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Abstract—This article is the third in a series of works devoted to two-dimensional homogeneous cubic
systems. It considers the case where the homogeneous polynomial vector on the right-hand side of the
system has a quadratic common factor with real zeros. The set of such systems is divided into classes
of linear equivalence, in each of which a simplest system being a third-order normal form is distin-
guished on the basis of appropriately introduced structural and normalization principles. In fact, this
normal form is determined by the coefficient matrix of the right-hand side, which is called a canonical
form (CF). Each CF is characterized by an arrangement of nonzero elements, their specific normal-
ization, and a canonical set of admissible values of the unnormalized elements, which ensures that the
given CF belongs to a certain equivalence class. In addition, for each CF, (a) conditions on the coef-
ficients of the initial system are obtained, (b) nonsingular linear substitutions reducing the right-hand
side of a system satisfying these conditions to a given CF are specified, and (c) the values of the unno-
rmalized elements of the CF thus obtained are given.
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INTRODUCTION

This paper is devoted to finding canonical forms of real homogeneous cubic systems having a second-
degree common factor with real zeros; it consists of three sections.

In the first section, the right-hand side of the initial system, which is determined by eight coefficients,
is uniquely decomposed into the product of a common factor  and a vector Hx, where H is a nonsin-
gular matrix. As shown in [1], the sign of the discriminant D of the characteristic polynomial of this matrix
is invariant. In each of the cases D > 0, D = 0, and D < 0, the system is primarily simplified by reducing
the matrix H to a Jordan normal form and determining a new common factor. It is for the comparatively
simple systems thus obtained that we determine conditions under which they can be reduced to various
CFs by appropriate linear changes.

In the second and the third section, we consider the cases D0 = 0 and D0 > 0, taking into account the

invariance of the sign of the discriminant D0 of the common factor . For each of these cases, we give
lists of canonical forms together with their canonical and minimal canonical sets of admissible values of
parameters introduced in [2]. We prove theorems which confirm the linear nonequivalence of the intro-
duced  CFs and give, for each CF, (a) all systems in the linear equivalence class  of the given CF, (b) a
linear change reducing any such system to the given CF, and  (c) the values of the CF parameters in the
corresponding  canonical set resulting from the change.

This paper is a direct continuation of [1, 2], and we use the notation introduced in the previous papers.
We often refer to formulas obtained in [1]; for brevity, we put the superscript “1” on their  numbers. For
example, system (2.1) in [1] is referred to as (2.1)1.
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1. PRIMARY SIMPLIFICATION OF THE SYSTEM FOR l = 2

Consider system (2.1)1, that is,  = Aq [3](x); at l = 2, it can uniquely be written in the form (2.14)1:

(1.1)

where α = 1 or α, γ = 0 and 2β = 1.
According to Theorem 2.2 of [1], any nonsingular linear change (change (2.2)1)

(1.2)

transforms system (1.1) into a system of the form  (2.17)1, namely,   = , whose row
( ) and matrix  with  ≠ 0 are described by (2.18)1.

Using notation (2.3)1, we can write system (2.17)1 in the form

(1.3)

We reduce system (1.1) to various canonical forms in two steps.
At the first step, we choose a change of the form (1.2) reducing the matrix H of system (1.1) to a Jordan

normal form  in the obtained system (2.17)1. Of course, the form of the change depends on the sign of
the discriminant D =  in (2.16)1 (see [3, Appendix 3.3, p. 112]).

Here and in what follows, when referring to the appendix of [3], we mean that the program package in
this appendix contains a program confirming results  presented below by symbolic computations in Maple.

(1) Suppose that D > 0; then, according to (2.16)1, the matrix H has different real eigenvalues λ1, λ2 ≠ 0.
To be more specific, we assume that

(1.4)

where σ0 = {1 if p1 ≥ q2, –1 if p1 < q2}; then σ0 =  and .

