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Abstract—This work is the first in a series of papers devoted to classifying of two-dimensional homo-
geneous cubic systems based on partitioning into classes of linear equivalence. Principles have been
developed that are capable of constructively distinguishing the structure of a simplest system in each
class and a canonical set that defines the admissible values that can be assumed by its coefficients. The
polynomial vector in the right-hand part of this system identified with a 2 × 4 matrix is called the
canonical form (CF) and the system itself is called the normal cubic form. One of the main objectives
of this series of papers is to maximally simplify the reduction of a system with a homogeneous cubic
polynomial in the unperturbed part to the various structures of a generalized normal form (GNF).
Generalized normal form refers to a system in which the perturbed part has the simplest form in some
sense. The constructive implementation of the normalization process depends on the ability to explic-
itly specify the conditions of compatibility and possible solutions of the so-called bonding system,
which is understood to be a countable set of linear algebraic equations that specify the normalizing
transformations of the perturbed system. The above principles are based on the idea of the maximum
possible simplification of the bonding system. This will allow one to first reduce the initial perturbed
system by an invertible linear substitution of variables to a system with some CF in the unperturbed
part, then reduce the resulting system, which is optimal for normalization, by almost identical substi-
tutions to various structures of the GNF. In this paper, the following tasks are carried out: (1) the gen-
eral problem is set, close problems are formulated, and the available results are described; (2) a bond-
ing system is derived that is capable of determining the equivalence of any two perturbed systems with
the same homogeneous cubic part, the possibilities of its simplification are discussed, the GNF is
defined, and the method of resonant equations is given allowing one to constructively obtain all its
structures; (3) special forms of recording homogeneous cubic systems in the presence of a common
homogeneous factor in their right-hand parts with a degree of 1–3 are introduced, and the linear
equivalence of these systems, as well as of systems without a common factor is studied, and key linear
invariants are offered.
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INTRODUCTION

1.1. Statement of the Problem

The present series of papers is concerned with a real two-dimensional nondegenerate homogeneous
cubic system of ODE

 (1.1)

where x = (x1, x2), P = (P1(x), P2(x)), Pi = ai  + bi x2 + cix1  + di , P1, P2 ≢ 0.
We assume that the real nonsingular linear substitution

 (1.2)

transforms system (1.1) into the system

 (1.3)
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The main problems that will be posed and solved in this series of papers are as follows.
(1) Classify the set of systems (1.1) by partitioning the vector polynomials P(x) into classes of linear

equivalence.
(2) For each class, develop structural and normalization principles that enable one to perfectly order

the polynomials  obtained as a result of substitution (1.2).
(3) Based on the selected principles to highlight in each class a generator, which is the simplest poly-

nomial  (called the canonical form (CF)).
It will be shown that any CF can be identified with a 2 × 4 matrix of coefficients of the polynomial 

with fixed zero elements, while for nonzero elements the canonical sets are specified describing all their
admissible values.

A system with CF in the right-hand side is naturally called a cubic normal form.
In parallel with the principal problems, we shall solve the four accompanying auxiliary numerical

problems, which enables one to efficiently employ the classification in practice. For each CF, we will
explicitly write the following:

(a) the conditions on the coefficients of the vector polynomial P(x);
(b) the substitution (1.2) that transforms the polynomial P(x) under the specified conditions into the

selected CF;
(c) the values of the elements of the CF from the canonical set;
(d) the minimal canonical set in which there are no values of the elements from which one may get rid

by substitutions (1.2), which conserve the structure of the CF.
Aside from their intrinsic interest related to the development of classification of homogeneous cubic

systems, the results obtained aim primarily to facilitate the normalization of perturbed systems by making
a preliminary reduction of their unperturbed part by substitutions (1.2) to canonical forms, which is suc-
ceeded by the normalization of perturbations in the systems thus obtained.

This purpose will be the underlying motif for the principles that enable one to single out the CF.
It is worth noting that a good deal of symbolic calculations related to various linear transforms of

homogeneous cubic systems, their normalization and singling out common factors of various degrees, as
well as solutions of various algebraic systems and equations would be impossible without the machinery
of symbolic mathematics. For these purposes, the Maple analytical software package is available. There is
a set of standard subroutines, based on which Maple software packages can be utilized to justify almost
each assertion.

