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Abstract—This article is the fourth in a series of works devoted to two-dimensional cubic homoge-
neous systems. It considers a case when a homogeneous polynomial vector in the right-hand part of
the system has a quadratic common factor with complex zeros. A set of such systems is divided into
classes of linear equivalence, wherein the simplest system is distinguished on the basis of properly
introduced structural and normalization principles, being, thus, the third-order normal form. In fact,
such a form is defined by a matrix of its right-hand part coefficients, which is called the canonical form
(CF). Each CF has its own arrangement of nonzero elements, their specific normalization and canon-
ical set of permissible values for the nonnormalized elements, which relates CF to a selected class of
equivalence. In addition, each CF is characterized by: (1) conditions imposed on the coefficients of
the initial system, (2) nonsingular linear substitutions that transform the right-hand part of the system
under these conditions into a selected CF, and (3) obtained values of CF’s nonnormalized elements.
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INTRODUCTION

This work is aimed at establishing the canonical forms of real homogeneous cubic systems possessing
a common second-degree factor with complex zeros and consisting of five sections.

In the first section, the right-hand part of the initial system, defined by eight coefficients, uniquely

decomposes in the product of the common factor Poz(x) with a negative discriminant D, and a vector Hx,
where H is some nonsingular matrix for which the discriminant of the characteristic polynomial is denoted
as D.

Herewith, the invariance of signs for D, and D was found in [1]. There is a list of normalized structural
forms and canonical forms with their sets of permissible parameter values , corresponding to the case of
D, <0.

The second and third sections are dedicated to the case of D > 0 and D < 0, respectively. For each of
them, there are listed the canonical forms with the proper canonical sets of the allowable parameter values
introduced in [2].

The theorems confirming linear nonequality of the reduced CFs and demonstrating explicitly for each
CF were proven: (1) all systems belonging to the linear equivalence class generated by this CF, (2) a linear
replacement reducing any such system to the chosen CF, and (3) the CF parameter values obtained by
replacement from its canonical set.

The fourth section is dedicated to the minimal canonical sets introduced in [2], and the fifth one is
devoted to the unique list of canonical forms and canonical sets for systems with the common second-
degree factor that is the total results of [3] and of the present paper.

The appendix represents the classifications of systems with other unperturbed parts.

Since this work is the direct continuation of papers [1—3], all the above notations are thus retained
therein. In connection with a large amount of references to the formulae obtained in [1—3], they will be
marked with a superscript for brevity. For example, system (2.1) from [1] will be designated as (2.1)".
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218 BASOV, CHERMNYKH

1. Extraction of CP™? at a negative P(,2 discriminant. System (1.1)3, obtained after taking the common

factor P(x) from the right-hand part of the system (2.1)! x = Ag 1)(x), at the condition D, = p> — oy < 0,
can be written as:

Pl = x! +2Bx;x, + xz,
X=P02(x)Hx, 0 1 Bx,x, + yx5 Hz(Pl q

, 8, =detH #0. (1.15)
Dy=B>-y<0 (=1, Pz‘h) e

Let us extract the structural forms up to SF27’2 inclusively from the list 1.1 from [2], related to the case of
/=2, D, <0 (see [2, definition 1.2]), and normalize them according to the NPs in [2, section 1.2], simul-

taneously extracting the common factor PO2 with oo = 1, having a discriminant D, < 0 and a matrix H with
the discriminant D of its characteristic polynomial and the permissible sets (see [2, definition 1.8]) on
account of (2.19).

Besides this fact, we are going to establish which of NSF” 2 < are the canonical forms.

List 1.1. Seventeen NSF"2<and CF"% < to CF27’2’< inclusively, where each of them has (1, 2f3, v), H,
D,, D and nontrivial ps™ %< (6 = %1, u, v, w # 0).

crim o“ 04 0 o, of“° L
o rlo1o0+) T 01) @w-1%

cr2==o[ 0 0 o, o0, T
Wm0 +10) 10)  4u

_ 0 0 -3/4,
CF75’2‘<’>=0(” “ j -1, 1, c(“ j /

1 001 11 w-1n%
= Owu-uu 0u -3/4
CF; = = 11,1 ’
2 6(1 0 0 1)’ (G 6(1 1)’ du+1;
CF5><2 uuuv 0 AL v) u0 1/4 — v,
T = G b el 9 5 G b
: 01 1 v v 01 u-"0%
CFS<% _ g uul-v) 0 —uv’ L), G(u —uv} 1/4—‘;',
0 1 1 v 0 1 u-1%
cr2 =o|“ VT w0y, oYV L
4.+1 - 0 1 O +1 s s Vs b O 1 ) (u B 1)2’
-2 -3 -2 3 -1
- — 0 4-1yv,
CFo<E =g MV TV T O R T R v/ ) v _2
1 0 v o —v" 1 I v w—-v) +4uv™";
= Uv —viu+v uu+v -3/4
CF> % = 11,1 ’
7 6[1 0 O 1 J’ (a 2] )a G[l 1 ja (u+1)2+4v’
cFE=o|" VL oy, ot -t
11L,+1 - 1 O +1 O s s Vs s 1 O s uz + 4V;
-1 -1 3 -1
= - + + + 4-1v
CF% g uwuv _lv(uv2 W) u+wv v v Y, G(u uv WJ W’/ ) )\%
10 vi—v I v (u+v) +4w;
u0uv-1 —uv u —u 1/4 — v,
NSF<% = 11
5 6(0 1 1 v j: ( ,V), G(O 1]7 (u_])z,
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TWO-DIMENSIONAL HOMOGENEOUS CUBIC SYSTEMS 219

- 0 - —uv’ 0 —uv 1/4 - vy,
NSF162’2’<’2=6{ o ”V], (1v", v, o[ ] (Wi =vow

1 0 v-v> 1 1 v v —duv;
= 0 2+ —v(3v +4)/4,
NSFS<E _ g u 0 uv uv( Vz’) v v ), G(u uv j’ v(3v 2)/
11T 0 vl+v) L1+v)  w+v+1)’ -4y

NSEE<E :c{o u uv uv(v—l)]’ Ly v -, G(o u ] —v(3v — 4)/4,

110 —v(v-1)° L1-v)  (v=1)+4u
NSES= = o[04 ) ), o0 Y] VATV
16 - 11v 0 > , 1L, V), 10 5 41,{,
NSF17’2’<’2=6 uwuv—u+w viw—u) ALy, o uw-—u 1/4 — v,
or 0 1) @-1%

P =y > 1/4), psit =>4 vl psstt ={v> /4, v,

psg’2’< ={ve (0,%), v 1, ps76’2’< ={v # -u}, psff’< ={v> 4_1/3, v 1,
psiy S ={ve [-4/3,01), psiS={vel0,4/3]), psiiS={v>1/4),

ps17’2’< = {V > 1/4, w# u’ u(l - V)}’

psi> = fve 0B, v 21w —uv, —u(v - v},

We mention that, in List 1.1, only CFSf‘ff and CE6’2’< possess the diagonal matrix H. Moreover, the canon-

ical sets of CFy ;" have the form of csg7;>” = {u # 1} and csy 71~ = {u = 1},because they exhibit no previous

forms with D, < 0.

