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ON AN INVERSE DYNAMIC PROBLEM FOR THE
WAVE EQUATION WITH A POTENTIAL ON A REAL
LINE

A. S. Mikhaylov∗ and V. S. Mikhaylov∗ UDC 517

The inverse dynamic problem for the wave equation with a potential on a real line is considered.
The forward initial-boundary value problem is set up with the help of boundary triplets. As an
inverse data, an analog of the response operator (dynamic Dirichlet-to-Neumann map) is used.
Equations of the inverse problem are derived; also, a relationship between the dynamic inverse
problem and the spectral inverse problem from a matrix-valued measure is pointed out. Bibliogra-
phy: 16 titles.

1. Introduction

For a potential q ∈ C2(R) ∩ L1(R) we consider an operator H in L2(R) given by

(Hf)(x) = −f ′′(x) + q(x)f(x), x ∈ R,

domH = {f ∈ H2(R) | f(0) = f ′(0) = 0}.
Then

(H∗f)(x) = −f ′′(x) + q(x)f(x), x ∈ R,

domH∗ = {f ∈ L2(R) | f ∈ H2(−∞, 0), f ∈ H2(−∞, 0)}.
For a continuous function g we denote

g± := lim
ε→0

g(0± ε).

Let B := R
2. The boundary operators Γ0,1 : domH∗ �→ B are introduced by the rules

Γ0w :=

(
w+ − w−
w′
+ − w′−

)
, Γ1w :=

1

2

(
w′
+ + w′−

−w+ − w−

)
.

Integrating by parts for u, v ∈ domH∗ shows that the abstract second Green identity holds:

(H∗u, v)L2(R)
− (u,H∗v)L2(R)

= (Γ1u,Γ0v)B − (Γ0u,Γ1v)B .

The mapping

Γ :=

(
Γ0

Γ1

)
: domH∗ �→ B ×B

is obviously surjective. Then a triplet {B,Γ0,Γ1} is a boundary triplet for H∗ (see [9]). With
the help of boundary triplets, one can describe self-adjoint extensions of H, see [10, 12, 16].
In [6] the authors used the concept of boundary triplets to set up and study a boundary value
problem for an abstract dynamical system with a boundary control in Hilbert space; they also
used it for the purpose of describing a special (wave) model of the one-dimensional Schrödinger
operator on an interval [8].
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Let T > 0 be fixed. We use the triplet {B,Γ0,Γ1} to set up the dynamical system with a
special boundary control (acting in the origin) for a wave equation with a potential on a real
line:

utt +H∗u = 0, t > 0, (1.1)

(Γ0u)(t) =

(
f1(t)
f ′
2(t)

)
, t > 0, (1.2)

u( · , 0) = ut( · , 0) = 0. (1.3)

Here the function F =

(
f1
f2

)
, f1 f2 ∈ L2(0, T ), is interpreted as a boundary control. The

solution to (1.1)–(1.3) is denoted by uF . The response operator, an analog of the Dirichlet-to-
Neumann map, is introduced by the rule(

RTF
)
(t) :=

(
Γ1u

F
)
(t), t > 0.

The speed of wave propagation in system (1.1)–(1.3) is equal to one, that is why the natural set
up of the dynamic inverse problem is to find a potential q(x), x ∈ (−T, T ), from the knowledge
of a response operator R2T (cf. [1, 3, 7]).

In the second section, we derive the representation formula for the solution uF and introduce
the operators of the Boundary Control method. In the third section, we derive the Krein and
Gelfand–Levitan equations of the dynamic inverse problem and point out the the relationship
between the dynamic and spectral inverse problems.

2. Forward problem, operators of the Boundary Control method

It is straightforward to check that when q = 0, the solution to (1.1)–(1.3) is given by:

uF (x, t) =

⎧⎪⎨
⎪⎩

1
2f1(t− x)− 1

2f2(t− x), x > 0,

−1
2f1(t+ x)− 1

2f2(t+ x), x < 0,

0, 0 < t < |x|.
Everywhere we consider operators acting in L2-spaces; for this reason it is appropriate to
introduce the outer space of system (1.1)–(1.3), the space of controls as FT := L2(0, T ;R

2),

F ∈ FT , F =

(
f1
f2

)
.

