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Abstract—The present article is the fifth in a cycle of papers dedicated to two-dimensional homoge-
neous cubic systems. It considers a case when the homogeneous polynomial vector in the right-hand
part of the system has a linear common factor. A set of such systems is divided into classes of linear
equivalence, wherein the simplest system being a third-order normal form is distinguished based on
properly introduced principles. Such a form is defined by the matrix of its right-hand part coefficients,
which is called the canonical form (CF). Each CF has its own arrangement of non-zero elements, their
specific normalization, and canonical set of permissible values for the unnormalized elements, which
relates the CF to the selected class of equivalence. In addition to classification, each CF is provided
with: (a) conditions on the coefficients of the initial system, (b) non-singular linear substitutions that
reduce the right-hand part of the system under these conditions to the selected CF, (c) obtained values
of CF’s unnormalized elements.
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1. INTRODUCTION

The present study is a direct continuation of papers [1, 2], preserving all the designations introduced
earlier. Because of the large number of references to the formulas from [1], their numbers are labeled with
a superscript “1”. For example, system (2.1) from [1] is denoted as (2.1)'. This work also includes the links
to proofs performed in the Maple package and hosted in the database provided by
https://github.com/Vladimir-Basov/DE or https://github.com/A-Cherm/DE.

This paper completes the classification of real systems (2.1)":

. . 3 2 2 3
X = B(x, %), X =Px,x), (B =ax +bxix;,+cxx; +dx; #0),
where polynomials P, and P, share a factor of non-zero degree /.

Set of systems (2.1)! was successfully divided into classes of linear equivalence while distinguishing a
generatrix in each of them, which is the simplest system called the cubic normal form and identified with
a matrix of coefficients from its right-hand part, i.e., the canonical form (CF).

The classification proposed is aimed at maximally simplifying the reduction of perturbed systems
(1.4)! with various CFs in the unperturbed part to generalized normal forms. The definition of generalized
normal forms, as well as the constructive method of the obtainment of their omnifarious structures, can
be found in [1, Section 1.3]. Further, based on the reasoning from Section 1.4 in [2, Section 1] the struc-
tural and normalization principles were developed, which made it possible to optimally determine the CF.

Let us consider a classification of two-dimensional homogeneous cubic systems, underlied by other
principles of the assignment of CFs.

Firstly, A. Cima and J. Llibre [3] classified homogeneous fourth-order polynomials in two variables
with real coefficients or, for short, binary forms, finding their algebraic invariants relative to linear non-
singular substitutions and distinguishing the generatrices, canonical binary forms (CBFs). For this pur-
pose, they adapted the methods applied by G. Gurevich [4] for the classification of complex binary forms,
getting ten CBFs.
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328 BASOV, CHERMNYKH

Then, arbitrary system (2.1)! was associated with binary form F(x,, x,) = x, P,(x;, X,) — X, P,(x,, x,) while
distinguishing a three-parameter family of systems also comparable with binary form F.

It was proven that the linear non-singular substitution reducing F'to any CBF transforms the initial sys-
tem to a system comparable with the same CBF.

This resulted in the algebraic classification of systems (2.1)!, allowing one to divide them into ten lin-
early non-equivalent classes with explicitly discharged generatrices, i.e., three-parameter families of sys-
tems, where each of them is related to its own CBF. The families of systems distinguished can be naturally
called the CFs of the given classification.

These results enabled one to perform a complete topological classification of phase portraits in the case
when polynomials P, and P, share no factor, which is true for nine CBFs and corresponds to / = 0 in the
terms of the present cycle of studies. If /=1, 2, 3, then CBF is identically zero.

Note that two-dimensional homogeneous quadratic systems related to real homogeneous third-order
polynomials were classified in [5].

2. ASSIGNMENT OF CANONICAL FORMS AND THEIR PERMISSIBLE SETS AT / =1

Let us distinguish the structural forms up to Sﬁgs’l inclusively from list 1.1 in [2], which refer to a case
with / =1 (there are 41 such forms in total) and normalize them in accordance with NP from [2, Section
1.2]. We are going to establish that normalized structural forms (NVSF, see [2, Definition 1.6]) are canon-
ical (CF, [2, Definition 1.10]). The notation explanation of a and K subscripts may be seen in [2, Defini-
tion 1.3] and [2, Definition 1.7] respectively.

00 1000 010
Statement 2.1. Only NSF/"' = c(” ”J, NSFAL = c( j NSEY, = G(V j(uv = 1),

0011 lvuo 10u0
NSEM = G(u 00 uJ NSEH — G(O 0u uj NSFS — G(u vV Vv—u Oj NSES — G(u v 0 u—vJ
. o1rt1o) 7 1100/ 00 1 1) 77 001 1 )
51 uOvu+v o )
NSF™ = (5[ 001 1 j at all permissible values of the parameters can be reduced to any preceding struc-

tural form by linear substitutions (2.2)" in accordance with a SP from [2, Section 1.1].
Proof. 1) NSF."' by substitution with s, = —s,, 7, = 0 is reduced to SF;"';
2) NSF,fl’l5 by substitution with 7, = —2uv"'r;, s; = 0 is reduced to SF‘fg;
3) NSE,5, (v # u™") by substitution with s, = 0, r, = ur, is reduced to SF';
4) NSF;' by substitution with s, = —s,, r, = r| is reduced to SF,;

5) NAS’F;;1 by substitution with s, = —s,, r, =r; at u = 1 isreduced to SF;;!, atu = —1lisreduced to SF[fiL,K,

while at u # £ 1 by substitution with s, = —s,, r, = ur, is reduced to SF,;;

6) NSFIS’1 , NSFZS’I, and NSFSS’1 by substitution with s, = —s,, r, = 0 are reduced to SF;’].

As follows from the verification, other 33 NSF™ ! are CP™ .

12

Note 2.1. Here and hereinafter, saying that “is reduced to any SF”'” means that either this form or one

of its antecedents is obtained.

Let us write out the available CF™ ! forms, their permissible sets (ps), and canonical sets (cs) from [2,
Definitions 1.8 and 1.9], where cs™ ' will be established in statements 3.1 and 3.2 below (#ps, fcs mean that
there are no limits on the parameters). Let us also give the decomposition of each form into line (1, B) and
matrix G, as was made in system (2.9)' x = (o, B)xGq ?/(x), as well as resultant R, # 0 (see [6]) of matrix G.
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TWO-DIMENSIONAL HOMOGENEOUS CUBIC SYSTEMS 329

List 2.1. All CF,-"”1 up to CFSS’l inclusively with designation of coefficient B, matrix G, resultant R,, ps;" !
and es™ (6, x=*1;u,v,w=0,00=1, R, #0).
I) 24 forms with B = 0 (d,, d, = 0, G is the first three columns of the respective CE”’"):

1)CF2,1_61000 RZZL C3'l— 1000 R2=1,

P 0010)  gpstt; 0w 10) sl

P og(1000) R=i, »ept oo 400 RTh

w00 sl C o) gt
CF =00100 R, = xu, F4,1:Guv00 R =u(—-v),
@ldx K0u0) ipsi ’ 0110) ps=(#u;

a 1100 R =u(u+v), il 0100\ R =uv,
CF:;,lz =0 D 41 . a,24 = ) 41,
vOuoO DS, = {V # _u}, v1iuo tpS24,
0010 R =1, ©u010) R =u
3 CF2,1 =G 31 =0 2 s
) ¢k (1 00 oj’ 1psy"; ° 0010) s,
u0x0 R, = xu, u010 R, =1,
CFy, =0 : =0 :
ILx (0 10 0) sty v 1000)  psiys

e (0010 R=Lo o (0u10) R=l
WETL0u0) sl T 1000) sl

cpi (0010 R =1, cpi gtV 10 R, =u’,
21w 00) s P 0010) gyt

ulvOj R, = uv, g (vOlO) R, =v(u" +v),

CFY' =0 =c
! [0 100 T 0w10) pet — 2 iy,

41,
sy ;

uvloj R =1, CF4’1—G(VOIOJ R =u’v+1,
s a2l — s

CFy' =0
Y (1000 ! 1u00

4,1, X _
psig ; ps;7l ={v#—-u’);