1.2. Formal Equivalence of Perturbed Systems
We consider a two-dimensional real perturbed formal (analytic at zero) system

 (1.4)

where the polynomials Pi are taken from system (1.1), Xi =  are perturbations. Here and in

what follows,  =  is a homogeneous polynomial of order p.
Assume that a formal real almost identical substitution of variables

 (1.5)

with hi =  transforms (1.4) into the system

 (1.6)
which has a similar structure.

Differentiating the substitution (1.5) in t by virtue of systems (1.4) and (1.6) and setting Hi(y, h) = Pi(h)

+  (i = 1, 2), we get two identities
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Singling out in them, for each p ≥ 4, the homogeneous polynomials of order p, we prove that the homo-
geneous polynomials  and  satisfy the recurrence relations

in which  = {Xi(y + h) + Hi(y, h) – Y1∂hi/∂y1 – Y2∂hi/∂y2}(p), (i = 1, 2).

Clearly, for a successive (with respect to p ≥ 4) definition of  and  the homogeneous polyno-
mials (y) become known, since they depend only on  and  with 2 ≤ r ≤ p – 1 (j = 1, 2).

Equating the coefficients with  (p ≥ 4, s = ), we obtain a linear bonding system of 2p + 2 equa-
tions with 2p – 2 unknowns , …, ,

 (1.7)

in which  =  –  (i = 1, 2).
Thus, systems (1.4) and (1.6) are equivalent if there is a substitution (1.5), the coefficients of which sat-

isfy the bonding system (1.7).
Clearly, a bonding system (4) in [1] is a particular case of (1.7).

1.3. The Method of Resonant Equations and the Determination of the Generalized Normal Form

Compatibility conditions for the bonding system with any ∀p ≥ 4 can be written as a system of np lin-

early independent linear equations (np ≥ 4) that relate the coefficients of the polynomials  in system
(1.6) as follows:

 (1.8)

These equations are called resonant.

Here, two countable families of constant vectors  and  that specify equations (1.8) are determined
only by the coefficients of P(x) and are independent of the perturbations. They enable one to establish a
formal equivalence between any two systems with the same unperturbed part.

For system (1.4), we present a brief account the concept (see references in [1]) of a resonant family and
the definition of the GNF and recall the existence theorem for the GNF.

Definition 1.1. The coefficients of the polynomials  in (1.6) that enter into at least one of the equa-
tions (1.8), and the coefficients of the polynomials  in (1.8) that remain free in solving system (1.7)
will be called resonant; the remaining coefficients will be called nonresonant.

To any np different resonant coefficients  =  of homogeneous polynomials , ,

where k = , ik ∈ {1,2}, 0 ≤ sk ≤ p, we associate the matrix of factors  = , in which  =

{  for ik = 1,  for ik = 2}.
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Definition 1.2. For any p ≥ 4, the family of resonant coefficients =p =  will be called a resonant

p-family if det  ≠ 0.
So, for any p ≥ 4, resonant equations are uniquely solvable with respect to the coefficients from any =p.

Definition 1.3. For any =4, =5, …, the family = =  is called a resonant family.

Definition 1.4. A system (1.6) is called a GNF if, for any p ≥ 4, all of the coefficients  (both resonant
and nonresonant) are zero, except for the coefficients from some resonant p-family =p, which are allowed
to have arbitrary values.

In this way, the structure of any GNF is generated by some resonant family =. The knowledge of the
resonant equations (1.8) makes the following theorems clear.

Theorem 1.1. System (1.6) is formally equivalent to the original system (1.4) if and only if, for all k ≥ 2,
the coefficients of its homogeneous polynomials ,  satisfy the resonant equations (1.8).

Theorem 1.2. For any system (1.4) and for any resonant family = chosen from its unperturbed part there is
an almost identical substitution that transforms (1.4) into the GNF (1.6), the structure of which is generated
by =.

