage of read pairs correctly clustered, normalized so that a
perfect clustering achieves an ARI of 1 and a random cluster assignment achieves
an ARI of 0. The formal definition is more involved [48] and, since it is standard,
we omit it here for brevity.

In addition, we measure the percent of reads that are in non-singleton clus-
ters. Since the coverage per gene is sufficiently high in all our datasets, the
percentage of reads that are in non-singleton classes is high (89–100%, Table 1).
Thus, any reads in singleton clusters in excess of this amount are indicative
of reads that likely could have been clustered by the algorithm, but did not.
Finally, we measure the runtime (Table 2) and memory usage (Table 3) of all the
experiments.

Table 2. Run-time for the clustering algorithms. isONclust was run on 1 core. The
other tools were run with 8 cores specified. Runtime for carnac-lr includes mapping
time with minimap. (†the run was terminated after 10 days.)

Dataset Run-time (minutes)

isONclust isoseq3 carnac-lr linclust

ALZ 173 194 >14,400† 132

RC0 40 11 7 8

HUM 105 53 105 33

ZEB 130 58 689 35

SIM-100k 26 5 4 4

SIM-500k 111 58 187 28

SIM-1000k 185 223 1,271 67

ONT 1,630 N/A 5,053 39

3.2 Comparison Against Other Tools

The most direct comparison of our tool is to carnac-lr, which solves the same
problem we do. One of its stated limitations is a worst-case cubic runtime [9],
and we indeed observe that it does not scale well with growing sizes of our
datasets (Table 2). For the largest Iso-Seq dataset (ALZ, 814k reads), carnac-
lr did not complete within 10 days. For the other two large datasets (SIM-1000k
and ONT), carnac-lr was >6x and >3x slower than isONclust, respectively.
In terms of accuracy, carnac-lr performed reasonably well but always had a
lower V-measure and ARI than isONclust. carnac-lr also placed less reads
in non-singleton clusters than isONclust. For the ONT data, in particular, it
was only able to place 54% of the reads into non-singleton clusters (compared to
94.5% for isONclust), even though 94.2% of the reads were in non-singleton
classes (Table 1).
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Table 3. Peak memory usage for the clustering algorithms. isONclust was run on 1
core. The other tools were run with 8 cores specified.

Dataset Memory (Gb)

isONclust isoseq3 carnac-lr linclust

ALZ 1.9 5.3 N/A 9.8

RC0 0.4 1 0.9 1.6

HUM 0.8 2.8 6.2 4.6

ZEB 0.9 3 3.4 5

SIM-100k 0.3 0.6 0.5 0.9

SIM-500k 0.8 2.7 2.3 4.4

SIM-1000k 1.8 5.1 5.9 8.9

ONT 1.6 N/A 3.9 2.9

isoseq3 solves a slightly different problem than isONclust: its objective
is to cluster reads together from the same isoform of a gene, rather than from
the same gene family (i.e. in the case of alternative splicing, it will have sepa-
rate clusters for each isoform). Thus, completeness, V-measure, and ARI with
respect to our ground truth are not fair metrics by which to evaluate isoseq3.
Nevertheless, isoseq3 leaves many reads unclustered: 26–36% of the reads from
the real datasets and 53–89% of the reads from the simulated datasets (Table 4).
In some cases, this could be caused by low coverage per isoform; however, SIM-
1000k contains on average 9 reads per isoform, which should enable an algorithm
to cluster substantially more than 53% of the reads. In terms of homogeneity,
isoseq3 slightly outperforms isONclust, indicating that isoseq3 is the right
tool if the goal is a conservative clustering. isoseq3 is designed for only Iso-Seq
data and is thus not run on the ONT dataset.

Finally, we compare against linclust, which has a generic objective to clus-
ter any sequences above a given sequence similarity and coverage. We explored
several combinations of parameters to achieve the best results (more details
in [42]). While linclust was the fastest tool, it has substantially worse accu-
racy on Iso-Seq data than other tools and was able to cluster only 0.1% of the
ONT reads. This is not surprising, given that it was not designed for transcrip-
tome data.

3.3 Performance Observations

Scalability: For Iso-Seq, we can use the simulated data, which only varies in
read depth, to conclude that isONclust has linear scaling with respect to the
number of reads (Table 2). The absolute run-time is 3.1 h for the largest Iso-Seq
dataset, which is acceptable but could be further improved through paralleliza-
tion or code optimization. For ONT data, the dearth of mature transcriptomic
read simulators makes a controlled evaluation of scalability challenging. Though
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Table 4. Performance and accuracy of the tools on our datasets. %NS is the percentage
of reads in non-singleton clusters. The number of clusters is split between NS (non-
singleton clusters) and S (singleton clusters).

Dataset Tool Accuracy %NS reads n. clusters

V c h ARI NS S

ALZ isONclust 0.944 0.899 0.993 0.630 96.1 23265 32169

isoseq3 0.813 0.686 0.998 0.423 73.9 63512 212246

linclust 0.839 0.725 0.996 0.518 80.8 57942 156476

RC0 isONclust 0.977 0.961 0.994 0.804 90.1 12513 18459

isoseq3 0.923 0.859 0.997 0.640 66.6 14025 62085

carnac-lr 0.94 0.904 0.98 0.346 82.4 11002 32778

linclust 0.933 0.877 0.996 0.566 77.7 18116 41363

HUM isONclust 0.958 0.971 0.947 0.716 97.3 12140 7773

isoseq3 0.88 0.805 0.97 0.486 67.2 24171 94558

carnac-lr 0.934 0.944 0.924 0.489 93.3 9565 19323

linclust 0.888 0.825 0.962 0.462 78.9 28066 61046

ZEB isONclust 0.965 0.965 0.965 0.809 97.1 12767 8949

isoseq3 0.878 0.79 0.986 0.476 64.5 24097 110028

carnac-lr 0.93 0.94 0.92 0.401 93.4 9315 20555

linclust 0.881 0.801 0.979 0.455 76.1 31119 74119

SIM-100k isONclust 0.984 0.987 0.981 0.829 96.7 8931 3346

isoseq3 0.863 0.76 0.998 0.007 10.9 5013 89114

carnac-lr 0.979 0.99 0.969 0.734 96.1 8165 3945

linclust 0.911 0.845 0.988 0.258 76.5 17856 23478

SIM-500k isONclust 0.984 0.988 0.98 0.831 99.5 13996 2274

isoseq3 0.809 0.681 0.995 0.006 33.1 68704 334547

carnac-lr 0.971 0.974 0.967 0.695 97.1 12761 14527

linclust 0.895 0.82 0.985 0.263 89.8 48608 51026

SIM-1000k isONclust 0.984 0.988 0.98 0.832 99.8 15590 1945

isoseq3 0.788 0.654 0.993 0.006 46.8 180629 532410

carnac-lr 0.958 0.949 0.967 0.674 94.3 14423 56502

linclust 0.89 0.813 0.984 0.264 91.8 68752 81641

ONT isONclust 0.886 0.825 0.957 0.353 94.5 39464 48935

carnac-lr 0.797 0.669 0.984 0.095 54.2 27483 408270

linclust 0.72 0.563 1 <0.001 0.1 516 889346

we are 3x faster than carnac-lr on our dataset, the absolute run-time is still
fairly high (27.2 h) and improving it is an immediate future goal. We expect that
parallelization will yield significant speed-ups, keeping in mind that other tools
were run on eight cores compared to only one core for isONclust (Table 2).
Memory consumption was relatively low for all tools, with isONclust comsum-
ing the least memory (Table 3).
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Role of Class Size: We investigated if isONclust’s clustering accuracy is
affected by the class size (i.e., the number of reads present in a class). We
binned the reads according to ranges of class size and computed the completeness
and homogeneity with respect to each bin (Fig. 1). The completeness clearly
decreases with increased class size, indicating that isONclust tends to have
more fragmented clusters as the class size increases. Homogeneity has no clear
trend for class sizes up to 50, but decreases after that.

Fig. 1. Completeness and homogeneity of isONclust across various class sizes.

Fig. 2. Accuracy (measured by the ARI) of isONclust and carnac-lr as a function of
error rates. The read error rate is inferred by isONclust. Reads are binned according
to their error rate, rounded to the nearest two decimal points. Datapoints for where
there are at least 1,000 reads are shown.

Role of Read Error Rates: Base errors pose a challenge to any clustering
algorithm, so we measured how they affected our accuracy. We batch reads with
respect to their error rate and measure the ARI within each batch (Fig. 2, left
panel). For Iso-Seq, isONclust has relatively stable ARI across different error
rates (with ALZ being the exception), which we believe is due to our algorithm’s
use of quality values. This is not true for ONT, where error rates of 7–20%
have a detrimental effect on isONclust. Nevertheless, compared to carnac-
lr, isONclust has substantially higher ARI across error rates, datasets, and
technologies (Fig. 2, right panel); e.g. for the ONT dataset, isONclust does
better at 20% error rate than carnac-lr does at 7%.
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Fig. 3. Distribution of the stages of our algorithm. A read is either minimizer-matcher
or aligned to an existing cluster, or a new cluster is formed.

Breakdown of Algorithm Stages: For each read, isONclust either assigns
it to a new cluster or to an existing cluster. If the read goes to an existing
cluster, then it is either by minimizer matching or by alignment. We measure
the distribution of reads into these three cases for all our datasets (Fig. 3). For
the non-simulated Iso-Seq data, alignment was invoked only 6–10% of the time.
However, for the ONT and simulated Iso-Seq data, alignment was invoked more
frequently (22–34%), indicating room for future run-time improvement.

4 Conclusion

In this paper, we presented isONclust, a clustering tool for long-read transcrip-
tome data. The design choices of our algorithm are mostly driven by scaling and
the desire to use quality values. In order to scale, we made the algorithm greedy
so that it can avoid doing an all-to-all similarity comparison. We avoid the nat-
ural but time consuming step of recomputing the best representative within a
cluster after each update. Our initial sorting step mitigates the potentially neg-
ative effects of this by making sure that the representative is guaranteed to have
the largest expected number of error-free k-mers among all reads in the cluster.
Furthermore, we avoid the expensive alignment step whenever possible by using
minimizer matching. In terms of quality values, we use them throughout the
algorithm, including in the initial sorting step, in deciding whether mismatched
minimizers are the result of sequencing error, and in computing pairwise align-
ment. The use of quality values is critical to the success of our algorithm and to
its ability to handle both PacBio and Nanopore data.

Our results indicate that isONclust is a substantial improvement over exist-
ing methods, with higher accuracy and/or better scaling than other comparable
tools. We also demonstrated that isONclust performs well across a breadth
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of instruments (PacBio’s Sequel, PacBio’s RSII, and Oxford Nanopore), organ-
isms (human, zebrafinch, and hummingbird), with each also having a different
quality of reference for estimating the ground truth, and read depths (from
100k to 1mil reads). In all these scenarios, isONclust outperforms others on
all relevant accuracy metrics, with the exception that isoseq3 produces a more
homogeneous clustering (though at the cost of clustering much fewer reads).

Ultimately, we would like to combine isONclust with a post-clustering
error-correcting module in order to reconstruct transcripts de novo from non-
targeted Iso-Seq and ONT data. We have previously taken this approach in
our IsoCon tool [2] for targeted Iso-Seq data. IsoCon, however, is not able to
scale to the much larger non-targeted datasets and to the higher error rates of
ONT. With the development of isONclust, we are now able to overcome these
challenges in the clustering step. Our next step is to tackle the error correction
problem within each cluster. The ultimate goal is to develop a tool for de novo
transcript reconstruction, which will be the first such tool for ONT data and an
improvement over other methods for Iso-Seq data.
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Abstract. The characterization of mutational processes in terms of
their signatures of activity relies, to the most part, on the assumption
that mutations in a given cancer genome are independent of one another.
Recently, it was discovered that certain segments of mutations, termed
processive groups, occur on the same DNA strand and are generated by
a single process or signature. Here we provide a first probabilistic model
of mutational signatures that accounts for their observed stickiness and
strand-coordination. The model conditions on the observed strand for
each mutation, and allows the same signature to generate a run of muta-
tions. We show that this model provides a more accurate description of
the properties of mutagenic processes than independent-mutation mod-
els or strand oblivous models, achieving substantially higher likelihood
on held-out data. We apply this model to characterize the processiv-
ity of mutagenic processes across multiple types of cancer in terms of
replication and transcriptional strand-coordination.

1 Introduction

Mutational processes are key factors in shaping cancer genomes [1,9,23] and
their characterization has important implications for understanding the disease
and choosing targeted therapies [3,4,15].

Multiple algebraic and statistical approaches have been suggested to the
detection of mutational processes from somatic mutation data [2,5,11,17,19].
These methods, which focus on single-base substitions, are based on learning
the pattern of mutations of each potential process as well as its activity (aka
exposure) in any given tumor in a way that will best explain the observed muta-
tion data.

State-of-the-art approaches for learning mutational signatures include non-
negative matrix factorization (NMF) methods [2,5,11,17] that aim to explain
the mutation counts as a sum over all signatures of the probability of a specific
c© Springer Nature Switzerland AG 2019
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mutation to be generated by the respective signature times its exposure. Other
approaches that borrow from the world of topic modeling, aim to provide a
probabilistic model of the data so as to maximize the model’s likelihood [7,19].
However, most of these methods assume that mutations are independent of one
another and cannot capture processes that create dependencies among them.

Recently, it was observed that APOBEC-related signatures operate in a
strand-coordinated manner where pairs of consecutive mutations tend to mutate
from the same reference allele and occur on the same strand [14]. Morganella
et al. [12] generalized these observations and found segments of such mutations
(i.e., same reference allele and same strand) that they termed processive groups.
The significance and abundance of these processive groups suggested that certain
mutational processes display stickiness and strand-coordination properties.

The biological reasons for this strand coordination are related, at least in
part, to the asymmetric role that the two strands play in many cellular processes
that operate on DNA. For example, it is well known that APOBEC enzymes act
on single stranded DNA [16]. In cellular processes that require strand separa-
tion, including replication and transcription, one of the strands is often more
exposed than the other, leading to strand coordination of APOBEC mutations.
Due to the differences in which the leading and lagging strands are processed by
the replication apparatus, APOBEC asymmetry in these two strands is particu-
larly strong [8,12,18,22]. Since leading and lagging strand are also processed by
different polymerases, among other differences, additional signatures may have
replication related strand coordination. Transcription-coupled repair is another
source of strand-specific mutagenesis, and multiple signatures have been found to
have mutation strand bias in template versus non-template strands [1,8,12,22].

Here we provide a first probabilistic model, sticky multinomial mixture model
(sMMM), of cancer mutation data that accounts for the stickiness and strand-
coordination of mutational signatures. The model captures independent muta-
tions as well as processive groups in one probabilistic framework. In cross val-
idation tests on multiple datasets, sMMM outperforms independent-mutation
models or sticky models that do not account for the strand information. We
apply our model to gain new insights about the stickiness and strand prefer-
ences of known signatures.

2 Methods

2.1 Preliminaries

We follow previous work and assume that somatic mutations in cancer fall into
M = 96 categories (denoting the mutation identity and its flanking bases).
These mutations are assumed to be the result of the activity of K mutational
processes, each of which is associated with a signature Si = (ei(1), . . . , ei(M)) of
probabilities to emit each of the mutation categories. Henceforth, we denote the
mutation categories observed in a given tumor by o1, . . . , oT . We assume that oi
was emitted by signature si (whose identity is hidden from us).
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A multinomial mixture model (MMM) assumes the following generative pro-
cess for the mutation data. For each mutation, independently of all others, a
signature s ∈ S is drawn from a multinomial π = (π1, . . . , πK); subsequently,
the mutation category is drawn from Si. The model parameters can be learned
using the Expectation-Maximization (EM) algorithm.

2.2 Model Specification

Following Morganella et al. [12] and subsequent work [21], we assume that muta-
tions are either formed one at a time or belong to a processive group of mutations
that are the result of a single mutational process. To capture such dependen-
cies we propose a sticky MMM (sMMM) framework in which every signature is
active along a contiguous segment of mutations with hidden indicator variables
ri denoting whether the signature stays active when moving from si−1 to si
(with r1 = 0). Segmenting the mutations in this way is analogous to speaker
diarization in audio analysis, the process of partitioning an input audio stream
into homogeneous segments according to the speaker identity. Importantly, we
also define a strand-coordinated variant of sMMM where we condition ri on the
identities of the strands on which these two mutations occurred. In this way,
mutation segments in which the indicator is positive model processive groups.
The basic model is sketched in Fig. 1.

Stickiness indicators

Signatures

Mutations

s1 s2 s3 sT

r1 r2 r3 rT

o1 o2 o3 oT

. . .

. . .

Fig. 1. A probabilistic model of processive groups in mutation data. For clarity we
omit the dependency of the ri indicators on strand identity.

Formally, the model we propose, sMMM, is parameterized by a K × M
matrix e of signature emission probabilities, signature start probabilities
π = (π1, . . . , πK) that are assumed to be sample-specific, and signature sticki-
ness values α = (α1, . . . , αK) that are shared across samples. For simplicity, we
omit sample indices below and focus the description on a single sample. The
model can be described by the following conditional probability distributions:
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– Pr [ot = m|st = Si] = ei(m)

– Pr [rt+1 = 1|st = Si] =

{
0 idt+1 �= idt

αi idt+1 = idt

– Pr [st+1 = Sj |rt+1 = 1, st = Si] =

{
0, i �= j

1, i = j

– Pr [st+1 = Si|rt+1 = 0] = πi

Here, t is a mutation index that ranges from 1 to T , b is a mutation category,
and idt is the identity of the strand at mutation t (for convenience, id0 := id1).
In the sequel we refer to any sequence of at least two consecutive mutations of
the same signature (according to the model) that are on the same strand and
mutated from the same nucleotide as a processive group.