0110 R, =v(u+v), 0010 R, =1,
CFY =0 , CFYl =0 ,
a2 [V 0u Oj @30 lvuO fPS;()l;
0110 R =v(v—u), 0 R =ulu—v+w),
C R (v —u) CES —o[" VO R ( )
vu(OO DS33 ={V¢ll}; 0110

IT) 9 forms with B = 1 and its own G (R, = u? and ps = fps in the first six forms):

CF = uu0O uOO‘ CEM — ul0—-uo u—uO'
=0 - %o01) " T% o001 1) %oo 1)

4] )
DSy ={v # —u};

CE14,| s
. ( psy = {w#v—u)

0011
CF4’I_GMOOM Gu—uu. CF4"—60u0_u GOu—u_
BTE010-1) 01 —1) #771001 ) 1-11)
CF4’1—(500uu (500”' CF4’1—(500uu GOOu‘

2771001) 1-11) 7 10-10) 1-10)
CFY = o uvv—u 0 s uv—-u 0 R, = uv,
>olor 0 -1) 0 1 -1) ps¥l=p=u;
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CFS’I—O'MVOL{_V Guv—uu—v Rzzuz,
oo -1 ) 0 1 =1) pdl=pu;

CFS’I—(SMVV_MO 6uv—uO Ro=u —uv+v’,
77010 0 1) =1 1) pdt =y 2w
Diesy'; esy' =u =2, esy ={u>1/4);

2) tcs}j”l, csfj‘l‘K ={(qu) = 1,1/ 2)}; cs;"1 ={v#u-— u_l,2u(u + 1)_1},
esh =uE v, 24vu—-1)>1,  esy ={u=1/2,v <—-1/2};

3) tcsg’];tcsg’],tcsfif,(,tcsf&l,tcsf(’,l, csg’l1 ={u # 2}, tcs;’zl;
cs14’l ={u # 1}, csf’] ={u#-1/2,-2};

s = {u # vy = 2)/&w,v) # (1,-2),(=1/9,1)}; ey ={v # uQu—1)"},
csl43’l ={u#-1/3,2/3}, csft;l ={v # u,—uz;v #u/2 at u >-1/2},
cs§§l ={v # —14_2,(u3/2 + 23/2)u_l/2/2; (u,v) # 4723 -(3,D},
esy = {u# v /4,07 —8)@v) '}, sy ={u = —3,-3/4,3/2,6,0,},
sy = {u % —1/2%v # —uu’,(1 = 2u)/8,(1 — 2u)’ /8, (u,v) # (95, 0,)},
esyy = w07 =8)@) i v) £ (2,3),(3,-3)),
csyy = {u # —3,-3/4,3/8,6},
esyt ={u # Lv # u,(4u +1)/2,6u + 1+ Qu + 1)(8u +1)?)/16},
cswl = {u = =2,-1/8,1+3N2/4,1/4,4};  cst' ={v # u,3.2,},

esg' = #u32), o5 =l Euldd), e’ =(wEv-uldd)

Here {..., 3.2;} means that the values of parameters do not meet the conditions from item i (i = 1, 2, 3,
4) of Statement 3.2 below. The values of 1, are presented in the following Collection 2.1.

Since List 2.1 is composed of CF™ ! with only B = 0 or B = a, let us clarify the circumstances at which
the forms with these 3 can be transformed into each other.

Statement 2.2. Let system (2.9)! with POl = o, + Px, by linear non-singular substitution (2.2)' be reduced
to system (2.11)' y = B/(»)Gq"\(y) with B} = 6x, + Px,, then 1) ato.=1: B =0 & s, = —Ps,, 2) at p = 0:
B=0es5=0,3)arB=0: a=Por=s5#0,49)ata=p: f=0ss,=—s5, #0.

Proof. In accordance with Theorem 2.1 from [1], & = o, + Br,, B = as; + Ps,.

Collection 2.1. The numerical constants used below:

O, =p+20p" +5 9, =((29 +27)p”> — (10529 —130)p +1000)/600, p = (429 +92)"*;
0, = (V29 —17)p” + (429 = 24)p —16)/24, 0, = ((72 —1329)p” — (9v29 — 59)p + 72)/36,
O =(+4p /6, Vg =22p"+9p+8)/(p’ —18p+4), p=2029+108)";

9, = 8p” + (V57— p +68)/12, O = (V57 + 85)p” + 32(+/57 — I)p + 640)/96,

By =B —p—1)/3, Oy =(11=V57)p> +4(/57+5p+32)/96, p=GV57+1)";

B, = (W17 -9)p> =417+ 1)p—40)/8, O, =-p+4p™, p=@V17+2)";
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B3 = (p° =77 -9p—16)/4, 0, =-3((T7-9)p” —4p +24)/8,
Vs =p/6+203p)", B = (V77 =25)p> —(NTT—6)p —8)/24, p = (477 +36)"".

3. ASSIGNMENT OF CANONICAL AND MINIMAL SETS FOR CF™!

Statement 3.1. Only the following forms with m < 4 from List 2.1 at the given values of parameters can be
reduced to the antecedent structural forms:

1) NSF;’1 at u = 2 by substitution with r, = —r,, s, = 0—to SFZz’l;

2) NSF;SJ at u < 1/4 by substitution with s, = (1 + (1 — 4u)/?)s,/2, r, = 0—to SF,"";

3) NSFy\ atx =1, u = 1/2 by substitution with r, = 2'r,, s, = 0—to SF;";

4) NLS’I’?;{1 at u = 2 by substitution with s, = 0, r, = —r,—fo SF63’1;

5) NSF41 a) at u = —1 by substitution with r, =0, s, = —s,—1to SE3 5

b) at u =1 by substitution with r| = r,, s, = —s,—to SF]31’1;

6) NSF34‘1: a) at u = —1/2 by substitution withr, =0, s, = —s,—to SF33’];

b) at u = =2 by substitution with r, =0, s, = 2s,—to SF14’1;

7) NSFS4’1: a) atu =1, v = =2 by substitution withr, =0, s, = s,—fo SI7232’1;

b) atu=v(v — 2)/4 by substitution withr, =0, s, = (1 —v/2)s,—t0 SF4’1'

c¢) atu=v(2v — 3)/9 by substitution withr, =0, s, = (3 — 2v)s,/3—to SF34 L

8) NLS’F;"1 (v #u): a) atv =2 — u" by substitution with r, = —u"'r,, s, = 0—to SF33’1;

b) atv =2u(u + 1)~! by substitution withr, =0, s, = 2(u + 1)"'s,—to SEZ’}K;

9) NSE‘:’1 atv = uQu — 1)72 by substitution with s, = 0, r, = (1 — 2u)r,—to SFs4’1;

10) NSE‘;‘l (v # —u): a) at u = 1/2 by substitution with s, = —s,, r, = 0—to SFIZ’}K;

b) at 4v(u — 1) < 1 by substitution with r,= (1 + (1 — 4v(u — 1)) 2v)~'r,, s, = 0—to SE™;

11) NSFS’]: a) at u = 2/3 by substitution with r, = 2r,, s, = —s,—to SF33’];

b)atu= —1/3 by substitution with r; = r,/2, s, = —s,—t0 SE‘I"I;