We note that there are various definitions of GNF (see, e.g., [2–5]), which depend both on the choice
of the terms that pertain to the unperturbed part of the original system and the required degree of simpli-
fication. It is worth noting that not all definitions are constructing, and certain efforts are required in order
to verify their well-posedness and establish the form of the GNF. Thus, a nontrivial example of a complete
Belitskii NF only appeared in [4] 20 years after this normal form was introduced in [2]. The definition of
a GNF given in the present paper corresponds to the definition of a first-order GNF from [3].

Clearly, the constructive utilization of the above method for the explicit generation of all possible
structures of GNF for system (1.4), which the author calls the method of resonant equations, depends solely
on a possibility of writing down the compatibility conditions of the bonding system that specifies for each
order p the number np of resonant equations (1.8) and, what is much more difficult, on the possibility of
finding αp and βp in explicit form for (1.8), which enables one to write all resonant families.

For the successful solution of this problem, the bonding system should have the simplest form and,
hence, the vector polynomial P should have the largest possible number of zero coefficients located (if
possible) at optimal places, and the nonzero coefficients should be optimally normalized. Hence, a CF
will be introduce to best fit the above requirements.

1.4. On the Possibility of Simplifying the Bonding System
The matrix of the linear bonding system (1.7) depends on eight coefficients of the polynomials P1 and

P2 of system (1.4). The number and form of the constraints imposed on the right-hand sides of system
(1.7) described by the resonant equations (1.8), as well as the possibility of constructively ascertaining
these bonds, depend on which of these coefficients are zero and the number of zero coefficients.

Thus, we shall study the structure of the bonding system in order to be able to correctly formulate the
principles of selection of the coefficients of P, which one should try by a linear nonsingular substitution of
variables to make zero in the first head.

We take as a basis the principle of the maximality of the number of zero coefficients in the vector poly-
nomial P and consider their various arrangement (for example, in (1.71)).

The presence of the zero coefficient a1 has almost no effect on the structure of the bonding system.
The most favorable situation occurs when b1, c1, d1 = 0. In this case (1.71) is an independent linear sys-

tem, which, in the worst case, has the four-diagonal matrix.

After a study of its compatibility, finding the coefficients of the polynomial  and substitution of
these coefficients in (1.72), a scrutable linear system with a matrix that has at most four diagonals will again
appear.

There will also be no principally new problems in the case when only one of the coefficients b1, c1, d1
is nonzero.

We assume that, for example, b1 = c1 = 0, d1 ≠ 0. Now we again may confine ourselves to solving linear
systems with diagonal matrices with a bounded number of diagonals. Indeed, for any p ≥ 2, the subsystem
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(1.71) can be solved with respect to coefficients of the polynomial , after the substitution of which in

(1.72) we obtain a linear system with respect to the coefficients  in which the number of diagonals is
independent of p.

At the same time, if only one of the coefficients b1, c1, d1 is zero, then an attempt to solve the subsystem

(1.71) with respect to the coefficients  with their successive substitution into (1.72) makes the resulting
matrix nondiagonal, and makes it impossible to find a constructive solution to the bonding system.

Hence, in the study of the compatibility of (1.7), it is essential whether or not the following condition
on the coefficients of the unperturbed part of system (1.4) is satisfied:

 (1.9)
When satisfied, this condition means that, among the coefficients b1, c1, d1 or a2, b2, c2, only one coeffi-
cient may be different from zero.

In addition to condition (1.9), we also give a number of reasons for the simplification of the study of
the compatibility and solution of the bonding system.

1. The less weakly related the equations of a unperturbed system (that is, the less maximal degree of the
variable x2 in P1 and x1 in P2), the smaller the number of diagonals that will have the matrix of the bonding
system.

2. If it is possible to choose only one zero coefficient, then (1.7) admits a maximal simplification for
d1 = 0 (a2 = 0) because two terms will disappear in the left-hand side of (1.71) and one term will disappear
in (1.72).

3. If it is possible to choose two zero coefficients, then it is better to take the pairs c1, d2 or a1, b2 as these
coefficients. This has the same effect as is achieved with d1 = 0. The most optimal case we have is b1 = c2 =
0; in this case, in each equation of system (1.7), two terms will disappear.

