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Abstract—This work is the second in a series of papers concerning two-dimensional homogeneous
cubic systems. In the first paper of the series, structural principles were developed to introduce a total
order on the set of structural forms, i.e., vector polynomials with a fixed number of zero coefficients
that are right-hand sides of two-dimensional homogeneous cubic systems of ODEs. Among them,
structural forms normalized on the basis of normalization principles and canonical forms (CFs) that
are linearly nonequivalent to each other and are the simplest in their class were sequentially distin-
guished. In this paper, for above-mentioned systems with proportional right-hand side components,
all CFs with their canonical sets of permissible values are distinguished. For each CF, (a) conditions on
the coefficients of the original system, (b) linear substitutions that reduce the right-hand side of a sys-
tem under these conditions to the chosen CF, and (c) the resulting values of the CF’s coefficients are
given.
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INTRODUCTION
This paper is a direct continuation of [1], so it retains the notation introduced in [1]. In view of the

numerous references to formulas obtained in [1], for brevity, they are denoted by superscript 1. For exam-
ple, system (2.1) from [1] is designated as (2.1)1.

1. CANONICAL FORMS AND THEIR DEFINITION PRINCIPLES

1.1. Structural Forms

Let us consider the homogeneous cubic system (2.1)1

(1.1)
which is identified with a real matrix A any of whose rows Ai = (ai, bi, ci, di) (i = 1, 2) is nonzero and q[3] =

colon( ).
The main task in this section is to formulate principles that make it possible to distinguish the “sim-

plest” linearly nonequivalent systems, which are referred to hereafter as cubic normal forms (NFs), while
their right-hand sides are called canonical forms. For every cubic NF, we specify the conditions on the
coefficients of the original system (1.1) and a linear nonsingular substitution (2.2)1,

(1.2)

that reduces (1.1) to the chosen cubic NF.
Moreover, the principles behind the choice of canonical forms have to be formulated so as to maxi-

mally facilitate the reduction of system (1.4)1  = P(x) + X(x), where the unperturbed part P(x) is a canon-
ical form, to generalized normal forms by applying almost identical substitutions.

As the first step toward the definition of a canonical form, we introduce the formal concept of a struc-
tural form and an order on the set of structural forms.

= =�

[3]( ) ( ),x P x Aq x

3 2 2 3
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Definition 1.1. A real matrix A =  with nonzero rows is called a united structural m-form

(m = 2, …, 8), denoted by USFm, if some m of its elements are nonzero, while the others are zero. The finite
set of all USFm is designated as SUSFm (set of USFm).

Obviously, one united structural m-form differs from another by the positions of the nonzero elements.
In what follows, for brevity, any USFm is written in rows, indicating only nonzero elements in each of

them, for example,  = (a1, c1; d2).

Consider all possible arrangements of the nonzero elements in the set SUSFm (m = ).
Definition 1.2. The index of an element aij (i = 1, 2; j = 1, 2, 3, 4) of the matrix A is the number in the

position (i, j) in the matrix . In turn, the index k of A is the sum of the indices of the nonzero

elements in A; if necessary, we write A[k]. The indices of rows A1 and A2 are introduced in a similar manner.
It can be shown by direct verification that the following three structural principles allow one to com-

pletely order the finite set SUSF = .
Structural principles (SPs) for ordering the SUSF:
(1) Any USFm precedes any USFn if m < n.
(2) Any USFm with a smaller index precedes any USFm with a larger index.
(3) Given any two USFm with identical indices, the preceding m-form is one in which
(31) the row A2 has a smaller index;
(32) in the case of identical indices of A2, the left nonzero element in A1 has a smaller index;
(33) otherwise, the right nonzero element in A2 has a smaller index.
Thus, in any subset of SUSF, the structurally “simplest” is a matrix A in which, in order of mentioning,

(1) the number m of nonzero elements is minimal; (2) the index k is minimal; (31) the index of A2 is min-
imal; (32) the index of the left nonzero element in A1 is minimal; and (33) the index of the right nonzero
element in A2 is minimal.

Let us discuss the basis for choosing the above SPs as applied to system (1.4)1 with an unperturbed part
P(x) generated by a united structural m-form A.

SP1 requires that the number of zero elements in A be maximal, which is undoubtedly a necessary con-
dition of primary importance for the maximum possible simplification of the bonding system (1.7)1.

Relying on the arguments used in Section 1.4 of [1], SP2 and SP3 optimize the arrangement of the
available nonzero coefficients.

For example, SP2 prefers the least weakly related unperturbed system, i.e., a system in which P1 and P2
contain variables x2 and x1, respectively, in minimal degrees. Naturally, SP2 makes sense only for l ≤ 2,
since, for l = 3, the coefficients of the polynomials are proportional and a permutation of the columns in
A does not change its index.

SP3s always prefer those structural forms that satisfy condition (1.9)1, which is important for the nor-
malization of perturbed systems.

Moreover, SPs were chosen so as to minimize whenever possible the number of nonzero elements in
the row A2. This is indicated in Remark 1.1 below.

After introducing the SPs, the number of USFm used in what follows is considerably reduced, since,
from the point of view of the subsequent normalization of perturbed systems, it is of no matter which of
two matrices is chosen as an unperturbed part if they are obtained from each other by relabeling (2.7)1 of
L = {r1, s2 = 0, r2, s1 = 1}.

Definition 1.3. Given two different united structural m-forms obtained from each other by relabeling,
the one that is preceding according to SP3 is called basic (or merely a structural m-form) and is denoted
by SFm, while the other is called additional and is denoted by .

Obviously, there are “symmetric” structural m-forms, i.e., SFm that do not change after relabeling
(2.7)1.

⎛ ⎞
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Since any pair consisting of a basic and an additional structural form is linearly equivalent, the “worst”
additional form in terms of SP3 is of no interest in itself, but it can sometimes be used for convenience.

Convention 1.1. According to the order introduced, any basic structural m-form is associated with an
index i and is denoted by , while the corresponding additional structural form is denoted by .