The change  ( ), together with the expressions for   in (2.18)1, reduces

system (1.1) to a system of the form (1.3) or (2.17)1. We have

(1.5)

(2) Suppose that D = 0. Then λ1, λ2 = ν =  ≠ 0 in (2.16)1; otherwise, det H = 0.

(21) The change   =  for q1 ≠ 0 (Case a) and the normalization  =  for q1 = 0

and p2 ≠ 0 (p1, q2 = ν) (Case b) reduce system (1.1) to (1.3) or (2.17)1. We have

(1.6)

(22) If q1, p2 = 0, then the matrix H in system (1.1) is diagonal and p1, q2 = ν ≠ 0.
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(3) Suppose that D < 0 (δpq > 0, p2q1 < 0); then the  numbers λ1 and λ2 in (2.16)1 are complex conjugate.

The change   ( ), together with the expressions for   in (2.18)1,

reduces (1.1) to a system  of the form (1.3) or (2.17)1. We have

(1.7)

where ν = , μ =  > 0, and ν2 + μ2 = δpq.
At the second step, we make an arbitrary change of the form (1.2) in the linearly nonequivalent

systems (1.5)–(1.7), which reduces each of these systems to a system of the form (2.17)1; in the notation
of all components of the resulting system, we replace the symbol ~ by ⌣.

As a result, taking into account (2.18)1, we obtain the following system by analogy with (1.3):

(1.8)

where  = ,  = ,  = , and   =

=  (  =  =   = ).

It remains to choose the coefficients of change (1.2) so that system (1.8) be simplest according to struc-
tural and normalization principles [2, Sections 1.1 and 1.2].

We implement this plan separately for each of the three classes of systems into which  (1.1) is divided
according to the  sign of the discriminant D0 of the common factor , which is  invariant with respect to
changes (1.2) by virtue of (2.19)1.

Thus, in effect, we find canonical forms separately in each of the nine linearly nonequivalent classes
distinguished by the signs of the discriminants D0 and D of system (1.1) (see [2, Corollary 1.1]).

In this paper, we  consider the comparatively simple cases D0 = 0 and D0 > 0.
Collection 1.1. We use the following constants and changes below:

2. CONSTRUCTION OF CFm,2 FOR  WITH ZERO DISCRIMINANT
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Let us select those structural forms, up to , in List 1.1 of [2] which  refer to the case l = 2, D0 = 0 (see
[2, Statement 1.2]); there are five such forms. We normalize them by change (2.6)1 according to the intro-
duced normalization principles, which yields NSFm,2,= (see [2, Definition 1.6]).

Let us prove that the list given below contains all possible canonical forms of system (1.1=), and the sets
specified in this list are the canonical sets described in Definition 1.10 of [2].

List 2.1. The five forms  and the corresponding sets  are as follows  (the matrix H and the
discriminant D from (2.16)1 (σ, κ = ±1, u ≠ 0, (α, 2β, γ) = (1, 0, 0)), are also specified):

Statement 2.1. The only forms in List 2.1 with parameter values specified above which reduce to struc-
tural forms preceding them according to the structural principles are as follows:

 for u = –1 reduces to  by change (1.2) with r1 = r2 and s1 = 0;

 (u > –1/4) and  (u = –1/4) reduce to  by change (1.2) with s1 = 0 and r1 =
;

 (u ≠ 1) reduces to  by change (1.2) with r2 =  and s2 = 0.
Collection 2.1. In the rest of Section 2, we use the following constants and changes:
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where ρ = .
Theorem 2.1. Any system (2.1)1 with l = 2 written in the form (1.1=) according to (2.15)1 is linearly equiv-

alent to the system generated by a representative of the corresponding canonical form in List 2.1. For each

, the corresponding (a) conditions on  and H in system (1.1=), (b) changes (1.2) transforming the
right-hand side of (1.1=) under these conditions into the chosen form, and (c) the values of the factor σ and the

parameter u in  obtained under these changes are as follows:

Proof. Depending on the sign of the discriminant D in (2.16)1, system (1.1=) with γ = β2 is reduced to
system (1.5), (1.6), or (1.7) with Jordan matrix  and common factor  by the change ,  or , ,
respectively. Moreover, we have , , and  by virtue of (2.18)1 and (2.19)1.