The above arguments will underlie the hierarchic structural principles capable of splitting the set of
unperturbed parts of system (1.4) into equivalence classes with respect to substitutions (1.2) upon singling
out the best representative in each class (a canonical form) for the purpose of initial reduction of an arbi-
trary system (1.4) by a linear nonsingular substitution to system (1.6) with a CF in the unperturbed part,
which is followed by a reduction of (1.6) by an almost identical substitution to a generalized normal form.
This provides much greater possibilities for constructively obtaining the resonant terms of each order and
write down all the resonant families.

1.5. Survey of the Available Results under a More General Setting of the Problem
This series of papers finishes solving the following, much more general problem: to single out all non-

degenerate CFs, the degree of which is at most three and, if possible, to constructively obtain all GNF sys-
tems with these CF in the unperturbed parts.

In the case when the degrees of the unperturbed exceed three, the technical difficulties make it impos-
sible, with rare exception (see, e.g., [6, 7]), to solve the problem in the same generality.

So, let us consider what has been done for the real formal system

 (1.10)

in which  are homogeneous polynomial of degree l and (x), (x) ≠ 0, and all the terms of the
perturbation X have degrees that are greater in a sense than Q = ( , ).

1. Case (k, m) = (1, 1). In this case, we have Q(x) = Ax, and Jz is a unique CF, where J is the Jordan
form of A. The most comprehensive treatment of the theory of normal forms for systems (1.10) of arbitrary
dimension is given by Bryuno under the condition that not all eigenvalues of A are zero [8].

The canonical form becomes much more complicated if one assumes that the unperturbed part Ax of
system(1.10) of arbitrary dimension is Hamiltonian (see [9]). The normalization of Hamiltonian systems
with simplest CF in the unperturbed part was already considered in [10].

The canonical forms of contact systems, which in a sense extend the Hamiltonian systems, were
obtained by Lychagin in [11, Ch. 3, Sec. 2].

2. The case (k, m) = (2, 2). In this case Qi = ai  + 2bix1x2 + ci  (i = 1, 2). In [12], the set of homoge-
neous quadratic systems was first partitioned into 19 equivalence classes with respect to linear nonsingular
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substitutions and, in each class, based on principles that are capable of delivering a maximally simple
bonding system, each own CF was singled out and the admissible ranges of variation of its elements were
identified. Next, for each CF, the conditions on the six coefficients of the polynomial Q and a substitution
(1.2) that transform Q into a selected CF were explicitly specified. Finally, in papers [13–15] for systems
(1.10) with eleven different CFs in the unperturbed part, all structures of the GNF were explicitly given.
For linear invariants, the highlighting of which is based on different principles, the reader is referred to
[16].

3. The case (k, m) = (3, 3). This case is clearly the subject of the present study, which in a certain sense
continues and develops the ideas and methods employed in the study of the case (k, m) = (2, 2).

There are already some applications of the theory being developed. In [1] as P the CF ( , – ) was
chosen, for which system (1.1) is conservative, the method of resonant equations was employed to obtain
all the structures of the GNF that are formally equivalent to the perturbed system (1.4).

Convention 1.1. An unperturbed system with some CF on the right-hand side in cases 1)–3) is naturally
called a linear, quadratic, or cubic normal form, correspondingly.

In the cases when k < m, singling out of canonical forms for unperturbed system  = Q(x) in the pre-
vious understanding is not always possible, but only for those values of the coefficients for which Q can be
written as a normalized quasi-homogeneous polynomial of certain generalized degree and weight of vari-
ables (and which is called the canonical quasi-homogeneous form (CQHF).

4. Case (k, m) = (1, 2). In the reference 8 of [12] two CQHFs are singled out; moreover, all possible
structures of the GNF were found in the unperturbed part for systems (1.10) for each of these CQHFs.

5. Case (k, m) = (1, 3). In references 1 and 2 of [6], two CQHFs are singled out; for each of these
CQHFs, the same problems were solved.