2. Case D 2 0. So, we will assume that the matrix H has real eigenvalues A,, A, in system (1.1°).
Collection 2.1. The constants and the replacements used hereinafter in Section 2:

v, @) =@’ =3u+3)"w-3)", ) =G -3u+)GCu-1",
Vi) = @ +3u+3)Cu’ +3u+ DG’ +8u+3)7  y, =90 - -1/
L3y =1n = @A) 72, s =0, 5, = )72
Ly = =—v"n, s = w@dv-1)"'Qv? + 17, = (v@v -1)"", 5, = v s )
LIF* =iy =@ =3a+3)2(1 =), 5, =0, = (1= ) '53, 5, = Y] (@)};
L2777 =fn=a" | @-1", s, =|a ", n = Ga-Da'n, s, = 0);
Ly~ ={n=—@ +3a+3)"@-0"a+1", s, = a@+1"'n,
ry=—Gid +8d+3)@ +3i+3)'r, s, =@+ 1)7'n);
L =4 = @R s =0, 5, = 62B) 'n);
Lgﬁf’: ={n=-Pr,s = |P1|_1/2 , = |!’1|_1/2 (Y- Bz)il/za s, = 0};
L ={n=1/2, s, ==L, r, =F3/2, 5, = 0};
L3 = = £14/7, s, = T5V14/28, r, = V42/14, 5, = J42/28}:
LY ={n=1,8=1/2r=0,5, ==+ -1"")/2};
~—1

6,2,<= 121 |-1/2 x—1 o =12
L4,+1< ={n=0,s =Y/ |V| S »h =|W| , 8, =By s,
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220 BASOV, CHERMNYKH

In [3], system (1.5)* is obtained from system (1.1°) withy—B?>0at D>0 (A, L, 0, A, — A, = 60«/5 #0)

with a substitution J. 12 (see Collection (1.1)%), wherein &, 7 > 0 and & = (6.7 — [32)1/ * > 0 in accordance with
(2.18)! and (2.19)}, and system (1.6)3 with @, 7, > 0 is found at D=0 (A, A, =V = (p, + ¢,)/2 # 0) and

[g, #0v g, =0, p, # 0] with a substitution [Jfa v Jzz,,]. Finally, system (1.1<) with y— 32> 0 at D=0 and
q:, p, = 0 immediately takes the form (1.5)3, but with A,, A, = v, because the H matrix is diagonal with
P, =V =0.

Lemma 2.1. (i) System (1.5) at p = 0 with a substitution L‘;ﬁf’> is reduced to CFS?fl‘<’> with G = sgn,,
u=NAA;", and at p # 0 with a substitution L>~” to NSF>>*” with 6 = sgn \,, u= A\, v = ay(2p) .

(ii) System (1.6)* with a substitution Liﬁ’f’: is reduced to NSF.7™~ (u= 1) witho =sgnv, v = J(vd) .

(iii) System (1.1%) at D, q,, p, = 0 with a substitution Lgﬁf’: is reduced to Cng‘ff’: (u=1) withc =sgn p,.

Corollary 2.1. All six NSF"™>* forms from the list 1.1 at D >0 and D = 0 are not canonical.
Statement 2.1. The following forms from list 1.1 with the specified values of the parameters are reduced

to the previous ones in accordance with SPs (see in [2, Section 1.1]) SF,.’”’Z:

n s

(i) NSF;55” with psiy” = {u > 0} at u = 1 with a substitution (2.2)' L = ( j (det L # 0) with

5 S
S| =$,, ¥/, = —r; is reduced to SF84’2;

(ii) NSF* with ps3™~™ = {u = 1}:

(a) at u = 3 at a substitution with s, = 2s,, r, = 0 is reduced to SF84’2;

(b) at u = —1 at a substitution with s, = s,(1 + \/7)/3, ry=-n(l+ J7)/2 is reduced to SF;ZJ;

(iii) NSFyy™~ with psay™™ = {u > —1/4}:

(a) at u = 3/2 at a substitution with s, = sz(xﬁ -/2,r= —rz(xﬁ +1)/2 is reduced to SF84’2;

(b) at u =[6 v 4 F 13] at a substitution with s, = [-3s, v (=1 T V13)s,/6], r, = [4r,/3 v (=1 F \13)r, /6]
is reduced to SF75’2;

(iv) NSFY>7(8,4,v) with psP>>™ ={a = 1, v > 1/4}:

(a) at & = —1 at a substitution L3, is reduced to NSFy;.y" with 6 = &, u =
v v+l

(b) at i = —1, [3 v 1/3], v = [yi(@) v y,(@@)] with a substitution [L1;>>" v L25>7] is reduced to
NSFE>< witho=[6v &sgnil,u=1[iv i 'l;

(c) at i = —1, v = (i) with a substitution L7 is reduced to NSF,;>>" with 6 = &sgn(id + 1), u =
—a@i + 1) 7%

(V) NSF><" with psS> " ={u=1,v > 1/4, v =# 1}:

(a) at v = 1/3 at a substitution with r, = —3r, s, = 0 is reduced to NSF75’2’<’=;

b)atv=49F 7\/4_6)/6 at a substitution with #, = r,(11 ¥ 2\/%)/6, S;=8,(—38 % 5\/%)/6 is reduced
to NSF;,"~";

(vi) NSF557(8,1,%) with psgoe™ = {u=1}:

(a) at v = +2/+/3 with a substitution L3>~ is reduced to NSF,>>*~ (u = 1) with 6 = &;

(b) at v = T7/+/3 with a substitution L3>~ is reduced to NSF,;>~~ (u = —1/4) with 6 = &;

(c) at[#] > 1 with a substitution L~ is reduced to NSFy>™ (u = 1) with 6 = &, v = y,(9).
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TWO-DIMENSIONAL HOMOGENEOUS CUBIC SYSTEMS 221
(See [4, Appendix 3.6.1, p. 141] to points 1—3; [4, Appendix 3.6.2, p. 148] to point 4; [4, Appendix
3.6.3, p. 152] to points 5 and 6.)
Note 2.1. Here and hereinafter, according to agreement 1.3 from [2], the notation

“C=1[¢, vvil...n=1[¢, vV v,] ...” means that either { = ¢;, N = ¢, or { = v, N = v,, and the reference
to the appendix to [4] distinguishes a program therein, which confirms the results with the character cal-
culations in Maple.

The above statements allow for /=2, D, <0, D = 0 writing out all canonical forms with their canonical
sets.

List 2.1. Five CF™>~ , five CF,">~ and their ¢s,">~" (6 = %1, u,v # 0).

uOu 0O Ou 0 u
CFs?ff’z = G( 1]’ CF. 32,%:? =0 ( }

010+ 10+10
— 0 Ou—-uu uuuv 0
CF5,2,<,2 . u—-uu CF5,2,<,2 . CF6,2,<,> =6
7 1001) 22 100 1) ! 01 1 v/)
- l—v)O—uv2 6.2.<= uvuv
CFS< = | 4 ™ , CFYi" =0 ;
’ I T 4+ 010+l
esyn = u Ly, esen == csyy =u>0,u# )
cs75’2’<’> ={u # *13}, cs75’2’<’= ={u=1;
sy = {u > —1/4,u #3/2, 6,4 £13},
sy ST =lu=—1/4Y;  es!PY = {u £ 2L v > 1/4, v £ W), Wo(u), Ws));

e T = fu=1,v>1/4, v £1/3,1, GIFNE6)/6); esitT =fu =1,

Theorem 2.1. Any system (2.1)! with [ = 2, written as (1.1°) in accordance with (2.15)" and having D > 0,

is linearly equivalent to the system generated by some representative of the corresponding canonical form from
list 2.1. Below, there are for each CEm’2’<’> and CF,-'"’2’<’=: (i) conditions to the coefficients of the system (1.1°),

(ii) substitutions (2.2)', transforming the right-hand part of the system (1.1%) into the chosen form at the
above conditions,

V|<1}.