Theorem 1. The solution to (1.1)–(1.3) with a control F ∈ FT ∩C∞
0 (R+) admits the following

representation:

uF (x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2f1(t− x)− 1

2f2(t− x) +
t∫
x
w1(x, s)f1(t− s)

+w2(x, s)f2(t− s) ds, 0 < x < t,

−1
2f1(t+ x)− 1

2f2(t+ x) +
t∫

−x
w1(x, s)f1(t− s)

+w2(x, s)f2(t− s) ds, 0 < −x < t,

0, 0 < t < |x|.

(2.1)

where the kernels w1(x, t) and w2(x, t) satisfy the following Goursat problems:⎧⎪⎨
⎪⎩
w1tt(x, t)− w1xx(x, t) + q(x)w1(x, t), 0 < |x| < t,
d
dxw1(x, x) = − q(x)

4 , x > 0,
d
dxw1(x,−x) = − q(x)

4 , x < 0,

(2.2)
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⎧⎪⎨
⎪⎩
w2tt(x, t)− w2xx(x, t) + q(x)w2(x, t), 0 < |x| < t,
d
dxw2(x, x) =

q(x)
4 , x > 0,

d
dxw2(x,−x) = − q(x)

4 , x < 0.

(2.3)

Proof. Take arbitrary F ∈ FT ∩ C∞
0 (0, T ;R2) and look for uF in the form (2.1). Then for

x > 0 we have

uxx(x, t) =
1

2
f ′′
1 (t− x)− 1

2
f ′′
2 (t− x)− d

dx
w1(x, x)f1(t− x)

+ w1(x, x)f
′
1(t− x)− d

dx
w2(x, x)f2(t− x) + w2(x, x)f

′
2(t− x)

− w1x(x, x)f1(t− x)− w2x(x, x)f2(t− x)

+

t∫
x

w1xx(x, s)f1(t− s) + w2xx(x, s)f2(t− s) ds,

utt(x, t) =
1

2
f ′′
1 (t− x)− 1

2
f ′′
2 (t− x) + w1(x, x)f

′
1(t− x)

+ w2(x, x)f
′
2(t− x) +w1s(x, x)f1(t− x) + w2s(x, x)f2(t− x)

+

t∫
x

(w1ss(x, s)f1(t− s) + w2ss(x, s)f2(t− s)) ds,

Plugging these expressions into (1.1), we derive that for x > 0 the following relation holds
true:

0 =

t∫
x

((w1ss(x, s)−w1xx(x, s) + q(x)w1(x, s))f1(t− s)

+ (w2ss(x, s)− w2xx(x, s) + q(x)w2(x, s))f2(t− s)) ds

+ f1(t− x)
[
2
d

dx
w1(x, x) +

q(x)

2

]
+ f2(t− x)

[
2
d

dx
w2(x, x)− q(x)

2

]
.

(2.4)

Similarly, for x < 0:

uxx(x, t) =− 1

2
f ′′
1 (t+ x)− 1

2
f ′′
2 (t+ x)

+
d

dx
w1(x,−x)f1(t+ x) + w1(x,−x)f ′

1(t+ x)

+
d

dx
w2(x,−x)f2(t+ x) + w2(x,−x)f ′

2(t+ x)

+ w1x(x,−x)f1(t+ x) + w2x(x,−x)f2(t+ x)

+

t∫
−x

w1xx(x, s)f1(t− s) + w2xx(x, s)f2(t− s) ds,

utt(x, t) =− 1

2
f ′′
1 (t+ x)− 1

2
f ′′
2 (t+ x)

+ w1(x,−x)f ′
1(t+ x) + w2(x,−x)f ′

2(t+ x)

+ w1s(x,−x)f1(t+ x) + w2s(x,−x)f2(t+ x)
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+

t∫
−x

(
w1ss(x, s)f1(t− s) +w2ss(x, s)f2(t− s)

)
ds.

Then for x < 0 we have the relation

0 =

t∫
−x

(
(w1ss(x, s)−w1xx(x, s) + q(x)w1(x, s))f1(t− s)

+ (w2ss(x, s)− w2xx(x, s) + q(x)w2(x, s))f2(t− s)
)
ds

+ f1(t+ x)
[
− 2

d

dx
w1(x,−x)− q(x)

2

]

+ f2(t+ x)
[
− 2

d

dx
w2(x,−x)− q(x)

2

]
.