12) NSEY' (v = —u?): a) at v = u/2, u > —1/2 by substitution with r, = (1 — Qu + 1)>)r,/2, s, = (1 +
Qu + 1)1/2)s2/2—zo SE*;

b) at v = u by substitution withr, =r, s, = 0—to SFIA}";

c)atu=—1/4, v = —1/12 by substitution with r, =0, s, = 2s,—to SFIA;’I;

13) NSFI‘;’I: a)atu= v2/4 by substitution withr, =0, s, = —vs,;/2—to SF,39’1;

b) atu= (v3 — 8)(4v)~! by substitution with s, = 0, r, = —vr, /2—to0 SF:’I;

14) NSF24 a) at u # 1/2 by substitution with ry =0, s, = (1 — 2u)s,—to SF12 ;

b) atu=1/2, v > —1/2 by substitution with r, = (1 + 2v + 1)12)r,, s, = 0—t0 SF,"";

15) NSES' (v # —u?): a) at v = u/2 % (u/2)~"/2 by substitution with r, = *(u/2)"r,, s, = 0—to SF."';

b) at u=3/4%3, v = 4723 by substitution with r, = 2'/r,, s, = =3 x 2-3s,—t0 SF3";

16) NSin’l: a) at u = —3 by substitution with s, = 2s,, ¥, = —r,—1o SF;Q’I;
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b) at u = 6 by substitution with r;, = 2r,, s, = —s,—10 SFS4’];

¢) at u = —3/4 by substitution with r, = r,/2, s, = —s,—10 SF{I’I;

d) at u = 3/2 by substitution with s, = 3s,/2, r, = —r,—to SFS’];

e) at u =0, by substitution with s, = 0,8,, r, = —r|—to SE?{I;

17) NSI"}‘;’l (v # —u): a) at v = u? by substitution with r, = ur,, s, = 0—to SFIT’I;

b) atv = (1 — 2u)?*/8 by substitution with r, = (u — 1/2)r,, s, = 0—to SFS4’1;

¢) atv = (1 — 2u)/8 by substitution withr, =0, s, = —2s,—to SF,j’l;

d) at u = 05, v = Oy by substitution with r| = Osr,, §; = U¢S,—10 SE‘;’I;

e) at u = —1/2 by substitution with s, = —s,/2, r, = 0—to SF;;’I;

18) NSI*}‘(‘)’I: a)atu= - by substitution with r| = —v_lrz, 8, = 0—to SFI‘:’I;

b) at u= (v’— 8)(4v )~ by substitution with r=-vt/2,s,=0—to SF;"I;

¢) atu =3, v = =3 by substitution withr, =r,, s, = 0—to SFS’];

d) atu =12, v = 3 by substitution with r, = —r,, s, = 0—to SF;:;I;

19) NSF;;’I: a) at u = —3 by substitution with s, = 2s,, r, = —r,—to SFli’l;

b) at u = 3/8 by substitution with ry = 2r,, s, = —s,—to SI754’1;

¢) at u = 6 by substitution with r, = 2r,, s, = —s,—to SE‘I’I;

d) at u = —3/4 by substitution with r, = —r,, S, = 25,—10 S}Q‘(‘)’l;

20) N‘S’}fﬂ;;’1 (v # u): a) at u = 1 by substitution withr, =0, s, = —s|—to SF;;’I;

b) at v = (4u + 1)/8 by substitution with r, = 0, s, = —2s,—t0 SEi’l;

c)atv = (6u+ 1% Qu+ 1)(8u+ 1)'/2)/16 by substitution with r, = —(1 £ (8u + 1)!2)r,/4, s, = 0—t0
SFM,

21) NSF%": a) at u = —1/8 by substitution with r, = 2r,, s, = —s,—10 SFS4’1;

b) at u = 4 by substitution with r; = 2r,, s, = —s;—10 SF;}";

¢) at u = —2 by substitution with s, = 4s,/3, r,= —r,—to SEg’l;

dyatu=1=x 3\/5/4 by substitution with s, = (1 £ l/x/i)sz, ry=—r—Ito SEi’l;

e) at u = 1/4 by substitution with ry = —r,, s, = 2s,—to SI%%I.

The proof can be found in the file statementl.mw in the database (see Introduction).
Here and hereinafter: 1) “...{ = [¢, v V,]..N =[G, V V,]...” means that either { =¢;, N =¢,, or { =,

N =",; 2) “0,: P(0)” means that 0, is any real zero of polynomial P; 3) when reducing NSF,-'"’1 from List
2.1 to antecedent forms, substitutions are chosen with taking Statement 2.2 into consideration.

Statement 3.2. Only at the given values of parameters, NSES’l from List 2.1 are reduced to antecedent
structural forms in accordance with one of SPs:

1) NSF;’1 (w#v)ya)atv=|[u—3v3u—1vu+1,u=*3] by substitution withry= —r, [s, =0 v s, =
0vs,=(1—u)s/2]—to SE";
by atv = (u— 1)2u', u # —1 by substitution with s, = —s,, r, = ur,—to SFS4’1;

¢) atv =2(u — 1) by substitution withr, = 0, s, = —s,—t0 SF74";
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d) lu=—1, v #=—4 v v =2u] by substitution withr, = [(v/2 + 1)r,v 0], s, = —s,—10 SFI‘}‘I;

e) at u =O,, v = Og by substitution with r; = Ogry, | = OpS,—10 SFS’];

f) atv =4u, u*= —1 by substitution with r, = ur,, s, = —s,—to SF{;’I;

g) atv =3 + 1), u# —5 by substitution with s, = (u + 3)s,/2, r, = —r,—to SF;;‘I;

hyatv = Qu*+ 1+ Qu+ 1)(5—4u)">)Qu ~+ 2)7", (u, v) # (=5,—12) by substitution with r, = —ry, 5, =
(3 % (5 — 4u)'2)s,/2—10 SFyy';

Nv=u—1%20-uu=-1 by substitution with r, = —r,, s, = TN —us,—to SF;(‘]’I;

J) at u = —(3520;, + 3960, + 8390, + 10050 — 12970, — 105)/46, v = —(3280., + 43860, + 8440, +
10980; — 10460, — 366)/23 by substitution with r, = 0,r,, s, = —(40, + 390} + 4960, + 1116} + 310, —
60)s,/138—10 SFyy' , 0,: 406 + 705 + 1304 + 180° — 662 — 90 — 3;

k) at 2u =0, — 20, + 3, 2v = =30, + 60, — 110, by substitution with r, = 0,r,, s, = —(0; — 02 + 30, +
3)sy/2—10 SFy', 0,1 0% — 03 + 202 + 30 + 3;

v ="2u+ 1)u+2)"", us—3 by substitution with r, = —r, s, = (u + 2)s,—to SFyy';

m) at 6u=—20, — 0;+ 40, — 15, 3v = —46, — 30}, + 80, — 21 by substitution with r, = 0,r,, s, = —(20;, +
302 + 9)s,/6—10 SFy', 0,: 20* + 303 — 302+ 90 + 9;