(iii) the values of G factor and parameters from cs!">~" or cs|">~" are, as follows:

CF%7:(@) D> 0,in (1.5 B =05 (b) J7, L3775 () o =sgnhy, u= A\

CF3577: @) D> 0,in (153 B #0,v=0; (b) J7, LT*, Ly withv = 6Y2B) 7; (c) 6 =sgnk,, u =
@y —|Bp @y + B~

CE><7:(a) D> 0, in (1.5 P # 0, a7(2P) > = [Wi (@) v y,(@)], where ii = LA, = —1,[3 v 1/3]; (b) J 7,
LY (LI v L2577 () 6 =[sgnk, vsgn A, u=[dv i '];

CEY~": (@) D>0,in (1583 P #0,d=~rA' #—1, (=5 +13)/6, (=5F13)/2, (=4 £7)/3, =3/2,
=2/3, 64(2P) " =y (@; (b) I, Ly, L35 () 0 = sgnv, u==5,,(2v) ;

CR™™: (@) D>0,in (L5 B # 0,2 =MA;' # —1,7 = 632P) " # yi@). v, (@).y3@): (b) I, L™
(c)o=sgnk,,u=i,v="1;

CE ") D=0,q,=0,p,=0; (b) Lg777; (c) 6 = sgn py;
CF (@) D=0, [q,# 0V q, =0, p, = 0], Jv3) ' = £2/3/3, where &, B, 7 from [(1.6,)° v (1.6,)’];

(b) [/5, v I ], LS, Ly (¢) 6 =sgnv;
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222 BASOV, CHERMNYKH

CRY“T (@ D=0,[g,#0v g, =0,p,=0], ¥v& ' = +7/3, where &, B, 7 from [(1.6,)* v (1.6,)°];
() [J3, v I3, LT, L3357 (¢) 6 = sgn v;

CF "1 (@) D=0,[q, #0vq,=0,p, =01, [0 > 1, [#| = 2/3/3, 7/N/3, where & = 3(v®) "', &, B, ¥ from
[(1.6,)* v (1.6,)°]; (b) [/ 3, v T3], L7, L3775 () 6 =sgnv, v = y;

CESE 1@ D=0,[q, %0V q,=0,p,=0],

(b) [J3, v I3l, L3775 () o =sgnv, v = 7.

¥ < 1, where v = Jvo) ', &, B, 7. from [(1.6,)* v (1.6,)°];

Proof. 1. Consider a case D > 0. According to Lemma 2.1, p. i at B # 0, system (1.5)3, obtained from
(1.1) with substitution J;”, is always reduced to NSF***"(&,d,7) with & =sgnk,, a =AA,, v =
ay(2P) > > 1/4 (see [4, App. 3.6.2, p. 148]). According to Statement 2.1, p. iv, this NSF*>~” can be

reduced to one of the preceding NSF™*<” from List 2.1.

The limitations that guarantee the reduction to CF ™2<> remain to be clarified.
(iv) Atii = —1 & L, = =\ & v =0, CFy>}” is obtained with 6 = &, u = Qv"? —)Qv'* +1)' =

(0 — B|)(6c? - |B|)“. Herewith, 0 < u < 1, there are no limitations, because NSF,;~;” is reduced to SF;
only at u = 1, as follows from Statement 2.1, p. i.

(ivy) At 4 = —1, [3 v 1/3], v = [yi@) Vv yy(@)], CF,>>>" is obtained with 6 = [ v &sgni]

(Gsgni =sgnk),u=1[av ﬁ_l]. Herewith, u # —1, 3, and there are no restrictions, because NSF75’2’<’>
according to Statement 2.1, p. ii, is reduced to the previous forms only at u = —1, 3.

(iv,) At i = —1 &V =0, v =,(i), one has NSF>” withc =&sgn(@+1) =sgnv,u=—id+1)"> =
—8M(2V)_2. Furthermore, & # (-4 £ ﬁ)/3, otherwise u = 3/2, i # —3/2, —2/3, otherwise u = 6, il #*

(5% \/E)/6, -5F \/E)/2, otherwiseu =4 F V13 , because NSF252’2’<’> , according to Statement 2.1, p. iii,
at these u is reduced to the previous forms.

II. Let us consider a case D = 0. According to Lemma 2.1, p. ii, at [¢; # 0 v g, = 0, p, # 0] a system
(1.6)* obtained from (1.1<) with a substitution [J5, v J3,1, is always reduced to NSF,;~~ (8, 1, ¥) with
6 =sgnv,v = i((vé)_1 (see [4, App. 3.6.3, p. 152]). And this NSFfff’z with respect to Statement 2.1, p. vi,
can be reduced to one of three preceding CF ™<= from List 2.1.

In particular, in p. vi,, at [{{ 2 1 and, additionally, |¢ = 2/v/3, 7/\/3 there was obtained CF>*~~ with
G =sgnVv, v =,(¥), because ¥ = —2/\3 < v=1and v = 1/3 at ¢ = 2//3, v = (49 £ 7/46)/6 at ¢+ =

¥7 /x/§ , and as follows from Statement 2.1, p. v, NSF36’2’<’: is reduced to the previous forms at only these v
values.

Other results of the theorem are evident enough. ]

3. Case D < 0. Let us now assume that the matrix A in the system (1.1<) has only the complex conjugate
eigenvalues A, and A,.

Collection 3.1. Constants, ranges and substitutions used hereinafter in Section 3:
Vs =407 - 1) +40°Qa+ D +1, =0 1-d)—-1+vyY yi=@ -2+20-v)")v
Wy =B Wy = TV + 2Bvi+ 90y - 8B, e =27y - B,

Wi =TV 30T 207 - 2B’ + BB’ - 367+ 370, B e R s zero of (v, 1),
Vo =TV = 4Bvi+ (@B + 97, vy = 7V + 2Bvi - Gag - 4BT’, vl =P EVR
Wis = REVP, yie=4a7-3p%, w, =7 -30+9, yg =497 —37+9+ @7 + 3y Y,

Wi == + 6772 +130° + 12072 + ) - 57 +4) 7, i, =aGiFV3Q T3,
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Uy = (T -3+ =30+9)")’G0 7wy =W - 500 +20W + 49° +49° +1,

1/2

Va3 = 20W — 50" + 24295y, Wpy =7 —av +id 7 -3, 0,(u) >0 is zero of \y,(u,0),

Wos = (70 2120 =300, Wy =20 +av —a v -9, 0;w)e R' isV zero of y,(u,0),

Vo, = 47w —40WQRT =300 —2) + (7 =307 +2)°, Wy = 20W — 20 + 300 +2 — Yy,

Voo = G0 =00 =1, s = 03(@) (21 — 05(@)) Wi, 05() ) (803(@) — 557, 05(0)) —32) ",

Y31 = —Yo(@,05(i)) (3% + 42" + 20,(@)i — 203(@)) (0(d) (20 — 0(@))W)
Wi =30 —3a° +6d+ 1)@ —a+1)(@a—-2)Qia-1)@G+1)".
Wy = 30 — 2077 + (4@ — 1) — @i + 1) + i@’ @ — 6)7 + (6@° + 2)¥ + 50) (¥ — P,,)

Vs = (0 — a0’ + 3070 — @7 — 20 — S5,

Y35 = (2 — 0,()) (30,(@)ii° — 305(@)id” + 05(@)il — i + 05(i1) — 40,(@)),
W6 = —(BW (@, 0:(i))W + 2(20 — 05()) (30" — 603 ()" + 5(83(i) — 1)id
+ 203(d) — 1105(i))) ((803(@) — 5 0(iZ, (i) — 32)) ;

at = (@0 =200 =D+ 9 +100° = 2pyY? + 20707 - 60°(0° — i’

+ 60707 =120 - 207 = 1)) (90 y) 7,

b = ((%°0% = (109" — )i + 90 )Ww? +20°0° + 971497 + D’
— 207 = D)ATP" = i + 90" 29° + 1) (6wy) ",

@ = (@00 = 39°40° = 3)a” + 69°Q0° + i — (497 = 1) + 2 )WY + 800" — 2071697 —13)i’

+30°(160° —69° +5)0° —20° (0" = 1D(160° + 370" = 8)ii + (20" + 1) (40 — 1) (¥ +2)°) (5407 yg) ",

& = (900" —20°(50° = Q)i + (0 + 2 )WY? 18070 + 0°(340° — 49)i”
—20°(79° = 50° +16)i1 — 20° + 1)(P° +2)2) (60 yy)

ar = (7 — 4) (i@ + V) (Q0W — 20" + 300" + 2Ny, — 4T W — 4F(=27 + 307" + 2w — 27°

+ 709 — T2 + 8av? — 8’7 — 4)(29) 32,
b = (7 =) (W — a7 + 07 + Dy, — 20°W + V(30 — 500 + 207 — 4)w

+ @ =300 + @ — a7 — )9 QF - 4a) i,

ar = (¥ = 20) (% — 4) (40w — (79" — 1200 — 4w + Q7 + 1)(T - 20) )y, — 87°W + 20(1 19 — 1847
— 8’ — (157° — 5507 + 5207 — 87" + 447" + 84"V + 8)W + Q% + (¥ — 300 + 2)(¥ — 2d) )y /2,