2.3 Model Training

On input mutations O = (o1, . . . , oT ) and corresponding hidden signatures and
activity indicators Z = (s1, . . . , sT , r1 . . . , rT ), we define the following sufficient
statistics:

– Ei(m,Z) := |{1 ≤ t ≤ T |st = Si, ot = m}|, the number of times signature i
emitted mutation category m.

– Ai(Z) := |{1 ≤ t < T |st = st+1 = Si, rt+1 = 1}|, the number of times signa-
ture i repeated within a processive group.

– Bi(Z) := |{1 ≤ t < T |st = Si, rt = 0, idt = idt+1}|, the number of times sig-
nature i could potentially start (not observing rt+1) a processive group.

– Ci(Z) := |{1 < t ≤ T |st = Si, rt+1 = 0, idt = idt−1}|, the number of times
signature i could potentially end (not observing rt) a processive group.

Let θ = (π, α, e) denote the model parameters. The complete likelihood function
can be written as follows:

Pr [Z,O|θ] =
∏
i

∏
m

ei(m)Ei(m,Z) ·
∏
i

α
Ai(Z)
i π

Bi(Z)
i (1 − αi)

Ci(Z)

We optimize θ using the EM algorithm. In order to describe the algorithm we
make a simplifying assumption that every input sequence spans the same strand
(i.e., idt = idt+1 for all t < T ) which can be achieved by splitting the input data
to same-strand segments. We start by deriving forward and backward algorithm
variants for our model. The forward algorithm computes for any i, t the joint
probability fi(t) := Pr [o1...ot, st = Si] recursively:

fi(1) = Pr [o1, s1 = Si] = πiei(o1)
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fi(t + 1) = Pr [o1...ot+1, st+1 = Si] =
∑
j

Pr [o1, . . . , ot+1, st = Sj , st+1 = Si]

=
∑
j

Pr [o1...ot, st = Sj ] · Pr [st+1 = Si, ot+1|st = Sj ]

=
∑
j

fj(t) Pr [st+1 = Si|st = Sj ] Pr [ot+1|st+1 = Si]

= ei(ot+1)

⎛
⎝αifi(t) + πi

∑
j

(1 − αj)fj(t)

⎞
⎠

The backward algorithm computes the probability
bi(t) := Pr [ot+1...oT |st = Si] for any i, t recursively:

bi(T ) = 1

bi(t − 1) = Pr [ot...oT |st−1 = Si] =
∑
j

Pr [ot, . . . , oT , st = Sj |st−1 = Si]

=
∑
j

Pr [ot+1, . . . , oT |st = Sj ] Pr [st = Sj , ot|st−1 = Si]

=
∑
j

bj(t) Pr [st = Sj |st−1 = Si] Pr [ot|st = Sj ]

= ei(ot)bi(t)αi + (1 − αi)
∑
j

ej(ot)bj(t)πj

The Q function for the EM algorithm is the expected complete log-likelihood:

Q(θ|θ0) =
∑
Z

Pr
[
Z|O, θ0

] · log Pr [Z,O|θ]

=
∑
i

∑
m

Ei(m) log(ei(m)) +
∑
i

Ai log(αi) + Bi log(πi) + Ci log(1 − αi)

where

Ei(m) =
∑
Z

Pr
[
Z|O, θ0

]
Ei(m,Z) Ai =

∑
Z

Pr
[
Z|O, θ0

]
Ai(Z)

Bi =
∑
Z

Pr
[
Z|O, θ0

]
Bi(Z) Ci =

∑
Z

Pr
[
Z|O, θ0

]
Ci(Z)

which is maximized for

ei(m) =
Ei(m)∑

m̃

Ei(m̃)
αi =

Ai

Ai + Ci
πi =

Bi∑
j

Bj
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In the following we show how to compute Ei(m), Ai, Bi, Ci under the current
parameters θ0 using the forward and backward algorithms.

Ei(m) =
T−1∑
t=1

Pr [st = Si, ot = m|O] =
1

Pr [O]

∑
t|ot=m

fi(t)fi(t)

Ai =
T∑

t=2

Pr [st−1 = Si, rt = 1, st = Si|O] =
1

Pr [O]

T∑
t=2

fi(t − 1)αiei(ot)bi(t)

Bi =
1

Pr [O]

T∑
t=1

Pr [st = Si, rt = 0, O]

=
1

Pr [O]

(
Pr [s1 = Si, O] +

T∑
t=2

Pr [st = Si, rt = 0, O]

)

=
1

Pr [O]

⎛
⎝fi(1)bi(1) +

T−1∑
t=1

πiei(ot+1)bi(t + 1) ·
⎛
⎝∑

j

fj(t)(1 − αj)

⎞
⎠

⎞
⎠

Ci =
T−1∑
t=1

Pr [st = Si, rt+1 = 0|O]

=
1

Pr [O]

T−1∑
t=1

∑
j

Pr [st = Si, rt+1 = 0, st+1 = Sj , O]

=
1

Pr [O]

T−1∑
t=1

fi(t)(1 − αi) ·
⎛
⎝∑

j

πjej(ot+1)bj(t + 1)

⎞
⎠

Pr [O] can be easily computed using the forward algorithm:

Pr [O] =
∑
i

Pr [O, sT = Si] =
∑
i

fi(T )

Lemma 1. Each iteration of the EM algorithm can be computed in O(Tn) time
for T mutations and n signatures.

Proof. Observe that the forward and backward algorithms can be computed in
O(Tn) time by computing the sums

∑
j

(1 − αj)fj(t) and
∑
j

ej(ot)bj(t)πj only

once for every mutation index t. Similarly, we can compute the Q function within
the same time bounds.

3 Results

3.1 Data Description

We analyzed breast cancer (BRCA), colon ademocarcinoma (COAD), chronic
lymphocytic leukemia (CLL), and malignant lymphoma (MALY) mutation
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datasets from whole-genome sequences from the International Cancer Genome
Consortium (ICGC) (Table 1). We downloaded mutations from the ICGC data
portal (https://docs.icgc.org/). For BRCA, we used release 22 to match Nik-
Zainal et al. [13], while for the other datasets we used the most recent release
(release 27). For each dataset, we followed the standard approach introduced by
Alexandrov et al. [2] and classified mutations into 96 categories based on the 5’
flanking base, substitution, and 3’ flanking base, following the convention that
substitutions are written with the pyrmidine first (i.e. C:G>T:A is written as
C>T instead of G>A). For each dataset, we analyzed the COSMIC signatures
(https://cancer.sanger.ac.uk/cosmic/signatures) [6] known to be active in the
corresponding cancer type (enumerated in Table 1). We chose the four cancer
types because they are known to have active signatures that were shown to dis-
play strand bias: Signatures 2 and 13 are active in BRCA, CLL, and MALY,
and display replication strand bias [12], and Signature 10 is active in COAD and
displays transcription strand bias [1].

Table 1. Datasets analyzed in this study: breast cancer (BRCA), colon ademocar-
cinoma (COAD), chronic lymphocytic leukemia (CLL), and malignant lymphoma
(MALY).

Cancer type #Samples #Mutations COSMIC signatures

BRCA 560 3,479,652 1, 2, 3, 5, 6, 8, 13, 17, 18, 20, 26, 30

COAD 44 52,827 1, 5, 6, 10

CLL 100 270,870 1, 2, 5, 9, 13

MALY 100 1,220,526 1, 2, 5, 9, 13, 17

We also classified mutations based on strand-specific information from
Tomkova et al. [22] and Haradhvala et al. [8]. Specifically, we classified mutations
as being on the leading or lagging strand during replication, or the template or
non-template strand for transcription, and on whether transcription and repli-
cation occur in the same direction in that position. To do so, we used a dataset1

from [22] (originally processed by [8]) that classifies each non-overlapping bin
of 20,000 bases in the genome based on the inferred replication or transcrip-
tion strand using six lymphoblastoid cell lines. For each strand annotation, we
marked successive mutations in each genome based on whether they shared the
same positive class (e.g., both are lagging). If a classification was not available
for either of the successive mutations, or they spanned another class, we con-
sidered that pair to have a mismatch (i.e. idt �= idt+1). Following [12], we also
performed an additional classification where we marked successive mutations
based on whether they shared the same reference allele (which also indicates
that they are on the same strand).

1 The data/tableTerritories Haradhvala territories 50 bins.txt file in https://
bitbucket.org/bsblabludwig/replicationasymmetry.

https://docs.icgc.org/
https://cancer.sanger.ac.uk/cosmic/signatures
https://bitbucket.org/bsblabludwig/replicationasymmetry
https://bitbucket.org/bsblabludwig/replicationasymmetry
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3.2 Comparing the Sticky MMM to an Independent Mutation
Model

We first compared the multinomial mixture model (MMM) with our basic sticky
MMM (sMMM) using held-out data. MMM serves as a stand-in for state-of-the-
art non-probabilistic mutation signature methods such as non-negative matrix
factorization, as MMM is a probabilistic method that encodes the standard
assumption that each mutation in a tumor is independent of all others. We
performed an additional comparison with the sMMM by including the restric-
tion that stickiness only occurs for pairs of mutations sharing the same reference
allele, i.e., mutated from the same nucleotide and occurring on the same strand.
Henceforth, we call this variant strand-coordinated sMMM.

For each model, we fixed the mutational signatures to the COSMIC signa-
tures as described in the previous section and did not attempt to learn new
signatures. We applied the EM algorithm with a tolerance of 0.01 and a max-
imum number of 100 iterations. We evaluated the algorithm’s performance by
computing log-likelihood using the Viterbi algorithm on held-out data. Specif-
ically, we used a cross-validation scheme where in each iteration a complete
chromosome is hidden.

The results are summarized in Table 2 and clearly show the superiority of the
sMMM across the four cancer types analyzed. In each cancer type, the sMMM
has higher held-out likelihood than the independent mutation MMM, demon-
strating that mutation signatures have stickiness that is shared across samples
and that modeling this stickiness provides greater predictive power for held-
out data. Further, the difference between the sMMM and MMM becomes much
larger and highly significant when the sMMM is restricted to only allow stickiness
between mutations with the same reference allele.

Table 2. Comparing the multinomial mixture model (MMM) and two sticky MMMs
on log-likelihood of held-out data, computed from cross-validation. P -values based on a
Wilcoxon signed-rank test between paired MMM and strand-coordinated sMMM scores
appear in the last column.

Dataset Held-out log-likelihood P -value

MMM sMMM Strand-coordinated sMMM

BRCA −13742688 −13738247 −13694138 1.79e−86

COAD −170052 −170050 −170021 4.99e−02

CLL −1178031 −1177764 −1173274 3.90e−18

MALY −5235054 −5232011 −5205369 3.90e−18

In addition to the Watson/Crick strand annotation, whose application is
reported above, we also applied sMMM with strand annotations that characterize
strand roles in replication and/or transcription. These included leading/lagging
annotation, template/non-template annotation and whether transcription and
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replication proceed in the same or opposite directions. These annotations were
available for only a fraction of the mutations, hence their likelihood cannot be
directly compared to those in Table 2. Instead, focusing on the largest dataset
(BRCA), we compare the leading-coordination to the lagging-coordination and
compare the remaining annotations, all of which are applicable only in genic
regions, to one another. The results are provided in Table 3. While differences in
log-likelihood are smaller, they indicate that assuming the convention of asso-
ciating the mutations with pyrimidines, mutational processes tend to be associ-
ated more with lagging vs. leading strand and with non-template vs. template
strand, both with significant p-values. These observation align well with the pre-
viously observed preference of APOBEC-related processes to act on the lagging
strand [8,12], and the bias of multiple signatures in breast cancer for mutations
on the template versus non-template strand [12].

Table 3. A comparison of sMMM models with different strand coordinations for the
breast cancer dataset. Displayed are the difference in log-likelihood in cross validation
and a corresponding p-value based on a Wilcoxon signed-rank test.

Strand types Log-likelihood ratio P -value

Lagging/leading 780 1.27e−6

Non-template/template 645 4.70e−3

Opposite-direction/same-direction 91 6.54e−2

3.3 Strand-Coordinated sMMM Defines Processive Groups in
Breast Cancers

Morganella et al. defined processive groups as sets of adjacent substitutions of
the same mutational signature sharing the same reference allele [12]. Our model
allows us to compute maximum likelihood estimates that sequences of mutations
are generated in processive groups, hence we could apply it to characterize the
processivity of the different signatures in breast cancer. In order to compare and
contrast our findings with those of Morganella et al. [12], we likewise removed
regions of localized hypermutation (kataegis), and used the same statistical test
for the significance of a processive group of a given length.

Using the same length threshold of more than 10, we confirmed the associ-
ation of processive groups with Signatures 2, 6, 13, 17 and 26 [12]. In addition,
our strand-coordinated sMMM revealed that processivity is also a feature of Sig-
nature 18 (Fig. 2A). The number of processive groups of length more than 10
was particularly high for Signatures 2 and 13 (Fig. 2B).

Next, we tested whether using the mutation-independent MMM rather than
the strand-coordinated sMMM was important for the accurate discovery of pro-
cessive groups. Overall, the stand-coordinated model uncovered 134 groups in
43 patients while MMM model captured only 38 in 11 patients (Fig. 2B). These
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differences underscore the higher sensitivity of the strand-coordinated sMMM
model for detecting processive groups, which may in part explain the observed
differences in likelihood between MMM and strand-coordinated sMMM on held-
out data.

Fig. 2. (A) Relationship between processive group lengths (columns) and mutational
signatures (rows) modeled by strand-coordinated sMMM in BRCA. The size of each
circle represents the number of groups (log10) observed for the specified group length
and for each signature. The color of each circle corresponds to the p-value of detecting
a processive group of a given length in randomized data (-log10). (B) The number
of processive groups of length above 10 for all signatures modeled by MMM (gray)
and strand-coordinated sMMM (red) in BRCA. (C). The number of sticky mutations
as modeled by sMMM (blue) and strand-coordinated sMMM (red) in BRCA. (D)
Signature stickiness α as learned by sMMM (blue) and strand-coordinated sMMM
(red) in BRCA. (Color figure online)

Processive groups, as summarized in Fig. 2A, B, capture statistically signif-
icant patterns in cancer genomes and are considered features of specific signa-
tures. An alternative characterization could be provided by the model parameter
α – the “stickiness” of a signature – which is learned by the strand-coordinated
sMMM. Thus, we analyzed how these two views of strand-coordinated mutage-
nesis relate to each other. We considered only signatures for which there is a
sufficient number of sticky mutations to properly learn this parameter (Fig. 2C).
For comparison purposes, we also included stickiness values computed with the
strand-oblivious sMMM. We found that in the strand-coordinated sMMM, the
most sticky signatures were 1, 2, 6, 13, 17, 18, 26 and 30 (Fig. 2D). Signatures
2, 6, 13, 17, 18 and 26 are exactly the same signatures that were found to be
associated with processive groups. While Signature 30 did not make the length
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10 cutoff for processive groups, its processive segments are also relatively long.
Interestingly Signature 5 was not found to be sticky despite the fact that its
processive groups were also quite long. In contrast, there is some stickiness to
Signature 1. The meaning of these intriguing findings is a subject for further
investigations.

Notably, Signature 3 has the highest strand-oblivious sMMM stickiness and
no stickiness in strand-coordinated sMMM, suggesting that mutations associated
with this signature tend to neighbor each other but in a strand non-specific way.

4 Conclusions

We have designed a novel probabilistic model for mutation data that accounts
for the processivity of mutational processes. In cross validation, the model was
shown to outperform the standard independent-mutation model across multiple
cancer datasets. Importantly, we obtained an even greater gain in predictive
power when modeling processivity and strand-coordination together by only
allowing stickiness for mutations on the same Watson/Crick strand with the
same reference allele. By incorporating this additional genomic information, we
obtained more accurate assignments of mutations to signatures (as evidenced by
the increase in likelihood of held-out data), and also built a principled framework
for testing the biological importance of different strand characteristics.

In that vein, a promising next step may be modeling multiple strand charac-
teristics simultaneously, rather than considering them individually. For example,
there is evidence in humans and other species that transcription and replication
are co-oriented [10,20]. Experiments in bacteria suggest that one reason is to
prevent replication fork collapse from collisions of replication and transcription
machinery and, thus, we hypothesize that when replication and transcription are
in opposite directions we may see stickiness of mutation signatures. In fact, this
hypothesis has some support from our results in breast cancer (Table 3) where
we show somewhat higher likelihood for the opposite-direction signal. It is not
yet clear why this is the case, partially because it is difficult to separate the
signal from leading/lagging and template/non-template strands. By simultane-
ously modeling these different strand characteristics, we may be able to shed
light on these relationships.

We also demonstrated that the models provide an alternative and compelling
way to capture processivity of mutational signatures. In particular, rather than
using arbitrary cut-offs to assign mutations to signatures for calling processive
groups, this property can be estimated in a principled way from our model.
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Abstract. We introduce a disentangled representation for cellular iden-
tity that constructs a latent cellular state from a linear combination of
condition specific basis vectors that are then decoded into gene expres-
sion levels. The basis vectors are learned with a deep autoencoder model
from single-cell RNA-seq data. Linear arithmetic in the disentangled
representation successfully predicts nonlinear gene expression interac-
tions between biological pathways in unobserved treatment conditions.
We are able to recover the mean gene expression profiles of unobserved
conditions with an average Pearson r = 0.73, which outperforms two lin-
ear baselines, one with an average r = 0.43 and another with an average
r = 0.19. Disentangled representations hold the promise to provide new
explanatory power for the interaction of biological pathways and the
prediction of effects of unobserved conditions for applications such as
combinatorial therapy and cellular reprogramming. Our work is moti-
vated by recent advances in deep generative models that have enabled
synthesis of images and natural language with desired properties from
interpolation in a “latent representation” of the data.

