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Many-body study of the g factor in boronlike argon
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Highly accurate measurements of the g factor of boronlike Ar are currently implemented within the ARTEMIS
experiment at GSI (Darmstadt, Germany) and within the ALPHATRAP experiment at the MPIK (Heidelberg,
Germany). A comparison with the corresponding theoretical predictions will allow one to test the modern
methods of bound-state QED. However, at least three different theoretical values of the g factor have been
published up to date. The systematic study of the g-factor value of 40Ar13+ in the ground [(1s)2(2s)22p1]2P1/2 and
the first excited [(1s)2(2s)22p1]2P3/2 states is performed within the high-order coupled cluster and configuration
interaction theories up to the full configuration interaction treatment. Correlation contributions are discussed and
results are compared with previous studies.
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I. INTRODUCTION

Experiments on few-electron ions of heavy atoms are of
great importance to test bound-state QED [1,2]. Highly accu-
rate results for g factor [3–9] and hyperfine structure [10,11]
have already been obtained for H-like and Li-like systems.
In particular, the most accurate value of the electron mass
(almost by two orders of magnitude more precise than the
value from the independent measurements) has been obtained
in the study of g factor of highly charged ions [8]. An
independent determination of the fine-structure constant α is
expected from the g-factor measurements in few-electron ions
[12–14]. Combined experimental and theoretical studies of
the g factor and hyperfine structure can be used to obtain the
values of the nuclear magnetic moments [15–18].

The ARTEMIS experiment [19,20] at GSI implements the
laser-microwave double-resonance technique with the fine or
hyperfine structure of highly charged ions. In particular, it
can yield the Zeeman splitting in the boronlike argon 40Ar13+

ion (with spinless nucleus) in the ground [(1s)2(2s)22p1]2P1/2

and excited [(1s)2(2s)22p1]2P3/2 states at the ppb level of
accuracy. Apart from the g factor of these states, it will
also provide the possibility to measure the nonlinear Zee-
man effect [19,21]. The ALPHATRAP experiment [22] at
the Max-Planck-Institut für Kernphysik (MPIK) aims at the
high-precision g-factor determination using the Larmor and
cyclotron frequency measurements following the earlier ex-
periments performed at the Mainz University [3–9].

Previously several theoretical values of g factor have been
reported which are in a certain disagreement between each
other: 0.663 647(1) [23], 0.663 728 [24], and 0.663 899(2)
[25]. As noted in Ref. [25], the difference between these
values is within the accuracy of the ARTEMIS experiment
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[19]. This discrepancy can be explained by the different
methods used in these works to obtain the electron-electron
interaction contributions. All the other terms such as nuclear
recoil and high-order (beyond the free-electron part) QED
contributions calculated in Refs. [23,26] are much smaller
than the difference. Thus, an independent calculation of g
factor is of high importance.

It was shown that for such properties as g factor [27],
enhancement factors of the electron electric dipole moment,
effective electric field, and hyperfine structure [28–35] in
atoms and molecules the coupled cluster theory gives very
accurate results. It allows one to efficiently sum perturbation
theory series up to an infinite order. Even for these neutral (or
weakly charged) atoms and molecules the main uncertainty of
the results were due to neglect or approximate inclusion of the
Breit interaction.

The present paper is focused on the theoretical study of
the boronlike Ar ion within the Dirac-Coulomb-Breit Hamil-
tonian with accounting effects of electron correlations in all
orders of perturbation theory.

II. THEORY

The first-order Zeeman shift of the 2PJ state in the spinless-
nucleus ion with the angular momentum projection MJ is
directly related to the g factor:

�E (1) = gMJμ0B, (1)

where μ0 = |e|h̄
2mc is the Bohr magneton. Thus the atomic

magnetic moment (and g factor) is determined by the first
derivative of the energy with respect to the magnetic field B
at zero field.

In the four-component Dirac theory, Zeeman Hamiltonian
can be written in the following form:

HZ = μ0

∑
i

[ri × αi] · B, (2)
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where α is the vector of the Dirac matrices and i is an electron
index; summation goes over all the electrons in the system.