List 1.1. 120 ordered structural forms from the SUSF:

m
iSF ,

m
a iSF

= = = = =
= = = = =

2 2 2 2 2
1 1 2 [2] 2 1 2 [3] 3 1 2 [4] 4 1 2 [4] 5 1 2 [5]

2 2 2 2 2
6 1 2 [5] 7 1 2 [6] 8 1 2 [6] 9 1 2 [7] 10 1 2 [8]

( ; ) , ( ; ) , ( ; ) , ( ; ) , ( ; ) ,

( ; ) , ( ; ) , ( ; ) , ( ; ) , ( ; ) ;

SF a d SF a c SF a b SF b c SF a a

SF b b SF b a SF c b SF c a SF d a

= = = =
= = = =

3 3 3 3
1 1 1 2 [4] 2 1 1 2 [5] 3 1 1 2 [5] 4 1 1 2 [6]
3 3 3 3

5 1 1 2 [6] 6 1 1 2 [6] 7 1 1 2 [6] 8 1 1 2 [7]

( , ; ) , ( , ; ) , ( , ; ) , ( , ; ) ,

( , ; ) , ( , ; ) , ( , ; ) , ( , ; ) ,

SF a b d SF a c d SF a b c SF a d d

SF b c d SF a c c SF a b b SF b d d

= = = =
= = = =

3 3 3 3
9 1 1 2 [7] 10 1 1 2 [7] 11 1 1 2 [7] 12 1 1 2 [7]
3 3 3 3

13 1 1 2 [8] 14 1 1 2 [8] 15 1 1 2 [8] 16 1 1 2 [8]

( , ; ) , ( , ; ) , ( , ; ) , ( , ; ) ,

( , ; ) , ( , ; ) , ( , ; ) , ( , ; ) ,

SF a d c SF b c c SF a c b SF a b a

SF c d d SF b d c SF a d b SF b c b

= = = =
= = = =

3 3 3 3
17 1 1 2 [8] 18 1 1 2 [9] 19 1 1 2 [9] 20 1 1 2 [9]

3 3 3 3
21 1 1 2 [9] 22 1 1 2 [10] 23 1 1 2 [10] 24 1 1 2 [11]

( , ; ) , ( , ; ) , ( , ; ) , ( , ; ) ,

( , ; ) , ( , ; ) , ( , ; ) , ( , ; ) ;

SF a c a SF c d c SF b d b SF a d a

SF b c a SF c d b SF b d a SF c d a

= = =
= = =

4 4 4
1 1 1 2 2 [6] 2 1 1 1 2 [7] 3 1 1 2 2 [7]
4 4 4

4 1 1 1 2 [8] 5 1 1 1 2 [8] 6 1 1 2 2 [8]

( , ; , ) , ( , ; ; ) , ( , ; , ) ,

( , , ; ) , ( , , ; ) , ( , ; , ) ,

SF a b c d SF a b c d SF a c c d

SF a b d d SF a b c c SF a d c d

=
= = =

4 4 4
7 1 1 2 2 [8] 8 1 1 2 2 [8] 9 1 1 1 2 [9]

4 4 4
10 1 1 1 2 [9] 11 1 1 1 2 [9] 12 1 1 2 2 [9]

  = ( , ; , ) ,  = ( , ; , ) , ( , , ; ) ,

( , , ; ) , ( , , ; ) , ( , ; , ) ,

SF b c c d SF a c b d SF a c d d

SF a b d c SF a b c b SF b d c d

= = =
= = =

4 4 4
13 1 1 1 2 [9] 14 1 1 2 2 [9] 15 1 1 1 2 [10]
4 4 4

16 1 1 1 2 [10] 17 1 1 1 2 [10] 18 1 1 2 2 [10]

( , ; , ) , ( , ; b , ) , ( , , ; ) ,

( , , ; ) , ( , , ; ) , ( , , , ) ,

SF a d b d SF b c d SF b c d d

SF a c d c SF a b d b SF c d c d

= = =
= = =

4 4 4
19 1 1 1 2 [10] 20 1 1 2 2 [10] 21 1 1 2 2 [10]

4 4 4
22 1 1 2 2 [10] 23 1 1 2 2 [10] 24 1 1 1 2 [11]

( , , ; ) , ( , ; , ) , ( , ; , ) ,

( , ; , ) , ( , ; , ) , ( , , ; ) ,

SF a b c  a SF b d b d SF a d a d

SF a d b c SF b c b c SF b c d c

= = =
= = =

4 4 4
25 1 1 1 2 [11] 26 1 1 1 2 [11] 27 1 1 2 2 [11]
4 4 4

28 1 1 2 2 [11] 29 1 1 2 2 [11] 30 1 1 1 2 [12]

( , , ; ) , ( , , ; ) , ( , ; , ) ,

( , ; , ) , ( , ; , ) , ( , , ; ) ,

SF a c d b SF a b d a SF c d b d

SF b d a d SF b d b c SF b c d b

= = =
= = =

=

4 4 4
31 1 1 1 2 [12] 32 1 1 2 2 [12] 33 1 1 2 2 [12]

4 4 4
34 1 1 2 2 [12] 35 1 1 1 2 [13] 36 1 1 2 2 [13]

4
37 1 1 2 2 [14]

( , , ; ) , (c , ; , ) , ( , ; , ) ,

( , ; , ) , ( , , ; ) , ( , ; , ) ,

( , ; , ) ;

SF a c d a SF d a d SF c d b c

SF b d a c SF b c d a SF c d a c

SF c d a b

= = =
= = =

5 5 5
1 1 1 1 2 2 [9] 2 1 1 1 2 2 [10] 3 1 1 1 2 2 [10]
5 5 5

4 1 1 1 1 2 [11] 5 1 1 1 2 2 [11] 6 1 1 1 2 2 [11]

( , , ; , ) , ( , , ; , ) , ( , , ; , ) ,

( , , , ; ) , ( , , ; , ) , ( , , ; , ) ,

SF a b c c d SF a b d c d SF a b c b d

SF a b c d d SF a c d c d SF a b d b d

= = =
= = =

5 5 5
7 1 1 1 2 2 [11] 8 1 1 1 2 2 [11] 9 1 1 1 1 2 [12]
5 5 5

10 1 1 1 2 2 [12] 11 1 1 1 2 2 [12] 12 1 1 1 2 2 [12]

( , , ; , ) , ( , , ; , ) , ( , , , ; ) ,

( , , ; , ) , ( , , ; , ) , ( , , ; , ) ,

SF a b c a d SF a b c b c SF a b c d c

SF b c d c d SF a c d b d SF a b d a d

= = =
= = =

5 5 5
13 1 1 1 2 2 [12] 14 1 1 1 2 2 [12] 15 1 1 1 1 2 [13]
5 5 5

16 1 1 1 2 2 [13] 17 1 1 1 2 2 [13] 18 1 1 1 2 2 [13]

( , , ; , ) , ( , , ; , ) , ( , , , ; ) ,

( , , ; , ) , ( , , ; , ) , ( , , ; , ) ,

SF a b d b c SF a b c a c SF a b c d b

SF b c d b d SF a c d a d SF a c d b c

= = =
= = =

5 5 5
19 1 1 1 2 2 [13] 20 1 1 2 2 2 [13] 21 1 1 1 1 2 [14]

5 5 5
22 1 1 1 2 2 [14] 23 1 1 l 2 2 [14] 24 1 1 1 2 2 [14]

( , , ; , ) , ( , ; , , ) , ( , , , ; ) ,

( , , ; , ) , ( , , ; , ) ( , , ; , ) ,

SF a b d a c SF c d b c d SF a b c d a

SF b c d a d SF b c d b c SF a c d a c

= = =
=

5 5 5
25 1 1 1 2 2 [14] 26 1 1 1 2 2 [15] 27 1 1 1 2 2 [15]

5
28 1 1 1 2 2 [16]

( , , ; , ) , ( , , ; , ) , ( , , ; , ) ,

( , , ; , ) ;

SF a b d a b SF b c d a c SF a c d a b

SF b c d a b
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This list demonstrates the sufficiency of the SPs for ordering the basic structural forms. However, the SPs
also distinguish all additional structural forms.