Next, in each of the obtained systems, we make an arbitrary change of the form (1.2) which transforms
the given system into system (1.8), for which canonical forms will be determined.

In system (1.8), the common factor  has the following coefficients:
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We can always ensure that, e.g.,  = 0 and  = 0 in (2.9). For this purpose, it  suffices to fix the following
relation between s1 and s2 in change (1.2):
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cients  are defined by (2.9) (see [3, Appendix 3.4.1, p. 114]).
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(12) If  > 0, then system (1.8) has the form

(2.11)

( ) If  = 0 (  = 0,   = 0), then system (2.11) takes the form . For r2 = 0,

s2 = 1, and r1 = , this is  with σ = sgn λ2 and u =  = 1.

( ) Suppose that .

( ) If λ1 = –λ2 ⇔ p1 + q2 = 0, then, for r1 = , system (2.11) has the form

. For r2, s2 = , this is  with σ = sgn λ2.

( ) If λ1 ≠ –λ2, then, for r1 = 0, system (2.11) has the form . For r2 =

 and s2 = , this is  with σ = sgn λ1 and u =  ≠ ±1.

In system (2.11), we can also make  = 0 or  = 0; this results in  or , which are preceded

by  according to the second structural principle.

(2) Suppose that D =   = 0, i.e.,  λ1, λ2 = ν = (p1 + q2)/2  ≠ 0 in (2.16)1.

(21) If q1 ≠ 0, then system (1.1=) with γ = β2 is reduced by the change   to system (1.6) with  = ,

 = , and   =  according to (1.6a); if q1 = 0 and p2 ≠ 0 (q2, p1 = ν),

then this system is reduced by  the change  to (1.6) with  = 1,  = , and  =  according  to
(1.6b).

Suppose that change (1.2) under condition (2.10) reduces system (1.6) to system (1.8) whose coeffi-
cients  are defined by (2.9) (see [3, Appendix 3.4.2, p. 116]).

( ) If  = 0 (  > 0), then system (1.8) takes the form . For r1 = 0, r2 =

, and s1 =  (s2 = 0), this is  with  σ = sgn ν and u = 1.

In addition to  = 0, we can obtain  = 0 or  = 0 in system (1.8); this will transform the given system
into one of the forms  and , which are preceded by  according to the second structural
principle.

( ) If  =  > 0, then system (1.8) has the form

(2.12)

( ) Suppose that  = 0 (s1 = 0) ⇔ [ϖ3 = 0 ∨ β = 0 ]. Then (2.12) has the form . For

r1 = , r2 = 0, and s2 = , this is  with σ = sgn ν. Then, renumbering (2.7)1 is performed.

( ) If  ≠ 0 (  > 0), then, for r1 = 0, system (2.12) has the form  . For r2 =

 and s2 =  (s1 = νr2), this is  with σ = sgn ν and u = 1.

Cases ( ) and ( ) for q1 ≠ 0 (β = 0 and β ≠ 0) are united in the statement of the theorem.
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From system (2.12) succeeding forms   and  can also be obtained.

(22) Suppose that q1 = 0 and p2 = 0 (q2 = p1), i.e.,  the matrix H is diagonal in system (1.1=) itself.

Change (1.2) with r1 = , s1 = –β, r2 = 0, and s2 = 1 reduces (1.1=) to   (u = 1) with σ = .

(3) Suppose that D < 0 (p2q1 < 0).  Change  reduces system (1.1=) to system (1.7) with   = –D,   =

, and  = .

Suppose that change (1.2) under condition (2.10) reduces (1.7) to system (1.8) whose coefficients 
are defined by (2.9) (see [3, Appendix 3.4.3, p. 118]).