Keywords: Single-cell RNA seq · Gene expression ·
Generative modeling · Deep learning

1 Introduction

The gene expression profile of a cell represents the nonlinear composition of
distinct biological processes [24]. Recent research has sought to discern “basis
vectors” that constructively explain gene expression. The gene expression profile
of a cell is postulated to be a composition of its basis vectors, which represent
activities in different biological pathways or systems [4,16,17]. Inspired by this
idea and recent advances in generative modelling, we hypothesized that we could
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find treatment-condition specific basis vectors that could be combined to predict
the gene expression profile of a cell when it is exposed to a novel combination of
conditions [11,19]. We depart from previous work by discovering basis vectors in
a latent space instead of the gene expression space itself. We enforce a disentan-
gled representation in our latent space, and represent the activity corresponding
to a specific condition by a distinct portion of the latent code. After performing
linear operations on basis vectors in latent space, we use a nonlinear decoder
from latent to expression space to recover nonlinear interactions in expression
space.

One application of disentangled representations is the prediction of gene
expression levels of cells under unobserved combinations of treatment conditions.
Cells are often perturbed by a combination of factors for disease treatment or
cell type engineering [1,23]. However, the search for the correct combination of
factors is plagued by the exponential number of potential combinations. Com-
binatorial cancer drug studies can not examine all 21000 combinations of 1000
drugs, and stem cell induction studies can not try all 250 combinations of 50
transcription factors. We propose to learn basis vectors from a limited number
of combinations to inform us about the space we have not explored. Instead
of experimentally testing all possible combinations of conditions, we train on a
simplified set of combinations, and from these learn basis vectors that can be
combined to predict gene expression in an arbitrary combination. Our model
can thus guide cellular engineering efforts to produce cells with a desired gene
expression pattern.

Inspired by recent work in predicting gene expression profiles from SNP infor-
mation [27], histone modification [22] and protein binding profiles [6] using deep
learning approaches, we use a deep autoencoder to learn the condition-specific
basis vectors using training data from single-cell RNA-seq data (scRNA-seq).
[9,18] It is not possible to train our autoencoder with a few bulk RNA-seq exper-
iments. The thousands of observations from single cells in conditions of interest
provided by single-cell RNA-seq is critical in allowing us to train our autoen-
coder to learn condition-specific basis vectors. In this study we use scRNA-seq
data for 31 different cell populations, each receiving a distinct combination of
five signalling pathway activators or inhibitors. After learning the basis vectors
corresponding to these pathways in the disentangled latent space, we demon-
strate that we can interpolate in the latent space to generate realistic looking
profiles for treatment combinations unseen in the training data.

2 Methods

2.1 Disentangled Representations Encode Condition Specific
Expression

We consider representing basis vectors either in gene expression space or in a
latent space that needs to be decoded into gene expression space. In both cases
our ultimate goal is to predict a gene expression profile for an unseen combination
of conditions.
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Let the training set consist of n cells indexed {1 . . . n}. Let xi denote cell i’s
gene expression profile. Each profile will be represented by a vector of length d
genes. Let U ∈ R

d denote the set of all possible gene expression profiles. We will
consider S possible treatments, and use si to denote the set of treatments cell i
receives. There are 2S possible such sets (treatment combinations). Let si ∈ R

S

denote the vector of length S that represents the treatments seen by cell i. In
this representation si has a nonzero entry at position j if and only if j ∈ si.
Let V ∈ R

S denote the set of si we have in the training set. si has two nice
properties:

1. Orthogonality si · sj = 0 if si ∩ sj = {∅}.
2. Linearity si lives in a linear subspace

∑
a∈si

casa, where sa is a possible
latent code under single treatment a.

These properties suggest that the canonical basis of RS is an obvious basis
for V . A basis vector corresponds to a single treatment condition, and the single
nonzero entry is 1. For any si, we can easily construct a possible si as a linear
combination of these basis vectors.

As a control we will assume xi is a linear function of cell i’s treatment
combination represented by si. Thus, there exists a linear transformation:
L : R

S → U between the vector spaces R
S and U . In this case given si and

sj , L(si + sj) = L(si) + L(sj). Arithmetic in R
S correspond directly to arith-

metic in U . Thus there is a simple set of basis vectors for U in expression space,
and they correspond to gene expression profiles under a single treatment (the
image of the canonical basis of RS). Every possible gene expression profile can
then be expressed as a linear combination of these basis vectors. To generate
gene expression profiles for an unseen treatment combination we can sample lin-
ear combinations of the corresponding single-treatment basis vectors. This is a
natural baseline for this task.

In our method we assume that xi is not a linear function of cell i’s treatment
combination. Instead, we assume there is a nonlinear function T : R

S → U
such that T (si + sj) �= T (si) + T (sj). In this case, arithmetic in R

S no longer
correspond to arithmetic in U . Therefore, we can no longer find a set of linear
basis vectors for U . However, arithmetic in R

S is still well-defined. If we learn T ,
we’ll be able to compute T (si+sj) directly, without resorting to linear arithmetic
in U . To generate gene expression profiles for an unseen treatment combination,
we can sample linear combinations of basis vectors in R

S and “decode” them to
U using T . In practice, we can observe the action of T restricted on V . Thus
we can learn a function D that approximates T . There is a problem remaining:
given a training example xi and si, we don’t know the corresponding si. We
know which elements in si are nonzero, but we don’t know their values.

This can be worked around by learning another map E that maps from
expression space U to R

S . In practice, this should be trained in conjunction
with D so that the learned values for si are relevant for decoding. This points
to a deep autoencoder architecture with E as the encoder module and D as the
decoder module. RS corresponds to the latent space. In practice, we prescribe
u nonzero units to a single treatment condition in the latent code to increase
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its expressiveness with limited training budget. Thus the latent code for cell i,
zi ∈ R

S×u, obeys a block structure: zi = zi,1|zi,2| . . . |zi,|S| where zi,a = 0 if
a /∈ si. This structure is enforced through training via a regularization loss as
described below.

2.2 Latent Space Discovery with a Constrained Autoencoder

We learn a decoder D of our latent space and a corresponding encoder E using
the autoencoder architecture shown in Fig. 1. We first compress gene expres-
sion profiles into their top k principal component (PC) coefficients, where k is
a tunable parameter. Attempts to use the autoencoder model without the PCA
component was not successful because the inherent noise in the ESC dataset
was preventing any meaningful training of the neural network. The set of PC
coefficients is used as input to encoder E, which is a three-layer fully-connected
neural network: zi = σ(σ(xiW1 + b1)W2 + b2)W3 + b3. σ denotes the stan-
dard relu activation function. All hidden layers have the same size h, a tunable
parameter.

The block structure of the latent code is enforced by a combination of L1 and
L2 regularization [28]. Let ẑi denote the vector where the units that are allowed
to be nonzero under si all have the value 1. For example, if S = 3, u = 2 (three
possible treatment conditions, 2 latent units used for each treatment condition)
and si = {1, 3}, then ẑi = 110011. Note that ẑi is an expanded version of si
defined above, where all nonzero values are set to 1. We define the L1 ratio loss
on zi to be:

L1 =
‖zi · Not(ẑi)‖1

‖zi · ẑi‖1 (1)

The Not operator above turns 1 into 0 and 0 into 1 entry-wise. The minimiza-
tion of this loss tries to force all blocks not corresponding to si to be 0 while
encouraging the blocks that do correspond to si to take on non-zero values. A
standard L2 loss is also imposed on the blocks that are supposed to be active to
encourage more even weight spreading across nonzero units [28].

The regularized latent code is then used as input to a fully-connected neural
network decoder to generate reconstructed PC coefficients. Instead of producing
a single reconstructed vector, the decoder produces a Gaussian distribution with
diagonal covariance matrix to represent its uncertainty about its predictions [10].
The loss is the negative log likelihood of the observed PC coefficients vector used
as encoder input under this distribution. The stochastic decoder backpropagates
the loss through the parameters of the distribution using reparameterization [11].
The mean of the Gaussian is represented by σ(σ(ziW4 + b4)W5 + b5)W6 + b6,
whereas the diagonal of the covariance matrix is represented by σ(σ(σ(ziW4 +
b4)W5 + b5)W7 + b7).

The loss associated with each data point thus has three components: L1 ratio
loss, L2 loss and reconstruction loss. In practice, a scaling factor of 20 for the L1
ratio loss and L2 loss was necessary for them to have roughly the same starting
magnitude as the reconstruction loss.
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Deep learning models can be influenced by random initialization effects and
stochasticity in the training process [12]. We mitigate these effects by training
an ensemble of models, and pool the generated results from all those models.

Fig. 1. (a) Schematic of neural network model used in training. (b) Schematic of neural
network model used in generation.

2.3 Prediction of Gene Expression Profiles of Unseen Combinations

To predict the gene expression profile of an unseen combination of treatment
conditions we generate a latent representation z for the unseen combination
by using zero blocks for conditions not present in the combination and non-zero
sample blocks for the active conditions as illustrated in Fig. 1b. This corresponds
to adding together basis vectors for the selected conditions in latent space. We
assume that the distribution of each latent block observed over the training set
is representative of its corresponding condition in the test set and that different
latent blocks are independent. Under these assumptions, for an active condition
we generate its latent block by sampling from the block’s observed distribution
over the training data. The sampling is implemented through random selection
from the list of its observed values in the training data.

In practice, we sample a population of the latent codes for the unseen combi-
nation to generate a population of gene expression profiles. Then we can decode
the latent codes to a population of gene expression profiles using the decoder and
inverse-PCA. From this population, the predicted mean gene expression profile
of that treatment combination can be computed.
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2.4 Experimental Design

The model is designed for the purpose of generating typical gene expression
profiles for cells under treatment combinations not seen in the training data.
In practice, we evaluate the model’s performance by obtaining gene expression
profiles for every possible treatment combination, then dividing the given data
into a training set that contains certain treatment combinations and a test set
that contains the rest. We can train the model on the training set and try to
generate gene expression profiles for the treatment combinations in the test set.
Then we compare the generated profiles with the actual experimental data in the
test set to measure the model’s performance. We can either compare the Pearson
r across all the genes for each treatment combination or compare the Pearson r
across all the combinations for each gene. We use two datasets described below
to evaluate our model.

2.5 Synthetic Data

We generated synthetic data to test our model’s performance on potential nonlin-
ear interactions between pathways. Our simulated data consist of four treatment
conditions. Condition one and condition two, when present in conjunction, exert
a combinatorial effect. All other interactions between conditions are linear.

The “mean profile” for each combinatorial treatment condition Xs, where s
is a set that could contain numbers 1 to 4 depending on what treatments are
active, is calculated as follows:

X1,X2,X3,X4 ∼ N (500, 300)100 (2)

Xc ∼ 1
2
N (500, 300)100 +

1
2
(X1 + X2) (3)

otherwise,XS =

{
1

|S|−1 (Xc +
∑

i∈S/{1,2} Xi), if {1, 2} ⊂ S
1

|S|
∑

i∈S Xi, otherwise
(4)

300 individual “gene expression samples” are created from the “mean profile”
for each treatment combination by adding a fixed set of 300 perturbations to the
“mean profile”. The perturbations are chosen to be on a five dimensional linear
manifold.

2.6 Experimental Setup and Data Normalization

We generated an experimental dataset consisting of 32 sub-populations of
epiblast-stage mESCs treated with all combinations of activators and inhibitors
targeting five key developmental signaling pathways (Wnt, retinoic acid, Tgfb,
Bmp and Fgf). Cells comprising these 32 conditions were labeled by condition
and multiplexed into a single-cell RNA-sequencing run [8]. For preprocessing,
UMI-unique counts were log-normalized in Seurat [21], which accounts for drop-
out effects, and variable genes were identified by fitting an abundance-dependent
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trend to the genes [14]. Then, the data was scaled, removing unwanted sources
of variation arising from number of genes and percentage of mitochondrial reads.
[8] A mean of 109 and median of 105 cells (Min:39, Max:196) are present in each
condition group. To balance the data from different treatment conditions, we
upsample the data so each condition contains 300 gene expression profiles. 4635
highly variable genes are selected for analysis.

Combinatorially controlled genes were identified using a Bayesian regression
framework as follows: Gene expression of cell i was modeled as xi ∼ N (yT

i β, σ2)
where yi is a vector consisting of linear terms indicating activation or inhibition
of each pathway, and up to some k-th order interaction terms. Models contain-
ing varying orders of interaction terms were then fit using MCMC and compared
using leave-one-out cross-validation. The framework was fit in pymc3. [20] Mod-
els were fit for the top 500 most variable genes [8].

2.7 Hyperparameter Selection

For the synthetic dataset, we select model hyperparameters based on perfor-
mance in a validation generation task where data from all single and quadruple
treatment combinations are used to train the model and generate expression
profiles for triple treatment combinations. We use the hyperparameters which
generated the best Pearson correlations across combinations for each gene on
the test task, where data from all single, triple and quadruple combinations are
used to generate expression profiles for double combinations. We select k = 5,
u = 4 and h = 80. 11 different models are trained to form an ensemble.

For the ESC dataset, we select hyperparameters based on performance in
a validation generation task where data from all single, quadruple and quintet
combinations are used to train the model and generate expression profiles for
double combinations. The hyperparameters which generated the best Pearson
correlations across combinations for each gene is used on the test task, where data
from all single, double, quadruple and quintet combinations are used to generate
expression profiles for triple combinations. The selected hyperparameters are
k = 50, u = 4 and h = 40. 21 different models are trained to form an ensemble.

Our Results section reports the performance on test tasks. For both simu-
lated data and synthetic data, we find that the model performance is generally
insensitive to the way the data is split into training and test sets. (Data not
shown due to space).

2.8 Linear Baseline Methods

To examine the inherent noise present in our datasets, we introduce a supervised
logistic regression classifier baseline. For each upsampled population of training
data used to train an autoencoder model in the ensemble, a logistic regression
classifier is trained to predict the on/off status of each single treatment con-
dition. (e.g. five are trained for the ESC dataset). The logistic classifiers are
used independently to predict the treatment combination of a cell from the PC
coefficients of its gene expression profile.
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For the generation task, we are not aware of any existing methods that recon-
struct gene expression profiles for unseen treatment combinations. As a point of
comparison we construct two baseline methods that make more linearity assump-
tions of the gene expression space than our model to reconstruct the mean gene
expression profile of an unseen treatment combination.

First, we use a basis vector baseline method (control 1) that assumes that
the interactions between treatment conditions are linear. Our baseline method
uses a basis vector of gene expression for each of the five treatment conditions.
The basis vector for a single condition is obtained by linear averaging over all
gene expression profiles in the training set where the condition is active. We
generate a predicted mean gene expression profile for a treatment combination
by averaging the basis vectors for the individual conditions in the combination.

We also construct a marginalization linear baseline (control 2) to generate
mean expression profile. It could be more resilient to the effects of combinato-
rial interactions in some cases. For example, to generate the mean profile for
treatment combination {1, 3} in the simulated data, we average all cells with
treatment combinations {1, 2, 3}, {1, 3, 4} and {1, 2, 3, 4}. In general, for treat-
ment combination s in the test set, we generate a mean gene expression profile
from all cells in the training set whose treatment combination contains s.

3 Results

3.1 Model Performance

Before using the model to generate gene expression profiles, we evaluate model
training performance by measuring autoencoder reconstruction of the PC coef-
ficients of held out data. The ESC dataset is extremely noisy. The first 50 PCs
only capture 20% of the total variation. Most of the variation is captured by
the first few PCs and the later PCs are exponentially less informative. We can
examine the autoencoder’s performance in reconstructing each PC coefficient
by calculating the Pearson correlation coefficient between reconstructed values
and observed values for that coefficient across the training and sets (Fig. 2).
As expected, our model learns to reconstruct the first few PCs well and does
less well for less significant principal components. The variations across models
in the ensemble are indicated using error bars. We see limited variation across
models in the ensemble. We can also examine the Pearson correlation coefficient
across reconstructed PCs and observed PCs for each cell. All training and test
set examples from all ensembles are pooled in the distribution plot. Results are
shown in the bar charts in Fig. 2. Reconstruction performance is comparable
across the training data and test data for both the synthetic and experimental
datasets, suggesting that overfitting does not occur during training.

We also perform a control experiment where the regularization terms are
turned off. The reconstruction performance is identical to that obtained with
those terms active, suggesting that the regularization imposed does not hurt
reconstruction.
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Fig. 2. Bar charts of reconstruction performance by PC (error bar is std across
ensemble) and distributions of Pearson correlations between reconstructed PCs and
actual PCs for the gene expression profiles in the training and test set for (a) ESC
dataset. Training distribution mean = 0.53, std= 0.19, test mean = 0.54, std= 0.17;
(b) Synthetic dataset. Training distribution mean = 0.83, std= 0.19, test mean = 0.81,
std = 0.18.

We next evaluate how well the block structure in the latent code is enforced.
We define the disentanglement ratio to be how much of the L1 norm of the latent
code is attributable to units that are supposed to be nonzero. Mathematically,
it is defined as:

disentanglement =
‖zi · ẑi‖1

‖zi‖1 (5)
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Note this is different from the L1 ratio loss used to regularize the autoencoder,
which could theoretically be infinite and inconvenient for analysis here. A ratio
of 1 would indicate perfect disentanglement of the single treatment conditions in
the latent code. From Fig. 3, we can see that for most cells in the training and test
set, the disentanglement ratio is close to 1, suggesting good regularization. The
disentanglement ratios are stable across training and test set, suggesting that
overfitting does not occur. Note the training sets for both mESC and synthetic
data have a spike at 1, which corresponds to the combination where all single
conditions are active. This combination is not present in the test set, thus there
is no spike in the corresponding plot.

We further evaluate the quality of our latent space structure by measuring
how well we can predict si, the set of treatments given cell i, from the latent
code zi. Given our disentangled representation we select si based upon the ẑi
that has the least cosine distance from |zi|. As we can see from the count plot
of the rank of the correct ẑi in Fig. 3, in most cases, the ẑi given by the correct
treatment combination has the least cosine distance with the actual latent code,
or is ranked second or third. We see from the error bars that there is limited
variation across different models. For our ESC dataset, our prediction of si from
the PC coefficients using the logistic regression baseline method achieves 74%
accuracy on the training set and 60% accuracy on the test set. For the synthetic
dataset, our prediction achieves 56% accuracy on the training set and 64% on
the test set. The accuracy of the latent code prediction is given in the caption
of Fig. 3. We see that for ESC data, which is inherently more complex than the
synthetic data, our model’s latent code does not perform as well in prediction,
especially in the test set. A potential explanation is that the cosine distance
metric could be problematic in cases where one sampled block values are much
larger than another sampled block. More importantly, our model is not designed
for prediction and no supervised model is fit on the latent code. We are satisfied
with the model’s regularization performance in imposing block structure on the
latent code in the test set and proceed to its main use case, generation.