Indeed, each asymmetric form from List 1.1 with rows A1 and A2 having different indices is basic

according to SP31. The remaining five asymmetric SFs, i.e., , , , , and , are basic
according to SP32.

Remark 1.1. In all  from List 1.1, except for , the number of nonzero elements in A2 does not
exceed that in A1.

Definition 1.4. A representative of an arbitrary  is any numerical matrix whose structure coincides
with that of .

As a result,  can be treated as the collection of all its representatives.

An important characteristic of  is related to finding all possible values of the maximum degree of
a common factor  (see Definition 2.1 in [1]) that can be taken out from the right-hand side of system
(1.1) generated by this structural form for various values of nonzero coefficients. Accordingly, for any

, the set of real nonzero values of its elements is divided into subsets  (0 ≤ l ≤ 3) as follows: 
contains those and only those values of elements of  for which a common factor  can be taken out
from the right-hand side of system (1.1) generated by this form.

Definition 1.5. For any  specified by a matrix A, the notation  means the same matrix A, but
the values of its nonzero elements belong to  ≠ .

In other words,  unites those and only those representatives of  whose elements belong to the
nonempty set  or, equivalently,  generates only those systems that have a common factor of max-
imum degree l.

Definition 1.5 and Theorem 2.3 from [1] imply the following result.

Proposition 1.1.  is linearly not equivalent to  for l1 ≠ l2; i.e., any two representatives of 

and  are linearly not equivalent.

If  has only one set  ≠ , then it has no constraints and is called trivial. Thus,  = .

For example, the values of the nonzero elements in  = (a1, c1; b2, d2) are divided into two subsets:

 = {a1d2 ≠ b2c1} and  = {a1d2 = b2c1}. System (1.1) generated by  = (a1, b1, c1; d2) for any values

of elements has no common factor, i.e., l = 0 and the only nonempty set  is trivial.

= =
= =

6 6
1 1 1 1 2 2 2 [12] 2 1 l 1 1 2 2 [13]
6 6

3 1 1 1 2 2 2 [13] 4 1 1 1 l 2 2 [14]

( , , ; , , ) , ( , , , ; , ) ,

( , , ; , , ) , ( , , , ; , ) ,

SF a b c b c d SF a b c d c d

SF a b d b c d SF a b c d b d

= =
= =

6 6
5 1 1 1 2 2 2 [14] 6 1 1 1 2 2 2 [14]

6 6
7 1 1 1 1 2 2 [15] 8 1 1 1 1 2 2 [15]

( , , ; , , ) , ( , , ; , , ) ,

( , , , ; , ) , ( , , , ; , ) ,

SF a c d b c d SF a b d a c d

SF a b c d a d SF a b c d b c

= =
= =

6 6
9 1 1 1 2 2 2 [15] 10 1 1 1 2 2 2 [15]
6 6

11 1 1 1 1 2 2 [16] 12 1 1 1 2 2 2 [16]

( , , ; , , ) , ( , , ; , , ) ,

( , , , ; , ) , ( , , ; , , ) ,

SF b c d b c d SF a c d a c d

SF a b c d a c SF b c d a c d

= =
= =

6 6
13 1 1 1 2 2 2 [16] 14 1 1 1 1 2 2 [17]
6 6

15 1 1 1 2 2 2 [17] 16 1 1 1 2 2 2 [18]

( , , ; , , ) , ( , , , ; , ) ,

( , , ; , , ) , ( , , ; , , ) ;

SF a c d a b d SF a b c d a b

SF b c d a b d SF b c d a b c

= =
= =

=

7 7
1 1 1 1 1 2 2 2 [16] 2 1 1 1 1 2 2 2 [17]
7 7

3 1 1 1 1 2 2 2 [18] 4 1 1 1 1 2 2 2 [19]
8

1 1 1 1 1 2 2 2 2 [20]

( , , , ; , , ) , ( , , , ; , , ) ,

( , , , ; , , ) , ( , , , ; , , ) ;

( , , , ; , , , ) .

SF a b c d b c d SF a b c d a c d

SF a b c d a b d SF a b c d a b c

SF a b c d a b c d

3
6SF 3

17SF 4
22SF 5

14SF 5
25SF

m
iSF 5

20SF

m
iSF

m
iSF

m
iSF

m
iSF

0
lP

m
iSF ,m l

is ,m l
is

m
iSF 0

lP

m
iSF ,m l

iSF
,m l

is /0
,m l

iSF m
iSF

,m l
is ,m l

iSF

1,m l
iSF 2,m l

iSF 1,m l
iSF

2,m l
iSF

m
iSF 0,m l

is /0 0,m l
iSF m

iSF
4

8SF
4,0
8s 4,2

8s 4
2SF

4,0
2s
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1.2. Normalized Structural Forms and Permissible Sets
The next step toward the definition of a canonical form is to introduce the concept of a normalized

structural form based on the normalization of all representatives of  with the help of the substitution
(2.6)1 L = {r1, s2 arbitrary r2, s1 = 0} in order to obtain unit (in absolute value) elements in two properly
chosen positions.

Let us formulate the principles behind the choice of elements of A to be normalized. The basic idea is
to normalize perturbed systems of elements that are the nastiest for the subsequent normalization, i.e.,
those having maximum indices. Following the logic of the structural principles (see SP31), whenever pos-
sible, it is preferable to normalize elements from the row A2.

Normalization principles (NPs) for .
(1) The normalized elements in A are arranged in the following order:
(11) The first normalized element is in A2 and has the maximum index.
(12) If not all nonzero elements of A are from the same zigzag (see Remark 2.1 in [1]), then the second nor-

malized element, after normalization, must have a definite sign for any values of elements of A from .
(13) If l = 3, then A1 = A2; if l ≤ 2, then the second normalized element is, if possible, in the row A2 and has

the maximum index in A2 out of the remaining ones; otherwise, it is in A1 and has the maximum index there.
(2) The values of normalized elements are equal to unity in absolute value; moreover, the following condi-

tions hold:
(21) If they are from an odd zigzag, then the first normalized element is equal to 1.
(22) If they are from different zigzags, then the sign of a normalized element from an odd zigzag must coin-

cide with the sign of a normalized element from an even zigzag.

Direct verification shows that, relying on the NPs introduced, in any , we can uniquely choose
the positions of normalized elements and the values to be obtained by the elements in these positions after
normalization. Moreover, a normalizing substitution is uniquely determined for all SF, except  and

, for which the element s2 in (2.6)1 is arbitrary and can be set, for example, to unity (see Remark 2.1
in [1]).

Thus, the representatives of any  (numerical matrices of given structure with elements from )
can be divided into equivalence classes with respect to normalizing substitutions (2.6)1, while normalized
representatives are used as generatrices.

Definition 1.6.  is called a normalized structural form, denoted by , if it unites only its rep-
resentatives normalized according to the NPs.