In other words, system (1.8) has the form

(2.13)

(31) Suppose that ν = 0 ⇔ q2 = –p1; then  =  ≠ 0, because the discriminant of ϖ4

equals D, and D = 4( ). In this case, for r2 = , system (2.13) takes the form

. For r1, s2 = , this is  with σ = 1.

(32) Suppose that  ν ≠ 0 ⇔ ; then   =  ≠ 0, because the discriminant of ϖ5

equals D. In this case,  for r1 = , r2 = , and s2 = , where

ρ = , we have  = 0 in system (2.13), and this is  with σ = sgn ν and u =

  < –1/4.

Making  = 0 in system (2.13), we obtain a SF with larger index. □

Thus, we have proved the completeness of  List 2.1 of the forms  with common factor  having
zero discriminant and the linear nonequivalence of these forms.

Below, we give nonsingular linear changes which make it possible  to distinguish minimal canonical
sets introduced in Definition 1.11 of [2] for the CFs in List 2.1.

Statement 2.2. The only forms in List 2.1 for which the values of the parameters of   can be
bounded are   and : in ,  normalization (2.6)1 with r1, –s2 = 1 changes the sign of σ,

and in   with  = σ and  = u, the change with r1 = , s1 = 0, r2 = ,  and s2 = 

yields σ =  and u = .

Corollary 2.1. According to Definition 1.12 in [2],  = {σ = –1} and  = { }; for  the

other forms in List 2.1,  = .

3. CONSTRUCTION OF CFm,2 FOR  WITH POSITIVE DISCRIMINANT

System (1.1) for  a polynomial (x) with positive discriminant has the form

(1.1>)

Consider the  structural forms up to   in List 1.1 of [2] which correspond to the case l = 2, D0 > 0
(see [2, Statement 1.2]); there are nine  such forms. We normalize them according to the normalization
principles and find  out which NSFm,2,> are canonical.
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Let us prove the list given below contains all canonical forms of system (1.1>) together with their canon-
ical sets from Definition 1.10 of [2].

List 3.1. The seven  and their  are as follows (the row (α, 2β, γ), the matrix H, and the
discriminants D0 and D in (2.16)1 for σ, κ = ±1 and u,  ≠ 0 are also specified):

Statement 3.1. The forms  and   in  List 3.1  are not

CF4,2,>.

Proof. The change with s1 = –s2 and r2 = 0 reduces   to  or   and , to

 or . □
Collection 3.1. In the rest of Section 3, we use the following constants and changes:

>,2,CF m
i

>,2,m
ics

v

> ≥ ⎛ ⎞ ⎛ ⎞= σ σ⎜ ⎟ ⎜ ⎟ −⎝ ⎠ ⎝ ⎠

2,2, ,
4 2

0 0 0 0 1/4,
CF , (0, 1, 0), ,

0 0 1 0 0 1 ( 1) ;

u u

u

>
κ

κ κ⎛ ⎞ ⎛ ⎞= σ σ⎜ ⎟ ⎜ ⎟ κ⎝ ⎠ ⎝ ⎠

2,2, ,
8,

0 0 0 0 1/4,
CF , (0, 1, 0), ,

0 1 0 0 1 0 4 ;
_

> ≥ ⎛ ⎞ ⎛ ⎞= σ σ⎜ ⎟ ⎜ ⎟ −⎝ ⎠ ⎝ ⎠

3,2, ,
10 2

0 1 0 1 1/4,
CF , (0, 1, 0), ,

0 0 1 0 0 1 ( 1) ;

u u

u

> ⎛ ⎞ ⎛ ⎞= σ σ⎜ ⎟ ⎜ ⎟ +⎝ ⎠ ⎝ ⎠

3,2, ,
16

0 1 0 1 1/4,
CF , (0, 1, 0), ,

0 1 0 0 1 0 4 1;
u u

u
v

> >
−

−⎛ ⎞ ⎛ ⎞= σ − σ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

4,2, ,
8, 1 2

0 0 0 1,
CF , (1, 0, 1), ,

0 1 0 1 0 1 ( 1) ;