3.2 Generation

We generated 100 gene expression profiles for each treatment condition in the
test set. We first examine the correlation of the mean of the 100 profiles with
the mean of the observed gene expression profiles. The results from our two
baseline methods were also generated for comparison. Note that all correlations
we computed are for the full generated gene expression profiles, not the PC
coefficients.

We found that the autoencoder method outperforms the two baseline meth-
ods for all treatment conditions (Table 1). Model performance in the ensemble
is heterogeneous. This may be caused by the random upsampling in the data
preparation process and the stochasticity of model training via stochastic gradi-
ent descent. Our results show if we further average the mean profiles produced by
all the models in the ensemble, the correlations with the actual mean gene expres-
sion profiles improve across all treatment combinations. Most importantly, the
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Fig. 3. Bar charts of the rank counts of the true labels of the training and test
set cells (higher rank means the latent code is more aligned with the correct label)
and distribution of the disentanglement ratio (blue for training, green for test) for
(a) ESC dataset. Training distribution mean = 0.92, std = 0.082, test mean = 0.89,
std = 0.16; training highest rank (correct prediction) mean = 51%, std= 0.02%, test
mean = 12%, std = 0.03%. (b) Synthetic dataset. Training distribution mean = 0.89,
std = 0.083, test mean = 0.81, std= 0.11; training highest rank mean = 55%, std = 1.3%,
test mean = 43%, std = 3.8%. (Color figure online)

autoencoder’s performance is relatively stable across the combinations tested, in
contrast to the linear baseline methods, as seen in Fig. 4b.

We hypothesize that the autoencoder can successfully disentangle both lin-
ear and nonlinear interactions between treatment conditions within its latent
space, causing it to perform well in both combinations with mostly linear inter-
actions and combinations with nonlinear interactions. Results on this task for
the synthetic dataset, as present in Table 2, confirm this hypothesis. We observe
that the autoencoder method has superior performance when both combinatorial
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Table 1. Table of mean reconstruction performance measured by correlation across all
genes for different test combinations for ESC dataset

Treatment
condition (active
pathways)

Pearson r mean
(std) of mean
profiles (n = 21)

Pearson r of
averaged
mean profile

Pearson r of
baseline 1
profile

Pearson r of
baseline 2
profile

Bmp, Tgfb, Fgf 0.63 (0.045) 0.68 0.44 0.3

Wnt, Tgfb, Fgf 0.64 (0.041) 0.72 0.26 0.41

Wnt, Bmp, Fgf 0.61 (0.076) 0.67 0.22 0.37

Wnt, Bmp, Tgfb 0.63 (0.043) 0.72 0.15 0.49

RA, Tgfb, Fgf 0.73 (0.043) 0.79 0.10 0.55

RA, Bmp, Fgf 0.70 (0.036) 0.78 0.46 0.015

RA, Bmp, Tgfb 0.72 (0.034) 0.79 0.084 0.62

RA, Wnt, Fgf 0.57 (0.058) 0.66 0.10 0.43

RA, Wnt, Tgfb 0.67 (0.047) 0.75 0.030 0.6

RA, Wnt, Bmp 0.57 (0.1) 0.67 0.084 0.5

Table 2. Table of mean reconstruction performance measured by correlation across all
genes for different test combinations for synthetic dataset.

Treatment
condition

Pearson r mean
(std) of mean
profiles (n = 21)

Pearson r of
averaged
mean profile

Pearson r of
baseline 1
profile

Pearson r of
baseline 2
profile

1, 2 0.54 (0.065) 0.56 0.13 0.81

1, 3 0.90 (0.039) 0.92 1 0.36

2, 3 0.87 (0.051) 0.90 1 0.28

1, 4 0.85 (0.039) 0.88 1 0.36

2, 4 0.82 (0.090) 0.86 1 0.34

3, 4 0.90 (0.037) 0.96 1 1

interactions (combination {1, 2}) and linear interactions (all other combinations)
exist between conditions. In comparison, the baseline methods either fail at one
or the other.

We next evaluated for each gene the correlation of its predicted expression
level and the actual expression level across different treatment conditions. An
averaged mean expression profile from the models in the ensemble are used.
This is perhaps the more relevant task in cellular engineering, where the desired
information is the treatment combination that would upregulate or silence a
gene. The results are shown in Fig. 4a. The autoencoder performs much better
in this task than the control methods as well.
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Fig. 4. ESC data. (a) Histogram of correlation across 10 different combinations in the
test set between observed expression value and predicted expression value for each
gene. Data is from averaged profile across ensemble. Autoencoder (blue) mean = 0.48
std = 0.36, control 1 (green) mean = 0.30 std = 0.38, control 2 (cyan) mean = 0.37
std = 0.39. (b) Histogram of correlation across all genes for different combinations
in the test set. Data is from averaged profile across ensemble. Autoencoder (blue)
mean = 0.73 std = 0.05, control 1 (green) mean = 0.19 std = 0.14, control 2 (cyan)
mean = 0.43 std = 0.17. (Color figure online)

We have evaluated here the ability of the model to produce the mean gene
expression values for an unseen treatment combination, which we judge to be the
most relevant task for cell reprogramming and disease treatment. Future work
would be aimed at reproducing other population-level statistics such as variance.
This is challenging since the PCA step would need to be replaced by a denoising
technique which preserves higher order statistics information.

3.3 Performance on Combinatorial Genes

To further test the model’s performance at recovering combinatorial effects on
gene expression, we examine the model’s performance on a set of 67 genes in
our ESC dataset where distinct treatment conditions interact nonlinearly [8].
We find that the autoencoder can learn disentangled latent representations of
combinatorial effects and faithfully reproduce them in generating profiles for
unseen combinations (Fig. 5). A heatmap of predicted gene expression for these
67 combinatorial genes further suggests that the autoencoder strongly outper-
forms linear baselines.

4 Discussion

Recent research has suggested that latent representations of data learned by
deep generative models such as generative adversarial networks and variational
autoencoders can be manipulated meaningfully. Algebraic operations in the
latent space can correspond to semantic operations in the decoded data space
[3,26]. Such latent space manipulations are commonly used now to generate
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Fig. 5. Performance on combinatorial genes on the ESC dataset. (a) Heatmap of pre-
dicted gene expression for autoencoder method and two controls. The mean of the
ensemble was used for the autoencoder method. From left to right: autoencoder, con-
trol 1, control 2, observed (b) Histogram of correlation across 10 different combinations
in the test set between experimental expression value and generated expression value for
the combinatorial genes. Autoencoder (blue) mean = 0.70 std= 0.21, control 1 (green)
mean = 0.38 std = 0.33, control 2 (cyan) mean = 0.52 std= 0.32. (c) Histogram of corre-
lation across the combinatorial genes for 10 different combinations in the test set. Data
is from averaged profile across 21 models. Autoencoder (blue) mean = 0.73 std = 0.14,
control 1 (green) mean = 0.30 std = 0.30, control 2 (cyan) mean = 0.49 std = 0.09. (Color
figure online)

synthetic data examples with desired properties, such as chemical properties for
molecules or content of images [7,19].

Recently, generative approaches using deep learning models have also been
applied to predict gene expression profiles from complementary information [27],
generating full profiles from landmark genes [25], deriving latent representations
to integrate datasets [2], and removing batch and technical variation effects [13].
This work, while informative, does not allow the generation of gene expression
profiles “from scratch” for previously unseen treatment conditions, which holds
the promise to accelerate cellular engineering and therapeutic development where
a large number of treatment conditions need to be explored [5,15].

Inspired by the advances in latent space manipulation and applications of
generative models to gene expression, we introduce a new model of cellular iden-
tity based on a disentangled latent representation. This latent representation,
together with a nonlinear decoder, enables our approach to vastly outperform
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linear baselines in predicting the mean expression profile of cells under unseen
combinations of treatment conditions. We implement our model as a variational
autoencoder. In principle, we can also implement it as a generative adversarial
network with a disentangled (conditioned) noise representation. In contrast to
sampling observed latent block values in generation, the distributions over the
noise representation must be specified in advance. This exploration is left for
future work.

We expect that the guiding principle of disentangled representations will
find new applications in computational biology and other fields as they permit
the separation of complex nonlinear responses to distinct perturbations. Our
implementation can be found at http://giffordlab.mit.edu/disentangled.

Acknowledgements. We acknowledge the members of the Gifford and Sherwood labs
for helpful discussion.
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Abstract. Over one million new biomedical articles are published every year.
Efficient and accurate text-mining tools are urgently needed to automatically
extract knowledge from these articles to support research and genetic testing. In
particular, the extraction of gene-disease associations is mostly studied. How-
ever, existing text-mining tools for extracting gene-disease associations have
limited capacity, as each sentence is considered separately. Our experiments
show that the best existing tools, such as BeFree and DTMiner, achieve a
precision of 48% and recall rate of 78% at most. In this study, we designed and
implemented a deep learning approach, named RENET, which considers the
correlation between the sentences in an article to extract gene-disease associa-
tions. Our method has significantly improved the precision and recall rate to
85.2% and 81.8%, respectively. The source code of RENET is available at
https://bitbucket.org/alexwuhkucs/gda-extraction/src/master/.

Keywords: Literature mining � Relation Extraction �
Gene-disease association � Deep learning

1 Introduction

Knowledge of gene-disease associations is essential for clinical diagnosis, selecting
preventive and therapeutic strategies against diseases, and developing new treatments
for diseases [1, 2]. Many gene-disease associations have been discovered after decades
of dedicated research, but the discoveries are spread throughout a vast amount of
biomedical literature. Finding all the right associations is often tedious and difficult.
Moreover, biomedical literature is growing at a rate of over one million articles per
year; the public medical literature database MEDLINE has a growth rate of 0.195 and
doubles every 5.1 years [3]. This makes manual extraction impossible. Thus, there is a
pressing need for a tool that can extract gene-disease association information from
biomedical literature accurately and efficiently.

There are two major tasks in the extraction process: (1) Name Entity Recognition
(NER), for recognizing gene and disease entities in an article, and (2) Relation
Extraction (RE), for determining whether there is an association between a recognized
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gene and a disease in the article. NER is relatively simple because there are a limited
number of possible genes and diseases. The existing tool for NER is mature enough to
recognize genes and diseases in an article. For example, the PubTator system [4] is a
popular tool, which integrates several state-of-art NER algorithms to assist manual
curation of biomedical associations. It pre-annotates biomedical entities in MEDLINE
abstracts for human experts to read the text and determine the relationship between
different entities. By automating NER, PubTator successfully improved the efficiency
and accuracy of manual extraction of gene-disease associations. However, it is still
labor-intensive and time-consuming to rely upon humans to perform the RE task.

RE is more difficult than NER since instead of working on single words, it needs to
understand the meaning of a full sentence (sentence-level) or even a whole article
(document-level). As it is difficult to understand an entire article, the existing tools can
extract information only from each sentence separately without considering the context
of the whole article. Using the following sentence as an example: “polymorphisms of
the SYNGR1 and SYNII genes have been shown to be a risk factor for bipolar dis-
order” [5], the existing tools will derive an association between the genes “SYNGR1”
and “SYNII” and the disease “bipolar disorders”. A wide range of approaches have
been applied to sentence-level RE, including co-occurrence based statistics [6], rule-
based systems [7, 8], and machine-learning methods [9–11]. In particular, supervised
learning with natural language processing (NLP) feature engineering techniques has
achieved good performance. The BeFree system [12] achieved state-of-art results by
using a support vector machine as a classifier and dependency parsing trees to extract
deep semantic features. Although significant progress has been made in sentence-level
RE, this approach overlooks crucial contextual information in the document. First, the
associated gene and disease entities may not appear in the same sentence; they may
instead be spread over multiple sentences. Sentence-level RE methods overlook these
possibilities and result in a lower recall. Second, single sentences are not enough to
represent the main idea of the whole article. Using the example above, the known
association between SYNGR1 and SYNII genes and bipolar disorder might be men-
tioned only in the background, while the main article denies the association. Therefore,
sentence-level RE is insufficient for extracting gene-disease associations from an
article.

In this paper, we propose a document-level gene-disease association extraction
approach. This approach works on understanding the context of the whole article and
extracts gene-disease associations that are supported at the article level. We call these
associations Gene-Disease-Article (G-D-A) associations. Our approach utilizes deep
neural networks, which have been widely adopted in information extraction in recent
years [13, 14]. Unlike traditional machine learning algorithms, which commonly
require feature engineering, a deep neural network automatically learns from raw data
the representations needed for feature detection or classification. This method is
commonly used for modeling semantic composition in text [15].

Our method RENET not only captures the sentence-level relationships between
gene and disease entities but also models the interaction across sentences to understand
the context of the whole document. As shown in Fig. 1, RENET learns a representation
of the document through two levels of abstraction. First, sentence representations are
computed from word representations through a convolutional neural network (CNN).
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Then sentence representations are transformed into a document representation through
a recurrent neural network (RNN). Finally, the document representation is used as a
collection of features for extracting G-D-A associations.

Our experiments show that compared with the best existing tools, BeFree [12] and
DTMiner [16] (which achieve at most 48% on precision and 78% on recall rate), our
RENET method significantly improves the precision and recall rate to 85.2% and
81.8%, respectively.

Using RENET, we analyzed 1,032,790 abstracts stored in MEDLINE [17], a
bibliographic database of life sciences and biomedical information, compiled by United
States National Library of Medicine (NLM). We extracted about 869,000 G-D-As. The
extracted G-D-As and their corresponding articles are available for download at https://
bitbucket.org/alexwuhkucs/gda-extraction/src/master/.

2 Method

As shown in Fig. 2, the gene-disease extraction procedure has two major tasks: Name
Entity Recognition (NER) and Relation Extraction (RE).

Fig. 1. The neural network for classification of G-D-A association. wj
i stands for the i-th word in

the j-th sentence, and lj is the length of the j-th sentence.

Abstracts 
from 

MEDLINE

NER Candidate 
G-D-A

associations

RE True  
G-D-A

associations

Fig. 2. Procedure for extracting true G-D-A associations
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For NER, RENET uses the popular tool PubTator [4], which when given a text as
input, returns the location of every gene and disease mentioned in the text and converts
them to the corresponding IDs (e.g., see Fig. 3).

The major contribution of this paper is an innovative and effective deep learning
method for RENET to carry out the RE task, i.e., given the abstract of article A, and the
target gene G and target disease D, decide whether G-D-A is a true association. We
designed and implemented four deep neural networks for this task, and after comparing
their performance, we selected the best one for RENET. All four neural networks
adopted the same two-stage computation to classify the G-D-A association. For the first
stage, we used a CNN to extract important signals from each sentence of the input
abstract, and for the second stage, we used four variants of the standard RNN method,
namely GRU, BiGRU, LSTM, and BiLSTM, to extract inter-sentence signals from the
output of the CNN. These signals were fed to a simple feedforward neural network to
determine their classification. We call the resulting networks CNN-GRU, CNN-BiGRU,
CNN-LSTM, and CNN-BiLSTM. More details are given in Sects. 2.1, 2.2 and 2.3.

Begin End Mention Id Type 
24 29 Rsk-2 6197 Gene
46 67 Coffin-Lowry 

syndrome
D038921 Disease

73 94 Coffin-Lowry 
syndrome 

D038921 Disease

105 122 X-linked disorder D040181 Disease
145 168 psychomotor 

retardation
D011596 Disease

…

    PubTator

Mutations in the kinase Rsk-2 associated with Coffin-
Lowry syndrome.
The Coffin-Lowry syndrome, an X-linked disorder, is 
characterized by severe psychomotor retardation…
(PubMed Article Id: 8955270)

Fig. 3. Input and output of PubTator
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2.1 Word Representation

The input for the first stage of computation (i.e., for the CNN) is a sequence of word
vectors constructed from the input abstract and the target gene and disease. We note
that since a disease or gene may have synonyms or acronyms, we need the following
preprocessing before constructing the vectors: based on the output of PubTator, replace
every occurrence of a gene or disease in the abstract by its corresponding ID.

As shown in Fig. 4, every word in the abstract is represented by a vector of 204
numbers. The first 200 numbers capture important semantic features of the words [18],
for which we used the tool Word2vec [19]. It is interesting to note that we tried to
initialize these numbers randomly and found that the two approaches had similar results
(see Sect. 3.4 for comparison). It is likely that the positions of the words are much more
important than their semantic signals for G-D-A classification. In the end, we used the
random number approach in RENET to construct this part of word vectors.

The remaining four numbers in a word vector are for marking whether the corre-
sponding word is a target gene, a target disease, a non-target gene, or a non-target
disease (see Fig. 4).

2.2 Sentence-Level Representation

After generating the word vectors, for each sentence in the abstract, we fed its sequence
of word vectors to the CNN shown in Fig. 5 to generate its sentence-level represen-
tation, which is a vector of real numbers that captures important features of that
sentence. Note that as in [20], we used filters of different widths to capture the features.
Such a CNN can capture different local n-gram features in a sentence; this has been
used successfully in various sentence-level text classification tasks [21, 22]. For our
problem, we expected these filters to capture n-gram patterns around the target gene
and target disease that may suggest a true association.