Convention 1.2. Any normalized structural form A will be written as σB, where the factor σ taken out
from A is equal to the sign of the first normalized element. The nonzero elements of B remaining unnor-
malized, if any, will be properly expressed in terms of variables known as parameters of NSF, which are
denoted by u, , w, …. If necessary, NSF will be written as a function of its parameters.

For example, we can write  =  = ; here,  ≠ u; otherwise, m ≠ 5.

Relying on Convention (1.2), we can obtain the maximum number of units in the matrix B, which is
used below for normalizing perturbed systems, while σ, if negative, can always be set to unity by time sub-
stitution.

For example, by making substitution (2.6)1,  = (a1; c2) can be reduced to  = 

with σ = sgn a1. Here, the normalized elements are from different zigzags and, according to Remark 2.1
in [1], the sign of an element of an even zigzag cannot be affected, so it is factored out as σ, while the sign
of a normalized element from an odd zigzag can always be made equal to σ, as required in NP22.

Now we discuss the rationale behind the introduction of NP12.
If the normalized elements in SF are taken from the same zigzag, then, after normalization, their prod-

uct can be positive or negative.

,m l
iSF

i
,m lSF

,m l
is

,m l
iSF

2,2
3SF

2,2
4SF

,m l
iSF ,m l

is

,m l
iSF ,m l

iNSF

v

5,1
7NSF σ5,1

7 ( , , )NSF u v
−⎛ ⎞σ ⎜ ⎟

⎝ ⎠

0
1 0 0 1
u uv v

v

2,1
2SF 2,1

2NSF ⎛ ⎞σ ⎜ ⎟
⎝ ⎠

1 0 0 0
0 0 1 0
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For example, let us normalize b2 and d2 in  = (a1, d1; b2, d2), as required by NP13. Then, for l = 1,

we obtain  =  with σ = sgn b2, while, for l = 0, we obtain the system  with

κ = sgn(b2d2) and the same σ; moreover,  ≠ u if κ = –1, i.e., depending on the sign of κ, we have one of
two different NSFs.

In this case, the bifurcation can be avoided, since  contains the nonzero element d1 from another
zigzag, and it is this element that is to be normalized according to NP12. Therefore, for l = 0, we obtain

the unique  =  with  ≠ –u–2, which is preferable to normalizing both elements of A2

at the cost of the bifurcation of NSF.

Definition 1.7. If all nonzero elements of  are from the same zigzag, which results in the second
normalized element in B (if any) being equal to 1 or –1 (denote it by κ), then the resulting NSF is called
dual and is denoted by .

Thus, the position of the second normalized element in any  can be uniquely determined by NP12
and NP13. For l ≤ 2, they place this element in A2 and, if impossible, in A1, in position with a maximum
index, so that uniqueness is preserved after the normalization. At the same time, for l = 3, the second unit
element is automatically placed in A1 above the first one in view of the natural assumption that A1 and A2
are equal, which prevents bifurcation.

Note that the conditions fixing the maximum degree l of the common factor are much easier to write
for  than for .

For example,  =  is  for , w = u;  for w =  – u; and  if the

above constraints on the parameters are not satisfied.

Definition 1.8. Parameter values for which an arbitrary  is defined are called permissible. The
union of permissible parameter values for each form is called a permissible set and is denoted by . A
permissible set is said to be trivial (denoted by ) if the parameters involved have no constraints.

Definition 1.8 and Theorem 2.3 from [1] imply the following result.

Proposition 1.2. For l = 2, 3, all representatives constituting  can be partitioned into three disjoint
sets, depending on the sign of the discriminant D0 = β2 – αγ from (2.14)1. These sets are denoted by ,

, and . For l = 2, all representatives constituting  can be partitioned into three dis-
joint sets, depending on the sign of the discriminant D = (p1 – q2)2 + 4p2q1 from (2.16)1. These sets are denoted

by , , and . For l = 3, there are two such sets, since in (2.22)1 we have D ≥ 0.
Similar partitions can be made in  (l = 2, 3).

Corollary 1.1. The systems generated by any two representatives of  (l = 2, 3) with different pairs
of third and fourth superscripts cannot be linearly equivalent.

It should be kept in mind that the positions of normalized elements in  can be different not only
for different l (see the normalizations of  and  above), but also for superscripts appearing when
the action of NP12 is stopped due to fixing the sign of the second normalized element, which is chosen
according to NP13 from the same zigzag as the first.

1.3. Canonical Sets and Canonical Forms

Consider an arbitrary matrix  with m nonzero elements in given positions that fix its index i in
SUSFm according to the introduced SPs. Let l denote the degree of a common factor  taken out from

4
13SF
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0 1 0 1
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u v

v

4,0
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13NSF ⎛ ⎞σ ⎜ ⎟

⎝ ⎠

0 0 1
0 1 0
u

v
v

,m l
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κ
,

,
m l

iNSF
,m l

iSF

,m l
iNSF ,m l

iSF

5
7NSF ⎛ ⎞σ ⎜ ⎟

⎝ ⎠

0
1 0 0 1
u wv 5,2

7NSF −v 5,1
7NSF v 5,0

7NSF

,m l
iNSF

,m l
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,m l
itps

,m l
iNSF

>, ,m l
iNSF

=, ,m l
iNSF <, ,m l

iNSF , ,*m l
iNSF

>, , ,*m l
iNSF =, , ,*m l

iNSF <, , ,*m l
iNSF

,m l
ips

,m l
iNSF

,m l
iNSF

4,0
13SF 4,1

13SF

,m l
iNSF

0
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the right-hand side of the system generated by any representative of . By Theorem 2.3 in [1], l is
invariant under linear nonsingular substitutions.

Note that obtaining normalized structural forms is a formal task requiring only normalization (2.6)1,
i.e., a substitution that does not affect the structure of the matrix A generating these forms.

Now, we simplify , reducing them, by applying suitable linear nonsingular substitutions (1.2)
with certain parameter values from , to preceding structural forms, i.e., to  with n < m or j < i for
n = m.

On the one hand, nearly every  can be reduced to preceding , i.e., it has “redundant” rep-
resentatives that are linearly equivalent to some representatives of the preceding forms. The parameter val-
ues generating such representatives have to be deleted from .

On the other hand, those  that are linearly equivalent to some preceding forms for all permis-
sible parameter values are of no interest in themselves, since they cannot be the “simplest.”

Definition 1.9. A nonempty set containing those and only those parameter values from  for which
 is linearly equivalent to none of the preceding SF is called canonical and is denoted by .

Definition 1.10. Any  is called a canonical form, denoted by , if its parameters belong to
.

Thus, the matrices  and  look identical, but the parameters of  belong to , i.e.,
to  with deleted parameter values for which the representatives of  are reducible to preceding
SF by substitutions (1.2).

Proposition 1.3. No two canonical forms are linearly equivalent.
This obvious result means that no two representatives of different CFs or, equivalently, no two systems

(1.1) generated by corresponding numerical matrices are related by a linear nonsingular substitution.
For l = 2, 3, the concepts of a canonical form and a canonical set have to be refined. The fact is that,

for certain discriminant values,  ceases to be canonical, i.e., all its representatives whose values are
taken from the permissible set with certain third and fourth superscripts are reducible to preceding forms.
In these cases, in every , the values of the discriminants for which it remains canonical will be listed
in the third and (or) fourth upper positions and all canonical sets for these discriminant values will be
described.