(2.5)

The condition Γ0u = F at x = 0 yields that

u+( · , t)− u−( · , t) = f1(t) +

t∫
0

(w1
+(0, s) − w1

−(0, s))f1(t− s)

+ (w2
+(0, s)− w2

−(0, s))f2(t− s) ds,

u+x ( · , t)− u−x ( · , t) = f ′
2(t) +

t∫
0

(w1
+
x (0, s) − w1

−
x (0, s))f1(t− s)

+ (w2
+
x (0, s)− w2

−
x (0, s))f2(t− s) ds.

The above relations imply the continuity of the kernels w1, w2 at x = 0:

w1
+(0, s) = w1

−(0, s), w2
+(0, s) = w2

−(0, s), (2.6)

w1
+
x (0, s) = w1

−
x (0, s), w2

+
x (0, s) = w2

−
x (0, s). (2.7)

Using the arbitrariness of F ∈ FT ∩ C∞
0 (0, T ;R2) in (2.4), (2.5) and continuity conditions

(2.6), (2.6), we conclude that w1, w2 satisfy (2.2), (2.3). �

Remark 1. When F ∈ FT , the function uF defined by (2.1) is a generalized solution to
(1.1)–(1.3).

The response operator RT : FT �→ FT with the domain

DR =
{FT ∩C∞

0 (0, T ;R2)
}

is defined by

(RTF )(t) :=
(
Γ1u

F
)
(t), 0 < t < T.

Representation (2.1) implies that the response operator has the form

(RTF )(t)=

(
(R1F )(t)
(R2F )(t)

)
=−1

2

(
f ′
1(t)

−f2(t)

)
+R ∗

(
f1
f2

)

=

⎛
⎜⎜⎝
−1
2f

′
1(t)+

t∫
0

(w1x(0, s)f1(t−s)+w2x(0, s)f2(t−s)) ds

1
2f2(t)−

t∫
0

(w1(0, s)f1(t−s)+w2(0, s)f2(t−s)) ds

⎞
⎟⎟⎠ ,

(2.8)
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where

R(t) :=

(
r11(t) r12(t)
r21(t) r22(t)

)
=

(
w1x(0, t) w2x(0, t)
−w1(0, t) −w2(0, t)

)

is a response matrix. We introduce the inner space, the space of states of system (1.1)–(1.3)
as HT := L2(−T, T ). The representation (2.1) implies that uF ( · , T ) ∈ HT .

A control operator W T : FT �→ HT is defined by the formula W TF := uF ( · , T ). The
reachable set is defined by the rule

UT := W TFT =
{
uF ( · , T ) ∣∣F ∈ FT

}
.

We introduce the notation

S :=
1

2

(
1 −1
−1 −1

)
, JT : FT �→ FT ,

(
JTF

)
(t) = F (T − t),

and note that

S = S∗, SS =
1

2
I.

It will be convenient to us to associate the outer space HT = L2(−T, T ) with a vector space
L2(0, T ;R

2) by setting for a ∈ L2(−T, T ) (we keep the same notation for a function)

a=

(
a1(x)
a2(x)

)
∈ L2(0, T ;R

2), a1(x) :=a(x), a2(x) :=a(−x), x∈(0, T ).

Thus, bearing in mind this association, we consider the control operator W T , which maps FT

to HT = L2(0, T ;R
2), acting (cf. (2.1)) by the rule:

(
W TF

)
(x) =

(
1
2f1(T − x)− 1

2f2(T − x)
−1

2f1(T − x)− 1
2f2(T − x)

)

+

⎛
⎜⎜⎝

T∫
x
w1(x, s)f1(T − s) + w2(x, s)f2(T − s) ds

T∫
x
w1(−x, s)f1(T − s) + w2(−x, s)f2(T − s) ds

⎞
⎟⎟⎠ .