Fig. 4. A sequence of word vectors when 6197 is the target gene and D038921 the target disease
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To provide more details about the CNN, let us denote a sentence consisting of
l words as w1, w2,…wl. Each word wi is represented by its vector ei of 204 numbers.
A convolutional operation acts on a window of k words. The input of the operator is the
concatenation of the sequence of word vectors for the k words, which is denoted as
I = [ei; ei+1;…; ei+k-1]. The output is calculated as

O ¼ W � Iþ b;

where W is the weight vector and b is the bias. The convolution operator is applied to
every possible window of k words in the sentence, producing a list of features O1, O2,
…, Ol-k+1. A max pooling layer is applied to this sequence of features to keep only the
output with the highest value. Finally, we concatenate the outputs of the different filters
to get the representation of this sentence.

2.3 Document-Level Representation

After generating the sequence of sentence-level representations by the CNN, we
constructed from this sequence a document-level representation that captures important
signals from the whole document to help us make correct classifications.

Note that the output of the CNN captures signals only within a sentence, but this
may not be enough, as it may overlook significant linguistic relationships between
sentences. For example, relying only on these intra-sentence signals would not enable
us to determine whether a sentence appears in the background section or in the con-
clusion section, but intuitively, one that appears in the conclusion section will give
much stronger signal about the association.

To capture signals between sentences, we use RNN-based methods, which are
designed for sequential data and work in time steps; the output for time step t is
computed by combining and transforming (through a linear function) the input vector st
for this time step and the output vector ht�1 of the previous time step. The output of the
last time step is the document representation of the input abstract, as shown in Fig. 6.

Fig. 5. Sentence-level representation generated by our CNN,which uses filters of widths 2, 3, 4, 5.
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To deal with the problem of gradient explosion and vanishing in training [23, 24],
we did not use the original RNN; instead, we tried some of its variants. In particular, we
tried the Long Short Term Memory model (LSTM) and the Gated Recurrent Unit
(GRU) model [24, 25]. GRU and LSTM have similar architecture, in which special
structures are introduced to decide to what extent information should be forgotten or
updated in each time step. In this way, the contextual relationship between sentences
can be modeled. For example, suppose the sentence “polymorphisms of the SYNGR1
and SYNII genes have been shown to be a risk factor for bipolar disorder” appears in
the background section, while the main article denies the association between
SYNGR1 and SYNII genes and bipolar disorder. With the special structures introduced
by LSTM and GRU, the model can choose to forget about the previous memory from
the background section and update the model with the denial of the association in the
main article.

Although the special structures of GRU and LSTM enable them to model long-
distance dependency, a single forward directional GRU/LSTM may be biased towards
inputs in the later time steps. Therefore, we also compared GRU and LSTM with their
bi-directional variants, namely BiGRU and BiLSTM [26]. In these bidirectional
models, the outputs of forward and backward directions are concatenated as the rep-
resentation for the document.

Finally, given the document-level representation, we applied a two-level feed-
forward network for G-D-A classification. We used cross-entropy as the loss function
and the Adam optimizer [27] to train our networks with back-propagation.

3 Experiments

3.1 Data Set

We conducted experiments on a large dataset generated from 30,192 abstracts in
MEDLINE, maintained by DisGeNet [28], which is a platform that contains a large set
of gene-disease associations collected from publicly available databases, such as CTD,

Fig. 6. The process of generating document representation using GRU/LSTM.
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UniProt, and GAD. Most of the associations were manually curated. Our data included
all the G-D-A associations where A is one of the 30,192 MEDLINE abstracts, and G
and D appear in A. If such a G-D-A association appears in DisGeNet, we regard it as a
true association; otherwise we regard it as false. For testing, we selected 1,000
MEDLINE abstracts randomly to form the test set, and the rest were used for the
training and validation of RENET.

3.2 Comparison with Recent Tools

We compared RENET with the software tools BeFree [12] and DTMiner [16], two
publicly available text-mining tools for extracting sentence-level gene-disease associ-
ations. Both BeFree and DTMiner use local lexical and global syntactic features with
SVM as classifiers. To ensure a fair comparison, we used PubTator for the NER step
for all three tools.

The experiment results are shown in Table 1. All our neural network methods
outperformed BeFree and DTMiner by a significant margin in both precision (85.2%
vs. 48.2%) and recall (81.8% vs. 78.4%). This indicates that our document-level
analysis is more suitable than the sentence-level detection method used in BeFree and
DTMiner.

The lower recall rate for DTMiner and BeFree can be explained by the missing of
G-D pairs that do not appear in the same sentences in the abstract. The precision of
BeFree and DTMiner is at least 30% lower than that of the CNN and CNN-RNN
models, which indicates that information extracted from single sentences without
contextual information is insufficient.

3.3 Comparison of Our Method with the Pure CNN Method

We compared the performance of our CNN-RNN method with the pure CNN method,
which is our neural network without the second stage of computation, where we regard
the whole abstract as one big sentence. Note from Table 1 that there is not much
difference in the performance of the four different RNN methods, and they have only a
small advantage over the pure CNN method. This indicates that CNN alone can capture

Table 1. Comparison of different models

Precision Recall F-Score

BeFree 48.2% 74.1% 58.4%
DTMiner 47.3% 78.4% 59.0%
CNN 84.2% 78.6% 81.3%
CNN-GRU (RENET) 85.2% 81.8% 83.5%
CNN-BiGRU 82.5% 83.6% 83.1%
CNN-LSTM 82.0% 83.2% 82.6%
CNN-BiLSTM 86.5% 79.5% 82.8%
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the important features of the document, but the extra RNN layer boosts the perfor-
mance of the CNN method.

We also note that of the CNN-RNN models, the CNN-GRU model (i.e., RENET)
achieved the best performance. The reason may be that compared with GRU, LSTM
has one more output structure, which enables it to forget more information in each time
step. This feature enables LSTM to achieve better model sequences with long
dependency along each time step, and even longer with the help of the bidirectional
structure. But with sequences of shorter length, like those in our task, it may not
perform better than a simpler structure like GRU.

3.4 Comparison Between Settings for Word Representations

We conducted experiments to find out whether pre-trained word-vectors can boost the
performance of neural network models. In the experiments above, we used randomly
initialized vectors drawn from a uniform distribution between −0.05 and 0.05. The
randomly initialized vectors were fine-tuned during training via back-propagation [22].
We compared them with word2vec generated vectors that were pre-trained on PubMed
and PMC texts [29]. We also experimented with the options to fine-tune vectors during
the training. Since a CNN layer performs feature extraction from word representations
in our neural network models, we chose the pure CNN model as the representative
model. The results are shown in Table 2.

From these results, we can draw two conclusions. First, pre-trained word2vec
vectors did not bring extra advantage to our task. Second, fine-tuning word vectors
effectively improved the performance of the model. Therefore, there is no necessity to
introduce pre-trained word2vec vectors in our task.

3.5 Fault Case Analysis

We performed a fault case analysis to determine why some of our predictions disagreed
with the human-curated associations from DisGeNet. False negatives were a particular
concern since they influence the comprehensiveness of the database RENET generates.
Table 3 shows the confusion matrix for the predictions made by RENET.

Table 2. Comparison of different settings of word representations

CNN Precision Recall F-Score
Word2vec Fine-tuned

Yes Yes 81.4% 81.1% 81.3%
Yes No 75.9% 75.7% 75.8%
No Yes 84.2% 78.6% 81.3%
No No 75.2% 81.0% 78.0%
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For the 1000 MEDLINE abstracts we tested, we randomly sampled and analyzed
100 of the 273 false negative cases. We found that although the predictions did not
agree exactly with the human-curated associations, some of them were not at all
unreasonable. Following are four types of “false negative” faults we consider
permissive.

(1) RENET predicted a more specific disease. In these cases, multiple diseases were
mentioned in the abstract, with some being more general (e.g., cardiomyopathy)
and some more specific (e.g., hypertrophic cardiomyopathy). DisGeNet reports
associations of the general disease or both diseases, while RENET predicts the
specific disease. In this case, RENET actually pinpoints a more accurate associ-
ation between genes and diseases.

(2) Errors of NER step propagated to RE. In these cases, PubTator made errors in the
NER step (e.g., it could not recognize a protein name for a gene), and this affected
the results of the RE step.

(3) Not enough information in the abstract. In these cases, genes and diseases were
mentioned in the abstract, but there was not enough evidence to suggest their
association. We suppose human curators read both the abstract and the main body
of the articles to curate the associations. The evidence is probably provided in the
main body of the articles but not the abstract.

(4) RENET predicted a more general disease. This is similar to the first case above,
but the model predicts a more general disease, while DisGeNet reports a specific
disease or both. Although the RENET predictions are not as good as the sample
answers, they are still relevant.

Detailed examples are provided in the Supplementary Materials (available at
https://bitbucket.org/alexwuhkucs/gda-extraction/src/master/). Figure 7 shows a
breakdown of the false negative cases. About 7.6% are other faults made by RENET
without a specific reason.

Table 3. Confusion matrix

Actual values (DisGeNet) Total
True G-D-A False G-D-A

Model predicts True G-D-A 1229 214 1443
False G-D-A 273 3506 3779
Total 1502 3720 5222
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3.6 Large-Scale Extraction of Gene-Disease Article Association

We applied RENET on 1,032,790 MEDLINE abstracts pertaining to human diseases
and genes, published from 1980 on. The abstracts were retrieved using the following
query at https://www.ncbi.nlm.nih.gov/pubmed [12].

“Psychiatry and Psychology Category” [Mesh] AND “genetics” [Sub-
heading]) OR (“Diseases Category” [Mesh] AND “genetics” [Sub-
heading]) AND (hasabstract[text] AND (“1980” [PDAT]: “2018” 
[PDAT]) AND “humans” [MeSH Terms] AND English[lang]).

We retrieved 869,152 G-D-A associations between 24,221 genes and 5,804 dis-
eases, reported in 530,581 publications. The entire set of extracted G-D-A associations
is available at https://bitbucket.org/alexwuhkucs/gda-extraction/src/master/.

4 Conclusion

In this paper, we introduce an innovative and efficient approach and implement a tool
call RENET for extracting gene-disease association. RENET outperforms existing tools
significantly because it uses deep learning to dig out important classification signals
over the whole document while existing tools use SVM or rule-based methods to
analyze sentences separately. Our tool learns a representation of a document through a
two-stage computation: (1) from word representation to sentence representation using
CNN; (2) from sentence representation to document representation using RNN-based
method. We have done comprehensive experiments on a large-scale dataset generated

Fig. 7. Breakdown of false negatives

282 Y. Wu et al.

https://www.ncbi.nlm.nih.gov/pubmed
https://bitbucket.org/alexwuhkucs/gda-extraction/src/master/


from DisGeNet. RENET outperforms traditional sentence-level relation extraction
methods by a large margin (more than 20% in F-Score).

In the analysis of the false negative cases, we found that RENET still makes
sensible predictions despite not completely agreeing with the benchmark. We believe
the methodology of this work is transferable to other association extraction tasks such
as drug-disease associations, variant-disease associations and protein interactions as
well.
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Extended Abstract

Methods for inferring phylogenetic trees from very large datasets exist, yet, large-
scale tree reconstructions still require significant resources. New species are con-
tinually being sequenced, and as a result, even large trees can become outdated.
Reconstructing the tree de novo each time new sequences become available is
not practical. An alternative approach is phylogenetic placement where new
sequence(s) are simply added to an existing backbone tree. Phylogenetic place-
ment has applications other than updating trees, including sample identification,
where the goal is to detect the identity of given query sequences of unknown ori-
gins. This problem arises [3] in the study of mixed environmental samples that
make up much of the microbiome literature. Sample identification is also the
essence of barcoding and meta-barcoding, methods used often in biodiversity
studies.

Maximum Likelihood (ML) methods of phylogenetic placement are now avail-
able and in wide use (e.g., [4] and EPA(-ng) [2]). The ML approach is com-
putationally demanding, and in particular requires large amounts of memory,
and therefore, is limited in the size of the backbone tree it can use. More
fundamentally, existing placement tools take as input alignments of assembled
sequences for the backbone set, even when queries allowed to be unassembled
reads. This reliance on assembled sequences makes them unsuitable for alignment
and assembly-free scenarios. For example, sample identification using genome-
skimming is fast becoming cost-effective. Methods like Skmer [5] (introduced
in RECOMB 2018) can be used to infer k-mer-based estimates of phylogenetic
distance from genome skims, and these distances can potentially be used for
placement on phylogenetic trees. However, existing methods cannot be used for
this purpose.

Distance-based phylogenetics has a rich methodological history, and yet,
there are no existing tools for distance-based phylogenetic placement. Such
methods, if developed, can be scalable to ultra-large backbone trees. Moreover,
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distance-based methods only need distances, not assembled sequences, and there-
fore, can be used for sample identification from reads in an assembly-free and
alignment-free fashion.

We have developed a new method for distance-based phylogenetic place-
ment called APPLES (Accurate Phylogenetic Placement using LEast Squares).
APPLES finds the placement of a query sequence that minimizes the least square
error of phylogenetic distances with respect to sequence distances. It can also
operate on the minimum evolution principle, or a hybrid of minimum evolution
and least square error. Using dynamic programming, APPLES is able to per-
form placement in time and memory that both scale linearly with the size of the
backbone tree.

We have performed extensive studies on simulated and real datasets to eval-
uate APPLES. Our results show that in the alignment-based scenario, APPLES
is much faster than ML tools, uses much less memory, and is very close to ML
in the accuracy. Moreover, APPLES can handle much larger backbone trees (we
have tested up to 200,000 leaves), and has increased accuracy when the backbone
trees become larger and more densely sampled. In contrast, ML methods cannot
handle backbones with several thousand species. For assembly-free scenarios,
we study three genome skimming datasets of insects and show that APPLES
applied to Skmer distances can accurately identify genome skim samples using
coverage below 1X [1]. APPLES is open-source and freely available at https://
github.com/balabanmetin/apples.
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Extended Abstract

Cyclic and branch cyclic peptides (cyclopeptides) represent an important class of
bioactive natural products that include many antibiotics and anti-tumor compounds.
However, little is known about cyclopeptides in the human gut, despite the fact that
humans are constantly exposed to them. To address this bottleneck, we developed
CycloNovo algorithm [1] for de novo cyclopeptide sequencing that employs de Bruijn
graphs, the workhorse of DNA sequencing algorithms. Figure 1 illustrates the
CycloNovo pipeline. CycloNovo reconstructed many new cyclopeptides that we val-
idated with transcriptome, metagenome, and genome mining analyses.

We applied CycloNovo to high-resolution spectral dataset generated from daisy
seeds (Senecio vulgaris), human microbiome (HUMANSTOOL), and a large dataset of
40 high-resolution spectra from GNPS (GNPS). CycloNovo reconstructed ten
cyclopeptides in S. vulgaris including 4 known and 6 novel cyclopeptides that were
further validated using assembled RNA-seq transcripts. Our analysis revealed 703
cyclospectra in HUMANSTOOL dataset corresponding to 79 unique putative
cyclopeptides (identified by MS-Cluster) forming 69 spectral families (identified by
molecular networking). Dereplicator search yielded only nine PSMs with 0% FDR and
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P-value < 10−15, seven that originated from Flax cyclolinopeptides A [5], B [6], C [7],
D [7], H [7], E [7], and P [8] as well as Citrusin V and Massetolide F.
Cyclolinopeptides belong to the family of flaxseed orbitides that are present in the seeds
of Linum usitatissimum. We confirmed that the diet of the individual who provided the
HUMANSTOOL sample (L.S., co-author) contained flaxseed eaten frequently as an
ingredient in his cooking. Citrusin V belong to the citrusin family of antimicrobial
orbitides found in the extracts of various species from the Citrus genus [9]. Masse-
tolides are non-ribosomal lipopeptides produced by Pseudomonas fluoresences, an
indigenous member of human and plant microbiota [10, 11]. Analysis of the meta-
genome assembly of reads paired with the HUMANSTOOL dataset confirmed that
P. fluoresences is present in the stool samples where massetolide F was detected.

In addition to the nine identified cyclopeptides, CycloNovo reconstructed 32
cyclopeptides in the HUMANSTOOL dataset with P-values below 10−15 forming 26
cyclofamilies. Finding many bioactive cyclopeptides in our study that remain stable in
the proteolytic environment of the human gut raises the question of how these bioactive
antimicrobial cyclopeptides affect the bacterial composition of the human microbiota.

We analyzed cyclopeptide spectra identified in the GNPS dataset with the goal of
estimating the number of still unknown cyclopeptides from spectra already deposited in
GNPS. Dereplicator search of the entire GNPS dataset identified 80 unique known
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Fig. 1. CycloNovo outline illustrated using SpectrumSurugamide.CycloNovo includes six steps:
(i) recognizing cyclospectra using their spectral-convolution [2], (ii) predicting amino acids in a
cyclopeptide, (iii) predicting amino acid composition of a cyclopeptide, (iv), predicting k-mers in
a cyclopeptide, (v) constructing the de Bruijn graph of a spectrum, and (vi) generating
cyclopeptide reconstructions and calculating P-values [3, 4]. Only six top-scoring putative k-mers
for each putative amino acid composition are shown. Masses of amino acids occurring in
surugamide are shown in red and k-mers occurring in surugamide are underlined. To simplify the
de Bruijn graph (corresponding to the composition 711113512811471), all tips and isolated edges
in the graph were removed. Red, blue and green feasible cycles in the graph spell out three
cyclopeptides shown in the bottom table along with their P-values. The red cycle spells out
surugamide.
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cyclopeptides containing 41 cyclofamilies. CycloNovo predicted a total of 12,004
cyclopeptide spectra representing 512 putative cyclopeptides forming 213 cyclofami-
lies. These putative cyclopeptides include 67 (37 cyclofamilies) of the 80 known
cyclopeptides. We showed that even in the case of the phyla with extensively analyzed
cyclopeptides (Cyanobacteria, Pseudomonas, and Actinomyces), only less than 30% of
the predicted cyclopeptides are already known.