2) NSF65’1 (u#v):a) atv =2 — 3u by substitution with r;, = 2r,, s, = —s;—10 SF;’I;

b) atv = 3u — 2)/2 by substitution with r, =0, s, = —s|;—10 SF74’1;

c) atv = 3u + 1)/2 by substitution with r, = 2r,, s, = —s,—to SF,‘}’I;

dyatv=[Bu—1v1—u+2W?—u+ 1) (u,v)*(8/3,3)] by substitution with ry= —r,, [s;,=0v s, =
u—2F @ —u+ D) (u—1)"'s)]—t0 SE;

e)atv =3u + 3, u# —8/3 by substitution with s, = 3(u + 2)s,/2, r, = —r,—to SF;;’I;

fatv=(—u?>—-2uzxQu+ 1) +u+ DY)+ 1), (u,v)# (—8/3,—5) by substitution with r, = —r,,
s,=Ww+2+ @+ u+1)"2)s,/3—10 SFy';

g) atv =u—1v —3u — 1] by substitution with s, = [0 v 2s,], r, = —r|—to S}%‘(‘;l;

hyatv = 3u? + 4u + 2)QQu + 2)~', u # —4/3 by substitution with s, = (u + 2)Qu + 2)~s,, r, = —r,—to
SF3';

atv =[(=1TB3)Cu—1)v1—ut @u?—3u+3)"2 (u,v)= (14 £ 4J10)/9, (4 £ 23/10)/3) v (263 —
493< +40, + 1)((0, — 2)(20,, — 1)0,)7", 0, = —1] by substitution with r, = [(1 x/g)rz/2 V—rVvo.nl,s =
OV —[4u® — 9u + 1 £ 2u(4u? — 3u + 3)V2)(15u — 3)~'s, v (205 — 26, — 1)(30,)"'s,]1— 10 SF, 0,1 2(u —
DO — Bu—7)0+2(u—2)0—1;

J) atu=35/3, v =12 by substitution with s, = 2s,, r, = —4r,—to SFS’];

k) atu = —35/3, v = —41/4 by substitution with s, = 2s,, r, = —4r,—fto SF248’1;

D) atu=—7/12, v = 3/2 by substitution with r, = 2r,, s, = —4s,—to SF;;’I;

m) atu = —5/9, v = 17/12 by substitution with r| = 2r,, s, = —4s,—to SF;E’I;

3) NSE> (u#v): a) atv = 2u+ 3 by substitution with r, =0, s, = —s,—10 SF74’1;

by atu= (v — 1)(v — 3)(v — 2)~" by substitution with ry,= (2 — v)r,, s, = —s,—to SF;";
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c) atv = [2u v 3 — u] by substitution with r, = [0 v (u — 1)r,], s, = —s,—10 SFIAI’I;

d) atu =9, v ="9 — 3 by substitution with r, = O ,ry, s, = —(%; + 3)s,/6—to SE;

eatv=[u+3v2u+2+ W+ 6u + 12, (u, v) # (—6,—9)] by substitution wzth r=—r,s;=[0v
(u+3 % W+ 6u+1)12)s,/2]—t0 SF";

f)atv =73 — 1), u# 6 by substitution with s, = (3 — u)s,/3, r, = —r,—to SF;;’];

g) atu=—180; — 240, + 250 — 160, + 4, v = —(2610} + 4560, — 1870; + 1480, + 23)/5 by substi-
tution with r, = 0,ry, s, = (905 + 390, + 370 + 20, + 7)s,/15— t0 SFy', 0,: 985 + 216% + 403 + 302 +
30 + 1;

hyatv=Qu*>—-2u+5F (2u — D1 +4u)"?)Qu — 47", (u, v) # (6, 15) by substitution with r, = —r,,

=3+ (1 +4u)"?)s,/2—t0 SFy';

iyatv =u+ 17 2u+ 1)V2 by substitution with ry= —ry, s, = *(u + 1)V2s,—to SFyy";

J) atu =Y, v ="0, by substitution with r, = O sry, s, = O¢5,—10 SF;;’I;

k) v =Qu?—4u+ 3)(u—2)~", u# 3 by substitution with ry = —r,, s, = —(u — 2)s,—to SFyy;

Datu=—0, —0, +2,v=—60, — 20 — 56, + 8 by substitution with r, = 0,15, s, = —05.5,—t0 Sﬁ}‘é’l,
0,:0°+0°+02—0—1;

myatu=_[v(3v —10 % (v* + 12v — 12)/2)(4v — 8)~' v (—40; + 2(v — 1)0, + 2v — 7)/3] by substitution

withr, =[0V (=20; + v0, — 2)rl, s, =[(v + 2 £ (v*+ 12v — 12)2)s,/4 v O,5,]—to SF>', 0,: 20> — (v +
2)0% +2(v + 1)0 — 3;

n)atu= (9 — 0, —v + 1)(0, — 1)~ by substitution with r, = 0,r,, s, = ((2v — 3)0,, + V)(G —(v—2)0, —
2) s, —10 SF', 0,:04 — (2v —3)03 + (v — 3)(v + 1)02 + (3v” — 6v + 4)0 + v7;

4) NSF;’1 (w# v — u): a) at v = —2 by substitution with r, = 0, s, = ws,—to SFy;;

byatv=[Qu—-1/2vQu—1DQBu—-1)"1,w=[(u—-2)/4v —Qu — 1)(3u — 1)7?] by substitution with
r=[—r/2v —Gu—1)""r],5=[0v GBu—1)u—1)Qu—1)"'s|—to SF"";

c)w=v(uv —2u + 1)(2u — 1)72 by substitution with s, =0, r, = (1 — 2u)v_1r1—to SFS4’1;
d) atw = —v(u— 1)~ by substitution with s, = 0, r, = —(u — l)v_lrl—to SFI‘:’I;

eatlv=Q0Cu—-1)/2,w= (3u —D/Avu= WL DHW2E2) 2w 2 v =Qw+ D(FEw>+2)7"] by
substitution with s, = [—s,/2 v Fw'"’s,], ry = [0 v (=1 % 2w/ w=12(w'/2 £ 2)~1r|]—t0 SEY";

f)atw=v(v —2)(4u — 4)~" by substitution withr, =0, s, = (2 — v)Qu — 2)"'s,—10 SFM’ ;

g) at w = v by substitution with r, = vr,, s, = 0—to SF{;’I;

hy at u = —((16w + 18)0; + (4w? — 2w)0, + w* + 14w? + 30w + Dw(w + 6)2, v = (Wb — 2w0, +
w2 + dw — 3)(w + 6)~" by substitution with s, = 0,5,, ry = (605 + 2w, + 2w + 3)(w(w + 6))~"'r,—t0 SFy
0,:20°+ 2w+ 1)0 + w;

iyatw= (v +2)(uv + v — 2u)QQu + 1)72 by substitution with r, = 0, s, = —(v + 2)QQu + 1)"'s,—t0 SFyy';

HDatw=v (4u)*l by substitution with r, = 0, s, = —v(2u)~'s,—t0 SF30’ ;

k)atu= (v2 +2F (v + 1)o)Bv —6)", w=—(v + 1)(v F o) by substitution withr, = (v £ 0)ry, s, = (—v —
2 F 20)s5/3, where o = (v’ + v — 2)!2—to SF";
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) atw= —(v + Du~" by substitution with r, =0, s, = —(v + Du"'s,—t0 Si@‘;’l;

m)yatv=—Qu*+4u+ 1)QBu+ 1) u+ 1), w=—Gu?+ 4u + 1)3u + 1)2(u + 1)~ by substitution
with s, = —Qu + 1)Bu+ 1)~ (u + 1)7ls,, r, = Bu + 1)r,—to SFy';

n)at|v= —(W(ﬁ< -0, tu— 1)(9,;1 vw=vQuv =3u+1)Bu—1)2vw= Qv —u—1)/4] by substitution
with ry= [0, v (1 = 3u)v "' r, v 0], 5, = [(u — DY(WB,) s, v O v —25,]—10 S, 0, w?0% — wh? — w(u +
DO—u+1;

o)atw=1|v —3u/4v —((v — )0, + u — 1)6;2] by substitution with ry = [0 v 0,1/, s, = [-2s, v —
0, (vO, + 3u— 1)(vO, + u— 1)"ls]—10 SF.', 0,:v°0° + (v + 2uv — 2v)0* + (6uv —2v — 3> —2u + 1)0 +
S5u> —6u+1;

patw=vQ@uv —3u+ DGu—-1D2vu=0"—v+7)/9,w=2vu=((13v — 16w — 6)9,2l< + (dvw —
v2 — 2w+ 2v — 3)0, + 8w2 — 2vw + 3w)(36,)2] by substitution with r, = [—v(3u — 1)"r, v —r, v 0,75,
=10V (v —=2)s,/3v — (02 + Qv — 1B, +w)(3wb,) s;]—10 SF', 0,: 03 + Qv — 4w — 1)0> + w(v —
1)6 + 2w?.