On introducing the operator W : FT �→ HT = L2(0, T ;R
2) defined by the formula

(WF )(x) =

⎛
⎜⎜⎝

T∫
x
w1(x, s)f1(s) + w2(x, s)f2(s) ds

T∫
x
w1(−x, s)f1(s) + w2(−x, s)f2(s) ds

⎞
⎟⎟⎠

and noting that FT = HT , without abusing the notation we can rewrite W T in the form

W TF = S (I + 2SW )JTF = S (I +K) JTF, (2.9)

where

K = 2SW, (KF )(x) =

⎛
⎜⎜⎝

T∫
x
k11(x, s)f1(s) + k12(x, s)f2(s) ds

T∫
x
k21(x, s)f1(s) + k22(x, s)f2(s) ds

⎞
⎟⎟⎠ . (2.10)

Theorem 2. The control operator is a boundedly invertible isomorphism between FT and HT ,
and UT = HT .

Proof. It is clear that in representation (2.9) each of the operators S : HT �→ HT , I + K :
FT �→ HT , JT : FT �→ FT is a boundedly invertible isomorphism. �
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The connecting operator CT : FT �→ FT is introduced via the quadratic form
(
CTF1, F2

)
FT =

(
uF1( · , T ), uF2( · , T ))HT .

The crucial fact in the Boundary Control method is that the connecting operator is expressed
in terms of inverse dynamic data:

Theorem 3. The connecting operator CT admits the following representation:

(
CTF

)
(t) =

1

2

(
f1(t)
f2(t)

)
+

T∫
0

C(t, s)

(
f1(s)
f2(s)

)
ds,

where

C1,1(t, s)=p1(2T−t−s)−p1(|t−s|), p1(s)=

s∫
0

r11(α) dα,

C1,2(t, s)= p̃1(2T−t−s)−p̃1(t−s), p̃1(s)=

⎧⎪⎪⎨
⎪⎪⎩

s∫
0

r12(α) dα, s > 0,

−
−s∫
0

r12(α) dα, s < 0,

C2,1(t, s)=−r̃21(t−s)−r̃21(2T−t−s), r̃21(s)=

{
r21(s), s > 0,

−r21(−s), s < 0,

C2,2(t, s) = −r22(|t− s|)− r22(2T − t− s).

Proof. We take F,G ∈ FT ∩ C∞
0 (0, T ;R2) and introduce the Blagoveshchenskii function by

setting

Ψ(t, s) =
(
uF ( · , t), uG( · , s))HT , s, t > 0.

Our aim is to show that Ψ satisfies the wave equation. Indeed, using the fact that uFtt = −H∗uF
and the Green identity, we can evaluate:

Ψtt(t, s)−Ψss(t, s)=
(−H∗uF ( · , t), uG( · , s))HT+

(
uF ( · , t),H∗uG( · , s))HT

=
(
(Γ0u

F )(t), (Γ1u
G)(s)

)
B
− (

(Γ1u
F )(t), (Γ0u

G)(s)
)
B

=: P (t, s).

Note that Ψ satisfies Ψ(0, s) = Ψt(0, s) = 0 and

Ψ(T, T ) =
(
uF ( · , T ), uG( · , T ))HT =

(
CTF,G

)
FT .

So, by the d’Alembert formula,

(
CTF,G

)
FT =

T∫
0

2T−τ∫
τ

P (τ, σ) dσ dτ. (2.11)

We rewrite the right-hand side:

P (t, s) =

((
f1(t)
f ′
2(t)

)
, (RG)(s)

)
B

−
(
(RF )(t),

(
g1(s)
g′2(s)

))
B

, (2.12)

706



and continue the functions g1, g2 (we keep the same notation) from (0, T ) to the interval
(0, 2T ) by the rule

g1(s) =

{
g1(s), 0 < s < T,

−g1(2T − s), T < s < 2T,

g2(s) =

{
g2(s), 0 < s < T,

g2(2T − s), T < s < 2T.