In some cases, canonical sets of parameters can be additionally constrained with the help of linear sub-
stitutions transforming CF into itself. In what follows, any such constraint undoubtedly facilitates finding
generalized normal forms of perturbed systems.

Definition 1.11. The canonical set of any  is called minimal and is denoted by  if there is a
linear nonsingular substitution that transforms  into itself and constrains the values of elements of

, namely, if possible, at least one of the nonunit elements becomes bounded from above and (or)
below and (or) the sign of the factor σ is fixed.

Thus, if  does not contain parameters or they cannot be constrained, we automatically have
 = , i.e., this canonical set is minimal.

Definition 1.12. The set containing those parameter values from  that can be eliminated by apply-
ing linear nonsingular substitutions transforming  into itself is called additional and is denoted by

.

Thus, we can write .
The concept of acs was introduced because it is more convenient to writing it than mcs in practice.
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1.4. Degenerate Forms for l = 3

In addition to the nondegenerate system (1.1) identified with the coefficient matrix A = ,

in the case l = 3, there are systems such that one row of A is zero.

Definition 1.13. A structural form A (μ = ) is called degenerate and is denoted by  if A2 = 0.

Then, in view of SP31 and Definition 1.3, the form with a zero first row obtained from  with the
help of relabeling (2.7)1 is additional.

Note that the possible use of relabeling in obtaining  leads to the refusal of Convention 2.8 from
[1] and admits the case a1, b1 = 0, A2 = 0.

System (1.1) generated by a degenerate SF is naturally called degenerate. It arises only for l = 3 and is
system (2.20)1 with k = 0.

For , all SPs remain valid, except for SP33, which is replaced by the following principle: (3d3) oth-
erwise, the subsequent nonzero element of A1 has a smaller index.

Now, for any μ = , according to the introduced ordering, every  is assigned its index ι and is
denoted by . All NPs and the subsequent definitions and notation are naturally extended to 
with the only difference being that, in NP1, both elements to be normalized are taken from the row A1.

To conclude, we describe the possibilities provided by degenerate canonical forms for the normaliza-
tion of perturbed systems in the case l = 3.

Supplement 1.1. With the use of , there are three different ways of normalizing the system (1.4)1

 = P(x) + X(x), where P corresponds to the case l = 3:

(1)  itself is used as an unperturbed part.

(2)  is used as an unperturbed part, and the corresponding linear substitution transforming 
into  is made in the perturbed system.

(3) The unperturbed part  is made nondegenerate by adding some terms from the perturbation of
system (1.4)1 to P2 ≡ 0 so that the new unperturbed part becomes a quasihomogeneous polynomial due to
introducing a corresponding weight.

Convention 1.3. In what follows, (1) the notation “… ζ = [ ] … η = [ ] …” means that either
ζ = ς1 and η = ς2 or ζ =  and η = ; (2) a condition in round brackets given after another condition is
not a requirement, but is presented as a reminder to clarify the subsequent argument; and (3) in the for-
mulations of results, the fact that the denominator is nonzero is not assumed, but is shown in the course
of the proof.

2. CANONICAL FORMS OF A HOMOGENEOUS CUBIC SYSTEM 
WITH A COMMON FACTOR OF THIRD DEGREE

2.1. Six Classes of Linear Equivalence of Systems for l = 3

Consider the system (1.1)  = P(x) = Aq[3](x). For l = 3, since the nonzero rows of the matrix A in
(2.20)1 are proportional (P2 ≡ kP1) and in view of Convention 2.3 from [1], this system can be uniquely
written in the form of (2.21)1 by using formulas (2.23)1, namely,

(2.1)

By Theorem 2.2 in [1], any substitution (1.2) x = Ly reduces (2.1) to system (2.17)1 of the form

(2.2)

⎛ ⎞
⎜ ⎟
⎝ ⎠

1 1 1 1

2 2 2 2

a b c d
a b c d

1,4 μ
dSF

μ
dSF

μ
dSF

μ,3
dSF

1,4 μ,3
dSF

μ
ι
,3

,dSF μ
ι
,3

,dSF

μ,3
dCF

�x
μ,3

dCF
,3mCF μ,3

dCF
,3mCF

μ,3
dCF

ς ∨1 1v ς ∨2 2v

1v 2v

�x

+ ≠ ≠⎛ ⎞= = + β + γ = ⎜ ⎟ δ = =⎝ ⎠
�

2 2
1 1 1 12 2

0 0 1 1 2 2
1 1

0, 0,
( ) , 2 , ,

det 0.pq

p q p q k
x P x Hx P x x x x H

kp kq H

= α β γ� �

� ��

[2]( ,2 , ) ( ) ,y q y Hy
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where  =  + ,  =  +  + , and  =  +  (α = 1) according
to (2.18)1 and the matrix  also introduced in (2.18)1 is singular, i.e.,  = 0.

Any linear nonsingular substitution transforms the matrix

By using the form of , we can find some relations between the coefficients of the substitution and the
structures of the bonded systems.

Proposition 2.1. Suppose that substitution (1.2) reduces (2.1) to system (2.2). Then the following assertions
hold:

(1) If P2 ≡ 0 ⇔ k = 0, then  ≡ 0 ⇔ r2 = 0.

(2) If P2 ≡ 0 ⇔ k = 0, then  ≡  ⇔ k = 1 ⇔ r2 = –s2 ≠ 0.

(3) If P1 ≡ P2 ⇔ k = 1, then  ≡  ⇔ k = 1 ⇔ r2 = r1 +s1 – s2.

Substitution (1.2) is chosen so that  in system (2.2) is a Jordan matrix.

Of course, the form of the substitution depends on the sign of the discriminant D =  of the charac-
teristic polynomial of H, which is a linear invariant. Here, according to (2.22)1, the eigenvalues satisfy the
equalities λ1 = p1 + kq1 and λ2 = 0. Therefore, the set of systems (2.1) is divided into two linearly nonequiv-
alent classes depending on the sign of D.

The substitution  =  for D > 0 or the substitution  =  for D = 0 transforms system

(2.1) into system (2.17)1 of one of the following two forms, respectively:

(2.3)

Obviously, (2.31) and (2.32) are degenerate systems of form (2.20)1 with k = 0.

By virtue of (2.19)1  = δ2D0, the set of systems (2.1) is divided into three linearly nonequivalent
classes depending on the sign of D0 = β2 – γ, which is the common factor P0.

In what follows, sequentially fixing the various combinations of the signs of D0 and D, in each of the
six equivalence classes, we can simplify system (2.3) as much as possible, while preserving its degeneracy.

2.2. Construction of Degenerate Canonical Forms

Let us prove that the list presented below contains all possible degenerate canonical forms of system
(2.1) with their canonical sets from Definitions 1.10 and 1.9.