Contribution of the QED to the atomic magnetic moment
(and g factor) outside the Breit approximation can be approx-
imately estimated as an expectation value of the following
operator [36]:

μ0
ge − 2

2

∑
i

βi�z,i, (3)

where β = (1 0
0 −1), �z is the z component of the vec-

tor operator � = (σ 0
0 σ), σ are Pauli matrices, and ge =

2.002 319 3 . . . is the free-electron g factor.
The frequency-independent Breit interelectronic interac-

tion is given by the following operator:

HB = −1

2

N∑
i< j

(
(αi · α j )

ri j
+ (αi · ri j )(α j · ri j )

r3
i j

)
, (4)

where αi and α j act on variables of ith and jth electrons,
correspondingly. This operator is the first QED correction to
the Coulomb term and includes both the magnetic interaction
(Gaunt) and “retardation” effects. Note that due to the off-
diagonal structure of α matrices HB and HZ couple large
and small bispinor components. Therefore, negative energy
states can be of great importance for accurate calculation of
g factor. A similar effect is well known in the calculation of
the shielding constants (see, e.g., [37,38]).

The coupled cluster (CC) approach [39–42] is one of
the most successful methods to consider dynamic electron
correlation effects. It is based on the exponential ansatz for
the wave function �:

�CC = eT̂ �0. (5)

For the single-reference case �0 is a one-determinant wave
function of a system obtained in some approximation, e.g.,
within the Dirac-Fock method. T̂ is the excitation cluster
operator which is expanded in terms of different excitation
orders:

T̂ =
n∑

k=1

T̂k, (6)

where

T̂k =
∑

b1<b2···<bk ;i1<i2···<ik

t b1b2···bk
i1i2···ik a†

b1
ai1 a†

b2
ai2 · · · a†

bk
aik , (7)

indexes in correspond to occupied orbitals while bm corre-
spond to unoccupied ones; ain is the annihilation operator of
the state in and a†

bm
is the creation operator of the state bm,

and t b1b2···bk
i1i2···ik are unknown cluster amplitudes to be determined

[39–42]. Truncation of the T̂ operator at T̂2 leads to the cou-
pled cluster with single and double cluster amplitudes, CCSD,
etc. In the coupled cluster technique [39–42] Schrödinger
equation H�CC = E�CC is reduced to a nonlinear equation
system with unknown cluster amplitudes and energy and is
solved iteratively. From the perturbation theory (PT) point
of view, even truncated CC methods include some terms of
PT (in interelectron interaction) up to an infinite order due
to the exponential ansatz. For example, the coupled cluster

with single, double, triple, and quadruple cluster amplitudes,
CCSDTQ [or its approximation CCSDT(Q) [43]] which was
used in the present paper (see below) includes all terms of PT
up to order six and some terms up to an infinite order. The
CCSDT theory [and its approximation CCSD(T)] includes all
terms of PT of the fourth order (and some terms up to an
infinite order). Contrary to the CC theory, the configuration
interaction (CI) method uses a linear ansatz instead of the
exponential one in Eq. (5). If n in Eq. (6) equals the number of
electrons in the system the CC and CI methods will give the
same exact (full CI) wave function (within the given basis set,
Hamiltonian, and in no-pair approximation).

III. ELECTRONIC STRUCTURE CALCULATION DETAILS

In all calculations we used Gaussian basis sets. For the
main Dirac-Coulomb-Breit calculation the Dyall’s ACV4Z
basis set [44] with excluded f - and g-type functions has been
used. This basis set includes 25s, 15p, and 9d functions for
large component and in the following will be called the MBas
basis set. Additionally the correction on the basis set exten-
sion was considered within the Dirac-Coulomb approximation
using the CCSDT method. The extended basis set, LBas,
included 61s-, 50p-, 33d-, 6 f - and 4g-type functions. Finally,
also the truncated version of the MBas basis set, SBas, was
used which includes 25s, 15p, and 2d functions. The Gauss
finite nuclear model was used in all of the calculations. All
(five) electrons of the considered system were included in all
the correlation calculations discussed in the next section.

For the Dirac-Fock-Gaunt calculations and Coulomb in-
tegral transformations we used the DIRAC15 code [45]. Rel-
ativistic correlation calculations were performed within the
MRCC code [46–48]. One-electron bispinors were obtained
within the D∞h point group while correlation calculations
were performed employing the D2h symmetry [49]. This
suggests possible extensions of these kind of calculations on
molecules.