(2.13)

After such a continuation the second term in (2.12) become odd in s with respect to s = T and
disappears after integration in (2.11), so we come to the following expression for the quadratic
form:

(
CTF,G

)
FT =

T∫
0

2T−τ∫
τ

((
f1(τ)
f ′
2(τ)

)
, (RG)(σ)

)
B

dσ dτ. (2.14)

Integrating by parts in (2.14) and using the fact that CT =
(
CT

)∗
and the arbitrariness of F

yield

(
CTG

)
(τ) =

⎛
⎝

2T−τ∫
τ

(R1G)(σ) dσ

(R2G)(τ) + (R2G)(2T − τ)

⎞
⎠ . (2.15)

Evaluating (2.15), making use of (2.8) and the continuation of g1, g2 (2.13), we obtain

(CTG)(τ) =
1

2

(
g1(τ)
g2(τ)

)
+

1

2

⎛
⎜⎜⎝

2T−τ∫
τ

σ∫
0

(r11(s)g1(σ − s) + r12(s)g2(σ − s)) ds

−
τ∫
0

(r21(s)g1(τ − s) + r22(s)g2(τ − s)) ds

⎞
⎟⎟⎠

+

⎛
⎝ 0

2T−τ∫
0

(r21(s)g1(2T − τ − s) + r22(s)g2(2T − τ − s)) ds

⎞
⎠ .

Consider the term

2T−τ∫
τ

σ∫
0

r11(s)g1(σ − s) ds dσ = I(2T − τ)− I(τ), (2.16)

where

I(τ) =

τ∫
0

τ∫
α

r11(σ − α)g1(α) dσ dα.

We evaluate (2.16), using that g1 is odd with respect to T :

I(τ) =

τ∫
0

|τ−α|∫
0

r11(σ) dσg1(α) dα =

τ∫
0

p1(|τ − α|)g1(α) dα, (2.17)
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where p1(s) =
s∫
0

r11(α) dα. We can rewrite the first term in (2.16) in the form

I(2T − τ) =

⎛
⎝

T∫
0

+

2T−τ∫
τ

⎞
⎠

2T−τ−α∫
0

r11(σ) dσg1(α) dα

=

T∫
0

p1(2T − τ − α)g1(α) dα −
T∫

τ

p1(α− τ)g1(α) dα.

(2.18)

Then from (2.17) and (2.18) we get

2T−τ∫
τ

σ∫
0

r11(s)g1(σ − s) ds dσ =

T∫
0

(p1(2T − τ − α)− p1(|α− τ |)g1(α)) dα,

which proves the formula for C11. Now we consider the term

2T−τ∫
τ

σ∫
0

r12(s)g2(σ − s) ds dσ. (2.19)

Note that it has the same structure as (2.16), but we should take into account that g2(s) is
odd with respect to s = T . Counting this, we have

I(2T − τ) =

T∫
0

p2(2T − τ − α)g2(α) dα +

T∫
τ

p2(α− τ)g2(α) dα,

where p2(s) =
s∫
0

r12(α) dα. Then

I(2T − τ)− I(τ) =

T∫
0

p2(2T − τ − α)g2(α) dα

+

T∫
τ

p2(α− τ)g2(α) dα −
T∫
0

p2(|α− τ |)g2(α) dα.
(2.20)

After we introduce the notation

p̃1(s) =

⎧⎪⎪⎨
⎪⎪⎩

s∫
0

r12(α) dα, s > 0,

−
−s∫
0

r12(α) dα, s < 0,
=

{
p2(s), s > 0,

−p2(−s), s < 0,

we can rewrite (2.19), taking into account (2.20), as

2T−τ∫
τ

σ∫
0

r12(s)g2(σ − s) ds dσ =

T∫
0

(p̃1(2T − τ − α)− p̃1(τ − α)) g2(α) dα,

which proves the formula for C12. Similarly, one can prove formulas for C21 and C22. �
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We note that the symmetry of CT implies the restriction on the entries; specifically, the
following relation should hold:

C2,1(t, s) = C1,2(t, s).

This relation is equivalent to

−r̃21(t− s)− r̃21(2T − t− s) = p̃1(2T − t− s)− p̃1(s− t),

which yields
−r̃21(s) = p̃1(s).

Remark 2. The components of the response matrix must be connected by the relation

r′21(s) = −r12(s), s > 0.

3. Dynamic inverse problem

In this section we derive equations of the inverse dynamic problem; using them, we answer
the question on recovering a potential q(x), x ∈ (−T, T ), from the response operator R2T .