& = y(HF - 20)°(4 - 7)) 'E;
I.=(-1,0,)uU(/2,2), where 0,~-0.17 iszeroof 140’ —470* +1130° —1030” + 610 + 14;
I} =(=7-37,-2) U(=7++37,0), I; =(0,7-37)u@,7+37), Ii=(,1),
I, =(0,7°137"7), I, =137, =777, I, = (=0, -1) U(5-917"°, +c0);
LIS = {5y = 0,5 = /@D w7, = @) 0
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D == 0 = 0 = B

LIPS = LIZ’Z“ with v =0

52 =n/2};

LIPS == 0,5 =390 7" = 737009 0, s, =3B e 0N
LSS =in = 0,5 =470y =207 5, = By sy}
LSS =1 = Q0 A+ @) + 1=y Q0 (1 - &) — 2 — ¥ (69(40" —1) ',

= Q01— -1+ vy )20) sy, 1 = (@3¢ s, = @D

L11622<< h=0s= 2Y(|B|H\|/16) v (23)1/3(|B|M) 1/2W161/6a Sy = _B‘(|B|MW16)71/2};
LIPS = {1 =0, 5, = 3 u)yy wo) ™2, 3‘/2<2|w8|w9>“/ sgn Wy, 55 = (v — 2BW G s}
L2305 =1n = (ff+wi72>r2/3 8= (T =yi)s,/3, 1 =30y s =7 + i),

=y Wit G-+
L3355 =th =9 /2"2, sy =7/ Q -9 - )@ -3+ ),

P = v3/4(2 _ _ ‘73)—1/4(2 _3532 4 ‘73)—1/4, 5, = ﬁ]/zsl};

1/2 12\ ~—2
)\lfzarza s =@Fw - 7 +1 Y5 )V "5,/3,

LAY ={n = 90w -7 = 5 -y,
= (@@ @), 5, = @@ @) /6@, where  (3) = (-7, 7,W);
L237°° = {ny = Fiisy, 5, = QA F3)sy, 1, = —Q T3 'n, s, = (@ T3+ 1) (x4a)
L35S ={n =@+ 'ry, 8, = =1y, 1, = —il((@ + 1)@ + 2 +4)"2, s, =2 'n);
LA ={rn = sy, 8, = ([ +3)sy, 1y = (T + 2)85, 5, = (i =)@ + 5 +7))"'};
L5 ={n ==2"r, 5 =275 1/9), 1 = (57179, 50 = QW57 2)/9));
L6357  ={n=-7"r, s, =3n,1n,=7"(-7"a-1)7"7/3,5,=0};
LT3 =t =y, 5, = (0,(@) - D)sa. 1y =|0,@ @ +0,@) 3|5, = ks
L8 = {1 = 71y/2, 8, = YasSyy 1y = =255, 5, = (12 =37°)?};
L93°° ={n = Wisr, 81 = Wassy, 1y = (4= 9) 2@ i + 1) 5 = nls
L2027 ={n = @ + 3) Qi) 'ry, 5, = dis,, r, = Qi) @ +9)7 s,
s, = (=" +3)"@ + 1) 2a )

L3 ={n=—@ - 20+3)Qi-1""r, s = z?s2, r2 =Qi-D"@ -a+7"s,

s, =|@-2@+ 0" Ra-1"@ -a+17');
LAG™SS = {n = Qa0 — i’ v = 3) (W@ = 20)) ' 1y, 8y = sy, 1y, = T = 20) e s,
~ 1/2 1
Sy =V 2 |\Ifz4|/ lIfz9 —2”| /

L23,2,<,< ={n= ‘I";—rs”z, s = Wgssz, n = 34 1/4(4 ~3)_1/4( ~)_1/2 8§y = hl;
62<< _ (. _ ~ _ U _ U U g o\ 1]1/2 .
L3; ={n =inr, s, = (0,(@) — d)sy, r, = ‘Gz(u)(2u — 0, (8) )W (a4, 0,(a))w » 83 = ht;
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6,2,<,< 2 nd o3 e om 12 -1 sk —1/4
L2707 =in=QU0W—V +av —20+8i— VY, )2Y5) 1, 1, =(a,¢,)

5, = QUW— T + a0 + 2 -y ) QU@ - 20) sy, 5, = (@é) " /ex);
L35S = {n = 9n/2, 5, = (ory) ', 1y = 204 w) 2@ = 97) 4, s, = 0);
LAY = = diry, 5 = (205(@) — )s,/3, 1y, = N2y (=) 2,
55 = =32y W0 (@, 05(@)) (85(@) (24 — 05(@))) ' (=) %};
the constants and substitutions from Collection (1.1)3 will be used as well.

Considering system (1.1) with y— B2> 0 at D < 0 (pyq, < 0, V2 + p2 =3, i > 0) with substitution J;

ra°
results in system (1.7)3 with &, ¥, > 0, according to (2.18)! and (2.19)".

Let us divide elements &, B, ¥, Vv and W of system (1.7)? into the disjoint sets, wherein (1.7)? is reduced
to a certain form from List 1.1.

Lemma 3.1. A system (1.7)3 is reduced:

1) atv =By, B = 0 by substituting L1, to CFyy 2 with 6 =1, u = Y& 7;

L) atv = By ', B # 0 by substituting L1775 to NSE S witho =1,u = -2, v = —@* + )7

2) atv =PRY)'u, P =0 one has 1;;

29) at v=P2y) ', B0, a=7B°@4Y)" by substituting L15;°° to CFyy~ with ¢ =sgnp,
u=—B"+47)2P "

25 ar v=PRY "0, B#0, 6= 7@y " by substituting L1775 to NSEYY™ with 6 =sgnp,
u= @+, v = wic B

3) at v=0,u by substituting ng’2’<’< fo NSF66’2’<’< with ¢ =sgnVyg(), where () = (04U,
u = 22950Ws0) W00, v = ~QusOW10) v "0

4)atv =y 7 W, yis = 0 (B = 0) one has 25;

4,) at v= wfﬁ_]u, yis #0 by substituting L1$’2’<‘< fo NSF76’2’<’< with 6 ==%1, u= WTSF;_I,
v =3y + 7))

5y at v=-Py ', 0w, w70, PRY) W by substituting 1177 to NSF)>° with 6 = sgn g,

-1/3

u=22990) Py, v = QU s w = —97 Qwaws) 8,
Proof. Any substitution (2.2)' L = (r,, s; 15, s5,) (det L # 0) with
=0, 5={(v-BWEW s (5, #0), 3.1
reduces (1.7)? to the system:
(3654 )

a, 0 ¢, d,
for which a, = —yur’s;' # 0, dy = 2(70) " WeWos; /27.
In d,, the homogeneous polynomial satisfies the inequality Yo(V, 1) = '?2\/2 + 2Byvu + (967 — 8[32)}12 >0,
since it has zeros v, , = (- + 3¢i)y 'w. Thus d, = 0 © ys = Jv + fu = 0.
() ys=0ev=-"Py W Ats, =412 r,="u""?, 5,= By s, substituting L1}7" reduced
system (3.2) to the form (_2[);@_1 ath +072)§_2 _2615"_1 - +0?2)§_2J.

VESTNIK ST. PETERSBURG UNIVERSITY, MATHEMATICS Vol. 50 No.3 2017



226 BASOV, CHERMNYKH

<<

(6] B =0=>v=0.Ats, = —?(6(?)_3/2M_]/2, ry= ((Sci()_l/zu_l/2 substituting ng‘f’ﬂ at taking into account
(3.1) results in CFy5 < witho = 1, u = -6~y (= D/4 < 0).
(iz) B # 0, then obtain NSF2 witho = 1,u = 282", v =B + )z <0.