6. Case (k, m) = (2, 3). In [17], seven CQHFs are singled out; for each of these CQHFs, the same prob-
lems were solved.

The normalization of systems with a degenerated unperturbed part when, e.g.,  ≡ 0 in system (1.10),
is of special importance. The first serious results in this direction were obtained in [18, 19]. In [12], five
quadratic degenerated CFs were singled out; for systems with each of them in the unperturbed part all the
GNFs were written down which can be obtained by almost identical formal substitutions. Cubic degener-
ated CFs will be singled out and studied in the present paper.

LINEAR EQUIVALENCE OF HOMOGENEOUS CUBIC SYSTEMS

2.1. Form of the System and the Resultant

Consider a real two-dimensional homogeneous cubic system (1.1), which is written in the form

 (2.1)

where P =  = , A =  = , x = colon(x1, x2), q[3](x) =

colon( ), A1, A2 ≠ 0.
Convention 2.1. Below, for brevity, the matrix coefficients A will be identified with system (2.1) (or say

that the matrix A generates system (2.1)).
If desired, both matrix A and system (2.1) may be called nondegenerate because it is assumed that both

of its rows are nonzero and A1, A2 ≠ 0 ⇔ P1(x), P2(x) ≢ 0.
Definition 2.1. We let P0 denote any homogeneous polynomial with real coefficients which is a com-

mon factor of P1 and P2. A common factor P0 of maximal degree l (l = 1, 2, 3) will be denoted by . If
there is no common factor, then we shall assume that l = 0.
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is capable of testing the existence or absence of a common factor for any two polynomials.
Assertion 2.1 (see [20, Sec. 50]). Polynomials P1, P2 have a real common factor P0 of nonzero degree if and

only if R(P1, P2) = 0.

2.2. Linear Transformations of a System
To simplify system (2.1), we shall employ the nonsingular linear substitutions

(2.2)

Assume that substitution (2.2) transforms system (2.1) into the system

(2.3)

where  =  = ,  = .

For the polynomials , , in analogy with R, we introduce the resultant  = R( , ).
Differentiating (2.2) by virtue of systems (2.1) and (2.3), we obtain P(Ly) = L (y); thus,

 (2.4)
It follows that

In this identity, equating the coefficients of  (s = ) and repositioning the terms, we obtain eight
equalities in the matrix form

 (2.5)

where, e.g., in , we have the expression  = (∂P1(r1, r2)/∂r1)r2 – (∂P2(r1, r2)/∂r1)r1 = (3a1  +

2b1r1r2 + c1 )r2 – (3a2  + 2b2r1r2 + c2 )r1, while  –  = –δ–1((a1  + b1 s2 + c1s1  + d1 )r2 –

(a2  + b2 s2 + c2s1  + d2 )r1).

Assertion 2.2. For systems (2.1) and (2.3), the formula  = δ6R holds.
Thus, the sign of the resultant is invariant under any substitution (2.2).
Among the substitutions (2.2), which transform (2.1) into (2.3), we single out the two following special

substitutions:

 (2.6)
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 (2.7)

Remark 2.1. Normalization (2.6) has the following peculiarities:
(1) a2, b1, c2, d1 will be called elements of an odd zigzag and a1, b2, c1, d2 are called elements of an even

zigzag. Then, for all elements of an odd zigzag, one may simultaneously change the sign, whereas one can-
not reverse the sign for any element of an even zigzag.

(2) None of the relations a1/b2, b1/c2, c1/d2 can be changed on diagonals.
Remark 2.2. In the system obtained after a substitution L = (r, s), if there is a need for relabeling, then

in the original system, one must make the substitution L = (s, r).
At the same time, relabeling (2.7) allows one to achieve the following agreement.
Convention 2.2. In what follows, we shall assume without a loss of generality that, in system (2.1) with

l ≥ 1,

 (2.8)

that is, when there is a common factor.

2.3. Form and Linear Equivalence of Systems with l = 1

For system (2.1) of the form  = P(x) with l = 1 we have  ≠ 0 by Convention 2.2, for otherwise
P0 = x1x2 and l ≥ 2, and hence it can be put in the form

 (2.9)

where  = x1 + βx2 (β ∈ ℝ1), G = , q [2] = colon( , x1x2, ). Besides,  ≠ 0,  ≠

0, for otherwise l > 1, and the resultant R2 =  – δpqδqt ≠ 0, as constructed from the polynomials piz2 +
qiz + ti (i = 1, 2), is nonzero (see, e.g., [20], Sec. 50).