The proof can be found in the file statement2.mw in the database (see Introduction).

Corollary 3.1. List 1.1 contains the CFs of (4.1) with their own canonical sets.

Proof. The canonical sets for each form from List 1.1 were obtained by eliminating those values of
parameters from the permissible set, at which the chosen form is reduced to antecedent one in the appro-
priate item of Statements 2.1 and 2.2. All canonical sets obtained are not empty, and hence each form of
the list is canonical.

Statement 3.3. The values of parameters in cs™ ' can be limited only in the following CF™ ' from List 2.1,
videlicet: 1) in CF33’l at u =2 substitution withr, = —1, 5, =0, ry, s, = 1, while in CE?{}K substitution with —r,
s, =—1, s, r, =0 change a sign of G; 2) in CF;’1 atu, = u < l substitutionwithr,=1,s,=1 —u,,r,=0,s, =
Lresultsinu=2—u, (u>1,u#2);3)in CFI4’l at 6,, = G, u, = u substitution with r\, s, =0, s,, r, = | u, |_1/2

]/2|U*V _

results in G = G, sign uy , u=uj ;4) in CF74’l (v #2—u"Yato, =0, u, = u substitution withr, = |v — 1|
2u, + 1772, 5, =0, 1, = (1 —u)(v — D7, 8, = (v — D) Ny — 2u, + 1)r, results in 6 = o,sign((v —
D(uyv —2u, + 1)), u= (v — u,)(uyv — 2u, + 1)~ and the same v.

Corollary 3.2. Based on Definition 1.12 from work [2], one has: acs33’1 ={oc=—1atu=2}, acsg’1 ={u<

1}, acsfg&,< ={o=—1}, acsf’l = {ju| > 1}, acs;"1 ={u <1 atv # 1}; for other canonical forms from List 2.1
mes™ = cs™ L,
Collection 3.1. The constants, polynomials and substitutions used below are as follows:

D =5 —4py, K= p+[E )

. L) 2 - ~ -1 1/2
K3 =p(G—2) =Gy, K4=¢ +4D;, Ks=g(+ |CI2| K4/ ),
2 o~ ~ o=l 1/2 e =1 ~ o | 1)2 g 1
Ko =@ +45,G 1), & =—-30+[@] QB K = — (< +[d| k2B
~2 —~ o~ - ~ -~ ~ o~ -~ o~
3D Ko =8 + P+ Gith, Ko =G +2h, Ky =qh— Pl —Gih, K = §f — Gib,
e 22 e S 22z 22 2 ez
Kis =Dl — b, Ky =206 +¢40 —ph, Ks =26 +¢1, Ke=104L +¢h, K7 =4 —4ph,
R S . T N > o
Kig = 4Pt — q; +2q:5 =441, Ko =4ph — G —24ih, Ky = Git, — 2451,
+ - 12 + 0 PV + 172
Ky =—¢ Kl; s Kp =4 —4ph + gL (g + tz)Klé s, Kpn =Kot Kl; )
R NP - 12 N R
Koy = 4Pt — § — 2G5 + 24,0 £ 0K, Kys = (26 — §))” + 84,1,
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+ 12 t A s 12
Ko = Kjg T K5, Ky =25 — G £ K55,
+ ar a2 Y o2 1/2

Ky = 8Pty — Gi + 44,1 + 41, T K0Ky5,
2 . + o 172

3 Ky =4 +4ph, K =6 1K,

T U . P M2 s
Kys = oy T (Go1y) " + 1, K =90, — 24, + g1, +1,,

ias = 903 — 3G — 2G5 — 25508y — (24, + 5)(2G; + 4Gt + 355) + Gofi Ko,

I T 22
Ky =0, + G, +1,, Ky =G +q1, =21,
+ + s 22 + P
Kp=Ky+qgh+h, Xis=3K—¢ —g¢hL—1,
+ U /25 m ~ - + + 2 oz 3
Kis=(q+5Ht K4{1 )(2G, +30), Ky = Kys +2G; +95(G, + 1),

Kis = Gidy + 5H(G, = 3p),

e e oD ey an a2
Ksi =P —qi, v, Ks;=ph+qh -4,

Kss = 1,04 + 1, + )0 + (54T — 285 — Tty — 230)0% + Gy + G0y + G5,

Ksg = 4t~le>2k + (24, — 5)04 + G,

Ksg = 20,0, + 74, — 5)05 + 4iTs — 4dot; — 15 )0y + oy,

Kso = 20,04 + 55(G, + 5)0% + (247 + 1067, — 54,7, + 25505 — G>(G; + 18y — G,

Keo = 3D + (G =3P Ke1 = @G> + (@ — 3P,
Koy = 5504 + (57, + 20 — 4Gi5)0% — 4224, + )8y — G,
51(0) =270’ = 3(7G, + 55)(G — H)O” + (G — 44ih, —35)(2G, +1)’0
+ (G + 5@ + G, +5)24, + 1)
8,(0) = 550" + (54,0, — 4G5, + 25)0° — (24, + 50— G,
Sy(0) = 21°0" + (G, — 1)A0” + (24,7, — 4dohy — )0 + iy
Jo1 ={n=Ls=-PB,n=0,s,=1,
J ={n=1s=0r=-4,025)"s, =5},
Lh={n=1s=0,n==pd s, =56, Jy={=1s=0r=0,s =1;
DL = =5 s.n =05 = b

3,1 ~ |-1/2 ~ .
LS = {'i = Oasl = |pl| sh = DS, 8 = K2S1/2},

- -1/2 -
Lg’l ={n,5, =0,5 = |P1| / Hh = DDy 131};
31 ~ US| 1 oo 1/2 )~ -1/2
2) LIy ={n =(G — D(G1G)) 52,8 =0, =G 8,8, = |‘11‘12| |‘11 - 2| }s
L2 =4 =@4p) s =0n = p,°r.s, = 45"

L =t =0 = |pal "™ a"r = |l ™),

41 ~-1/2 -
Ly ={n = |‘12| 81 =0,n = K1 /2,8, = o1},
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+ U 22, 2 1/2.
Ky = 441 — Git, + 26, £ 5555

+ ~ ~ N ~
K = Q4 + 5 £ )50 @G +5)/3,
~2 ~ ~2
Ky =Gy +3Gi5 + 21,

Ky =306 — (24, +1,), sy = 4pf — 512 + t~22:

Ks7 = t~1t~29=2x< + (248, = 3,1 — fzz)e* + 4oy,

Vol. 51 No. 4

+ -~ 2 o~ ~ ~ _1/2
Kzg = 8p1t1 - q] + 2q]t2 - 4QQt1 i qlKZ/S >

+ ~=\1/2 | A7 + YN1/2 >
K3 = (42’1)/ T2, Ky = (qztl)/ 7,

2 e 22
Ky, =30, — ¢ — g, — 1,

+ o 22
Ky = Kys T gty + 15

N ~ R
Ks3 = Git, — oy, Ksy =245, — 4G, — 1y,

Kes = 2005 + (G, — 25,8, — >3

2018
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4 -1/2
L2 ={n = Kn,85 =0,n = |K7K8| ,$) = Kght,
41 - 1/2 | ~ =172 . -1
Ly ={n=0s =G -2 |ad@ " .5 =G -2 s},
4 ~ -1/2 ~
Ly, ={n,s, = 0,5 = |Q2| b = G>8/2},

2l ~ 1/2 ~ 1/2
3)[[9 :{rl :—f1|t1| tz ,Sl —Or2_tl tZrl’SZ _|t1| }

b

3l + 1z -1/2 /2y
L1y =1{n =25 |f1| .5 =0, =—¢(28) 'K,s, = |t1|

!