u u u

u

> >
−

− −⎛ ⎞ ⎛ ⎞= σ σ⎜ ⎟ ⎜ ⎟ +⎝ ⎠ ⎝ ⎠

4,2, ,
,14, 1 2

1 0 1 0 1 1 1/4,
CF , (1, 1, 0), ,

0 0 0 ( 1) ;
a u u u u

> ⎛ ⎞ ⎛ ⎞= σ σ⎜ ⎟ ⎜ ⎟ − +⎝ ⎠ ⎝ ⎠

4,2, ,
23 2

0 0 1/4,
CF , (0, 1, 0), ,

0 1 1 0 1 1 ( 1) 4 ;

u u

u

v v

v

v

> > > = > > > <
κ κ= ≠ = = = κ = = κ = −2,2, , 2,2, , 2,2, , 2,2, ,

4 4 8, 8,{ 1}, { 1}; { 1}, { 1};cs u cs u cs cs

> > > == ≠ = =3,2, , 3,2, ,
10 10{ 1}, { 1};cs u cs u

> > > = > <= > − = = − = < −3,2, , 3,2, , 3,2, ,
16 16 16{ 1/4}, { 1/4}, { 1/4};cs u cs u cs u

> > > >
− −= ≠ ± = ≠ − − −4,2, , 4,2, ,

8, 1 14, 1{ 1}, { 1, 2, 3};cs u cs u

> > = ≠ > − − ≠ − −4,2, , 2
23 { 1, (1 ) /4, , (2 1)/4, (2 )/4},cs u u u u u uv v

> = > <= ≠ − = − − = < − −4,2, , 2 4,2, , 2
23 23{ 1, (1 ) /4}, { (1 ) /4}.cs u u cs uv v

> ⎛ ⎞= σ⎜ ⎟
⎝ ⎠

4,2,
7

0 0
NSF

0 0 1 1
u u > −⎛ ⎞= ⎜ ⎟

⎝ ⎠

4,2,
12

0 0
NSF

0 0 1 1
u u

>4,2,
7NSF > >3,2, ,

10CF > =2,2, ,
4CF >4,2,

12NSF
> >3,2, ,

10CF > >2,2, ,
4CF

± ±
β βϕ = η λ − αγλ ϕ = η λ − αγλ ϕ = τνσ ± γ ϕ = τνσ ± α + γ μ� � � � � � � � �� �

2 2
1 1 2 2 2 1 3 4, , 2 , 2 ( ) ;

> > −= = = = βλ�2,2, , 1
4 1 1 2 2 2{ 1, , 0, (2 ) };L r s r s

−> > − − −
γ= = − γ βλ σ σ = −γη = = γ�

� � � �

1/2 1/23,2, , 1/4 1 1 1/4
10 1 2 0 1 2 2 21 { (2 ) , , 0, },L r D s s r s D

−> > − − −
α= = = α = α βλ σ σ = −αη�

� � � �

1/2 1/23,2, , 1/4 1/4 1 1
10 1 1 2 1 0 2 12 { 0, , (2 ) , };L r s D r D s s

− −> > − −
+ = = αλ = −γη = −αη = γλ� � � � � �

1/2 1/22,2, , 1 1
8, 1 1 1 1 2 2 1 2 1{ 4 , , , 4 };L r s s r r s



VESTNIK ST. PETERSBURG UNIVERSITY, MATHEMATICS  Vol. 50  No. 2  2017

TWO-DIMENSIONAL HOMOGENEOUS CUBIC SYSTEMS 105

Statement 3.2. The only forms in List 3.1 with given parameters values  which can be reduced to struc-
tural forms preceding them according to the structural principles  are as follows:

(1) : (a) for u = –1, the change with r2 = –r1 and s1 = s2 reduces  this form to ;