The number β and the elements of H in system (2.9) are uniquely expressed in terms of the elements A

using the equality  =  with (  ≠ 0) as follows:

 (2.10)

where  ∈ ℝ1 is the common zero of the polynomials (θ) = aiθ3 – biθ2 + ciθ – di = 0 (i = 1, 2).

The polynomials ,  have a unique real common zero because, if P1, P2 has a zero, then any zero

of Pi with the opposite sign will be a zero of .
Theorem 2.1. For l = 1, the substitution (2.2) of the form x = Ly transforms system (2.1) of the form (2.9)

with  = αx1 + βx2 into system (2.3) of the form

 (2.11)

Here, (y) =  is the common factor, the matrix  =  and the resultant  =  –

 are calculated from the following formulas:

 (2.12)
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Proof. We first show that the following formula holds:

 (2.13)
So, we have

Now formula (2.11) follows from the following chain of equalities:

□

2.4. Form and Linear Equivalence of Systems with l = 2

System (2.1) of the form  = P(x) with l = 2 can be written in view of Convention 2.2 in the form

 (2.14)

where H =  and det H = δpq ≠ 0, the real common factor  = α  + 2βx1x2 +  =  with

 = (α, 2β, γ) has the discriminant D0 = β2 – αγ. Furthermore, either α = 1 (D0 = β2 – γ) or α, γ = 0,
2β = 1 (D0 = 1) because (2.8) enables one to exclude the case α = 0, γ ≠ 0 (substitution (2.7) reduces p0 to
(γ, 2β, α)).

Indeed, the row  and elements of H in (2.14) are uniquely expressed in terms of the elements of A

from the equality  = . We have four

cases to consider:

(1) a1 ≠ 0, a2 ≠ 0, and hence, δab ≠ 0, ( ) = ( ) = 0, where (θ) =  – 2aibiθ2 + (aici +

)θ + aidi – bici (i = 1, 2), 2  = δac , and α = 1, 2β = , γ =  – (bi  – ci) , pi = ai, qi = bi – ai ;
(2) a1 ≠ 0, a2 = 0, and, hence,

 (2.15)

where  = c2  and α = 1, 2β = , γ = d2 , p1 = a1, q1 = b1 – a1 , p2 = 0, q2 = b2;
(3) a1 = 0, a2 ≠ 0, and now everything is similar to (2) with a substitution in the subscripts;
(4) a1 = 0, a2 = 0, and, hence, d1 = 0, d2 = 0, δbc ≠ 0 and α = 0, β = 1/2, γ = 0, pi = bi, qi = ci.
Here in case (1), the value of  was obtained from the equality of the right-hand sides of the formula

for γ. Thus, if  = δac = 0 and δab = 0, then the rows A1, A2 are proportional; that is, l = 3; in case (4) δbc =
δpq ≠ 0.

The eigenvalues of H and the discriminant of the characteristic polynomial are as follows:

 (2.16)

 Theorem 2.2. For l = 2 substitution (2.2) x = Ly transforms system (2.1) of form (2.14) into system (2.3)
of the form

 (2.17)
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where the matrix  =  and the row of coefficients  = ( , 2 , ) of the common factor of  =

 =  are calculated by the following formulas:

 (2.18)

Furthermore, the discriminant  =  is related to D0 as follows:

 (2.19)

and the eigenvalues of  and the discriminant  agree with λ1, λ2 and D.
 Proof. Formula (2.17) follows from the following chain of equalities:

According to (2.18), we have  = (αr1s1 + β  + γr2s2)2 – (α  + 2βr1r2 + γ )(α  + 2βs1s2 + γ ) =

(β2 – αγ)(  – 2r1s1r2s2 + ) = (β2 – αγ)δ2, that is, formula (2.19) holds. □

2.5. Form and Linear equivalence of Systems with l = 3

In system (2.1) with l = 3 the polynomials P1, P2 ≢ 0 are proportional and, hence, in view of Con-
vention 2.2,

 (2.20)