7

Lzz’l = {’i = ;1|l:i|_l/2 ;Z_lvsla'é = 0’52 |tl| 1/2

L =t =@ s,n = 0,5, =i 3

’

sz,ll,lc ={n = |!~’1|_1/2 s =0, =4 t2’iss2 = |t1| 1/2

7

3 a3 l/6 a1y 12y,
Ly ={rn =—(hh) |t1| =0, =1 bLR,s) = |f1|

3

31 2/31715/6 ;<27 \~1/3 ~1-1/2 SO
Ly ={rn=0,5=-2 |t1| Grah) T = |f1| 8, =—=q,(28) s}

31 - 12 1-1/2 13 12y,
Ly ={rh=4¢ |’1| GG +5) s =0, =1 Hi,s, = |’1|

7

3.1 > -1/3 1/2 ~- 21z 1.
Ly ={rn = 0,5 = 1(Kh) |t1| h = |fl| 8 =4 b}

41 Lol |~ 2,
L5 =1 =A%) 4 |t1| 51 =0, = K27(4t1) "1,52 = |t1|

7

125" = {n =iy |t~1|_ 5, = 0,8, = |fl|_1/2}-

Ly =t =5 sn = 0,5 = 3 "6 |6

4l ~1/2)21/2 _ o~ .
L2y ={n = |K12| |’1| 81 =0, =1 LA, S = Kpli Kjphls

41 1z -1/2 ~1-1/2 R
L1y =1{r = 0,5 = 21K |t1| h = |t1| .8 = —q1(24) s}

in‘itl ={n,s, =0,5 = t~1|t1| 21 L a”z = |’1| ]/2

7

4l 116 ;o = =13 1 2112, .
Ly ={n = _|tl| (Pty) s =0, =1 HA,s, = |’1| }

41 ~15/6 22 \—1/3 21-1/2 o1y oL
Ly ={rn=0,s = |tl| (Kutity) "7n = |71| S =1 hsi};

V25 121172 212k am—l L
Lz9 ={n =0,5 =%£K;"% |f1| h = |t1| .8 = K51(20) s}

41 ~15/6 >\ —1/3 21-1/2 N BN
Ly ={r =0, = 2|71| (2Ky00G1) T = |t1| .8 = —qi1(2) s};

41 O Y ~1-1/2 =1y .
Ly =1{n = 0,8 =K, |t1| h = |t1| .8 =1 b}
51 - -1/2 - 12 7
Ly ={n =@l sn =05 =dlo "5 )
41 —1/4 |z =12 F el + el
3) Ly ={n = 51,8 = K31/ ‘2’1(‘(32) = K3(20) 8,8, = K5,(24) 7 s},
41 - -1/2 + ol )
L2 ={r =s,8 = |P1| / h = K5(20) 8,8, = 0};
41 PO 7 s | o V0 ~ =1 > ~ 71
Ly ={n = 51,8 = ‘(3611 —5)(G — B ‘ = aqity s,8, = (L =248 s},

- o~ |12 - ~ ~
125" = = s, =V3|2G = 30)EA | om = 0,5, = =24, = 35)3H) s,

- ~ IR | - ~ —
L3 = {r = 5,5 = 4|24~ 30) QG + )| o =24, - 35)@48) s, 5, = O);

41 _ s~ mazol[V2 _ = =l
L1y ={n = 5,8 = 2‘(2‘]1 —h)h, ‘ K =08 =—2q, —5)(2h) s},
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L2}y ={r = 51,8 = 2@:h) G5 55,1 = ~(21) " £ ) (K33) s,

1/2 -1/2
il

oo\ l/h
8§ = (Clztl)/ K33 (3K35) 72 [Kauhy

71‘—1/2

4,1 ~ L 72N,7 -1
Lys =1{r =s,,8 =X ‘K39K36tl B =30, +2q,5 + ) (1K) s,

8y = (60, — Gify — 247 (F<y0) ' s1);

& -1/2

41 1/2 Y el ET TP NP (N
Ly ={r =s,8 = |t1| Ka h =G+ 0 8,8 =Gy — G +5)(EKy) s

41 12| -1/2 ~ > -1 + Jop 22\ oz -1
Ly ={n = s,,8 = |tl| Kyg| 1 =—(2G + 308 8,8 = (K45 + 215 + 35) (1K) 81}

-1/2 ~ ~ o o—
% = @ — 350 's1,5, = O},

ng’l = {rlasl = |ﬁl
: ~ =12 U
ngl ={n,s = |‘Iz| / ok =0,8, = =2¢,1, lsl},

51 PP -2 T N |
L3y =1{n,s, = (G — t2)|K50P1| h =—Q2ph —qih + )G — 1)) s,
sy = QB + @b — @) GG —0) s
5.1 - -1/2 ~ o1
Llé = {rl,sl = |q2| »h = 0:S2 = _2q2t2 Sl},

~_1-1/2 - . - e
L2 = 4,5 =30, [koof |1 = ~(065 + 24, — )05 + E)(370,) 51,5, = Ousi};

ng’l ={n,8 = |1~’1|_l/2 h=(q — 3131)51_151152 =0},
L2 = {5 = V3[x[ 25 = 0,815, = (005 + (24, — 5)0, + 3)(370,) s}

4. THREE CLASSES OF LINEAR EQUIVALENCY OF SYSTEMS AT / =1

System (2.1)!, x = Aq P¥l(x) at / = 1 in accordance with formula (2.10)! is uniquely representable in
form (2.9)":

x + g1 XX +tx t
%= + By O TR TR 2 Bl(0Ge ), G=(”1 & 1], @.1)
DX + gy XX, +t2x2 PG h

where R, = 6 —9,,0,,# 0, because / = 1, and hence pi+ pi=0and s + 1 #0.

The substitution JO from Collection 2.1 transforms expression (4.1) into a much more trivial system

. b é d b G £ 0 . ~ (b G h
A= had {{’1 - j (@B = .0). G=(’f‘ u Jj, 4.2)
a, b, ¢ d, g 0 D4 b

where py =p; + Bp,, § 511 g1+ B(gr— 2p1) — 2B%ps. 1, = 1, + B(t, — q1) — B?q2 + B°pas By = P2y G = 62— 2Bpas

—Bg,+ By (BF + pr =0, 7>+ 1 =0, R, = R, # 0), because in accordance with expression (2.12)!
at any substitution (2.2)!, x = Ly, the matrix G = L~'GM, R, = 8}; — 8;,0;; = &Ry, 6 =1, + Pry, =5, +
Bs, (& + Bz # 0) and A from expression (2.5)'.

Making an arbitrary substitution (2.2)! with s, = 0 (r, s, # 0) in the expression (4.2), one obtains:

A2 A ) ~ 2 22
~ 1+ qrn + 4r r+24n)s LS 0
A:(pll qnn T hn (g 11)8 152 ] (4.3)

-1 \3 -1 a2 A ~ A2 A ~
=So(ri BIFS, @R — (g —2L)nn =2t (L —4p)s, 0
where S)(0) = 40’ + (4, — £)0" + (B — 8,)0 — by, p + p3. f + 1, #0,d; +ay, & + & #0.
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In particular, system (4.3) at f, = 0 (7, # 0) takes the form:
[ (P + qin)ri 4iris, 0 OJ
A 2 A A ~ ~ 2 -1 ~ ~ ~ A .
(Pari” = (D = ghir, = (@ =) hsy (o + (21 — )RR bis; 0
Statement 4.1. Set of systems (4.2) is divided into three linearly nonequivalent classes by the following con-
ditions: 1) £, =0, 4, =0;2) £, =0, §, = 0; 3) £, # 0.
Indeed, the above conditions are linear invariants of system (4.2), since for any change that connects

systems of form (4.2), s, = 0 according to Statement 2.2 p. 2, and therefore, in systems (4.3) and (4.4), the
substitution factors are 7|, s, # 0.