The code to compute matrix elements of the Breit operator
(4) over one-electron bispinors generated by the DIRAC15 code
has been developed in the present paper. The following algo-
rithm is used. At first Coulomb-type integrals over primitive
Gaussian-type basis functions, xlymzne−αir2

, are computed.
Then one uses four-index transformation to obtain integrals
of the Breit operator (4) over one-electron bispinors. We use
a standard technique to reduce the formal complexity of this
step from O(N8) to O(N5) where N is the number of basis
functions. No symmetry is used in the algorithm to be able to
use this code in further molecular applications.

IV. RESULTS AND DISCUSSION

Table I gives a positive energy contribution to the g factor
of the ground 2P1/2 and excited 2P3/2 states of Ar13+ via dif-
ferent methods within the Breit approximation. In this study
the Dirac-Fock-Gaunt method (without the retardation part of
the Breit interaction) for the open-shell 2P1/2 state of Ar13+

has been used to obtain one-electron bispinors for subsequent
correlation calculation. In this procedure negative and positive
one-electron functions were updated at each iteration of the
Dirac-Fock-Gaunt procedure [50]. Correlation calculations
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TABLE I. Positive energy contributions to g factor of the ground
2P1/2 and excited 2P3/2 states of Ar13+.

Method 2P1/2
2P3/2

Dirac-Fock-Gaunt 0.664797 1.331708
MP2(S) 0.664762 1.331609
MP2(SD) 0.665117 1.331589
CCSD 0.664962 1.330711
CCSD(T) 0.664732 1.331075
CCSDT 0.664764 1.331602
CCSDT(Q) 0.664762 1.331603
CCSDTQ 0.664762 1.331603
FullCI − CCSDTQ 0.000000 0.000000

were performed within the Breit approximation – the retarda-
tion part was added to the Hamiltonian after the self-consistent
stage. MP2(S) (MP2 is the second-order Møller-Plesset per-
turbation theory) is the first order in the interelectron interac-
tion (with respect to chosen zero-order approximation) contri-
bution to g factor. It can be seen from Table I that higher-order
correlation effects within the nondegenerate PT [MP2(SD)] or
terms of single-reference CC models also contribute; however,
their sum gives a rather small contribution for the problem
under consideration [compare the results of the CCSDTQ and
MP2(S) approaches]. This can be an indication of slight static
correlation effects whose description is of some difficulty for
the single-reference CC approaches (e.g., there is some ad-
mixture of the 1s22p3 configuration to the leading 1s22s22p1

configuration — the corresponding cluster amplitude is about
0.1). The CCSD approach overestimates the value of g factor
for the 2P1/2 state and underestimates it for the case of the 2P3/2

state. Nevertheless, one can see that the treatment of higher-
order cluster amplitudes leads to rather fast convergence in
the CC series [CCSD, CCSD(T), CCSDT, CCSDT(Q), and
CCSDTQ]. According to Table I, already the CCSDT method
gives results that almost coincide with the final values for both
considered states. The values of g factor obtained within the
CCSDT(Q) and CCSDTQ are identical within six digits.

The full CI treatment of all correlation effects for the
positive energy spectrum, i.e., in the CISDTQP/CCSDTQP
models, was possible within the SBas basis set. As expected,
the inclusion of pentuple (quintuple) excitations gave negligi-
ble contribution to g factor.

Table II provides results for the g factor of the 2P1/2 state
within the single-reference [47] and multireference (MR) [48]
configuration interaction methods. Two different active spaces
were used for the multireference treatment. In the MRmin-
CI model active space included only 2p1/2 bispinors. For
example, for the MRmin-CISD model the variational problem
is solved in the basis of Slater determinants corresponding
to [(1s)2(2s)22p1

j=1/2,m j=1/2] and [(1s)2(2s)22p1
j=1/2,m j=−1/2]

configurations and all single and double excitations from these
determinants to all virtual orbitals. In the MRsp-CI model
the complete active space (CAS) included all 2s ( j = 1/2)
and 2p ( j = 1/2, 3/2) bispinors, i.e., determinants with all
possible distributions of three electrons over these bispinors
were considered as the multireference. For example, in the
MRsp-CISDT one considers all possible single, double, and

TABLE II. Positive-energy contributions to g factor of the ground
2P1/2 state of Ar13+ using different configuration interaction methods.

