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THE WAVE FIELD NEAR A NARROW CONVEX
IMPEDANCE CONE COMPLETELY ILLUMINATED BY
A PLANE INCIDENT WAVE

M. A. Lyalinov∗ and S. V. Polyanskaya† UDC 517

An acoustic incident plane wave completely illuminates a narrow convex cone satisfying the
impedance boundary condition on its surface. The wave field at far distances from the vertex
of the cone and in some close neighborhood of the cone’s surface is asymptotically computed.
Bibliography: 9 titles.

1. Introduction

An incident plane wave propagates from infinity and completely illuminates the surface of
a convex cone with the impedace boundary condition on its surface. If the cone is narrow
and smooth (except for the vertex), the reflected rays of the far scattered field are of almost
the same directions as those of the incident wave, Fig. 1. The spherical wave scattered by the
vertex of the cone, considered in some close neighborhood of the cone (i.e., in the interior of
the bigger dashed cone in Fig. 1) is also attributed to the the rays that have their directions
close to those for the incident and reflected rays. The corresponding phase functions of these
waves are close to each other, which means, from the physical point of view, that the waves
interfere. As a result, the wave picture in some close neighborhood of the narrow cone cannot
be simple. In comparison with known results [3,4, Chap. 5], its study requires some addtional
work in order to describe the far field asymptotics.

The asymptotic analysis of the Sommerfeld integral representation (see [4, Chap. 5]) for the
wave field in this case implies the study of the situation where the singularities of the intergand
are close to the saddle points. On the other hand, the description of the sigularities is based on
the study of the Fourier transform of the so-called spectral function. The latter is determined
by means of the asymptotic solution of a problem for the Laplace-Beltrami-Helmholtz equation
on the unit sphere with a small hole cut out by the narrow cone having its vertex placed at
the center of the sphere ( [4, Chap. 5]). The size of the hole is of O(β), where β � 1 is a small
parameter of the problem describing the “narrowness” of the cone.

It is worth commenting on the assumptions that are implied when constructing the approxi-
mate solution of the problem at hand. The formal asymptotic solution of the problem is sought
for β � 1, i.e., for a narrow impedance cone. However, we are interested in the description
of the far field (kr � 1, kr is the wave distance from the vertex) in some close neighborhood
(of O(β1−δ) for some δ > 0) of the conical surface. In this work we, first, use the asymptotic
solution of the diffraction problem for β � 1 then it is studied as kr � 1. The order of these
two consequent “limits” is essential, and the small parameters β and (kr)−1 are assumed to
be independent. The situation where either these parameters are connected or the order of
the asymptotic limits is different, is not discussed in this work. We note that the expressions
for the scattered far field obtained in [4, Chap. 5] as kr → ∞ and β ∼ O(1) become formally
unapplicable as β → 0.
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Fig. 1. Diffraction by a narrow completely illuminated cone S.

Let us use the spherical coordinates (r, θ, ϕ) connected with the Cartesian ones (Fig.1) by
the relations

X1 = r cosϕ sin θ, X2 = r sinϕ sin θ, X3 = r cos θ.

We consider a plane wave1 that is incident from infinity along the direction specified by ω0 =
(θ0, ϕ0) (Fig. 1),

Ui(r, θ, ϕ) = exp{−ikr cos θi(ω, ω0)}, (1)

where ω = (θ, ϕ) corresponds to the direction of observation and

cos θi(ω, ω0) = cos θ cos θ0 + sin θ sin θ0 cos[ϕ− ϕ0], θi(ω, ω0),

coincides with the geodesic distance between two points ω and ω0 denoted also by θ(ω, ω0) =
θi(ω, ω0). For a right-circular cone, the equation of its surface S is given by θ = θ1, r ≥ 0,
and for the narrow cone we have β = 2(π − θ1) � 1. Let σ be the curve of intersection of the
conical surface S and the unit sphere S2 centered at the vertex of the cone, σ = S ∩ S2. The
“exterior” of σ is the domain Σ of directions of observation of the wave field. This domain
is traditionally divided into an “oasis” Ω0 and the rest Ω1 = Σ \ Ω0. The oasis corresponds
to all directions of observation, where only the scattered spherical wave is observed in the
scattered far field. A more detailed description of the oasis is given in [4, Chap. 5]. In our case
of a thin (narrow) cone, the oasis occupies almost the whole Σ except for the asymptotically
small part Ω1 = Σ \ Ω0 of S2. Indeed, in the case of a circular cone and axially symmetric
illumination, the oasis is the domain on Σ described by the inequality θ < θ1 − β/2. In this
case, Ω1 is described by the inequality θ1 ≥ θ ≥ θ1 − β/2. In this work, considering an
arbitrary thin convex cone, we shall deal with a wider domain than Ω1, denoting it by Ωδ.
This is an asymptotically thin domain.2 It is also worth remarking that, provided a thin cone
is completely illuminated by the incident plane wave, the point ω0 belongs to the domain Σi