List 2.1. Ten  and their nontrivial  (σ, κ = ±1):

α� + β2
1 1 22r r r γ 2

2r β� 1 1r s β +1 2 2 1( )r s r s γ 2 2r s γ� + β2
1 1 22s s s γ 2

2s
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Here, the third and fourth superscripts indicate the signs of D0 and D for which the forms are canonical,
and the right-hand sides contain only the rows A1, since all A2 are zero.

Proposition 2.2. For  = 2/9,  is reduced to  by substitution (1.2) with s1 = –3s2/2 and r2 =

0; for  = 1/4, it is reduced to  by a substitution with s1 = –2s2 and r2 = 0; for  = 1/3, it is reduced

to  by a substitution with s1 = –2s2 and r2 = 0; and it is not reduced to preceding forms for the other
values of .

Family 2.1. The substitutions used in what follows in Section 2:

Theorem 2.1. Any system (1.1) with l = 3 written in the form of (2.1) according to (2.23)1 is linearly equiv-
alent to the system generated by a certain representative of the corresponding degenerate canonical form from

List 2.1. Below, for every , we present (a) conditions on the coefficients of system (2.1), (b) substitutions
(1.2) that transform the right-hand side of (2.1) under the indicated conditions into the chosen form, and (c)

the resulting values of the factor σ and the parameters from .

: (a) γ < β2, λ1 ≠ 0, in (2.31)  = 0,  ≠ 0; (b) , ; (c) σ = ;

: (a) γ < β2, λ1 ≠ 0, in (2.31)  ≠ 0,  ≠ 0, ; (b) , ; (c) σ =
;

: (a) γ < β2, λ1 ≠ 0, in (2.31)  ≠ 0,  ≠ 0, ; (b) , ; (c) σ = ,

;

: (a) γ = β2, λ1 ≠ 0, in (2.31)  = 0; (b) , ; (c) σ = ;

: (a) γ = β2, λ1 ≠ 0, in (2.31)  = 0; (b) , ; (c) σ = ;

: (a) γ = β2, λ1 ≠ 0, in (2.31)  ≠ 0,  ≠ 0; (b) , ; (c) σ = ;

< > > > < = >
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: (a) γ = β2, λ1 = 0, in (2.32)  ≠ 0; (b) , ; (c) σ = 1;

: (a) γ = β2, λ1 = 0, in (2.32)  = 0; (b) , ; (c) σ = 1;

: (a) γ > β2, λ1 ≠ 0, in (2.31)  = 0; (b) , ; (c) σ = ;

: (a) γ > β2, λ1 ≠ 0, in (2.31)  = ; (b) , ; (c) σ = ;

: (a) γ > β2, λ1 ≠ 0, in (2.31)  ≠ 0, ; (b) , ; (c) σ = , ;

: (a) γ > β2, λ1 = 0, , ,  from (2.32); (b) , ; (c) σ = 1.

Proof. Systems (2.31) and (2.32) are obtained from (2.1) by making substitutions  and . Let us max-
imally simplify them, while preserving the condition  ≡ 0. For this purpose, according to Proposition
2.11, we used an arbitrary substitution (1.2) with r2 = 0, which reduces (2.31) and (2.32) to systems with a
zero second row:

(2.4)

respectively. Elements of these systems will be marked by the symbol ◡.
(1) Consider D0 > 0, i.e., P0(x) is factored into two different factors.

(11) λ1 = p1 +kq1 ≠ 0 (D =  > 0). Substitution  reduces (2.1) to system (2.31).

( )  = 0,  = 0. Then, in (2.31) we obtain  = , which is not possible, since, according

to Convention 2.31 and Corollary 2.1 from [1],  has to be taken out from system (2.31).

( )  ≠ 0,  = 0. Then, in (2.31), we have  = , which is the situation from case

( ).

( )  = 0,  ≠ 0 (  ≠ 0). System (2.41) is transformed into  and

 ≠ 0. In view of SP2, we obtain  = 0 ⇔ s1 = 0. Then system (2.41) can be written as

. For r1 =  and s2 = , this is  with σ = .

( ) ,  ≠ 0.

( )  = 0 (  < 0). Then, for s1 = 0, system (2.41) is transformed into . For r1 =

 and s2 = , this is  with σ = .

( )  ≠ 0 (  =  ≠ ).

The case ,  = 0 would require that s1 =  and s1 = , but

then we obtain  = 0, which is not possible, since  > .

Therefore, in view of SP2, we obtain  = 0 ⇔ s1 =  or s1 = 0.
Under these constraints, system (2.41) has the form

(2.5)

respectively.

( )  =  ⇔  =  ( ). For r1 = , s2 = , and s1 =

, system (2.51) is  with σ = –sgn( ).

( )  ⇔ . Then system (2.52) with r1 = , s1 = 0, and s2 =  is 

with σ = –sgn( ) and  (  < 1/4,  ≠ 0, 2/9).
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+
�

� 2 2
1 1c d

�

1d

λ β γ�

�1 2 1 2(0,2 , ,0)s r s −γ β��

1
2(2 ) s −γλ� 1/2

1
> >2,3, ,

,4dCF γλ� 1sgn( )
3
11 α� γ�
3
11 a β� αγ� � λ α γ� �

2 2
1 1 2( ,0, ,0)r s

−αλ� 1/2
1

−γλ� 1/2
1

> >
−

2,3, ,
,2, 1dCF γλ� 1sgn( )

3
11 b β� τ� β − αγ�

� �

2 1/2( ) β�
�

1b �

1c −− β ± β − αγ α� �

� � �

2 1/2 1
2( 2 (4 3 ) )(3 ) s −− β α�

�

1
22 (3 ) s

β − αγ�

� �

24 3 β� 2 αγ� �
�

1d −α −β ± τ�

� �

1
2( )s

( ) ( )− −λ α β τ β − α τ τ − β λ α β γ� � � �

� � � �� � �

12 1 2 2 2
1 1 1 2 2 1 1 1 2 2, (3 1) , 2 ( ) , 0 r , 2 , , 0 ,r r s s o r r s s

3 1
11 b β� τ�3 β� αγ� � 1/23(2 ) /4 αγ >� � 0 −αλ� 1/2

1
−γλ� 1/2

12
−−−α β α β λ� �

1/21/21 2
1

> >
−

2,3, ,
,2,dCF γλ� 1

3 2
11 b τ ≠ β��3 β ≠ αγ�

� �

2 9 /8 −β γ�

�

1
2(2 ) s −γλ� 1/2

1
> >3,3, ,

,1dCF

γλ� 1
−αγ β�� �

2v = (2 ) v v
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(12) λ1 = p1 + kq1 = 0 (q1 ≠ 0). The substitution  made in (2.1) yields system (2.32).

( ) ,  = 0. Then, in system (2.32),  = , which is the situation from case ( ).

( )  ≠ 0,  = 0. In (2.32), we obtain  = , which is not possible, since, according

to Convention 2.32 from [1], with an appropriate grouping,  =  and λ1 = 1.