Method

CISD 0.664755
CISDT 0.664840
CISDTQ 0.664762
FullCI − CISDTQ 0.000000

MRmin-CISD 0.664763
MRmin-CISDT 0.664762
MRmin-CISDTQ 0.664762
FullCI − MRmin-CISDTQ 0.000000

MRsp-CISD 0.664762
MRsp-CISDT 0.664762
MRsp-CISDTQ 0.664762
FullCI − MRsp-CISDTQ 0.000000

triple excitations from these determinants (including excita-
tions from 1s2). As can be seen in the present case of five
correlated electrons the g-factor value converges very fast for
both considered multireference models. Note, that the conver-
gence of the correlation energy is slower. The single-reference
series (CISD, CISDT, CISDTQ, FCI) converges much slower.

Table III presents the final value of g factor including the
negative energy spectrum contribution which was calculated
in the first order of the interelectronic interaction [within the
MP2(S) method]. For the positive energy spectrum the CCS-
DTQ result was taken as the most accurate one (it included
1.3 × 108 cluster amplitudes). We also took into account basis
set correction calculated within the Dirac-Coulomb Hamilto-
nian employing the CCSDT method [43]. This correction is
included in the uncertainty of the final value.

QED contribution to the g factors of the considered 2P1/2

and 2P3/2 states has been estimated at the same level as g
factor using the operator given by Eq. (3) which has also
been employed in Refs. [24,25]. The obtained contribution is
termed “QED estimation” in Table III. Within the rigorous
QED theory in the first order in α the one-electron QED cor-
rection is given by the self-energy and vacuum-polarization
diagrams. The self-energy contribution was evaluated to all
orders in the parameter αZ in effective screening potential in
Ref. [23] (see also Ref. [51] for high-accuracy calculations
in the Coulomb potential and Ref. [52] for recent extension
of the screening-potential calculations to Z = 10–20). These
values are presented in Table III as “self-energy correction.”
The vacuum-polarization contribution was found to be on
the level of 10−9 for both considered states [23]. For the
two-loop QED correction (of the second order in α) only the
free-electron value (zeroth order in αZ) is available [53]; it is
termed “free-electron two-loop QED” in Table III. Finally, the
first-order interelectronic-interaction contribution was evalu-
ated with the frequency-dependent operator in Refs. [23,52].
The difference between this value and the corresponding term
evaluated with the Coulomb and frequency-independent Breit
operators is termed “one-photon-exchange QED” in Table III.
QED contributions obtained by the approximation operator
given by Eq. (3) and rigorous results of Ref. [23] are compared
in Table III and found to be in reasonable agreement.
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TABLE III. Calculated g factor of the ground 2P1/2 and excited 2P3/2 states of Ar13+ in comparison with previous studies.

Method 2P1/2
2P3/2

Positive, CCSDTQ 0.664762 1.331603
Negative [MP2(S)] −0.000335 −0.000089
Basis set correction (Coulomb) −0.000001 −0.000002
Total (w/o QED) 0.664426(3) 1.331512(3)
PT + CI-DFS 0.664427(1) 1.331513(3)
(Ref. [23], w/o QED, w/o recoil)

QED estimationa −0.000774(3)(6)b 0.000773(3)(6)b

QED, rigorous approachc

self-energy correction −0.000770 0.000780
free-electron two-loop QED 0.000001 −0.000001
one-photon-exchange QED −0.000002 −0.000002

Total + QED estimationa,d 0.663652(3)(6)b 1.332286(3)(6)b

PT + CI-DFS + QEDc 0.663657(1) 1.332290(3)
(Ref. [23], with QED, w/o recoil)

MCDF + QEDa 0.663899(2) 1.332372(1)
(Marques et al. [25])

MRCI + QEDa 0.663728 1.332365
(Verdebout et al. [24])

PT + CI-DFS + QEDc + recoil 0.663647(1) 1.332285(3)
(Glazov et al. [23])

aCalculated within the approximation given by the operator in Eq. (3).
bThe first uncertainty is due to the basis set and correlation; the second is due to the approximate nature of the operator given
by Eq. (3).
cRigorous QED calculation (see text and Ref. [23] for details).
dThese values include estimation of QED correction (see text) to compare with previous theoretical results in Refs. [24,25]
where individual contributions within the Breit approximation are not given.