-1/2 7,2,<,<

(ii) W = Bu+ v = 0. Ats, = 329Uy wo) 2, 1y = =322 |wg wy) " sgn g substituting L]
with considering (3.1) allows system (3.2) to be written as

6[2(2\118\1!9)"/3%0 —VQusw) 8, 3wawe) v —(2\1!8)“‘/3\1!;”3%2} 3.3)

1 0 =3Qysys) s 1

where 6 = sgny, homogeneous polynomials (v, u) = 29v—Pu, w,(v, p) = ?3\/3 +
3T +267 - 27w’ + BB’ - 367+ 37, (v = TV - 4B+ @7 + 97, wis(vaw) =
v + 2Byvi — 367 — 4p°)u’. Herewith, one has ), (v,1) = (7> (v> + 1) + 267 — B*)) > 0, thus 6, is the
unique real zero of y, (v, 1); y,,(v, ) > 0 owing to its zeros v, , = (2B 37i)7 "W W15(V, L) possesses zeros
Vi = \If;_rﬁ_llia \I’;_r4 = _B * \/gg

(i) & =0 &y =0 v =032 'u.

(ii:) B =0, then y,; =0 <y =0 (v =0), and one returns to case i,.

(i) B = 0. Ats; = 29(Bluwe) ™%, = =B (Blw) i (467 - 3B > 0) substituting L1y on
account of (3.1) reduces system (3.3) to the form

Sgnr{o B raebvo ™ @ ave BT 4?2><2B>“‘/3w;6‘”j.
1 0 (467 -7B") Bwe) " 1

-3/2

-3/2 52,<,<

(i) é, =06 = 732(47)71. Ats, = 7|[~3| ufl/z, r,= —B|B| ufl/z having the substitution L1,
with considering (3.1) and one obtains NSF,;”~ with 6 = sgn P, u = —B° + 47*)(2p) > < —1/4.
(iii”) 467 — 7B* # 0, then we have NSFS>" with 6 =sgnf, u = B* + 47" Wie, v =y s (2p) .
(i) ¢, =0y, =0 < v=0,u, where 0, € R' is V zero of y;,(v, 1). Then system (3.3) atv =0, is

NSFO** with 6 = sgnyg(), u = 2QuOWe() w100, v = —usOW100) w077, () = O, w),
because v # 1 and Y o(*), Wi,(*) = 0.

Substituting L1o>~ leading to NSF>> is L}>~ with v = 0,11
(iiz) ¢, =0 © Y3 =0 & v =y;,7 'W. System (3.3) at s, = 3/*328) ™ *u~"?, r, = £3"*(22w)™"* with

substituting ng’z"< and taking into account (3.1) is as follows:

i[wfsé‘ Sy 1)@ 7 3 + 1)) HGFVR) + 3?2>(2§>2].
1 0 0 1

(i) 4, =0y =0P #0) o {senP = +1, & = 7p*(4Yy)"'} — returning to ii}*.

(iill) i # 0 — one obtains NSF* withc =+1, u =i ™", v = =30y + 7)(2%) .

(i) dy, &1, ¢ =0 Yy, Wy, W3 = 0, then (3.3) is NSF,> % with 6 = sgn Wg, u = 2(2ygyo) ™y, w =
ST Quaws) v +1) <0, v =y, > 0.

List 1.1 represents 4 NSF m’2’<, where D can be negative. Let us show that all they are not CF™> <
(see 2, definition 1.10]).

Statement 3.1. NSF5™~°, NSES>"°, NSFY>~< at all permissible values of parameters substituting
(2.2)! are reduced to the previous one in accordance with SP SF, 6’2, and NSFS*<< is reduced to SF;,-”.
1 16 34
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Proof. The reasoning below is confirmed by symbolic calculations in [4, App. 3.6.4, p. 155].

(i) Any substitution of (2.2)! with 4 =—(Vs; +5,)(s; — 2x?*s2)(w?*2(2x}sl -s5)s,)" and r =
(s, — 2025,) 205, — 5,) "', reduces NSES>° (6,4, 7), namely, to SES at (4,0) € psy~" = {0 >4,
¥ # 1, 44 > v}, herewith §,, = 0.

The equality for & is the quadratic equation relative to s; with the roots
s; =00 -a) -1+ yY?)(2%)'s, € R', because the discriminant (i) = 40°%°> — 80°(¥° — )i +
(207 +1)° is negative. Moreover, y, = ?°(1— i) — 1+ yY* # 0 (& d,, 7 0).

Finally, the substitution, when r, = 20°(1 + &) + 1 —yY*) 20" (1 — ) — 2 — yY>)(60(40° = 1)) 5y, 5, =

542 px pEG2 fEl gl
an 1 1Sy €18y aph $

@A -a) -1+ yY)(29) s, reduces NSEY> " to SF$* = . Now at

Ak 3~
0

S 3
a,r s, €y 1Sy 0

r=@@5é) ", s, = (ayéy)"* /¢ by substituting with LIj7:5~, we obtain NSF$T with 6 = 6, u =

Ak kot 1/2 AP
ay(a,¢,) ' ", v=b/¢c,.
It is worth mentioning that implementation of cumbersome and thus hard-to-verify relationships

ayey > 0,6 =arer)ar, df = b'é¥/ar is however expected due to invariance of the degree of the com-
mon factor / and signs of discriminants D,, D (/ =2, D,, D <0).

(ii) Any substitution of (2.2)! with s, = (v(u + v + 1) + 0"/*)2v — 4u)~'s,, 1, = Buv + v + 0"*)(8u —
3v+9uv —3v’ — gl/z)(2uv(3v +4)(3v +2)Qu — v)) " 'r,, where o(u) = 9viu? — 2v(9v2 + 15v + 8)u +
9v?(1 + v)?, reduces NSFY>" to SF*. Herewith, o(u) > 0, because psy"~" = {v < —4/3,4u> (u+ v +

1)?}, and thus the discriminant 27v? + 72v2 + 60v + 16 of the polynomial p with zeros —4/3, —-2/3, —2/3
is negative.

(iii) Any substitution of (2.2)! with s, = (v — v> — 2u + 0"/*)2v) sy, 1, = Qu — v — 0"*)Qu + 3v —
3v? + 0"HQuv’(Bv — 4)7'r,, where o(u) = 4u? — 4uv + 9v (v — 1)? reduces NSFY> to SES”.
Herewith, o(u) > 0, because psf32’<’< ={v ¢ [0,4/3], 4u < —(v — 1)?}, and, therefore, the discriminant
—(9v2 — 18v + 8) of the polynomial ¢ at v ¢ [2/3, 4/3] is negative.

(iv) Any substitution (2.2)! withs;, = —(u+ v + ((u + v)>* — u)"?)s,, r,=—(u + v — ((u + v)> — u)'?)r,
reduces NSF5™“ to SFy”, because psi~" = {v> 1/4,u < 0}.0

Consider NSF™>* from List 1.1. A direct verification reveals that NSF,;"~is CF,;>~~, and for other

2., 24,
forms ps™>=% # 5™ ",

Statement 3.2. The following forms from List 1.1 with the specified values of parameters are reduced
to the previous ones in accordance with SP structural forms:

1) NSFES>S5(8,id, %) with pso>~* = {7 € (0, 1), i € (Y, %),y (#)}:
(a)atii =—2"""(3 +/5), ¥ = 23 with substitution 53~ is reduced to CF,;>~ with 6 = T6&, u =—3;
(b) at # = —7 with substitution L33} is reduced to CFy>7 with 6 = &, u = y,5(%);
2) NSEY>S5(8,4,7) with psS™~° = {# # —if, 47 < —(@ +1)*}:
,2,<,< 4,2,<,<

(a) at # = —1 with substitution L2‘3‘4LJrl is reduced to CFy, " with 6 = &, u = y,(¥);

byatv = [-3@+1), deLIDv3@+)@+2)", ide(-2,-1)] with substitution
[L337°° v L4372 ] is reduced to CFy >~ witho =[6 v =&], u=[-3@+ 1)~ v3(@+D)@+2)"'l;
(c) at ¥ = y5(d), il € I, with substitution L3>~ is reduced to NSF>~* with 6 = &sgn(l — 2d), u =

~@ =33 + 6+ )@ —a+ ) (@ -a+7Qi-0)"", v=Qi- )" @ -a+77"
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3) NSFS25<(8,3,7) with psiiii™ = (47 < i’} -

(a) at v = iy, V3i € I with substitution L2357 is reduced to CF,y>~* with 6 = +&, u = yii ;

(b) at ¥ =3 +5@ + 1)@ -3))", ide (—/3,43) with substitution L25**% is reduced to
NSFO*<“with o = -&sgni, u=—@" +5i" Q@ + )@’ +9)™", v=Qa)’@* +9™";

4) NSF*“%(&,i,7,w) with psy> ={e (0,1) U (L,V4), w = —a(¥ — 7 72), 4% < =@ + 7))

(a) at 7 = — with substitution L43,5" to CE2T with 6 = &, u = b (=9,%, W)/&5 (=, 7,W);

Yat v =[7""v0,@), w=0B7""a+7") v @+ 0,))0,@) - 2d)], i € |5 v I1,] with substi-
tution [L63;°° v L7557 is reduced to CF,;>~° with 6 =[-6vsgnil, u = 37 a+1)"' v Qi —
0,(@)) (@ + 0,(@)"'1;

(b2) at i = [-47 v Yis|, W = [30@ET + as)/2 Vv 3(Pys — 207 D)1, 7€ [0,(2/7)> v I,] with substitu-
tion [L83,°° v L93,°°] is reduced to CF,>"° with 6=[-6VvI6], u = [4+y,7 '/6v (@& —
O N ~1q.