4.4

Let us distinguish in each class the simplest system similar to (4.3) or (4.4).
1)4=0,4 =0 (p, =0, #0). Then, system (4.4) can be written as follows:
[ b’ 0 0 OJ

(Br” + (G, — rns + Brnsy (Gori + 2651 s, 0

and one can always obtain 52 =0, ¢, = 1 init. In particular, substitution Jll transforms formulas (4.2) into
system

4.5)

| =

i _(;31 oooj b =nE=0),
P 0 10) By =@y + 4oy — §)/4.
When p, # 0, a system A, is SF:Sl
2) fl =0,¢q,#=0 (fz # 0). Then, one can always obtain g = 0, ¢, = 1 in system (4.4). In particular, the
substitution J. ; transforms system (4.2) into
A=(§ B00) ARaR GO B Ak 2k @0
Py g 10 D, =4, L(LDr — Gq,p + Prgr ) (# 0).
At g, # 0 system A, is SE;,‘QL.

3) f; # 0. Then, one can get 4, = 0 in system (4.3). In particular, substitution J 31, where 6, € R'is any
zero of Sy(0), brings system (4.2) into (4.3):

- (ﬁl g L OJ' Bi=h+ 30 +405=0), G =4 +206, 4=, @.7)

A3 = ~ o~ A ~ ~ ~
04560 G =q¢ —(§ —26,)0, — 2t19§<a ) =0 — 110,

At g, §,, T, %0, asystem A, is S Inturn, at §, = 0 itis SF;"', at 7, = 0 it is SF}" and at §, = 0 a system
is SF\}.

Statement 4.2. List 1.1 comprises all CFs of system (4.1).

Proof. Any system (4.1) is reduced to system (4.5), (4.6), or (4.7), thus there are no CFs with anteced-
ent CE;S’1 obtained by the normalization of system (4.7) with G,, §,, &, # 0.

5. REDUCTION OF THE INITIAL SYSTEM TO EACH CF™!

Below, the conditions for coefficients and substitutions (2.2)!, reducing a system chosen at these con-
ditions to the appropriate CF from List 2.1, will be found for systems (4.5), (4.6), and (4.7), and CF
parameters will be evaluated.

Lemma 5.1. Any system (4.5) is linearly equivalent to a representative of a certain CF,-'"’1 from List 2.1,.

Below, for each of the three CE'"’I: a) the conditions for coefficients p, (#0) and p, of system (4.5), b) the sub-
stitution of (2.2)", transforming the right-hand part of system (4.5) at the given conditions into the form chosen;

and c) the values of parameters 6 and those from csim’1 are found to be, as follows:

CH™:a) p,=0,b) L', and ¢) 6 = signfy;

VESTNIK ST. PETERSBURG UNIVERSITY, MATHEMATICS Vol.51 No.4 2018



340 BASOV, CHERMNYKH

CF":a) p,#0,%,20,b) L', and ¢) 6 = signp,, u = &, ;
CEF™:a) p,#0,%,<0,b) I, and ¢) 6 =signp,, u = p,p, .
The proofis available in file lemmal.mw in the database (see Introduction).

Lemma 5.2. Any system (4.6) is linearly equivalent to a representative of a certain CE'"" Jfrom List 2.1,.

Below for each of the five CF,-'"’I: a) the conditions for the coefficients g, (#0), p, (+0) and §, of system (4.6),
b) the substitution (2.2)", transforming the right-hand part of system (4.6) at the given conditions into the form

chosen; and c) the values of parameters G and those from cs;" ! are Jfound to be, as follows:

CE':1)a) g #2,x;,=0,b) LI}, ¢) 6 =sign((§, — 2)4id»), u = G;;2) a) p, >0, =2, 3, =0, b) L23",
coc=1L,u=2;

CFix: @) P, <0,if§=2,3=0,b) Ly, o) kx =sign(p,d), u =G, ;

CEM: 1)a) G, =2,%,20,3 #0,b) L17, ¢) 6 =signg,, u =KsG, ,v=2;2)a) G #2,§, #0,%K>0,
K = 0, b) L2, ¢) 6 =ssign(i,%y), u = 5'G, v = Gy;

CFRy'a)§#2,3 #0,4(1 = §) > G, b) Ly, ©) 6 =sign(@do(@ — ), u =G v =81 G5

CF'a)§=2,1,<0,3#0,b) I3, ¢) 6 =signg,, u=1/2,v =2p,3,".

The proofis available in the file lemma2.mw in the database (see the Introduction).

Now we are going to assume that the following conditions for coefficients & = 0, £ # 0 mean that &/ =

0,& #0o0r& =0,&, # 0, and choosing from the first or second sign results in the same choice in the
substitution coefficients given below, as well as in the values of CF parameters.

Lemma 5.3. Any system (4.7) is linearly equivalent to a representative of a certain CEm’l Jfrom Lists 2.1 and

2.1y, Below, for each of the 25 CF™": a) conditions on coefficients p,, 7., G,, G, &y (B> 7., Go + Ty # 0) of system
(4.7), b) substitution (2.2), transforming the right-hand part of system (4.7) at the given conditions into the

Jorm chosen, and c) values of G and parameters from cs;" 1 are found to be, as follows:
CF™:a)k,=0,%5=0,K;5=0,b) L', and c¢) 6 = sign7;;
CFEy':a)k,=0,K5=0,%;5%0,b) L)), and ¢) 6 =signf,, u = K,5(i<,¢,) >
CF3': a) k,0=0,%5=0, k3% 0, b) L1}y, and c) 6 = signi,, u = K3(piif,)*;
CRy: D) @) §=0,5=0,0) LI, and ¢) 6 = signg,, k =sign(igy), u = pidy '3 2) @) kyp = 0, 7, # 0,
K14 =0, 0) L2}]., and ¢) 6 = signp, & = sign(B), u = k(B s

CEya)xg=0,7,#0,K5 %0, k4 % 0, K5 = 0, 3.1y, b) L3y, and ¢) © = signi, u = K,5(i455) 2,
v = Kp3(K145) "

CEy' a)Kk,,# 0, #0,%,=0,% =0, b) L), ¢) 6 = signi,, u = x,o(g, + 1,)""% ",

CRy':a) K% 0, %0,k =0, K9 # 0, k;; % 0, Kjg # 0, b) Ly, and ¢) 6 = signi,, u = Ko( pisty) >,
v=—(g + 2t2)(ﬁlt1t2)7l/3;

CF;;’]: a) K7 0,K, 70, K= 0, 3.1, b) Ia431 , and ¢) ¢ = sign fla u= K12K1_o2, V= K16t~2K1_O3;

CE: 1) a)f,=0,§ #0, 3.1y, b) L1}, and ¢) 6 = signg,, u = pg;', v =G Gof; 2) a) K0 = 0, F, = 0,
Ky =0, 3.1y, b) L2}}, and ¢) 6 = sign(K 7)), u = K1¢Kpy» v = K1, K03

CE3':a) Ky # 0, K5, X7 =0, b) Ly, and ¢) 6 = signi,, u = —x,o(2G.5)/;

CF: 1) a)x;, =0, K,0=0, b) LI}, and ¢) 6 =signi,, u = 2G,%;5;2) a) G, =0, §, =0, b) L2;", and