Our “Total + QED estimation” value in Table III is ob-
tained as a sum of the Breit-approximation result and the
QED estimation by Eq. (3). In this way, we can consistently
compare our results with those of Refs. [24,25] where the
individual contributions within the Breit approximation were
not given. The most accurate up-to-date g-factor values should
include the rigorous results for the QED [23] and nuclear
recoil [26] corrections.

It can be seen that the correlation part of the g factor
within the Breit approximation is in perfect agreement with
the corresponding values from Ref. [23]. It should be stressed
that in the present paper a completely different approach
has been used. We employed Gaussian-type basis functions
defined above while the Dirac-Fock-Sturm functions were
used in [23]. In addition, in our approach different zero-
order approximation has been used: Dirac-Fock-Gaunt vs one-
particle Dirac in [23]. We have performed additional calcula-
tions within the LBas basis set using the one-particle Dirac
equation. g-factor values for both considered electronic states
obtained within this approach coincide within ∼10−10 with
analytic values given by Eqs. (3) and (4) in [23] and presented
in Table I of Ref. [23]. This also suggests an additional test
of the basis set completeness. Due to completely different
zero-order approximations and different practical techniques
used in the present correlation calculations and in [23] it is
not possible to compare some intermediate values, such as
one-photon exchange from [23], with our correlation models
and only the final values can be compared. However, as was
already noted above, these final values obtained with different

methods to treat electron correlation effects (CC theory up
to full CC vs PT+CI-DFS) within the Breit approximations
agree on the level of 10−6 (within the numerical uncertainty).
This is not the case for the other previously obtained results
[24,25] (see Table III).

It should be stressed that in the present paper we performed
benchmark full CI calculation which includes all correlation
effects for the positive-energy states. It means that this result
can be used to test different approximate methods. Taking
into account the data from Tables I and II one should note
that a delicate check of the g-factor value is required in the
case when electron correlation effects are taken into account
approximately. For example, in the case of the 2P1/2 state the
simplest MP2(S) model gives the same results as the full CI
method. At the same time the CCSD(T) method gives results
which are in poorer agreement with the full CI results. Unfor-
tunately, in the previous studies only limited data concerning
the convergence of the g-factor value with respect to inclusion
of correlation effects are presented or only the final result is
given. On the other hand, it was shown that the reasonable
multireference configuration interaction model can provide
accurate results for g factor. Taking into account the data in
Table II as well as the above discussion and according to the
description given for the multireference CI model in Ref. [24]
one may suggest that the model may give reasonable results
for the positive energy contribution to g factor. But one should
stress that there can also be some dependence on the actual
details of the implemented approach in [24]. The latter is also
true for Ref. [25].
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In the theory section it is noted that the contribution
of the negative energy spectrum to g factor is important
(the actual value of the contribution depends on the method
of the negative energy bispinors construction). According
to the description given in Ref. [24] the Breit interaction
was added to the Hamiltonian after the multiconfigurational
Dirac-Hartree-Fock calculation which was performed within
the Dirac-Coulomb Hamiltonian. No influence of the Breit
interaction on the negative energy states was considered at
this stage. Within the updated Hamiltonian the configuration
interaction calculation has been performed including only
positive-energy states. In such approach important contribu-
tion of the simultaneous treatment of the Breit [Eq. (4)] and
Zeeman [Eq. (2)] interactions is not taken into account. This
may be (one of) the reason for the discrepancy between our
present value and the value from Ref. [24].

V. CONCLUSION

The correlation treatment of g factors of the ground and
excited states of the B-like Ar ion within the Dirac-Coulomb-
Breit Hamiltonian has been performed. Uncertainty of the
result has been tested by performing the full CI calculation
(i.e., full inclusion of correlation effects) and considering
different basis sets. Obtained g factors of the ground 2P1/2

and excited 2P3/2 states coincide within the uncertainty with

one of three previous theoretical results [23] and thus can be
considered as its independent confirmation. It is shown that
high-order correlation effects give non-negligible individual
contributions to the value of g factor; however, their sum is
small for the problem under consideration.

In this work, the code to compute matrix elements of
the Breit interaction has been developed. It does not use
atomic symmetry and can be modified to study heavy atoms
in external fields and molecules which is already of great
interest for precise study of electron electric dipole moment
enhancement factors [28–30], hyperfine structure, and related
fundamental problems including few-electron systems.
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