VYT VY —2) s

(c) at w = 5,(d, 7) with substitution L4>>°% is reduced to NSF.> " with 6 = &sgn((2i — F)Y,,), u =
(P20 = 7)) Wy, v = (920 - 9)y350) "

(d) at [a = yi, v ¥ = 0,(@) = 2%°] with substitution [L25>* v L3$**] is reduced to NSF,>* with
C=[F6v&sgn(@—2"")], u=[-(Fw-30yi, + 6)@FW) 'v-(w+2i + 0,@i-0a@))w'],
v =[34 =) FR) TV~ (@ 0,(@)W + a5) (W@, 0,(@)) ];

6,2,<,<

(') at y,, >0, @ #v/2 with substitution L2735 is reduced to NSF(2 with c=6,
u=aae) ", v=>5b/e;

(e) at[i = ¥/2 v ¥ = 0,(@)] with substitution [L3}755" v L4{7;5] is reduced to NSF (3 with o = &,
u=[=3(4v - v"2@) " v iy, v = 14 - 7)) @0V el

Proof. The reasoning below in pp. 1)—3) are subjected to symbolic calculations in [4, App. 3.6.5,
p. 161], and in p. 4) are in [4, App. 3.6.6, p. 172].

1) NSFS*S5(8,i,%) in case of (a) with substitution with r, = —21/3,, 5, = 273 + /5)s, is reduced to

SF252’2 in (b) with substitution with r, = - " 2r2 L5 =7" 2s, is reduced to SF;J;

2) NSF,>“%(6,i,7) in (a) with substitution with r, = (7 £ y,°)r,/3, 5, = (7 F y1,)s,/3 is reduced to
SF.?, in (b) with substitution r, = [(@ +2)i 'r, v =@ +2)"'r], s, = [—iis,/2 v (@ + 3)s,] is reduced to

SF,7, in (c) with substitution r, = —(@” — 2 + 3)(24 —1)"'r,, s, = iis, is reduced to SF;

3) NSF25(6,i,7) in (a) with substitution s, = —(2i F V3)s,, , = =2 F V3i@)d "', is reduced to SF>y’,
in (b) with substitution r, = —(@" + 3)(2i)"'r,, s, = dis, is reduced to SF”.

4) Let us now obtain the previous forms from
o v@av +w) i+ wi!

~—1 ~2

uwav
0 v -V 1

NSF)*< = 6{
1

] @ +wo™' #0).

(@) At 4 = =7, W = B¥°s{ + 20 = D)sys, — 7T + 2)53) (¥5,(2s, — 75,)) "', NSF, > at any substitu-
tion of (2.2)! with r, = (x?zsl —28,)(V(2s, — x7's2))_1r2 is reduced to SF;Z’Z. The equality for W is the quadratic
equation with respect to s; and has the real roots s,J‘r = (vw- P +1t \|112/22)x772s2 /3, because y,, =

(Tw+ 1)2 + x73(4x73 — 5w +4) > 0 owing to w< 0. Moreover, Y,; # 0 & 25, — ¥s, # 0.
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Substituting with r, = F(OFF — 7 — 5 — Y¥y Wasry, §; = (W — 7 + 1 — Y3y )0 s,/3 reduces NSF,">~<
to S = 0 b (—0, 7, W)rs, 0 drr’'s; .

a (=0, 7, W)rs 55 0 & (0,7, W), 0

A choice of normalization and related issues are given in Statement 3.1, p. i.

In (b') NSF,>< at substitution with r, = [-7"°r, v iir], [s, = 0 v s, = (0,(d) — d)s,] is reduced to
SF.

In (b%) NSF,"> at substitution with r, = [, /2 v Wisry], $; = [Wass, V Wass,| is reduced to SF,;’; the
case i = —4v, w =3v(4v + \|f§5)/2 is impossible because of D > ( therein.

In (c) NSF,">*< at substitution with r, = —(2iv> — 4°% — 3)(W(¥ — 24))"'r,, 5, = iis, is reduced to SF>.
Herewith, y,c # 0 as normalization factor.

In (d) NSF,">=< at substitution with r, = [W3sr, v ir], 5; = [Wsss, v (0,() — i)s, ] is reduced to SF,7;
if 207 = 0,(i1) © i =273, then §,,= 0, and sgn(ii — 2~"°) = sgn((2i — 0,(i) )3, 0,(i7)))-

(e)) At W = (¥ — 20)s; + (¥° — u¥” = 2)s,5, + Hav’ — 2)s3) (¥s,(2s, — 7s,))"" NSF,”>= at any sub-
stitution of (2.2)! with r, = (x?zsl —25,)(7(2s; — x?*s2))7'r2 isreduced to SF]?’2 . The equality for w is the qua-
dratic equation relative to s, and has the real roots s; = (27 — VP ravt 42+ \1112/72)(2x7(x7 - 2&))_1s2 at
Yy, 2 0 and & # ¥/2. In addition, Y, = 0 & 25, — ¥s, # 0. Finally, substituting with », =
QUW - +av =20 + 8- Y )QUx) ', s = QU =T + a0 +2 — i) QU - 2i)) s,

7%k -1 3

~% 2 ~k ~% 2
ar, bins, ¢s; din s

reduces NSF,>" to SF$” = , and then similarly with Statement 3.1, p. i.

~% 3 —1 ~%
a,1; 8, 0  G,ms, 0

In (e?) NSF,"> ° at substitution with r, = [#r,/2 v ir], [s, = 0 v s, = (204(d) — d)s,/3] is reduced to
SF]61’2, and y;, > 0 as being normalization factor.

Finally, NSF,">* can be reduced to the previous NSF>>* (i=12—16) from List 1.1, and those are,
in turn, reduced to SF,?’2 or SF;L’z (see Statement 3.1).

However, all direct replacements to NLS‘I"“lslfr’f’< and NLS‘F;Z”ZJ;T’< were already found above. []

The results for / = 2, D, < 0, D <0 enable one to write out all canonical forms with the appropriate
canonical sets.

List 3.1. Six CF"™** and their ¢s/">"* (6 = %1, u, v, w # 0).

Ou 0 u Owu—uu
CF4,2,<,< =0 CF5’2’<’< -
4+ 10+10) 2 100 1)

-2 -3
6,2,<,< __ uuv - -v) 0 uv 62<< _ Uuv -vu+v
Crem =0 1y » CF _0[10 0 1 j
1 0 v -V 1

62<< uvuv oy uwuv ' —vuv+w) u+wr
CFS>< == ¢ . CF™ =g :
’ 1010 vi—v2?
10 - 1

eSuiTT =< 0h o5y = <-1/4),
esg” ™ = {ve (01, e (Y7 (), Y7 (W), u % v, (@ v) = (-2 (£45), 277,
cs76’2’<’< ={dv<—(u+ 1)2, uz-1L,v#-u-3w+1),3u+1)(u+ 2)_1, Vi, (u)},
esiiay™ = v < —u’, v 2 yh), 3w’ + 5w + DR -3)7,
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cs27‘2’<’< ={ve (O,%/Z), v #1, —u, 2u, 05(u), w # —uv, —u(v — v_z), Vis(u,v), 4w < —(u + v)z,

Yo, v,w) < 0, (u,w) # ([-4v v Yi(v)], Bv(dv + yis(v))/2 v 3(vyss(v) — 2v)]),
(v,w) = (1777 v 8,)], 37 u +777) v (u + 8,)) (0, () = 2u)])}.
Theorem 3.1. Any system (2.1)! with / = 2, written as (1.1°) according to (2.15)! with D < 0, is linearly
equivalent to a system generated by some representative of the corresponding canonical form from List 3.1.