¢) o =signf, u= [)Iflfz_z;
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CF;(‘)’% a) K,y #*0,%K,#0,%;=0, 3.1;5, b) lgol ,and ¢) u=1,0(2K03) "', v = 4Ky(21G,) ", 6 = signi;;

CEY 1) a)k,y#=0,§ #0,K,#0,K5=0, 3.1, b) LI{}, and ¢) 6 = sign7,, u = 4K,Ko, v = —2KK;0;

2)a)§=0,3#0,5#0,3.1p,b) L2}, and ¢) 6 = signi,, u = Gk ', v = pibi; 3

CES:a) k>0, 15, =0, 15, %0, 3.1,5, b) Ly, and ¢) 6 =signf,, u = +x5,x7"/2, v = +16,K5K5 > /4;

CEM: 1) a) G, %0, K520, 1655 =0, 3.15, b) L1¥', and ¢) 6 =sign7,, u = 4163(ic) >, v = 21655(K5)

Da)at§ #0,§=0,3.1;, b) L2%' and ¢) 6 =signf, u= pii, >, v =aqp ;

CR:a) g, #0,§ #0,f #0, 3.2, b) normalization L3', and ¢) G = signg,, u= pg, , v = Gif, , w=
Gty s

CE™:1)a)§=0,3,=2p,% %0, >0,3.15, b) L1}, and ¢) 6 = Esign(i,7,), u = =K1, (K3,) "

2)a)§,=0,1,#0,K; =0, § = K3y, 3.15, b) L21’ ,and ¢) 6 =signp,, u = K§252(2ﬁltl)_ ;

C{Tf’l: Da) =G — it g, = ql(3ql 20 L #3G, g+ # 0,31, b) LIY, and ¢) 6 =
sign(4, (3¢, — H)(G — b)), u = Gi(G — H) 7

2)a) b =G24 —35)O8) ™, 4, =0,5,#0,3.15, b) 123", and ¢) 6 = —sign(? (24, — 35)), u=—G,(3%)™";

3) @) p = (24, — 35)2G, + H)(161)7, §, = H2g, — 3H)BH) ", b * 0, 3.1g, b) L33, and ¢) 6 =
sign((2g, — 35,)(2G, + H)i), u = —25(24, + 5) 7

CEy:1)a) p=(4q — i) (120)7, 5 #0, 4, = 24, — B)H,(47)7", 3.1y, b) L13, ©) 6 =sign((2G, — B)A),
u= (24 +5)(35)7"

2)a) L, #0, ¢4 >0, p= (6]2’1) K34K35(K33) iRy = 0, 4 = Qa4 + ) (K5) T, Ky =0, 3.0,

b) L2}},c) 0= —s1gn(1<34t1>, U= —K34K55(3K35) s

CF;;1 a) g #=0,—5,—26,3,#0,5#0, p= G*fl_l, Ksg = 0, K34, K37, K39 = 0, where 0,, € R' is any zero
. — _ -1,
of $1(0), 3.1y, b) lag, C) G = sign(KssKsof) ), U = —K37K3;
41, ~ ~ > . > + -1 -1
CFy'ia) g, =0, 1), =20, §, 0,5, %0, K020, K5, =0, b, = Koy G = (G, + 5)2 — 3K,)F 5 Kpy #

0, kg3 # 0, 3.1, ) L3, ) & = sign(Kip ), 4 = 3K43Kp0;

Cﬂ%13 a) g, # 0, -1y, =35,/2, =21,, G, # 0, 1, # 0, 44 2 0, K45 =0, p = K45"1 s = _(3‘&5 + 241, +
35, K # 0, Ky # 0, 3.1y, b) Ly, ) 6 = sign(Kyeh ), u = Ky K05

CF':1)a) §, = 0,3p, i = §Q2pG + hi, — 365)@ — 3p) % 5 # 0, K45 = 0, =Gy, 3.2,, b) LI3",
¢) 6 =—signpy, u=—Ky(pG) ", v =—(Gid, + <) (Bd) s 2) @) §, = 0, 1 = —h(pif, — 2G:G> + §o>) (2,) ",
G #0,5#0, k9 #0, piiy, 3.2,,0) L2, ) 6 =signgy, u = pi, » v = Kag(Goh) "3

3)a) g =0, 5, ¢, =(hd — (Bh +26)3 — HQpd — 5)d + Pl@ApE + 35)E (G —5) > #0,5 %0,
Kso % 0, K5y # 0, Ksp # 0, 3.2,, 6) L3}, ¢) 6 = —sign(Kso ), u = —Ks;(Bi) ™, v = —(§ — H)(pify) s

Fli ) a) g =0, 5 =0, p = 4Kssgody /3, Ksy # 0, 4Ks3 # 3Ky, 3.2,, b) LIg', ©) G = signg,, u

4‘(53(31722)71, V= K54f~2_2;

2)a)§,#0,3,#0,5,#0, p = _K55(9t~19§<)71, Ksq # 0, K57 # 0, Ksg # 0, K59 # 0, Ks7 # Ksg, where 0, €
R'—any zero of $5(8), 3.2,, b) L2;', ¢) 6 = —sign(Ksof,), tt = 3K5,0, K5, V = 3Ks540, Ko

i) a) g, = 0,35, b =0, /= Keodi (G, — 35) % Ke #= 0, —Gi» 3.25, b) L13', ¢) 6 =signpy, u =

Kei(Bid) ™", v = (K + ) (Bid) s
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2)a)§ =0, #0,5 %0, b = —Kss(903) ", Kss % 0, Kso = 0, 3Kgp, K % 0, Kg3 = 0, where 0, € R' is

any zero of S3(0), 3.25, b) L23', ¢) G = signikes, u = Kso(3Ke37,03) ™, v = Ke(i6637,05) "

Here 3.1, means that elements of system (4.7) are so that the values of parameters composing its CF do not
satisfy the conditions from item i of Statement 3.1, label 3.2; has a similar mean; constants 9, X, polynomials
S(0) and linear substitutions of J, L are given in Collections 2.1 and 3.1.

The proofis available in the file lemma3.mw stored in the database (see Introduction).

Theorem 5.1. Az [ = 1, any system (2.1)!, written in the form (4.1) in accordance with formulas (2.10)", is
linearly equivalent to a representative of a certain CE'"’1 Sfrom List 2.1. With that, if coefficients B, py, q,, and
t, (k=1, 2) of system (4.1) are so that:

1) in system (4.2) f, = 0, g, = 0 and for each of three CF,’”’1 from List 2.1,, coefficients p, and p, of system
(4.5) meet the conditions provided by Lemma 5.1, then composition of substitutions J(]), J, 1] and L;"" transforms

the right-hand part of system (4.1) into CF,.'"’1 chosen with values of the parameters from Lemma 5.1;
2) in system (4.2) t, = 0, §, # 0 and for each of five CE-'"’1 Jfrom List 2.1,, coefficients G, p,, and G, of system
(4.6) meet the conditions formulated in Lemma 5.2, then composition of substitutions Jol, J;, and L;"’l trans-

Jorms the right-hand part of system (4.1) into CF,-”"1 chosen with values of the parameters from Lemma 5.2;
3) in system (4.2) 1, # 0, and for 25 CEm’lfrom Lists 2.1y and 2.1, coefficients p,, I,, G, §,, and f, of system
(4.7) meet the conditions provided by Lemma 5.3, then composition of substitutions Jé, J 31, and L;"’l transforms

the right-hand part of system (4.1) into CF,A'”’1 chosen with values of the parameters from Lemma 5.3.

Proof. It is shown in Section 4 that the initial system (4.1) can be reduced by means of two linear sub-
stitutions to either (4.5), (4.6) or (4.7).
In turn, according to Lemmas 5.1, 5.2, and 5.3, any of the above systems can be reduced to the appro-

priate representative of the corresponding CF,-'"’1 from List 2.1.
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