3.1. Krein equations. Let y(x) be a solution to the following Cauchy problem:{
−y′′ + qy = 0, x ∈ (−T, T ),

y(0) = 0, y′(0) = 1.
(3.1)

We set up the special control problem: to find F ∈ FT such that W TF = y in HT . By
Theorem 2, such a control F exists, but we can say even more.

Theorem 4. The solution to a special control problem is a unique solution to the following
equation: (

CTF
)
(t) = (T − t)

(
1
0

)
, t ∈ (0, T ). (3.2)

Proof. We observe that if G ∈ FT ∩ C∞
0 (0, T ;R2), then integration by parts shows that

uG(x, T ) =

T∫
0

(T − t)uGtt(x, t) dt.

Using this observation, we can evaluate the quadratic form

(CTF,G)FT = (W TF,W TG)HT =
(
y( · ), uG( · , T ))HT

=

T∫
−T

y(x)

T∫
0

(T − t)uGtt(x, t) dt dx

=

T∫
0

(T − t)
(
y( · ),−H∗uG( · , t))HT dx dt

=

T∫
0

(t− T )
[(
(Γ0y( · ))(t), (Γ1u

G)(t)
)
B
− (

(Γ1y( · ))(t),
(
Γ0u

G
)
(t)

)
B

]
dt

=

T∫
0

(T − t)

((
1
0

)
,

(
g1(t)
g′2(t)

))
dt,

from where (3.2) follows because of the arbitrariness of G. �
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Representation formulas (2.1) imply that that the solution F to a special control problem
satisfies the relations

y(T ) = uF (T, T ) =
1

2
f1(0)− 1

2
f2(0),

y(−T ) = uF (−T, T ) = −1

2
f1(0) − 1

2
f2(0).

Thus solving (3.2) for all T ∈ (0, T ), we recover the solution y(x) to (3.1) on the interval

(−T, T ). Then the potential q(x), x ∈ (−T, T ), can be recovered as q(x) = y′′(x)
y(x) , x ∈ (−T, T ).

3.2. Gelfand–Levitan equations. We introduce the notation

CT =
1

2
(I + C), (CF )(t) = 2

T∫
0

C(t, s)

(
f1
f2

)
ds. (3.3)

For F,G ∈ FT we set W TF = a, W TG = b, where a, b ∈ HT ; on using the controllability
(Theorem 2), we have (see (2.9))

F = JT (I +K)−1S−1a = 2JT (I +K)−1Sa,

G = JT (I +K)−1S−1b = 2JT (I +K)−1Sb.

Using above representations we can rewrite the quadratic form as:

(CTF,G)HT =
(1
2
(I + C)2JT (I +K)−1Sa, 2JT (I +K)−1Sb

)
HT

=
(
2
(
(I +K)−1

)∗
JT (I + C)JT (I +K)−1Sa, Sb

)
HT

.
(3.4)

On the other hand,(
CTF,G

)
HT =

(
W TF,W TG

)
HT = (a, b)HT = (2Sa, Sb)HT . (3.5)

On comparing (3.4) and (3.5), we obtain the following operator identity:(
(I +K)−1

)∗
JT (I + C)JT (I +K)−1 = I. (3.6)

We introduce the following notation

I +M = (I +K)−1, (3.7)

(MF )(x) =

⎛
⎜⎜⎝

T∫
x
m11(x, s)f1(s) +m12(x, s)f2(s) ds

T∫
x
m21(x, s)f1(s) +m22(x, s)f2(s) ds

⎞
⎟⎟⎠

(M∗a)(t) =

⎛
⎜⎜⎝

t∫
0

m11(x, t)a1(x) +m21(x, t)a2(s) dx

t∫
0

m12(x, t)a1(s) +m22(x, t)a2(x) dx

⎞
⎟⎟⎠ .