Link to preprint version: https://www.biorxiv.org/content/10.1101/521872v2
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Understanding the relationship between biological sequences and the associated
phenotypes is a fundamental problem in molecular biology. Accordingly, machine
learning techniques have been developed to exploit the growing number of phe-
notypic sequences in automatic annotation tools. Typical applications include
classifying protein domains into superfamilies [6, 9], predicting whether a DNA
or RNA sequence binds to a protein [1], its splicing outcome [3], or its chro-
matin accessibility [4], predicting the resistance of a bacterial strain to a drug
[2], or denoising a ChIP-seq signal [5]. Choosing how to represent biological
sequences is a critical part of methods that predict phenotypes from genotypes.
Kernel-based methods [6, 9, 8] have often been used for this task. They have
been proven efficient to represent biological sequences in various tasks but only
construct fixed representations and lack scalability to large amount of data. By
contrast, convolutional neural networks (CNN) [1] have recently shown scalable
and able to optimize data representations for specific tasks. However, they typ-
ically lack interpretability and require large amounts of annotated data, which
motivates us to introduce more data-efficient approaches.

In this work we introduce CKN-seq, a strategy combining kernel methods
and deep neural networks for sequence modeling, by adapting the convolutional
kernel network (CKN) model originally developed for image data [7]. CKN-seq
relies on a convolutional kernel, a continuous relaxation of the mismatch kernel
[6], and the Nyström approximation. The relaxation makes it possible to learn
the kernel from data, and we provide an unsupervised and a supervised algorithm
to do so—the latter leading to a special case of CNNs.

On a transcription factor binding prediction task and a protein remote homol-
ogy detection task, both approaches show better performance than DeepBind,
another existing CNN [1], especially when the amount of training data is small.
On the other hand, the supervised algorithm produces task-specific and small-
dimensional sequence representations while the unsupervised version dominates
all other methods on small-scale problems but leads to higher dimensional rep-
resentations. Consequently, we introduce a hybrid approach which enjoys the
benefits of both supervised and unsupervised variants, namely the ability of
learning low-dimensional models with good prediction performance in all data
size regimes. Finally, the kernel point of view of our method provides us simple
ways to visualize and interpret our models, and obtain sequence logos. On some
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simulated data, the logos given by CKN-seq are more informative and match bet-
ter with the ground truth in terms of any probabilistic distance measures. We
provide a free implementation of CKN-seq for learning from biological sequences,
which can easily be adapted to other sequence prediction tasks and is available
at https://gitlab.inria.fr/dchen/CKN-seq.

The fact that CKNs retain the ability of CNNs to learn feature spaces from
large training sets of data while enjoying a reproducing kernel Hilbert space
structure has other uncharted applications which we would like to explore in
future work. First, it will allow us to leverage the existing literature on kernels
for biological sequences to define the bottom kernel instead of the mismatch
kernel, possibly capturing other aspects than sequence motifs. More generally,
it provides a straightforward way to build models for non-vector objects such
as graphs, taking as input molecules or protein structures. Finally, it paves the
way for making deep networks amenable to statistical analysis, in particular to
hypothesis testing. This important step would be complementary to the inter-
pretability aspect, and necessary to make deep networks a powerful tool for
molecular biology beyond prediction.

A full version of the paper is available at https://doi.org/10.1101/217257.

References

1. Alipanahi, B., Delong, A., Weirauch, M.T., Frey, B.J.: Predicting the sequence speci-
ficities of DNA-and RNA-binding proteins by deep learning. Nat. Biotechnol. 33(8),
831–838 (2015)
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Khaled Elbassioni2, Sören Laue3, Francisca Rojas Ringeling4,
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1 Introduction

Single-cell RNA sequencing enables the construction of trajectories [1] describ-
ing the dynamic changes in gene expression underlying biological processes such
as cell differentiation and development. The comparison of single-cell trajecto-
ries under two distinct conditions can illuminate the differences and similari-
ties between the two and can thus be a powerful tool for analysis [2]. Recently
developed methods for the comparison of trajectories [2, 3] rely on the concept
of dynamic time warping (dtw), originally proposed for the comparison of two
time series and consequently restricted to simple, linear trajectories. Here, we
adopt and theoretically link arboreal matchings to dtw and implement a suite
of exact and heuristic algorithms suitable for the comparison of complex trajec-
tories of different characteristics in our tool Trajan (Fig. 1). Trajan’s alignment
enables the meaningful comparison of gene expression dynamics along a common
pseudo-time scale. Trajan is available at https://github.com/canzarlab/Trajan.

2 Methods

Dynamic time warping (dtw) is the algorithmic workhorse underlying current
methods that compare linear single-cell trajectories. We develop Trajan, the
first method to compare and align complex trajectories (trees) with multiple
branch points. Trajan aligns each path in one tree to at most one path in the
second tree and vice versa and, similar to dtw, preserves the order of nodes along
the paths. In [4] we have introduced arboreal matchings that formalize such a
consistent path-by-path alignment of trees.

We devise scoring schemes for arboreal matchings that yield (guaranteed)
similar distance measures between linear trajectories as dtw, but naturally

The full version of this paper is available as preprint at bioRxiv 522672.
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Fig. 1. Complex trajectories, reconstructed from single-cell RNA measurements using,
e.g., Monocle 2, are aligned by Trajan based on arboreal matchings. The matching
warps individual pseudo-time scales into a shared one along which expression kinetics
can be compared.

extend to complex trajectories. Trajan implements a thoroughly engineered
branch-and-cut algorithm that allows to practically compare complex single-
cell trajectories. It repeatedly determines cutting planes that strengthen the
LP relaxation in [4] in polynomial-time and uses an in-house developed, non-
commercial, non-linear solver for all continuous optimization problems. For
trajectories with a small number of cell fates k we employ a fixed-parameter
tractable algorithm, parameterized by k, that applies a dynamic program simi-
lar to [5] to align them optimally.

3 Results

Adopting a strategy similar to [2], we re-analyzed two public single-cell datasets:
human skeletal muscle myoblast (HSMM) differentiation and human fibroblasts
undergoing MYOD-mediated myogenic reprogramming (hFib-MyoD). Trajan is
able to align the core paths of each complex trajectory, without any previous
knowledge of myoblast differentiation markers. From Trajan’s alignment, we con-
struct gene expression kinetics for a set of genes that were assessed in [2] and are
able to reproduce their key findings, including the molecular barriers identified
in [2] that hinder the efficient reprogramming of fibroblasts to myotubes.

In a perturbation experiment we demonstrate the benefits in terms of robust-
ness and accuracy of our model which compares entire trajectories at once, as
opposed to a pairwise application of dtw.
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Abstract

Motivation. Single-cell RNA-sequencing (scRNA-seq) enables high through-
put measurement of RNA expression in individual cells. Due to technical and
financial limitations, scRNA-seq datasets often contain zero counts for many
transcripts in individual cells. These zero counts, or dropout events, complicate
the analysis of scRNA-seq data using standard analysis methods developed for
bulk RNA-seq data. Current methods for analysis of scRNA-seq data typically
overcome dropout by combining information across cells, leveraging the obser-
vation that the cells measured in any scRNA-seq experiment generally occupy a
small number of RNA expression states.

Results. We describe an algorithm to overcome dropout by combining
information across both cells and genes. Our algorithm, netNMF-sc, combines
network-regularized non-negative matrix factorization with a specialized proce-
dure to handle the large fraction of zero entries in the transcript count matrix.
The matrix factorization results in a low-dimensional representation of the tran-
script count matrix, while the network regularization encourages two genes con-
nected in the network to be close in the low-dimensional representation. In addi-
tion, the two matrix factors can be used to cluster cells and to impute val-
ues for dropout events. While our netNMF-sc algorithm may use any type of
network as prior information, a particularly promising approach is to leverage
tissue-specific gene-coexpression networks derived from the vast repository of
RNA-seq/microarray studies of bulk tissue.

We show that netNMF-sc outperforms existing methods in both clustering
cells and imputing transcript counts on simulated data. netNMF-sc’s advantages
were especially pronounced at high dropout rates e.g. above 60%. Such high
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dropout rates are common in newer scRNA-seq technologies, such as from 10X
Genomics, that measure large number of cells with low sequence coverage per cell.
We also show that netNMF-sc outperforms existing methods on real scRNA-seq
datasets, including the clustering of mouse embryonic stem cells into cell-cycle
states and the clustering of mouse embryonic brain cells into known cell types.
Finally, we show that gene-gene correlations computed from the netNMF-sc
imputed data are more biologically meaningful than the gene-gene correlations
obtained from existing algorithms.

Availability. netNMF-sc is available at https://github.com/raphael-
group/netNMF-sc. The preprint is available at https://www.biorxiv.org/
content/10.1101/544346v1.

https://github.com/raphael-group/netNMF-sc
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1 Introduction

Single-cell RNA-sequencing (scRNA-seq) experiments that profile hundreds of
thousands of cells or more are becoming increasingly common. These large-scale
data sets present a key computational bottleneck for conventional scRNA-seq
analysis pipelines [1]. Standard methods of reducing the size of data sets, such
as uniform downsampling, frequently remove rare transcriptional states, miti-
gating the advantage that large-scale experiments provide. Here we present geo-
metric sketching, an efficient downsampling method that newly preserves the
transcriptional heterogeneity of single-cell data sets by sampling evenly across
transcriptomic space, thinning out dense clusters of common cells and preferen-
tially selecting cells from sparser regions.

We empirically demonstrate that geometric sketches represent the geome-
try rather than the density of the original data set. We show that our sketches
enhance and accelerate downstream analyses by: preserving rare cell types, pro-
ducing visualizations that capture the full transcriptomic heterogeneity, and
facilitating the identification of cell types via clustering. Geometric sketching
downsamples from data sets with millions of cells in a matter of minutes, with
an asymptotic runtime nearly linear in the size of the data set. As the size of
single-cell data grows, geometric sketching will become increasingly crucial for
broadening access to single-cell omics experiments even for researchers without
expensive computational resources. The full version of this paper can be found
at https://www.biorxiv.org/content/10.1101/536730v2.

2 Methods

Geometric sketching is based on the key insight that common cell types form
dense clusters in transcriptomic space, while rare cell types may occupy larger
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regions with much greater sparsity. To accurately summarize the transcriptomic
landscape, geometric sketching first obtains a geometric approximation of the
data set with equal-sized, non-overlapping, axis-aligned boxes (hypercubes),
which we refer to as a plaid covering (Fig. 1). Once the geometry of the data is
approximated with a set of covering boxes, we sample cells by uniformly sam-
pling a covering box, then choosing a cell in the box also uniformly at random.
The samples therefore more evenly cover the gene expression landscape, natu-
rally diminishing the influence of densely populated regions and increasing the
representation of rare transcriptional states.

The plaid covering generalizes grid-based approximation while maintaining
computational efficiency in assigning points to their respective covering box. To
obtain a plaid covering, we fix an interval length �, and for each coordinate con-
struct a minimal covering of the projected data with intervals of length �. The
Cartesian product of these coordinate-wise coverings yields a plaid covering of
the original data set by axis-aligned boxes of side length �. Note that after an
O(n log(n)) sorting operation, points can be assigned to boxes by rounding up
or down, yielding an overall O(n log(n)) runtime in each dimension. In practi-
cal scenarios where each coordinate requires only a small constant number of
intervals to cover, we achieve O(n) time complexity by using linear scans to
find the next interval without sorting. We perform a binary search to find the
value of � that produces the number of covering boxes that match the number
of samples to be taken. In addition, we use a fast random projection-based PCA
to project the data to a relatively low-dimensional space (100 dimensions in the
experiments below) before applying the sketching algorithm.

Fig. 1. Geometric sketches capture transcriptional heterogeneity. (A) An
illustration of the geometric sketching algorithm. (B) Geometric sketches more evenly
represent the transcriptomic landscape of a data set. Shown are the sketches of 20k
cells sampled from a mouse brain data set with 666k cells.
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3 Results

Visualizations of geometric sketches reflect the geometric “map” of the tran-
scriptional variability within a data set, allowing researchers to more easily gain
insight into rarer transcriptional states (Fig. 1). On data sets with three clusters
of similar volumes but different densities, our algorithm samples each cluster
with near equal probability (KL divergence = 0.063 versus ≥ 0.85 for other
sampling methods). Our algorithm also detects rare cell types in a variety of
settings: 293T cells mixed with Jurkat cells at a concentration of 0.66%, CD14+
monocytes at a concentration of 1.2%, and macrophages in a mouse brain data
set at a concentration of 0.27%. In all cases, rare cell types are substantially
better represented in geometric sketches than in subsamples made with other
methods, which include spatial random sampling [2] and k-means++ [3], which
have not been previously considered for the problem of subsampling scRNA-seq
data. Finally, Louvain clustering on data subsampled via geometric sketching
resulted in comparable or better agreement with known cell labels across a range
of Louvain resolution parameters.
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Extended Abstract

Current practices in collaborative genomic data analysis (e.g. PCAWG [1]) neces-
sitate all involved parties to exchange individual patient data and perform all
analysis locally, or use a trusted server for maintaining all data to perform anal-
ysis in a single site (e.g. the Cancer Genome Collaboratory [2]). Since both
approaches involve sharing genomic sequence data - which is typically not fea-
sible due to privacy issues, collaborative data analysis remains to be a rarity in
genomic medicine.

In order to facilitate efficient and effective collaborative or remote genomic
computation we introduce SkSES (Sketching algorithms for Secure Enclave based
genomic data analysiS), a computational framework for performing data anal-
ysis and querying on multiple, individually encrypted genomes from several
institutions in an untrusted cloud environment. Unlike other techniques for
secure/privacy preserving genomic data analysis, which typically rely on sophis-
ticated cryptographic techniques with prohibitively large computational over-
heads, SkSES utilizes the secure enclaves supported by current generation micro-
processor architectures such as Intel’s SGX. The key conceptual contribution of
SkSES is its use of sketching data structures that can fit in the limited memory
available in a secure enclave.

While streaming/sketching algorithms have been developed for many appli-
cations, their feasibility in genomics has remained largely unexplored. On the
other hand, even though privacy and security issues are becoming critical in
genomic medicine, available cryptographic techniques based on, e.g. homomor-
phic encryption, secure multi-party computing or garbled circuits, can not always
address the performance demands of this rapidly growing field [3–6]. The alter-
native offered by Intel’s SGX, a combination of hardware and software solu-
tions for secure data analysis, is severely limited by the relatively small size of a
secure enclave, a private region of the memory protected from other processes [7].
SkSES addresses this limitation through the use of sketching data structures to
support efficient secure and privacy preserving SNP analysis across individually
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encrypted VCF files from multiple institutions. In particular SkSES provides the
users the ability to query for the “k most significant SNPs” among any set of
user specified SNPs and any value of k - even when the total number of SNPs
to be maintained is far beyond the memory capacity of the secure enclave.

SkSES processes individual genomic data presented as VCF files from par-
ticipating parties who aim to perform collective statistical tests. For compacting
the input VCF files, SkSES uses a simple scheme to filter out non-essential com-
ponents of a VCF file and encode essential components efficiently - reducing the
storage and communication needs and speeding up encryption/decryption within
the framework. SkSES then builds a sketch of the compacted VCF files, based
on either the count-min sketch [8] or the count sketch [9] structures in order to
approximate the actual allele count distribution with respect to L1 measure (the
difference between case and control) - as a proxy to the χ2 statistic.

Results: We tested SkSES on the extended iDASH-2017 competition data
set comprised of 1000 case and 1000 control samples related to an unknown
phenotype. SkSES was able to identify the top SNPs with respect to the χ2

statistic, among any user specified subset of SNPs across this data set of 2000
individually encrypted complete human genomes quickly and accurately - sig-
nificantly improving our iDASH-2017 (http://www.humangenomeprivacy.org/
2017/) runner-up software for secure GWAS - demonstrating the feasibility of
secure and privacy preserving computation at human genome scale via Intel’s
SGX.

Availability: https://github.com/ndokmai/sgx-genome-variants-search
Full Text: https://www.biorxiv.org/content/early/2018/11/12/468355
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1 Introduction

A plethora of biological functions are performed through various types of protein-
peptide binding, e.g., protein kinase phosphorylation on peptide substrates.
Understanding the specificity of protein-peptide interactions is critical for unrav-
eling the architectures of functional pathways and the mechanisms of cellular
processes in human cells. A line of computational prediction methods has been
recently proposed to predict protein-peptide bindings which efficiently provide
rich functional annotations on a large scale. To achieve a high prediction accu-
racy, these computational methods require a sufficient amount of data to build
the prediction model. However, the number of experimentally verified protein-
peptide bindings is often limited in real cases. These methods are thus limited
to building accurate prediction models for only well-characterized proteins with
a large volume of known binding peptides and cannot be extended to predict
new binding peptides for less-studied proteins.

2 Methods

We propose a new two phases meta-learning framework, named MetaKinase,
for the prediction of kinase phosphorylation sites. In phase one, using multiple
training kinase families, we train a model which can generate more adaptable
representations which are broadly suitable for every kinase family (called meta-
learning). In phase two, using a few (e.g., <10) known phosphorylation sites
from a new target kinase family, we fine-tune the model on this target fam-
ily to capture its specificity. With the general patterns captured in phase one,
the adaption to the target family in phase two is very sample-efficient: we can
tweak the model by only using a few data points to make it family-specific and
accurately predict the specificity of the target family (called few-shot learning).
With its transferability and fast adaptability, our framework can thus be applied
to mitigate the data scarcity issue in characterizing specificities of less-studied
kinases. Even with only a few known phosphorylation sites, the model is still
able to accurately characterize the specificity of the target kinase family.
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3 Results

a b

Fig. 1. Evaluation of few-shot learning. MetaKinase was trained with data of multiple
kinase families in the meta-learning phase and fine-tuned in the few-shot learning phase
using k samples of the test family for k = 1, 2, . . . , 10.