( )  = 0,  ≠ 0. Then, in (2.32),  = , which is the situation from case ( ).

( ) ,  ≠ 0. In (2.32),  =  =  with , which

is the situation from case ( ).
(2) Consider D0 = 0, i.e., the common factor P0(x) is a perfect square.

(21) λ1 = p1 + kq1 ≠ 0 (D =  > 0). The substitution  made in (2.1) yields system (2.31).

( )  = 0 (  = 0,  > 0). Then, for s1 = 0, system (2.41) is transformed into the form .

For r1 =  and s2 = 1, this is  with σ = sgn λ1.

( )  = 0 (  = 0, > 0). Then, for s1 = 0, system (2.41) can be written as (0, 0, , 0).

For r1 = 1 and s2 = , this is  with σ = sgn λ1.

( ) > 0, > 0 (  = ). Then, in (2.41), we have  = ( )( ),  =

, and, hence, for s2 = s1, system (2.41) can be rewritten as (r1, s1, 0, 0).

For r1, s1 = , this is  with σ = sgn λ1.

(22) λ1 = p1 + kq1 = 0 (q1 ≠ 0). Making the substitution  in (2.1), we obtain system (2.32).

( )  > 0 (  = ). Then, in (2.42), we have  =  and  = ;

therefore, for s1 = , system (2.42) can be rewritten as (0, , 0, 0). For r1 =  and s2 = 1, this is

.

( ) = 0 (  =0,  > 0). Then system (2.42) has the form (0, 0, 0, ). For r1 = , s1 = 0, and s2 =

1, this is .
(3) Consider D0 < 0, i.e., P0 has no real zeros.

(31) λ1 = p1 + kq1 ≠ 0 (D =  > 0). Making the substitution  in (2.1) yields system (2.31).

( )  = 0 (  > 0). Then, for s1 = 0, system (2.41) is transformed into the form . For r1

=  and s2 = , this is  with σ = sgn λ1.

( )  ≠ 0.

( )  =  (> ). Then, for s2 = , system (2.41) can be written as

. For r1, s1 = , this is  with σ = sgn λ1.

( )  ≠ . In (2.41), we obtain  = . Then, for s1 = 0, system (2.41)

is transformed into the form . For r1 =  and s2 = , this is

 with σ = sgn λ1 and  (  > 1/4,  ≠ 1/3).

(32) λ1 = p1 +kq1 = 0 (q1 ≠ 0). Making the substitution  in (2.1), we obtain system (2.32). For s1 =

, system (2.42) can be written as . For r1 =  and s2 = , this is

 with σ = 1.
As a result, we have proved the completeness of List 2.1 and the linear nonequivalence of the forms

involved. □

3
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2
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2
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3
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1
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�
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1/2
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,1dCF
3
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1
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1 2 �

1c α + β��2 1 22 ( )s s s
�
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1 2
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1
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,2dCF

2
22 α� β� γ� −γ� 1 3

1 2r s γ�
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1

3
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1
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1
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> >
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2
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2
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1
13 (2 ) s
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1
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3
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Let us single out the minimal canonical sets introduced in Definition 1.11.
Proposition 2.3. The parameter values in cs can be constrained only in the following forms from List

2.1: (1) the sign of σ reverses in , , and  by using normalization (2.6)1 with r1 = 1

and s2 = –1 and in  by using a substitution with r1, s1 = 1, r2 = 0, and s2 = –1; (2) in  for

=  ∈ (2/9, 1/4), a substitution with r1 = , s1 =

, r2 = 0, and s2 = , where  = ,

gives  = ; therefore  ∈ (0, 2/9).

Corollary 2.1. According to Definition 1.12, we have the following additional cs: , ,

,  = {σ = –1},  = {2/9 <  < 1/4}. For the other degenerate canonical forms from

List 2.1,  = .

2.3. Reduction of Degenerate Canonical Forms to Canonical Ones
Let us prove that the list presented below contains all possible canonical forms of system (2.1) and their

canonical sets introduced in Definitions 1.10 and 1.9.

List 2.2. Seven  and their nontrivial  (σ, κ = ±1):

Family 2.2. The substitutions used in what follows in Section 2:

Let us establish the linear relations between degenerate and nondegenerate canonical forms, thereby prov-
ing the linear nonequivalence of all .

Theorem 2.2. It holds that

 with  = σ is reduced by the substitution  to  with σ =  and u = –1/9;

 with  = σ is reduced by the substitution  to  with σ =  and u = –1;

 is reduced by the substitution  to  with u = 4  – 1 (u < 0, u ≠ –1, –1/9);

 is reduced by the substitution  to ; 

 is reduced by the substitution  to ;

 is reduced by the substitution  to ; 

 is reduced by the substitution  to ;

= =1,3, ,
,2dCF = =1,3, ,

,4dCF < =
+

2,3, ,
,5,dCF

> >2,3, ,
,4dCF > >3,3, ,

,1dCF

�v v − −− + − −� � �

1/2 1 1(8 2 2 ) (6 1 )(4 ) (9v v v v - 2)� �

− −− + − − −� � � �

1/2 1 1(8 2 2 ) (4 1 )(4 ) (4 1)v v v v� �
−− − +�

1/2 1(8 2 2 ) (2 )v � � � − �

1/2(1 4 )v

v −− + + − −� � � �

2 2(36 13 1 (1 3 ))(9 2) /2v v v v� v
= =1,3, ,

,2dacs = =1,3, ,
,4dacs

> >2,3, ,
,4dacs < =

+
2,3, ,
,5, 1dacs > >3,3, ,

,1dacs v
μ,3, ,* *
dmcs μ,3, ,* *

dcs

,3
,
m

d iCF ,3
,

m
d ics

= > = >⎛ ⎞ ⎛ ⎞= σ = σ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

2,3, , 2,3, ,
5 6

1 0 0 0 0 1 0 0
; ;

1 0 0 0 0 1 0 0
CF CF

= = > < ≥
− κ

− κ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= σ = σ = σ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− κ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

4,3, , 4,3, , 4,3, ,
18, 1 20 21,

0 0 1 1 0 1 0 1 0 0
, , ;

0 0 1 1 0 1 0 1 0 0
u

CF CF CF
u

≷

= > = =− − −⎛ ⎞ ⎛ ⎞= σ = σ⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠

6,3, , 8,3, ,
9 1

0 1 2 1 1 3 3 1
; ;

0 1 2 1 1 3 3 1
CF CF

> > < > < > < >
+ −= < = > = κ = = κ = −4,3, , 4,3, . 4,3, , 4,3, ,

20 20 21, 1 21, 1{ 0}, { 0}; { 1}, { 1}.cs u cs u cs cs

= > < > −= − = = = − =2,3, , 4,3, , 1/2
5 1 2 2 1 20 1 1 2 2{ , , 1, 0}; 1 { , , , 3 };L r r s s L r s r s

= > < >= − = = = = = − − =2,3, , 4,3, ,
6 1 2 2 1 20 1 1 2 2{ , , 1, 0}; 2 { 0, 2, , 1};L r r s s L r s r s
= = < > −
− += = − = = = − =4,3, , 4,3, , 1/2 1/2