It is easy to check that on a diagonal the kernels of the operators K and M satisfy the relation

mij(x, x) = −kij(x, x), i, j = {1, 2}, x ∈ (0, T ). (3.8)

Rewritten in the new notation, the operator relation (3.6) has the form

(I +M)∗(I + C̃)(I +M) = I, (3.9)
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where

C̃ = JTCJT ,
(
C̃F

)
(t) =

T∫
0

C̃(t, s)F (s) ds. (3.10)

The relation (3.9) is equivalent to the equality

M∗ + (I +M)∗
(
M + C̃ + C̃M

)
= 0. (3.11)

On introducing a function

Φ(x, s) = m(x, s) + C̃(x, s) +

T∫
0

C̃(x, α)m(α, s) dα, x, s ∈ (0, T ),

we can write down a relation for the kernel of the operator on the left-hand side in (3.11)
M∗ +Φ+M∗Φ = 0:

m(s, x) + Φ(x, s) +

t∫
0

m(α, x)Φ(α, s) dα = 0, x, s ∈ (0, T ).

Since m(s, x) = 0 when x < s, we derive that Φ satisfies the relation

Φ(x, s) +

t∫
0

m(α, x)Φ(α, s) dα = 0, x < s.

Thus the function Φ satisfies a Volterra equation of the second kind, and thus we obtain
Φ(x, s) = 0 for x < s, which immediately yields the following equation on the matrix func-
tion m:

m(x, s) + C̃(x, s) +

T∫
0

C̃(x, α)m(α, s) dα = 0, 0 < x < s < T. (3.12)

As a result, we can state the following theorem.

Theorem 5. The matrix kernel of the operator M (3.7) satisfy the Gelfand–Levitan equation

(3.12), where the kernel C̃ is defined by (3.3), (3.10). Solving this equation, one can recover
the potential using relations between kernels (2.10), (3.8) and relations on diagonals {x = t},
{−x = t} in (2.2), (2.3):

q(x) = 2
d

dx
(m11(x, x)−m12(x, x)) , x ∈ (0, T ),

q(−x) = −2
d

dx
(m11(x, x) +m12(x, x)) , x ∈ (0, T ).

3.3. Relationship between dynamic and spectral inverse data. The problem of finding
relationships between different types of inverse data is very important in inverse problems
theory. We can mention [2, 4, 5, 14,15] some recent results in this direction. Below we show a
relationship between the dynamic response function and matrix spectral measure.

Consider two solution to the equation

−φ′′ + q(x)φ = λφ, −∞ < x < ∞, (3.13)

satisfying the Cauchy data:

ϕ(0, λ) = 0, ϕ′(0, λ) = 1, θ(0, λ) = −1, θ′(0, λ) = 0.
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Note that

Γ0ϕ = 0, Γ0θ = 0, Γ1ϕ =

(
1
0

)
, Γ1θ =

(
0
1

)
.

We fix some N > 0 and prescribe self-adjoint boundary conditions at x = ±N :

a1φ(−N,λ) + b1φ
′(−N,λ) = 0, a21 + b21 �= 0, (3.14)

a2φ(N,λ) + b2φ
′(N,λ) = 0, a22 + b22 �= 0. (3.15)

Eigenvalues and normalized eigenfunctions of (3.13), (3.14), (3.15) are denoted by {λn, yn}∞n=1.
Let βn, γn ∈ R be such that

yn(x) = βnϕ(x, λn) + γnθ(x, λn), then Γ1yn =

(
βn
γn

)
.

Let F ∈ FT ∩C∞
0 (0, T ;R2), and vF be a solution to (1.1)–(1.3), (3.14), (3.15), i.e., a solution to

the initial boundary value problem for a wave equation on the interval (−N,N). Multiplying
the wave equation for vF by yn and integrating by parts, we get the following relation:

0 =

T∫
−T

vFttyn dx−
N∫

−N

vFxxyn dx+

N∫
−N

q(x)vF yn dx

=

N∫
−N

vFttyn dx+ (vF ,Hyn) + (Γ1v
F ,Γ0yn)B − (Γ0v

F ,Γ1yn)B

=

T∫
−T

vFttyn dx+ λn(v
F , yn)−

((
f1(t)
f ′
2(t)

)
,

(
βn
γn

))
B

.

Looking for the solution to (1.1)–(1.3) in the form

vF =
∞∑
k=1

ck(t)yk(x), (3.16)

we plug (3.16) into (1.1) and multiply by yn to get:

N∫
−N

∞∑
k=1

c′′k(t)yk(x)yn(x) dx +

N∫
−N

∞∑
k=1

ck(t)yk(x)λnyn(x) dx =

((
f1(t)
f ′
2(t)

)
,

(
βn
γn

))
B

.