We compared our framework with three baseline methods: pan-family app-
roach (one prediction model for all kinase families), K-nearest neighbor, and
MusiteDeep [1]. We varied the value of k-shot from 0 to 10 (0-shot means the
model was trained on training family only), and for each value of k, we randomly
sampled k samples from the target family and used the remaining samples as
test data. The process was repeated for 50 times for each value of k. We used the
AUROC and AUPRC scores as the evaluation metrics and showed the results in
Fig. 1. We first observed that MetaKinase outperformed other methods for each
value of k in terms of both AUROC and AUPRC scores. In addition, while other
methods had relatively similar prediction performance as the number of k-shot
increased, we observed that the improvement was clear for MetaKinase when
more k-shot samples were provided. Our framework also achieved fast adap-
tion to a target family. For example, the predictor had a 0.316 AUPRC score
when using 2-shot samples in the few-shot learning phase, which was closed
to AUPRC score achieved with 10-shot (0.338). These results demonstrated the
transferability and fast-learning ability of MetaKinase. The full paper describing
MetaKinase is available at [2].
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While complex traits are highly heritable, individual genetic polymorphisms
typically explain only a small proportion of the heritability [1]. Polygenic scores
(PS), also known as polygenic risk scores for disease phenotypes, aggregate the
contributions of multiple genetic variants to a phenotype [2]. These scores can
be calculated using routinely recorded genotypes [1, 2], are strongly associated
with heritable traits [1], and are independent of environmental exposures or other
factors that are uncorrelated with germ line genetic variants. These properties
have motivated a rapidly expanding list of applications from basic science (e.g.
causal inference and Mendelian randomization [3], hierarchical disease models
and identification of pleiotropy [4]) to translation (e.g. estimating disease risk
[5], identifying patients who are likely to respond well to a particular therapy
[6], or flagging subjects for modified screening [7]).

Polygenic scores are calculated as a weighted sum of genotypes. This may
include all genotyped SNPs, but often only a small set is given nonzero weight
– such as a genome spanning but uncorrelated (LD-pruned) set or SNPs with
independent evidence of association with the phenotype of interest. Gene-specific
polygenic score are also generated using selected sets of SNPs within a region of
the genome, such as a window around the coding region of a particular gene [8].
The weights on the SNPs included in a polygenic score are often derived from
the regression coefficients of an external GWAS [9, 10], but they may instead
be based on predictive models using all SNPs. Joint predictive models include
LMMs and their sparse extensions and other regularized regression models such
as the lasso or elastic net [8, 11]. The predictions from these joint analyses
using genome wide variation are also approximated by post-processing of GWAS
summary statistics [8, 11].
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For these SNP-weights to accurately reflect the SNPs’ joint association with
the phenotype and to generate informative and interpretable polygenic scores,
the reference data set must match the target data set in many ways: the popu-
lations must have similar ancestry; the trait of interest must be measured; and
identical genotypes must be assayed or imputed. Further, the reference data must
be large enough to accurately learn the PS weights. An alternative approach is
to use the studied data set to build a reference-free PS. This eliminates the need
for an external reference data set with matched genotypes, phenotypes, and pop-
ulations. However, as we show below, naive approaches can easily overfit genetic
effects. This overfitting results in PS correlated with non-genetic components of
phenotype, that will induce bias or other errors in downstream applications.

Here we report an efficient method to generate PS by using the out-of-sample
predictions from a cross-validated linear mixed model (LMM). Our approach
generates leave-one-out (LOO) polygenic scores, which we call cvBLUPs after a
single LMM fit, with computational complexity linear in sample size. In addition
to eliminating the reliance on external data and guaranteeing the PS are gener-
ated from a relevant population and phenotype, we describe several applications
that are only feasible with cvBLUPs. We first demonstrate several desirable sta-
tistical properties of cvBLUPs and then consider applications including evidence
of polygenicity across metabolic phenotypes, estimation of the shrink term in lin-
ear mixed models, a novel formulation of mixed model association studies, and
selection of relevant principal components for downstream analyses. To make
the results of this work accessible to the community, we have implemented them
in the GCTA software package [12].

Full paper on bioRxiv at: https://doi.org/10.1101/517821
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Abstract

Background: Determining the clonal composition and somatic evolution of a
tumor greatly aids in accurate prognosis and effective treatment for cancer. In
order to understand how a tumor evolves over time and/or in response to treat-
ment, multiple recent studies have performed longitudinal DNA sequencing of
tumor samples from the same patient at several different time points. However,
none of the existing algorithms that infer clonal composition and phylogeny using
several bulk tumor samples from the same patient integrate the information that
these samples were obtained from longitudinal observations.

Results: We introduce a model for a longitudinally-observed phylogeny
and derive constraints that longitudinal samples impose on the reconstruc-
tion of a phylogeny from bulk samples. These constraints form the basis for
a new algorithm, Cancer Analysis of Longitudinal Data through Evolutionary
Reconstruction (CALDER), which infers phylogenetic trees from longitudinal
bulk DNA sequencing data. We show on simulated data that constraints from
longitudinal sampling can substantially reduce ambiguity when deriving a phy-
logeny from multiple bulk tumor samples, each a mixture of tumor clones. On real
data, where there is often considerable uncertainty in the clonal composition of a
sample, longitudinal constraints yield more parsimonious phylogenies with fewer
tumor clones per sample. We demonstrate that CALDER reconstructs more
plausible phylogenies than existing methods on two longitudinal DNA sequenc-
ing datasets from chronic lymphocytic leukemia patients. These findings show
the advantages of directly incorporating temporal information from longitudinal
sampling into tumor evolution studies.

Availability: CALDER is available at https://github.com/raphael-group.
Preprint: Preprint version of the full manuscript is available at https://

www.biorxiv.org/content/10.1101/526814v1.
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A central question in human genetics is to find the proportion of variation in a
trait that can be explained by genetic variation [1]. A number of methods have
been developed to estimate this quantity, termed narrow-sense heritability, from
genome-wide SNP data [2–6]. Recently, it has become clear that estimates of
narrow-sense heritability are sensitive to modeling assumptions that relate the
effect sizes of a SNP to its minor allele frequency (MAF) and linkage disequilib-
rium (LD) patterns [6, 7]. A principled approach to estimate heritability while
accounting for variation in SNP effect sizes involves the application of linear
Mixed Models (LMMs) [8] with multiple variance components where each vari-
ance component represents the fraction of genetic variance explained by SNPs
that belong to a given range of MAF and LD values. Beyond their importance
in accurately estimating genome-wide SNP heritability, multiple variance com-
ponent LMMs are useful in partitioning the contribution of genomic annotations
to trait heritability which, in turn, can provide insights into biological processes
that are associated with the trait.

Existing methods for fitting multi-component LMMs rely on maximizing the
likelihood of the variance components. These methods pose major computa-
tional bottlenecks that makes it challenging to apply them to large-scale genomic
datasets such as the UK Biobank which contains half a million individuals geno-
typed at tens of millions of SNPs.

We propose a scalable algorithm, RHE-reg-mc, to jointly estimate
multiple variance components in LMMs. RHE-reg-mc is a randomized
method-of-moments estimator with a runtime that is observed to scale as
O( NMB

max(log3(N),log3(M)) +k3) for N individuals, M SNPs, k variance components,
and B ≈ 10, a parameter that controls the number of random matrix-vector
multiplication. RHE-reg-mc also efficiently computes asymptotic and jackknife
standard errors. We evaluate the accuracy and scalability of RHE-reg-mc
for estimating the total heritability as well as in partitioning heritability.
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The ability to fit multiple variance components to SNPs partitioned according to
their MAF and local LD allows RHE-reg-mc to obtain relatively unbiased esti-
mates of SNP heritability. On the UK Biobank dataset consisting of ≈ 300, 000
individuals and ≈ 500, 000 SNPs, RHE-reg-mc can fit 250 variance components,
corresponding to genetic variance explained by 10 MB blocks, in ≈ 40 minutes on
standard hardware. The full version of the paper is available at: http://biorxiv.
org/cgi/content/short/522003v2.
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Extended Abstract

We consider the following problem: Let I and If each describe a collection of
n and m non-overlapping intervals on a line segment of finite length. Suppose
that k of the m intervals of If are intersected by some interval(s) in I. Under
the null hypothesis that intervals in I are randomly arranged w.r.t If , what
is the significance of this overlap? This is a natural abstraction of statistical
questions that are ubiquitous in the post-genomic era. The interval collections
represent annotations that reveal structural or functional regions of the genome,
and overlap statistics can provide insight into the correlation between different
structural and functional regions. However, the statistics of interval overlaps
have not been systematically explored. We propose a combinatorial algorithm
for a constrained interval overlap problem that can accurately compute very
small p-values. Specifically, we define N(i, h, k, a) as the number of randomized
arrangements of the first i intervals in I such that the i-th interval ends at
genomic location h, and k intervals in If are hit by the first i intervals in I
(a is an auxiliary binary variable). Assuming that the order of intervals in I is
retained, N(i, h, k, a) is computed using a dynamic programming algorithm in
pseudo-polynomial time O(ngm) [1], where n and m are the number of intervals
in I and If , and g is the genome length. The p-value of the overlap is then given
by

P -value(k) =
∑m

κ=k N1(n, g, κ, 0)
∑m

κ=0 N1(n, g, κ, 0)
.

We have also provided a fast approximate method based on Poisson binomial
distribution to facilitate problems consisted of very large number of intervals,
and have introduced parameter η as a measure of the spread of intervals to
estimate the closeness of approximated p-values.

We tested our tool, iStat, on simulated interval data to obtain precise esti-
mates of low p-values, and characterize the performance of our methods. We also
applied iStat to four cases of interval overlap problem from previous studies,
and showed that iStat can estimate very small p-values, considering the length
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and structure of intervals, while avoiding inflated p-values reported from basic
permutation or parametric tests. The iStat software is made publicly available
on Github (https://github.com/shahab-sarmashghi/ISTAT.git).
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DNA methylation remains one of the most widely studied epigenetic markers.
One of the major challenges in population studies of methylation is the presence
of global methylation effects that may mask local signals [1, 2]. Such global
effects may be due to either technical effects (e.g., batch effects) or biological
effects (e.g., cell type composition, genetics). Many methods have been developed
for the detection of such global effects, typically in the context of Epigenome-
wide association studies [3–9]. However, current unsupervised methods do not
distinguish between biological and technical effects, resulting in a loss of highly
relevant information. Though supervised methods can be used to estimate known
biological effects, it remains difficult to identify and estimate unknown biological
effects that globally affect the methylome.

Here, we propose CONFINED (CCA ON Features for INter- dataset Effect
Detection), a reference-free method based on sparse canonical correlation analy-
sis (CCA) that captures replicable sources of variation across multiple methyla-
tion datasets such as age, sex, and cell-type composition and distinguishes them
from dataset-specific sources of variability (e.g., technical effects). Our method
is based on the observation that the same biological sources of variation typically
affect different studies that are performed under the same conditions (e.g., on the
same tissue type), while technical variability is study-specific. Thus, unlike pre-
vious unsupervised methods that utilize single-matrix decomposition techniques
to account for covariates in methylation data, we propose the use of canoni-
cal correlation analysis, which captures shared signal across multiple datasets.
Nonetheless, there are two substantial differences between CONFINED and tra-
ditional uses of CCA in genomic studies. First, CONFINED looks for shared
structure of one methylation profile across two sets of individuals rather than
looking for shared structure in one set of individuals across two sets of genomic
measurements. Second, CONFINED performs a feature selection procedure that
is critical to detect the shared sources of variability across the different datasets.
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Across several datasets we demonstrate that CONFINED accurately cap-
tures global biological sources of variability. Specifically, we shrow through sim-
ulated and real data that our approach captures replicable sources of biological
variation such as age, sex, and cell-type composition better than the state-of-
the-art methods and is considerably more robust to technical noise than previous
reference-free methods. Additionally, we demonstrate that the features selected
by CONFINED recapitulate biological functionality inherent to both datasets.
For example, when pairing two whole-blood datasets together, the sites best
ranked by CONFINED were significantly enriched for immune cell function.

CONFINED is available at https://github.com/cozygene/CONFINED as an
R package. The calculations in the R package were optimized with C++ code
using Rcpp and RcppArmadillo. Also included in the package is an ultra-fast
function for performing CCA. The preprint of the manuscript can be found at
https://www.biorxiv.org/content/early/2019/01/16/521146.
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1 Introduction

Molecular interaction networks are our basis for understanding functional inter-
dependencies among genes. Network embedding approaches analyze these com-
plicated networks by representing genes as low-dimensional vectors based on
the network topology. These low-dimensional vectors have recently become the
building blocks for a larger number of systems biology applications. Despite
the success of embedding genes in this way, it remains unclear how to effec-
tively represent gene sets, such as protein complexes and signaling pathways.
The direct adaptation of existing gene embedding approaches to gene sets can-
not model the diverse functions of genes in a set. Here, we propose GRep, a
novel gene set embedding approach, which represents each gene set as a multi-
variate Gaussian distribution rather than a single point in the low-dimensional
space. The diversity of genes in a set, or the uncertainty of their contribution
to a particular function, is modeled by the covariance matrix of the multivari-
ate Gaussian distribution. By doing so, GRep produces a highly informative and
compact gene set representation. Using our representation, we analyze two major
pharmacogenomics studies and observe substantial improvement in drug target
identification from expression-derived gene sets. Overall, the GRep framework
provides a novel representation of gene sets that can be used as input features
to off-the-shelf machine learning classifiers for gene set analysis. A full version
of the paper can be found on bioRxiv https://www.biorxiv.org/content/early/
2019/01/13/519033.

2 Methods

Biologically meaningful gene sets, such as signaling pathways and protein com-
plexes, aggregate gene level information into higher level patterns. A key obser-
vation behind our approach is that gene sets can have diverse molecular func-
tions and/or biological processes. GRep explicitly models this diversity as a low-
dimensional Gaussian distribution which summarizes both location and uncer-
tainty of each dimension. To summarize, GRep takes a network and a collection
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of gene sets as input. It first calculates the diffusion states of each gene and gene
set to characterize their topological information in the network. GRep then finds
the low-dimensional representations for genes and gene sets according to these
diffusion states. Each gene is represented as a single point in the low-dimensional
space. Each gene set is represented as a multivariate Gaussian distribution which
is parameterized by a mean vector and a covariance matrix. In this paper, we
present GRep (Gene set Representation), a novel computational method that
represents each gene set as a highly informative and compact multivariate Gaus-
sian distribution. GRep takes a biological network and a collection of gene sets
as input. It represents each gene as a single point and each gene set as a multi-
variate Gaussian distribution parameterized by a low-dimensional mean vector
and a low-dimensional covariance matrix. The mean vector of each gene set
describes the joint contribution of genes in this gene set, and the covariance
matrix characterizes the agreement among individual genes in each dimension.
By using this representation, GRep is able to differentiate between gene sets
that would be considered equivalent by average embedding. The key idea of
GRep is to use the prior knowledge in gene sets and group genes in the same
set closely as a multivariate Gaussian distribution in the low-dimensional space.
To achieve this, GRep solves an optimization problem to preserve the network
topology according to diffusion states. We evaluate GRep on a collection of drug
response correlated gene sets derived from Genomics of Drug Sensitivity in Can-
cer (GDSC) and The Cancer Therapeutic Portal (CTRP). We demonstrate that
representing those gene sets using GRep substantially outperforms comparison
approaches on drug-target identification in both datasets.

3 Results

To evaluate GRep, we performed large-scale drug target identification on two
pharmacogenomics studies, GDSC and CTRP. Our approach significantly out-
performs comparison approaches on both datasets. In CTRP, our method
achieved 0.8667 AUROC, which is much higher than 0.7102 AUROC of plain
average embedding, 0.7104 of weighted gene set average embedding and 0.7319
AUROC of weighted average embedding. The same improvement was observed
on GDSC where our method achieved 0.8890 AUROC, which is again substan-
tially higher than 0.6870 AUROC of plain average embedding, 0.7325 of weighted
average embedding and 0.6870 AUROC of weighted gene set average embed-
ding. All improvements were statistically significant (P < 0.05; paired Wilcoxon
signed-rank test). The above results suggest that representing a gene set through
simple averaging is not able to modeling uncertainty, leading to worse perfor-
mance. By incorporating prior knowledge about gene sets and jointly optimizing
the gene and gene set representations, our method substantially improved drug
target identification.
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Extended Abstract

Recent technological advances have facilitated unprecedented opportunities for
studying biological systems at single-cell level resolution. One notable example
is single-cell RNA sequencing (scRNA-seq), which enables the measurement of
transcriptomic information of thousands of individual cells in one experiment.
Single cell measurements open the ability of capturing the heterogeneity of a
population of cells and thus provide information that is not accessible using
bulk sequencing. Among its many applications, scRNA-seq is more prominently
employed in the identification of sub-populations of cells present in a sample,
and for comparative analysis of such sub-populations across samples [3–6, 8–11].

We report PopCorn (single cell Populations Comparison)– a new method
allowing for the identification of sub-populations of cells present within individ-
ual experiments and their mapping across experiments. PopCorn uses several
innovative ideas to perform this task accurately. First, in contrast to previous
approaches, PopCorn performs the two tasks (sub-population identification and
mapping) simultaneously by optimizing a function that combines both objec-
tives. This allows for integrating information across experiments and reducing
noise. The second key innovation consists of a new approach to identify sub-
populations of cells within a given experiment. Specifically, PopCorn utilizes
Personalized PageRank vectors [1] and a quality measure of cohesiveness of a
cell population to perform this task. Finally, the simultaneous identification of
sub-populations within each experiment and their mapping across experiments
uses a graph theoretical approach.

We tested the performance of PopCorn in two distinct settings. We demon-
strated its potential in identifying and aligning sub-populations informed by sin-
gle cell data from human and mouse pancreatic singe cell data [2]. In addition,
we applied PopCorn to the task of aligning biological replicates of mouse kidney
single cell data [7]. In both scenarios PopCorn achieved a striking improvement
over alternative tools.

Taken together, our results demonstrate that PopCorn’s novel approach pro-
vides a powerful tool for comparative analysis of single-cells sub-populations.