18, 1 1 1 2 2 21, 1 1 1 2 2{ 0, , , 1}; { , 2 , , (3/2) };L r s r s L r s r s
> > < = − −

−= = = − = = − =4,3, , 4,3, , 3/4 1/2 1/4 1/2
20 1 1 2 2 21, 1 1 1 2 22 { , , 1, 1}; { , 3 2 , , 3 2 };L r s s r L r s r s

> > − = >= = = = − = = − =4,3, , 1/2 6,3, ,
20 1 2 1 2 2 2 9 1 1 2 21 { , 2 , /3, }; { 0, , , 1};L r s s s r s L r s r s

> > = == = = − − = = − = =4,3, , 8,3, ,
20 1 1 2 2 1 1 2 2 13 { 0, 2, , 1}; { , , 1, 0}.L r s r s L r r s s

,3m
iCF

> >
−

2,3, ,
,2, 1dCF σ� > >4,3, ,

201L > >4,3, ,
20CF −σ�

> >2,3, ,
,4dCF σ� > >4,3, ,

202L > >4,3, ,
20CF −σ�

> >2,3, ,
,1dCF > >4,3, ,

203L > >4,3, ,
20CF v

= >1,3, ,
,1dCF = >2,3, ,

5L = >2,3, ,
5CF

= >1,3, ,
,3dCF = >6,3, ,

9L = >6,3, ,
9CF

= >2,3, ,
,1dCF = >2,3, ,

5L = >2,3, ,
5CF

= =1,3, ,
,2dCF = =

−
4,3, ,
18, 1L = =

−
4,3, ,

18, 1CF
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 is reduced by the substitution  to ; 

 is reduced by the substitution  to ;

 is reduced by the substitution  to  with u = 1/3;

 is reduced by the substitution  to  with u = 4  – 1 (u > 0, u ≠ 1/3); and

 with  = σ is reduced by the substitution  to  with  = .

Proof. For each  from List 2.1, we make substitution (1.2), in which, according to Proposition
2.12, r2 = –s2 ≠ 0. For brevity, we introduce δ1 = (r1 + s1)–1.

 is reduced to , , , . For

r1, s1 = s2, we obtain  of the form .

 is reduced to , , , .

For r1, 3s1 = s2, we obtain  of the form . Instead of ci = 0, we can use di = 0, thus

obtaining , which is preceded by .

 (  < 1/4,  ≠ 0, 2/9) is reduced to , ,

, . For r1 = 0 and s1 = –2s2, we obtain  of the

form . It is also possible to obtain .

 is reduced to . For s1 = 0, we obtain  of the form .

 is reduced to . For r1 = 0, we obtain  of the form

. Instead of ai = 0, we can use bi = 0 to obtain .

 is reduced to , , , . For r1 =

s2 and s1 = 0, we obtain  of the form .

 is reduced to , . For r1 = 0, we obtain  of the form
.

 is reduced to .

 is reduced to , , , . For r1, s1 =

3–1/2s2, we obtain  of the form .

 is reduced to , , , .

For r1, s1 = s2, we obtain  of the form .

 (  > 1/4,  ≠ 1/3). Everything is similar to .

 is reduced to , , , . For r1, s1 = 31/2s2, we

obtain  of the form .
Now, following the NPs, it remains to make normalization (2.6)1 in all SFm, 3 obtained.
Since  from List 2.1 are pairwise linearly nonequivalent and any original system (2.1) is reduced

to one of them, we conclude that List 2.2 covers all CFm, 3. □
Theorems 2.1 and 2.2 imply an assertion establishing linear relations between the original system (2.1)

and various canonical forms from the list.
Theorem 2.3. Any system (1.1) with l = 3 written in the form of (2.1) according to (2.23)1 is linearly equiv-

alent to the system generated by some representative of the corresponding canonical form from List 2.2. Below,
for every , we present (a) conditions on the coefficients of system (2.1), (b) substitutions (1.2) that
transform the right-hand side of (2.1) under the indicated conditions into the chosen form, and (c) the resulting

values of the factor σ and the parameters from :
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+
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2(0,1,0,4 1)sv 4,3

23SF
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< >4,3, ,
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< =
−

4,3, ,
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: (a) γ < β2, λ1 ≠ 0, in (2.31)  ≠ 0 and (a1)  = 0; (b1) , , ; (c1) σ = ,

u = –1; (a2)  ≠ 0,  = ; (b2) , , ; (c2) σ = , u = –1/9;

(a3) ≠ 0,  ≠ 0, ; (b3) , , ; (c3) σ = , u =  – 1 (u < 0, u ≠ –1, –1/9);

: (a) γ = β2, λ1 ≠ 0, in (2.31)  = 0; (b) , , ; (c) σ = sgn λ1;

: (a) γ = β2, λ1 ≠ 0, in (2.31)  = 0; (b) , , ; (c) σ = sgn λ1;

: (a) γ = β2, λ1 ≠ 0, in (2.31) ,  ≠ 0; (b) , , ; (c) σ = sgn λ1;

: (a) γ = β2, λ1 = 0, in (2.32)  ≠ 0; (b) , , ; (c) σ = 1;

: (a) γ = β2, λ1 = 0, in (2.32)  = 0; (b) , , ; (c) σ = 1;

: (a) γ > β2, λ1 ≠ 0, in (2.31)  = 0; (b) , , ; (c) σ = sgn λ1;

: (a) γ > β2, λ1 ≠ 0, in (2.31): (a1)  = ; (b1) , , and ; (c1) σ = sgn λ1, u =

1/3; (a2)  ≠ 0, ; (b2) , , and ; (c2) σ = sgn λ1, u =  (u > 0, u ≠ 1/3);

: (a) γ > β2, λ1 = 0, , ,  from (2.32); (b) , , and ; (c) σ = –1.

Here, the substitutions , , and  are given in Family 2.1, while , in Family 2.2.
Let us single out the minimal canonical sets introduced in Definition 1.11.
Proposition 2.4. The parameter values in csm, 3 can be constrained in view of Proposition 2.13 only in the

following CFm, 3 from List 2.2:

(1) The sign of σ is reversed by a substitution with r1 = 1, s1 = –2, r2 = 0, and s2 = –1 in  and by

relabeling (2.7)1 in  and .

(2) In , for  = u ∈ (–∞, –1) ∪ (–1, –1/9), a substitution with r1 = , s1 =

, r2 = , and s2 = , where  = ,

yields u = , so u ∈ (–1/9, 0), while, for u = –1, a substitution with r1 = 1/2, s1 = –3/2, and
r2, s2 = –1/2 changes the sign of σ.

Corollary 2.2. According to Definition 1.12, we have the following additional cs: , ,

 = {σ = –1}, and  = {u ∈ (–∞, –1) ∪ (–1, –1/9), σ = –1 for u = –1}. For the other
canonical forms from List 2.2, mcsm, 3, *, * = cs m, 3, *, *.
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