(b)  (u = 1) is reduced by the same change to ;

(2) : (a) for u = –3, the change with r1 = 0 and s1 =  reduces  this form to  ;

(b) for u = –2, the change with r2 = –r1 and s2 = 0 reduces it to ;

(c)  (u = –1) is reduced by the same change to ;

(3) : (a) for  = σ and u = 1 (  > 0,  ≠ 1), the change   reduces this form to 

with σ = –  and u =  ∈ (–1, 1)  (|u| < 1);

(b) for  = u ≠ 1 and  =   ( ), the change  reduces it to  with u =
 (u ≠ –1, –2, –3);

(c) for  = σ,   = u ≠ 1, and  =  ( ), the change    reduces it   with

σ =   and u =  (u ≠ –1, –2, –3).
Theorem 3.1. Any system (2.1)1 with l = 2 written in the form (1.1>) according to (2.15)1 is linearly equiv-

alent to the system generated by a representative of the corresponding canonical form in List 3.1. For each

, the corresponding (a) conditions on the coefficients of system (1.1>), (b) changes (1.2) transforming
the right-hand  side of (1.1>) under these conditions into the chosen form, and (c) the values of the factor σ and

the parameters u and  in  obtained under these change are as follows:

: (a) D > 0,   = 0,  = 0 in (1.5), (b) , , (c) , ;
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: (a) D > 0, [ ,  ∨ , ] in (1.5), (b) , [  ∨ ], (c) σ=
[ ], u = [ ];

: (a) D > 0,  = 0, ν = 0 in (1.5), (b) , , (c) ;

: (a) D > 0,  = 0 and ν ≠ 0 in (1.5), (b) , ,  with  = , (c) ,

;

: (a) D > 0, in (1.5), , ,  ≠ 0 and 2  = [  ∨ ], (b) , [  ∨ ],

(c) σ = [  ∨ ], u = 

: (a) D > 0, in (1.5), , ,  ≠ 0 and 2  ≠ ,  = , where  = 

and   = , (b) , , [  ∨ ], (c) σ = [  ∨ ], u =

[  ∨ ];

: (a) D > 0, in (1.5), , ,  ≠ 0, and 2  ≠ ,  ≠ , where  = 

and  = , (b) , , (c) σ = , u = , ;

: (a) D = 0, , (b) , (c) σ = 1;

: (1.1>) if D = 0, [  ∨ , ], and  = 0 in [(1.6a) ∨ (1.6b)], then the changes

[ ] and  reduce (1.1>) to  with σ = σβ;

:  (1) (a) D = 0, [  ∨ , ], in [(1.6a) ∨ (1.6b)],  ≠ 0 and   = 0, (b) [  ],

, (c) σ = –σβ;

(2) (a) D = 0, [  ∨ , ], in [(1.6a) ∨ (1.6b)],  ≠ 0 and  = 0, (b) [ ], ,
(c) σ = σβ;

: (a) D = 0, [  ∨ , ], in [(1.6a) ∨ (1.6b)],  ≠ 0 and  ≠ 0, (b) [ ],

, (c) σ = σβ, , ;

: (a) D < 0, ν = 0,  +  = 0 in (1.7), (b) , , (c) σ = σβ;

: (a) D < 0, ν ≠ 0, [  ∨ ] in (1.7), (b) , [  ∨ ], (c) σ = [ ];

: (a) D < 0, ν2 +  ≠ 0 and  in (1.7), (b) , , (c) σ = σβ, ,  =

.
Proof. Depending on the sign of the discriminant D in (2.16)1,  system (1.1>) with β2 > αγ is reduced to

one of systems (1.5), (1.6), and (1.7)  with Jordan matrix  and common factor  by one of the changes
,  and  , , respectively; moreover, we have , | | > 0, because   by virtue of (2.19)1.
Next, for each of the systems thus obtained, we  make an arbitrary change of the form (1.2),  which

transforms this system into system (1.8), for which canonical forms will be determined.