We claim that system (2.20) can be written in the form

 (2.21)

where H =  (  ≠ 0, k ≠ 0, δpq = 0), the real common factor reads as P0 = 

(D0 = β2 – γ).
The eigenvalues of H and the discriminant of the characteristic polynomial are as follows:

 (2.22)

As proposed in the case l = 2, the structure of system (2.21) is fairly convenient for subsequent analysis
(we have already seen this); thus, for system (2.20), we will employ an analogous expansion based on the
factoring a common factor out of P0 that is of a nonmaximal degree (degree 2). The differences are as fol-
lows: in system (2.14) det H = 0, one may always yield α ≠ 0 and there is an uncertainty due to different
possible ways of factoring P0 out of the polynomial P1 of system (2.20).

Let us refine the principles behind the choice of a quadratic common factor of P0 in (2.20).
Convention 2.3. We shall factor the following out of P1(x) into system (2.20) as follows:
(1) a perfect square, if possible;
(2) if further possible, P0, for which λ1 ≠ 0 in (2.22);
(3) otherwise, two linear cofactors with maximal zeros (if they exist).
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The coefficients β, γ (α = 1) and the elements p1, q1 in (2.21) are uniquely expressed in terms of ele-
ments of (2.20) from the equalities a1 = αp1, b1 = αq1 + 2βp1, c1 = 2βq1 + γp1, d1 = γq1 as follows:

(1) a1 ≠ 0 ⇒ α = 1, 2β = , γ = (a1  – b1  + c1) , p1 = a1, q1 = b1 – a1 , where  ∈ ℝ1 is a zero

of (θ) from (2.15), as taken with the consideration of Convention 2.3;

(2) a1 = 0, (b1 ≠ 0) ⇒ α = 1, 2β = c1 , γ = d1 , p1 = 0, q1 = b1.
Let us consider the choice of  in more detail in case (1) a1 ≠ 0.

The presence of multiple roots for the polynomial  is equivalent to saying that γ = β2 with a1 ≠ 0

and, hence,  = 2(b1 ± )/3, where  =  – 3a1c1. Hence, if  ≥ 0 and d1 =

, then (θ) has the zero  and the double zero (2b1 ± )/3. If there are

no multiple zeros, then, if possible, we put  ≠ 1 + ; otherwise, we set p1 + kq1 = 0. Finally, if a

choice is still possible, then we put  to be the minimal zero of (θ).
Regarding system (2.21), we note that, for this system, as well as for system (2.14) with l = 2, the con-

clusion of Theorem 2.2 holds with α = 1 and det H = 0.

2.6. Main Linear Invariants
We now extend the obtained results.

Theorem 2.3. The degree l (l = ) of the common factor , as introduced for system (2.1) in Definition
2.1, is invariant with respect to linear nonsingular substitutions. Furthermore, if l = 1, then the sign of the resul-
tant R2 (R2 ≠ 0) of the matrix G of system (2.9) is invariant and, if l = 2 or l = 3, then the signs of the discrim-
inant of the quadratic common factor P0 and of the discriminant of the roots of the characteristic polynomial
for the matrix H of systems (2.14) or (2.21) are invariant.

 Corollary 2.1. In the case l = 2 or l = 3, the quadratic common factor P0, which is factored out of the poly-
nomials P1, P2 of system (2.1), and the common factor , as obtained as a result of substitution (2.2) and fac-
tored out of the polynomials ,  of system (2.17), simultaneously expand or do not expand into linear factors
with real coefficients and, for them, the perfect squares are conserved.

In conclusion, we note that subsequent studies will ultimately be related to investigations of the com-
patibility, various simplifications, the particularization, and the solution of system (2.5).

Moreover, (2.5) should be interpreted as a system that involves eight equations with the unknowns r1,
r2, s1, s2 (the coefficients of substitution (2.2)) with the following structure: the left-hand side is a fourth-
order homogeneous polynomial in r1, r2, s1, s2, the coefficients of which are linear combinations of eight
coefficients of the initial system (2.1), the right-hand side vector is formed by the eight coefficients of sys-
tem (2.17) multiplied by the determinant of the linear nonsingular substitution (2.2).
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