(Σi ∈ Σ) being symmetric to the interior of S2 \Σ with respect to the center of the unit sphere.
It is worth mentioning, however, that the far field asymptotics in the oasis for the complete

illumination of a narrow convex impedance cone has been computed by Bernard and Lyalinov,
[3]. In this case the far field is given by the expression

U(r, θ, ϕ) = D(ω, ω0)
exp{ikr}
−ikr

(
1 +O

(
1

kr

))
, (2)

1The harmonic time-dependence e−iω̂t is assumed and omitted throughout the paper.
2It is obvious that Ωδ is a thin ring on S2 as β � 1 such that the geodesic distance from each point of Ωδ

to the “convex” curve σ, i.e., the boundary of a convex domain, is less than Cβ1−δ for small δ > 0 and some
C > 0.
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where the diffraction coefficient has been explicitly calculated (as β � 1)

D(ω, ω0) = − lβ
4π

η (1 +O(β log β))

[cos θ(ω,O) + θ(O,ω0)]2
, ω ∈ Ω0 , θ(ω,O) + θ(O,ω0) > π ,

where η is the surface impedance, lβ is the length of σ and O is a point in the exterior of
Σ. The formula for D(ω, ω0) becomes nonapplicable as ω approaches the boundary of Ω0, i.e.
θ(ω,O)+θ(O,ω0) → π. The analogous results are also known for the perfect narrow cones [5],
i.e., with the Dirichlet or Neumann boundary conditions.3

In this work we intend to give an expression for the far scattered field as ω ∈ Ωδ, i.e., in
some close vicinity of the conical surface.

2. Statement and reduction to the integral equation for the spectral

function

The total wave field Û(r, θ, ϕ) = Ui(r, θ, ϕ) + U(r, θ, ϕ) is the sum of the incident wave
Ui(r, θ, ϕ) (see (1) and of the scattered one U(r, θ, ϕ). The scattered field satisfies the Helmholtz
equation

(
+ k2)U(r, θ, ϕ) = 0, ω ∈ Σ, r > 0 (3)

and the total field is subject to the impedance boundary condition(
1

r

∂

∂N − ikη

)
Û(r, θ, ϕ) = 0, ω ∈ σ, r > 0 , (4)

where N is the normal to σ in the tangent plane to S2, Meixner’s condition at the vertex
is implied (see [1, 2, 4, Sec. 5.1]). The wave field at infinity satisfies a radiation condition; in
particular, in the oasis (i.e., as ω ∈ Ω0) it has the form (2). The form of the asymptotics in a
close neighborhood of the conical surface S, i.e., as ω ∈ Ωδ, is the main goal of the study in
this work.4

The details of the derivations in the rest of this section are traditional and can be found by
parts in [4, 7] and [3].5

The incident plane wave admits the so-called Watson–Bessel integral representation

Ui(r, θ, ϕ) = 4i

√
π

2

∫
C0

ν e−iνπ/2uiν(ω, ω0)
Jν(kr)√−ikr

dν, (5)

where uiν(ω, ω0) = −Pν−1/2(− cos θi(ω,ω0))

4 cos πν , Pν−1/2(x) is the Legendre function. C0 is the contour
comprising the positive part of the real axis (see [4, 7]). The representation for the scattered
wave takes a similar form

U(r, θ, ϕ) = 4i

√
π

2

∫
C0

ν e−iνπ/2uν(ω, ω0)
Jν(kr)√−ikr

dν, (6)

where uν(ω, ω0) is an unknown (spectral) function.
Making use of the representations (6), (5) for the problem (3),(4) leads to the equation

(
ω + (ν2 − 1/4))uν (ω, ω0) = 0 (7)

3It seems that work [6] needs some more detailed justification of the exploited approach, as well as the
results.