This is a U.S. government work and not under copyright protection in the U.S.;
foreign copyright protection may apply 2019
L. J. Cowen (Ed.): RECOMB 2019, LNBI 11467, pp. 320–321, 2019.
https://doi.org/10.1007/978-3-030-17083-7

https://doi.org/10.1007/978-3-030-17083-7


Accurate Sub-population Detection and Mapping Across Single Cell 321

The preprint of the manuscript is available at https://www.biorxiv.org/content/
early/2018/12/28/485979.article-metrics.
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Genetic correlation, i.e., the proportion of phenotypic correlation across a pair
of traits that can be explained by genetic variation, is an important parameter in
efforts to understand the relationships among complex traits [1]. The observation
of substantial genetic correlation across a pair of traits, can provide insights into
shared genetic pathways as well as providing a starting point to investigate
causal relationships. Attempts to estimate genetic correlations among complex
phenotypes attributable to genome-wide SNP variation data have motivated the
analysis of large datasets as well as the development of sophisticated methods.

Bi-variate Linear Mixed Models (LMMs) have emerged as a key tool to esti-
mate genetic correlation from datasets where individual genotypes and traits
are measured [2]. The bi-variate LMM jointly models the effect sizes of a given
SNP on each of the pair of traits being analyzed. The parameters of the bi-
variate LMM, i.e., the variance components, are related to the heritability of
each trait as well as correlation across traits attributable to genotyped SNPs. The
most commonly used method for estimating genetic correlation as well as trait
heritabilities in a bi-variate LMM relies on the restricted maximize likelihood
method, termed genomic restricted maximum likelihood (GREML) [3–6] How-
ever, GREML poses serious computational burdens. GREML is a non-convex
optimization problem that relies on an iterative optimization algorithm.

Another state-of-the-art method, LD-score regression (LDSC), requires only
summary statistics from genome-wide association studies (GWAS) to estimate
genetic correlations [1]. As LD-score preserves privacy and has substantially
reduced computational requirements (assuming that the summary statistics have
been computed), LDSC has some drawbacks: its estimates tend to have large
standard errors and is prone to bias in some settings [7].

We propose, RG-Cor, a scalable randomized Method-of-Moments (MoM)
estimator of genetic correlations in bi-variate LMMs. RG-Cor leverages the
structure of genotype data to obtain runtimes that scale sub-linearly with the
number of individuals in the input dataset (assuming the number of SNPs is
held constant). We perform extensive simulations to validate the accuracy and
scalability of RG-Cor. Compared to GREML estimators, we show that the loss in
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statistical inefficiency of RG-Cor is fairly modest. On the other hand, RG-Cor is
several orders of magnitude faster than other methods. RG-Cor can compute the
genetic correlations on the UK biobank dataset consisting of 430,000 individuals
and 460,000 SNPs in 3 hours on a stand-alone compute machine.

Link to the full paper: https://www.biorxiv.org/content/early/2019/01/20/
525055
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Accurate description of protein structure and function is a fundamental step towards
understanding biological life and highly relevant in the development of therapeutics.
Although greatly improved, experimental protein structure determination is still low-
throughput and costly, especially for membrane proteins. Predicting the structure of a
protein with a new fold is very challenging and usually needs a large amount of
computing power. We show that we can accurately predict the distance matrix of a
protein by deep learning (DL), even for proteins with few sequence homologs. Using
only the geometric constraints given by the resulting distance matrix we may construct
3D models without involving any folding simulation.

This work is an extension of our previous CASP-winning deep learning method
RaptorX-Contact [1] that uses deep and global (or fully) convolutional residual neural
network (ResNet) to predict protein contacts. ResNet is one type of DCNN (deep
convolutional neural network), but much more powerful than the traditional DCNN.
RaptorX-Contact is the first DL method that greatly outperforms DCA (direct coupling
analysis) and shallow learning methods such as the CASP11 winner MetaPSICOV. The
accuracy of RaptorX-Contact decreases much more slowly than DCA when more
predicted contacts are evaluated even when the protein under study has thousands of
sequence homologs (see Table 1 in the paper [1]). As reported in [1, 2], without folding
simulation, RaptorX-Contact may produce much better 3D models than DCA methods
such as CCMpred and shallow methods such as MetaPSICOV. RaptorX-Contact also
works well for membrane proteins even trained by soluble proteins [2] and for complex
contact prediction even trained by single-chain proteins [3]. Inspired by the success of
RaptorX-Contact, many CASP13 participants have adopted global ResNet or DCNN
into their prediction pipeline, as shown in the CASP13 abstract book, and made very
good progress. As a result, CASP13 has achieved the largest progress in the history of
CASP.

Instead of contact prediction, here we study distance prediction. The distance
matrix contains finer-grained information than contact matrix and provides more
physical constraints of a protein structure, e.g., distance is metric while contact is not.
A distance matrix can determine a protein structure (except mirror image) much more
accurately than a contact matrix. Different from DCA that aims to predict only a small
number of contacts and then use them to assist folding simulation, we predict the whole
distance matrix and then directly construct protein 3D models without invoking any
folding simulation at all. This significantly reduces running time needed for protein
folding, especially for a large protein. Distance prediction is not totally new. In addition
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to few previous studies, my group employed a probabilistic neural network to predict
inter-residue distance and then derived protein- and position-specific statistical
potential from predicted distance distribution [4]. We have also studied folding sim-
ulation using this distance-based statistical potential [5]. Recently, we showed that
protein-specific distance potential derived from deep ResNet may improve by a large
margin protein threading with weakly similar templates [6].

We feed our predicted distance into CNS to generate 3D models for a protein under
prediction. Our method successfully folded 21 of the 37 CASP12 hard targets with a
median family size of 58 effective sequence homologs within 4 h on a Linux computer
of 20 CPUs. In contrast, DCA cannot fold any of these hard targets in the absence of
folding simulation, and the best CASP12 group folded only 11 of them by integrating
DCA-predicted contacts into complex, fragment-based folding simulation. Rigorous
experimental validation in CASP13 shows that our distance-based folding server
successfully folded 17 of 32 hard targets (with a median family size of 36 sequence
homologs) and obtained 70% precision on top L/5 long-range predicted contacts. In
CASP13, our method was officially ranked first in terms of contact prediction accuracy
among all CASP13 groups and our server was ranked second among all CASP13-
participating servers in terms of tertiary structure prediction.

An extended version of this abstract is available at https://www.biorxiv.org/content/
early/2018/12/20/465955 and https://arxiv.org/abs/1811.03481.
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Recent developments in whole-genome mapping approaches for the chromatin
interactome (such as Hi-C) have facilitated the identification of genome-wide
three-dimensional (3D) chromatin organizations comprehensively, and offered
new insights into 3D genome architecture. However, our knowledge of the evo-
lutionary patterns of 3D genome structures in mammalian species remains sur-
prisingly limited. In particular, there are no existing phylogenetic-model based
methods to analyze chromatin interactions as continuous features across different
species to uncover evolutionary patterns of 3D genome organization.

Here we develop a new probabilistic model, named phylogenetic hidden
Markov random field (Phylo-HMRF), to identify evolutionary patterns of 3D
genome structures based on multi-species Hi-C data by jointly utilizing spa-
tial constraints among genomic loci and continuous-trait evolutionary mod-
els. Specifically, Phylo-HMRF integrates the continuous-trait evolutionary con-
straints (based on Ornstein-Uhlenbeck process in this work) with the hidden
Markov random field (HMRF) model, enabling the joint modeling of general
types of spatial dependencies among genomic loci and evolutionary temporal
dependencies among species. The overview of Phylo-HMRF is shown in Fig. 1.
The effectiveness of Phylo-HMRF is demonstrated in both simulation evalua-
tion and application to real Hi-C data. We used Phylo-HMRF to uncover cross-
species 3D genome patterns based on Hi-C data from the same cell type in
four primate species (human, chimpanzee, bonobo, and gorilla). Phylo-HMRF
identified genome-wide evolutionary patterns of Hi-C contact frequency across
the four species, including conserved patterns and lineage-specific patterns. The
identified evolutionary patterns of 3D genome organization correlate with other
features of genome structure and function, including long-range interactions,
topologically-associating domains (TADs), and replication timing patterns.

This work provides a new framework that utilizes general types of spatial
constraints to identify evolutionary patterns of continuous genomic features and
has the potential to reveal the evolutionary principles of 3D genome organization.

Link to the bioRxiv preprint: doi: http://doi.org/10.1101/552505.
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Fig. 1. Overview of Phylo-HMRF. (A) Illustration of the possible evolutionary pat-
terns of chromatin interaction. The Hi-C space is a combined multi-species Hi-C con-
tact map, which integrates aligned Hi-C contact maps of each species. Each node
represents the multi-species observations of Hi-C contact frequency between a pair of
genomic loci, with a hidden state assigned. Nodes with the same color have the same
hidden state and are associated with the same type of evolutionary pattern represented
by a parameterized phylogenetic tree ψi. The parameters of ψi include the selection
strengths αi, Brownian motion intensities σi, and the optimal values θi based on the
Ornstein-Uhlenback (OU) process assumption. (B) Illustration of the OU process over
a phylogenetic tree with four observed species. Time axis represents the evolution his-
tory. X(t) represents the trait at time t. The trajectories reflect the evolution of the
continuous-trait features in different lineages, where the time points t1, t2, t3 represent
the speciation events. (C) A cartoon example of the possible evolutionary patterns
(partitioned with different colors). Phylo-HMRF aims to identify evolutionary Hi-C
contact patterns among four primate species in this work. The four Hi-C contact maps
represent the observations from the four species, which are combined into one multi-
species Hi-C map as the input to Phylo-HMRF, as shown in (A). The phylogenetic
tree of the four species in this study is on the left. The partitions with green borders
are conserved Hi-C contact patterns. The partitions with red or blue borders represent
lineage-specific Hi-C contact patterns.
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Extended Abstract

Single-cell technologies have seen widespread adoption in recent years. The
datasets generated by these technologies provide information on up to millions
or more individual cells; however, the identities of the cells are often only deter-
mined computationally. Single-cell computational pipelines involve two critical
steps: organizing the cells in a biologically meaningful way (clustering) and iden-
tifying the markers driving this organization (differential expression analysis).
Because clustering algorithms force separation, performing differential expres-
sion analysis after clustering on the same dataset will generate artificially low
p-values, potentially resulting in false discoveries.

While several differential expression methods exist, as a motivating exam-
ple we consider the classic Student’s t-test introduced in 1908 [2]. The t-test
was devised for controlled experiments where the hypothesis to be tested was
defined before the experiments were carried out. For example, to test the efficacy
of a drug, the researcher would randomly assign individuals to case and control
groups, administer the placebo or the drug, and take a set of measurements.
Because the populations were clearly defined a priori, so was the null hypothesis.
Therefore, under the null hypothesis where no effect exists, the mean measure-
ment should be the same across the two populations, and the p-value should be
uniformly distributed between 0 and 1.

For single-cell analysis, however, the populations are often obtained after
the measurements are taken, via clustering, and therefore we can expect the
t-test to return significant p-values even if the null hypothesis was true. Figure 1
shows how a measurement, such as expression of a gene, is deemed significantly
different between two clusters even though all samples came from the same
normal distribution. The clustering introduces a selection bias [1, 3] that would
result in several false discoveries if uncorrected.

In this work, we introduce the truncated normal (TN) test, an approximate
test based on the truncated normal distribution that corrects for a significant
portion of the selection bias generated by clustering. We condition on the cluster-
ing event using the hyperplane that separates the clusters. By incorporating this

Full paper available at https://www.biorxiv.org/content/early/2018/11/05/463265.
Code provided at https://github.com/jessemzhang/tn test.
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hyperplane into our null model, we can obtain a uniformly distributed p-value
even in the presence of clustering (Fig. 1). To our knowledge, the TN test is the
first test to correct for clustering bias while addressing the differential expression
question: is this feature significantly different between the two clusters? Based
on the TN test, we provide a data-splitting based framework that allows us to
generate valid p-values for differential expression of genes for clusters obtained
from any clustering algorithm. We validate the method using both synthetic and
real data, such as the peripheral blood mononuclear cell (PBMC) dataset gen-
erated using recent techniques developed by 10x Genomics [4], and we compare
the method to several existing differential expression methods.

Fig. 1. Artificially low p-values due to clustering. Although the 500 samples are drawn
from the same N (µ, 1) distribution, our simple clustering approach will always generate
two clusters that seem significantly different under the t-test. In this work, we explore
an approach for correcting the selection bias due to clustering. In other words, we
attempt to close the gap between the blue and green curves in the rightmost plot. We
introduce the TN test, which generates significantly more reasonable p-values.
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Introduction. Multiple hypothesis testing is an essential component in many
modern data analysis workflows. A very common objective is to maximize the
number of discoveries while controlling the fraction of false discoveries. For exam-
ple, we may want to identify as many genes as possible that are differentially
expressed between two populations such that less than, say, 10% of these iden-
tified genes are false positives.

In the standard setting, the data for each hypothesis is summarized by
a p-value, with a smaller value presenting stronger evidence against the null
hypothesis that there is no association. Commonly-used procedures such as the
Benjamini-Hochberg procedure (BH) [1] works solely with this list of p-values
[3, 7]. Despite being widely used, these multiple testing procedures fail to utilize
additional information that is often available in modern applications that are
not directly captured by the p-value.

For example, in expression quantitative trait loci (eQTL) mapping or
genome-wide association studies (GWAS), single nucleotide polymorphism
(SNP) in active chromatin state are more likely to be significantly associated
with the phenotype [2]. Such chromatin information is readily available in public
databases, but is not used by standard multiple hypothesis testing procedures—
it is sometimes used for post-hoc biological interpretation. Similarly, the location
of the SNP, its conservation score, etc., can alter the likelihood for the SNP to
be an eQTL. Together such additional information, called covariates, forms a
feature representation of the hypothesis; this feature vector is ignored by the
standard multiple hypothesis testing procedures.

In this paper, we present AdaFDR, a fast and flexible method that adaptively
learns the decision threshold from covariates to significantly improve the detec-
tion power while having the false discovery proportion (FDP) controlled at a
user-specified level. A schematic diagram for AdaFDR is shown in Fig. 1.

Full paper available at https://www.biorxiv.org/content/early/2018/12/13/496372.
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AdaFDR takes as input a list of hypotheses, each with a p-value and a covari-
ate vector. Conventional methods like BH use only p-values and have the same
p-value threshold for all hypotheses (Fig. 1 top right). However, as illustrated
in the bottom-left panel, the data may have an enrichment of small p-values
for certain values of the covariate, which suggests an enrichment of alterna-
tive hypotheses around these covariate values. Intuitively, allocating more FDR
budget to hypothesis with such covariates could increase the detection power.
AdaFDR adaptively learns such pattern using both p-values and covariates, result-
ing in a covariate-dependent threshold that makes more discoveries under the
same FDP constraint (Fig. 1 bottom right).
Methods. AdaFDR extends conventional procedures like BH and Storey-BH [1, 7]
by considering multiple hypothesis testing with side information on the hypothe-
ses. The input of AdaFDR is a set of hypotheses each with a p-value and a vec-
tor of covariates, whereas the output is a set of selected (also called rejected)
hypotheses. For eQTL analysis, each hypothesis is one pair of SNP and gene,
and the p-value tests for association between their values across samples. The
covariate can be the location, conservation, and chromatin status at the SNP
and the gene. The standard assumption of AdaFDR and all the related methods
is that the covariates should not affect the p-values under the null hypothesis.
AdaFDR learns the covariate-dependent p-value selection threshold by first fit-

Fig. 1. Intuition of AdaFDR. Top-left: As input, AdaFDR takes a list of hypotheses, each
with a p-value and a covariate that may be multi-dimensional. Bottom-left: A toy
example with a univariate covariate. The enrichment of small p-values in the bottom
right corner suggests more alternative hypotheses there. Leveraging this structure can
lead to more discoveries. Top-right: Conventional method uses only p-values and has the
same threshold for all hypotheses. Bottom-right: AdaFDR adaptively learns the uneven
distribution of the alternative hypotheses, and makes more discoveries while controlling
the false discovery proportion (FDP) at the desired level (0.1 in this case).
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ting a mixture model using expectation maximization (EM) algorithm, where
the mixture model is a combination of a generalized linear model (GLM) and
Gaussian mixtures. Then it makes local adjustments to the p-value threshold
by optimizing for more discoveries. We prove that AdaFDR controls FDP under
standard statistical assumptions. AdaFDR is designed to be fast and flexible — it
can simultaneously process more than 100 million hypotheses within an hour and
allows multi-dimensional covariates with both numeric and categorical values.
In addition, AdaFDR provides exploratory plots visualizing how each covariate
is related to the significance of the hypotheses, allowing users to interpret their
findings.
Results. We systematically evaluate the performance of AdaFDR across multiple
datasets. We first consider the problem of eQTL discovery using the data from
the Genotype-Tissue Expression (GTEx) project [2]. As covariates, we consider
the distance between the SNP and the gene, the gene expression level, the alter-
native allele frequency as well as the chromatin states of the SNP. Across all
17 tissues considered in the study, AdaFDR has an improvement of 32% over BH
and 27% over the state-of-art covariate-adaptive method independent hypothesis
weighting (IHW) [4]. We next consider other applications, including three RNA-
Seq datasets with the gene expression level as the covariate, two microbiome
datasets with ubiquity (proportion of samples where the feature is detected)
and the mean nonzero abundance as covariates, a proteomics dataset with the
peptides level as the covariate, and two fMRI datasets with the Brodmann area
label as the covariate that represents different functional regions of human brain.
In all experiments, AdaFDR shows a similar improvement. Finally, we perform
extensive simulations, including ones from a very recent benchmark paper [5],
to demonstrate that AdaFDR has the highest detection power while controlling
the false discovery proportion in various cases where the p-values may be either
independent or dependent. The default parameters of AdaFDR are used for every
experiment in this paper, both real data analysis and simulations, without any
tuning. In addition to the experiments, we theoretically prove that AdaFDR con-
trols FDP with high probability when the null p-values, conditional on the covari-
ates, are independently distributed and stochastically greater than the uniform
distribution, a standard assumption also made by related literature [1, 6].
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