For each Cl”,-'"’z"< one has below: (a) conditions to the coefficients of system (1.1<); (b) substitutions (2.2)!
that transform the right-hand part of system (1.1<) at the above conditions into the chosen form; (c¢) thus-

m2,<,<,
i

A CEZ (1) v=0,B=0,(1,) J3, LIE5, (1) 6= Lu=7¢";
2V = O, WeOWo() = 2 (W 1,(), where (-) = (O, 1), (2,) J5, LIPS, L3375, (2,) v =sgn y,("),

/3. -1/3

u =\ o(¥), where ¥ = -y (Ow0()) "W ();

obtained values of ¢ and parameters from cs

G V=LY W W =% G Ji, LI L2, (B0 6=2%1, u=y,(¥), where 7 =
=3yi 7))
(4) v=0, B 4p* 30y, 4B°-307+37° 20, (4,) J;, LIS, L4YSS, (4) o=sgnf,

-2/3

u = b (=7, %,W)/& (=7, %,W), where ¥ = Qu) " y; 7, = =97 Qugyy) (v +u?);

B. CEY % (1) v = Bey'u, B=0, a=78°@y", U, Ji, L1~ (1) o=sgnP, u =
—B* + 47" (2B) %

2) v=01, 27%y00) = G VWOV, win() = =8us(w() (O = OLw), (2,) J3,
LIS*S [5377°°,(2,) 6 = Fsgn (), u = —3;

(B V=V W WigT = [F3@+1), de (L1 Vv3a+)@+2) ", ie (-2,—1)], where v =
S30yE 7)), By JE, LIS (L3325 v L4329, 3) o= [+1v FI], u = [-3@+ 1) v (@ +
D@ +2)7';

(4)v=-"P7 W B0, @+ 70 =wi@,a =25, Ee I7, (4) I3, LIJT, L257°°, (4,)
o=+1,u=-2pc";

G v =PV 'w. B0, a2 B AN 67/E = i@, e IF, @ = a7 @e)'"”, a = af@yen'”,
T =b"/8, (5 I3, LIS, LTSS, L257°°, (5.) 0 = +sgnf, u = yiy(@)i ;

(62 v = By, O, Wiy W, BCY 'L 177 v 0,@) ] = Q) v L BT+ 77 v (8,4(@) —
2 +0,@)] = —9TQusyo) W +1D), @ =2Quwye) Py, € v I (6) Ji, LI
(L6555 v L7355, (6,) 6 = [-sgn g v sgndl, u=[3(7" G + 1) v (2 — 0,(@)) @ + 6,(@))"'];

1/3

(7)) vEPY M, e, v PeD M. 4TVl = 2Qugwe) Py,
[39(47 + W35)/2 v 3055 — 207 ) ] = =97’ Qugyo) P (vZ + 1), 7 = Quy) s e [(0,2/D) v 151,
(7)) J3, LIPS, [L837°° v L9557, (7,) 6 = [-sgnyg v Fsgnygl, u = [(4+yy0 )/6v(@E —
)y -2

C.CF "% (1) v =0, 7(42,,B2,), (1,) J3, LIg> %, (1) 6 = sgny(), u = 22u5OWe() ™ y;0(),
v = —QuOW10)) W50, O = O, );
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(2) V= WiT M =300 47RO = wan@), i = Wi € L, T(B3,), () JI, LIS, 1382,
)o =+sgn(l=2d),u=—@ =3 +6a+ )@ —a+ ) (@ -a+7Qi-1))"v=0Qi-)" @G’ -
a+7)7"

Gov=-"P7 W B=0, 2B+ =3@+5@ + D@’ -3)", i =-2§2" e (—/3,{3), "(B4,),
(p) J3, LTSS, L2655, (3) 6 = —sgndd, 2u = ~(@’ +5)@” + ) v, v = )’ +9)™;

(4) v =N W, B#0, 6= B D, b7/E = 3@ + 5@ + D@ -3) ", i=a@;é)"” €
V3.3, A= +4 W =wid@PT MBS, Gy, Ji LIPS LIES L20
(4) 6 = —sgn@a), 2u = —@* + 5@ + 1) v, v =)@ +97";

G v # —B?_lu, o.u, \Ifi?_lu, 6(27)_1“” _972(2‘4’8‘“9) (V2 + M2) =Vy33(U,7), i = 2(2\V8W9)_1/3W10>
7= Quy)y, ", T(A44,,B6,,B7,), (5,) Ji, LIS, L4¢PSS, (5) o =sgn((Q2i— PWsy,),
u = (FQi - 7)) sy, v = ~(920 - )’y

D. CE°% (1) v = Wiy ', wis 20, =€, 7(B3,,C2,), (1,) J5, LI5**5, (1) o =1, u = yj& ',
v = =3y, + )07

2) vEPYH, O yinT . PRV N, [E=yisve = 0,@) = 2701 i =2Qywe) iy,
7= Qu) s, W= Qugwe) (v + ), T(44,,B6,,B7,,C5,), (2, Ji, LIPS,
[L25%°°v L35, (2)  o=[Fsenygvsen(@-2"")wol,  u=[-(@w-30"yy  +
6)(FW) ™ v —(W + 20> + 0,(@0)id — 03(@)W '], v = [3(4 — 7)) (TW) " v (W (@, 05(@)W + Wis];

E. CF25 (1) v=-Py'w, B=0, "(B4,C3,), (1) J3, LTSS, (1) o = 1, u=-2p¢",
v=-B"+7)7

2) v=BCP'u, B£0, ax7B@D, (B5,.C4,), ) Ji, LIS, LTSS, (2) o =sgnf,

sk nsk ok 1/2 Nk Y R NS A 1/3 ~fn—2/3
u=a1(a2c2)/,v=b1/c2,whereu=([3 +4y )Wl()’vzllIlé(zB) /2

-2/3

G V=P w, o, wi v 'w, PP W, [d@#v/2, v, 20via = ¥/2v v =0,3)], where
i =220ws) Wi, 7= Q) 'L W = -9 Qugwe) (v + 1), T(44,,B6,,B7,,C5,,D2,),
(Bp) I3, LIPS, L2055V L3S v LAYTSSl, () o =sgnvyy, u=[a(ac) "7 v -34v —
Y2 @)V s v = [67/8 v (4 — ) @) TV ysls

F.CF™% (@) v = By 'u, O, wiy7 ', By ', ~(44,, B6,, B7,,C5,, D2,, E3,), (b) J35, L13*°%,

-1/3 -2/3

() 6 = sgnyy, 1 = 22¥xWs) "yig, v = Q) s w = 97 (v + 1) Quys)
Here, the notation 7(...) means that none of conditions in parentheses are implemented.
The proof of the theorem follows from Lemma 3.1 and Statements 3.1 and 3.2.

4. Extraction of mcs™ % <. Let us now demonstrate the linear nonsingular replacements, which allow
distinction of minimum canonical sets for CF from List 1.1 (see [2, Definition 1.11]).