Thus we deduce that cn(t), n � 1, satisfies the following Cauchy problem:
⎧⎪⎨
⎪⎩
c′′n(t) + λncn(t) =

((
f1(t)

f ′
2(t)

)
,

(
βn

γn

))
B

,

cn(0) = 0, c′n(0) = 0.

the solution of which is given by the formula

cn(t) =

t∫
0

sin
√
λn(t− s)√
λn

(
f1(s)βn + f ′

2(s)γn
)
ds.
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Then for vF (3.16) we have the expansion

vF (x, t)=

∞∑
k=1

t∫
0

sin
√
λn(t−s)√
λn

(
f1(s)βn+f ′

2γn
)
ds (βnϕ(x, λn)+γnθ(x, λn))

=

∞∑
k=1

t∫
0

sin
√
λn(t− s)√
λn

((
βn
γn

)
⊗
(
βn
γn

)(
f1(s)
f ′
2(s)

)
,

(
ϕ(x, λn)
θ(x, λn)

))

=

∞∫
−∞

t∫
0

sin
√
λ(t− s)√
λ

(
dΣN (λ)

(
f1(s)
f ′
2(s)

)
,

(
ϕ(x, λ)
θ(x, λ)

))
, (3.17)

where dΣN (λ) is a matrix measure (see [13]). Owing to the finite speed of wave propagation
in system (1.1)–(1.3) (equal to one), we have the relation

vF ( · , t) = uF ( · , t), for t < N, (3.18)

and for T < N , R2TF = Γ1v
F holds. Thus the response operator RT for T < 2N is given by

(RF )(t) = Γ1v
F =

∞∑
k=1

ck(t)Γ1yk =
∑

ck(t)

(
βk
γk

)

=
∞∑
k=1

t∫
0

sin
√
λk(t− s)√
λk

(
f1(s)βk + f ′

2γk
)
ds

(
βk
γk

)

=

∞∫
−∞

t∫
0

sin
√
λ(t− s)√
λ

dΣN (λ)

(
f1(s)
f ′
2(s)

)
ds, 0 < t < 2N.

(3.19)

Taking F,G ∈ FT ∩ C∞
0 (0, T ;R2), for T < N we evaluate the quadratic form, using (3.17)

and (3.18):

(CTF,G)FT = (uF , uG)HT = (vF , vG)HT (3.20)

=
∞∑
k=1

T∫
0

T∫
0

sin
√
λn(t− s)√
λn

(f1βn + f ′
2γn) ds

sin
√
λn(t− τ)√
λn

(g1βn + g′2γn) dτ

=

T∫
0

T∫
0

∞∫
−∞

sin
√
λ(t− s)√
λ

sin
√
λ(t− τ)√
λ

(
dΣN (λ)

(
f1(s)
f ′
2(s)

)
,

(
g1(τ)
g′2(τ)

))
ds dτ

We observe that in view of the unit speed of wave propagation in system (1.1)–(1.3), in
representation formulas for response operator (3.19) and for connecting operator (3.20), we
can replace dΣN (λ) by any dΣM (λ), M > N , where dΣM (λ) corresponds to some self-adjoint
boundary conditions at ±M , or we can let N go to infinity, and replace dΣN (λ) by the limit
measure dΣ(λ) (see [13]).

The inverse problem for a Schrödinger operator on a half-line from a spectral measure is
solved in [11], in [13] the inverse spectral problem for a Schrödinger operator on a real line
from a matrix measure is discussed, but some questions remain open. At the same time, in the
case of a half-line in [1, 2, 14] the authors established the relationships between the dynamic
and spectral inverse problems.
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Remark 3. The control, response and connecting operators admit representations in terms of
spectral inverse data (matrix measure dΣ(λ)), see (3.17), (3.19) and (3.20). This circumstance
makes it possible to assume that the progress in studying the inverse spectral problem from
a matrix measure will be greatly stimulated by the progress in studying the inverse dynamic
problem in the spirit of [1, 2, 14].

A. S. Mikhaylov and V. S. Mikhaylov were partially supported by the RSF 17-11-01064.
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