The coefficients  and  of the common factor  in system (1.8) can always  be made zero; as a result,
 in (1.8) will have elements ,  = 0 and ,  = 0.

To achieve this, it suffices to  fix the following two relations in change (1.2):

(3.14)

which imply δ =   =  and, in system (1.8),  = . If  = 0, then  ≠ 0,

and if  = 0, then  =  > 0.
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However, no changes satisfying condition (3.14) yield  and   in List 3.1. But these

forms precede only ,  and they will be obtained from the latter according to Statement 3.23 in

items  and , respectively.

(1) Suppose that D > 0 ( ,  = ). The change  reduces system (1.1>) to sys-
tem (1.5) (see [3, Appendix 3.5.1, p. 119]).

An arbitrary change of the form (1.2) satisfying condition (3.14) reduces (1.5) to system (1.8) of the
form

(3.15)

(11) Consider the case  = 0 ( , , ).

( ) If  = 0 (r1, s2 = 0), then (3.15) takes the form . For r1 = 1 and s2 =

, this is  with σ = 1 and u =  ≠ 1.

( ) If  = 0 and  ≠ 0, then system (3.15) takes the form . For r1 =

 and s2 = , this is  with σ =  and u =   ≠ 1.

( ) If  = 0 and  ≠ 0, then system (3.15) has the form . For r1 =

 and s2 = , this is  with u =  ≠ 1 and σ = .

Renumbering (2.7)1 reduces it to  with the same σ and u.

(12) Suppose that  ≠ 0 and  ≠ 0 ( ). In this case, we have  ≠ 0  in system (3.15).

( ) If  = 0, then  < 0  and .  Therefore, system (3.15) has the form

(3.16)

( ) Suppose that λ2 = –λ1 ⇔ q2 = –p1. Then system (3.16) with r1 =  and s2 =  is

 with σ =  ( ).

( ) Suppose that λ2 ≠ –λ1. Then (3.16) with s2 =  + , and

 is  with σ =  ( ), u = 1, and  =   (  >

0 ,  ≠ 1). According to Statement 3.23, this system is not  canonical, because it reduces to .

( ) Suppose that  ≠ 0. Then  ≠ 0.

( ) We have  = 0 ⇔ λ2 =  ⇔   = , because  = . In this

case, (3.15) has the form . For r1 =  and s2 =

, this is  with σ =  and u =   > –1/4.
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( ) In the case  = 0 ⇔ λ1 =  ⇔  = , system (3.15) has the form

. For r1 =  and s2 = , this is  with

σ =  and u = . Then, renumbering (2.7)1 is applied.

( ) In the case  ≠ 0 ⇔  ±  ≠ 0, system (3.15) with r1 = 

and s2 =  is  with σ = , u =  (u ≠ 1), and  =

 (  ≠ u, 4  > –(1 – u)2).

If  =  or  = u(2 – u)/4, then the obtained form  is not canonical, because it
reduces to  by Statement 3.23.

If  ≠ , , then  = .

(2) Suppose that D = 0 ( ) (see [3, Appendix 3.5.2, p. 128]).

(21) If q1 ≠ 0 or q1 = 0 and p2 ≠ 0 ( ), then the change   or  reduces (1.1>) to system (1.6),
and the latter is reduced by any change (1.2) satisfying condition (3.14) to system (1.8) of the form

(3.17)

( ) If  = 0 ( , ), then system (3.17) has the form . For r1 =  and

s2 = , this is  with σ =  and u = 1. Then, renumbering (2.7)1 is applied.

( ) If  ≠ 0, then   ≠ 0 and  ≠ 0 in system (3.17).

( ) Suppose that  = 0 ⇔  = 0. Then system (3.17) takes the form .

For r1 =  and s2 = , this is  with σ =  and u = –1/4; then, we apply (2.7)1.

( ) If  = 0 ⇔  = 0, then (3.17) has the form . For r1 =  and s2 =

, this is  with σ = σβ and u = –1/4.