Statement 4.1. The values of parameters in ¢s”> % < can be limited only for the following CF™ % < from
Lists 2.1 and 3.1:

. - - Sy . S-1/2 . ~ - -
1) in CF,;" at & = 6, if = u substitution with r, s, = 0, s, 7, = la| ? giveso = Gsgni,u=i ;
2) in CF;“;’%;T normalization (2.6)' with r,, —s, = 1 changes sign G; at i = usubstitution with s,, , =

1/2

™%, r\, 5, = 0 gives u = &' without changing o;

1/2

. ~ ~ . . . ~—1/2 - ~— .
3) in CE®*®” at & =0, & = u substitution with r, s, = 0, s, = v/ || 2o =v g """ gives

c=0sgni,u= 4" without changing v;
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4)in CFY™™ (u= 1) at ¥ = v > 1/2 substitution with r, = 1, 5, = Q% — I)s,, 5, =0, 5, = (47 — 1) gives
v=9A4v-1)""<1/2 (v > 1/4);

5)in CFfff‘z (u = 1) at ¥ = v <0 normalization with |, —s, = 1 gives v = —¥;

6) in CF>>" (u < 0) at § =0, i = u < —1 substitution with r,, s, = 0, 5, = (-2)""/?, r, = ¥s, gives
c=-G,u=1i 1v2>—1

7)in CF*~* (v <0)at& = 0,4 = u, ¥ = v < —3 substitution with r, = —2% + 3id)o, 5, = (¥ + 3)0, r, =
—s,, 8, = —(¥ +3ii —3)o, where p = (=¥’ +3av + 3@ —ia+1)))""?, gives u=—-Gi+7v+3)7 ",
v =9¢~' > —3 without changing G;

8)in CF$3 " (v<0)até = 6,d = u <0, ¥ = v normalization with r,, —s, = 1 gives 6 = &, u = —ii >0
without changing v;

at 6=0, dd=u, V=v < —1 substitution with r,, s, = dp, s = —ry,, ¥, = (V+1)p, where
o= (—x7'(L72 + (T + 1)2))_'/2, givesu = v ,V = ' > —1 without changing ©.

Corollary 4.1. In accordance with Definition 1.12 from [2] we have:

acsgfl<> = {|u| > 1}, acsg‘fff {o=-Lu>1}, acs;fff fo=-1l.u<-1},

acsls2<> _ {|u| > 1), acs3 ={v>1/2}, acsfi; ={v <0},
acst S =S -y, aes$* = {v<—3), acsSES = {u<0, v < —1);
for other canonical forms from List 2.1 mes™ 2 <" = ¢g™ 2 <",

5. Canonical forms and canonical sets at / = 2. Let us now give the unique list of canonical forms and
canonical sets for / = 2, which are obtained in [3] and in the present work.

List 5.1. Twenty two CF,"* and their ¢s;”* of System (2.1)! at /=2 (G, K = *1).

_ u000 0u00 = (0x00
CF2,2,7,2 =0 , CF2,2,>,2 =0 , CF2,2,7,< =0 ,
’ (0100) ! 0010 B 1000

- 00K0 _ ul00 0ulo
CFX>>= — 32 > CF3>>2 =
B (0100} “o1o0) " T°%o0010)
_ 1u00 . 00ul 01u0
CF3,2,7,< _ CF 32 =G CF3,2,> -G .
"2 (1000) P 0001) 0 0100)
= u0xuO Ouu O Ouvo
CF4,2,<,> — CF4,2,>,> — CF4,2,> —
B G[OIOKJ’ M T% 0101 TP T%0r110)
= Ou 0 u u-uuQ Ou —uu
CF4,2,<,< =G : CF5,2,<,2 =G , CF5,2,< =G :
3441 10410 7 1001 2 1001
CF,6’2’<’> . uuuv 0 ’ CF36’2’<’: — ol ul—v) 0 —uv’ ’
01 1 v 0o 1 1 v

uvuv uuv’-v) 0 uv"’
CF6,2,<,: =0 , CF6,2,<,< =0 ;
! 010+ ° 0 1 vi'-v’ 1

Uuv —vu+v uv u v
CF6,2,<,< =0 , CF6,2,<,< =0 ,
7 10 0 1 1141 10+10

-1 -1
72<< uwuv —vuv+w) u+wv
CF2 =0 1 2 5

10 v -V 1
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2,2,=> 2,2,== 2,2,>> 2,2,>,=

€S3 ={u#l}, cs3 ={u=1} cs ={u#l}, csy ={u=1;
csi’ﬁ’:’> ={xk=1, cs%’i’:’< ={k=-1; cs;’i’>’> ={k=1, csé’ﬁ’>’< ={K=-1;
e =luEtly, s ={u=1; e =uEll, s T =u=1;
esyT = u< =174y, es T ={u=1;

e = {u > —1/4),  esit”T =u=—-1/4y,  es7S ={u < —-1/4);
esytT = uE Yy, esen =fu ), esyn ={u=1)
csft;,zj’> ={u=+-1-2,-3};
esst”m =uE L, v>—(1—u)’/4, v # u, Qu—1)/4, u2 —u)/4},
esy T =uE-Lv=—(1-u’/4, e ={v<—-1-u’/4;
cs?ff,’> ={u>0,u=#l}, cs?fff ={u < 0}; cs75’2’<’> ={u# =1, 3}, cs75’2’<’: ={u=1};
eyt ={u>—1/4, u#3/2,6,4+ 13}, s T = {u=—1/4},
cs§’22’<’< ={u<-1/4};
6,2,<,>

es{PT = {u £ 11, v > 1/4, v # W), vow), e}
ey T =fu=1,v>1/4, v £1/3,1, @I FTN46)/6); csyiT =fu =1,

vl < 1};

es¢* = {ve (01, ue W), W), u £ —v, @,v) = (-2 (3 £5), 27}

eSS =lv <« —u+ D) uE—LvE-u 3u+l), 3u+D)u+2)7", yi,w};
esip S = v < —ut, v yhw), 3w’ + 5@ + )W -3)7);
7" ={ve (0,Y4), v #1, —u, 2, 05(u), w = —uv, —u(v —v ), Wi, v), 4w

< U+ V), Yy, v, w) < 0, (U, w) # ([-4v v Yis(v) ], [BvEv + yas(v))/2 v 3(vyis(v)
—2v D), (v,w) = (17777 v 0,)1, 37 Pu+ 772 v (u + 0,(1)) (0,5(u) — 2u) 1)}

Addition. Continuing the discussion begun in [1, Section 1.5], we are going to focus on the approaches
in choosing the unperturbed part of two-dimensional systems, which is, first of all, subjected to classifi-
cation and corresponding normalization. As is evident in the cycle of works proposed, classification and
normalization have to be applied to homogeneous cubic polynomials, whose canonical forms are then
used as unperturbed parts for normalization of perturbations.

The need for classification and normalization of homogeneous quadratic polynomials in two-dimen-
sional systems whose right-hand part decomposition begins from the second order is also obvious. This
classification was established by K.S. Sibirskii [5] and then newly developed by V.V. Basov et al. (see Refs.
in [1]) based on the other ordering principle.

Normalization of two-dimensional systems x = Ax + X (x) with the nilpotent matrix 4 in the unper-
turbed part was attempted by F. Takens [6], where the GNF (generalized normal form) was obtained as

Y1 = Vi, Yo =) +¥,8(y)) and it was equivalent to GNF
=480, =S+ 3.8000), (*)

where /= Z:—u oy ylk , 8= Z:_V Bkylk , (04, By # 0, u, v = 1). This system is one of the particular cases of
incomplete Belitskii’s NF and was established by G.R. Belitskii [7].

A. Baider and J. Sanders used this GNF[8] for creation of the full formal classification of germs of ana-
Iytical vector fields in R? with the nilpotent linear part based on the correlation between 1 and v values.

Calling (*) normal first-order form in cases when U # 2v, they established and obtained the NF5 of the
second, third, and further down to infinite orders, terminating this process when simplification stops and
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obtaining in a certain sense a single NF. Further, Kokubu, Oka, and Wang [9] found a single second-order
NFinthe form y, = y,, y, = oczyl3 + By, t yIZ::3 ylk for the unstudied case L = 2, v = 1 provided that

the a,/P; is not algebraic value.
It is worth mentioning that uniqueness of NF'in fact testifies to distinction of the simplest NF on a cer-
tain basis. Therefore, the techniques proposed in [8, 9] do not allow extraction of all structures of normal

forms, as takes place while establishing GNF via the method combining the resonance equations and sets
and reported in [1, Section 1.3].
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