( ) If   ≠ 0 ⇔  ≠ 0, then system (3.17) with r1 =  and s2 =  is  with σ = σβ,

u = , and  =  ( , ), because, according to Statement 3.2,
 cannot be reduced to  or .

(22) Suppose that q1 = 0 and p2 = 0, i.e., the matrix H is  diagonal in system (1.1>) itself, and its diagonal

is (p1, p1). Then change (1.2) with r1 = , s1 =  , r2 = , and s2 =  reduces (1.1>) to 
with σ = 1 (u = 1).

(3) Suppose that D =  +    < 0 (p2q1 < 0). From system (1.1>) we obtain (1.7) (see [3,
Appendix 3.5.3, p. 135]).

An arbitrary change (1.2) satisfying condition (3.14) reduces (1.7) to system (1.8) of the form

(3.18)
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(31) If ν = 0 (⇔ ) and , then  = ( )1/2, and (3.18) has the form

.  For r1, s2 = , we obtain  with σ = .

(32) If ν2 + ( )2 ≠ 0, then  ≠ 0.

( ) If  = 0 ⇔  = 0 (  ≠ 0), then system (3.18) has the form

For r1 =  and s2 = , this is  with σ =  and u =

  < –1/4. Then, renumbering (2.7)1 is performed.

( ) If  = 0 ⇔  = 0 ( ), then system (3.18) takes the form

For s2 =  and r1 = , this is  with σ =   and the

same u as in ( ).

( ) If   ≠ 0 ⇔  ≠ 0, then system (3.18) with r1 =  and s2 =

 is  with σ = , u = , and  =  + 

( ), because, according to Statement 3.2,  cannot be reduced to  and

.  □
Below, we give nonsingular linear changes which make it possible  to distinguish minimal canonical

sets introduced in Definition 1.11 of [2] for the CFs in List 3.1.
Statement 3.3. The only forms CFm,2,> in List 3.1 for which the values of the parameters of csm,2,> can

be bounded are as follows:

(1) in , normalization (2.6)1 with r1, –s2 = 1 changes the sign of σ; for  = u, | | > 1, the change

with r1, s2 = 0, s1 = 1, and r2 =  yields u = ;

(2) in , renumbering (2.7)1 changes the sign of σ, and in  with u = 1, so does the change
with –r1, r2, s2 = 3–1/2 and s1 = 2s2;

(3) in  with  = σ and  = u, | | > 1, the change with r1, s2 = 0 and s1, r2 =  yields σ =

 and u = ;

(4) in  with  = σ,  = u, | | > 1, and  = , the change with r1, s2 = 0, s1 = , and

r2 =  yields σ = , u = , and  = .
Corollary 3.1. According to Definition 1.12 in [2],

for the remaining canonical forms in List 3.1, mcsm,2,>,* = csm,2,>,*.

ADDITION
In [4, 5], on the basis of real canonical linear transformations, Markeev classified the unperturbed

autonomous Hamiltonians of the third and fourth orders and determined the canonical forms of such
Hamiltonians (in our terminology). Thus, for Hamiltonian systems,  all Hamiltonian normal forms of the
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second and third orders have been  obtained. It is interesting to compare such forms with normal forms
of the second order, which were first obtained by Sibirskii [6] and, later,  by Basov and coauthors (see
[12, 13] in the bibliography of [1]) on the basis of different principles, as well as with the normal forms of
the third order obtained in the present cycle of papers. In the case of coincidence (coincidences do occur),
it is interesting to compare the structure of the arising Hamiltonian and non-Hamiltonian generalized
normal forms.

We also mention that, in [5], separate canonical Hamiltonians of the third order were used as unper-
turbed Hamiltonians for the purpose of a subsequent normalization of Hamiltonian perturbations of any
finite order, after which a series of results on the stability or instability of an equilibrium position deter-
mined by conditions imposed on the corresponding terms of normal forms were obtained.
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