4It is worth noting that we are looking for the asymptotics of the classical solution of the problem at hand.
5In this section we actually do not use the fact that the cone is narrow, and the results are known for an

arbitrary smooth convex cone.
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in Σ and the boundary condition on σ

∂ûν(ω, ω0)

∂N
∣∣∣∣
σ

=
η

2i

i∞∫
−i∞

dτ
τ sinπτ ûτ (ω, ω0)|σ
cos πτ + cos πν

, ν ∈ Πδ, (8)

with ûν(ω, ω0) = uν(ω, ω0) + uiν(ω, ω0), Πδ = {ν ∈ C : | Im(ν)| < δ0} for some small positi-
ve δ0. The condition (8) is not local with respect to the (spectral) variable ν.

For further derivations it is useful to introduce a formal integral operator

Avν(ω, ω0)|σ =
1

2i

i∞∫
−i∞

dτ
τ sinπτ vτ (ω, ω0)|σ
cosπτ + cos πν

, (9)

where ν belongs to the imaginary axis; then from (8) one has

∂ûν(ω, ω0)

∂N
∣∣∣∣
σ

= η Aûν(ω, ω0)|σ .

The class of functions in which the solution of the problem (7), (8) is looked, is carefully
described in [4, Chap. 5] and in more detail in [7].

The problem (7), (8) is followed by the representation (see [3])

αω uν(ω, ω0) =

∫
σ

dls

(
∂gν(ω, s)

∂N uν(s, ω0) − ηAuν(s, ω0) gν(ω, s)

)
+ Ψν(ω, ω0) , (10)

where gν(s, ω) = −Pν−1/2(− cos θ(s,ω))

4 cos πν , αω = 1/2 as ω ∈ σ and αω = 1 as ω ∈ Σ,

Ψν(ω, ω0) =

∫
σ

dls

(
∂uiν(ω0, s)

∂N gν(s, ω) − ηAuiν(s, ω0) gν(ω, s)

)
.

The integration in formula (10) is performed along the closed curve σ on S2.
If ω ∈ σ, the representation (10) converts into an integral equation of the second kind for

uν(·, ω0). Its asymptotic solution, as β → 0, is discussed in [3], and in the leading approxima-
tion the spectral function is given by

uν(ω, ω0) = Ψν(ω, ω0)(1 +O(β log β)) . (11)

It is worth recalling that

ω ∈ Ωδ , ω0 ∈ Σ0

in formula (11), so that θ(ω,O) + θ(O,ω0) = π +O(β1−δ) .
For further study of the far field asymptotics of the scattered field based on the approximate

solution for the spectral function, we need to give some estimates for (11) as ν → i∞.

3. Some estimates for the approximate spectral function (11)

We write the expression (11) in the form

uν(ω, ω0) =

∫
σ

dlsWν(s, ω, ω0)(1 +O(β log β)) (12)
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with

Wν(s, ω, ω0) =
Pν−1/2(− cos θ(ω, s))

4 cos πν

⎧⎨
⎩

η

2i

i∞∫
−i∞

dτ
τ tan πτ Pν−1/2(− cos θ(ω0, s))

cos πτ + cos πν

− ∂θ(s, ω0)

∂N
P 1
ν−1/2(− cos θ(ω0, s))

4 cos πν

}
,

where we made use of

d

dx
Pν−1/2(x) = −

P 1
ν−1/2(x)√
1− x2

.

We are interested in estimates of Wν(s, ω, ω0) that are uniform w.r.t. s ∈ σ for ω ∈ Ωδ,
ω0 ∈ Σ0 as ν → i∞.

If ω ∈ Ωδ , ω0 ∈ Σ0 , we can assert that θ(ω0, s) < π − a0β for some positive a0 and
θ(ω, s) > A0β for some positive A0. As a result, we have

− cos θ(ω0, s) = cos[π − θ(ω0, s)] < 1− a1β
2

and

− cos θ(ω, s) = cos[π − θ(ω, s)] > −1 +A1β
2

for some positive a1 and A1. We assume that β is a small, however, fixed parameter.
We observe that the arguments in P 1

ν−1/2(− cos θ(ω0, s)) and Pν−1/2(− cos θ(ω, s)) are such

that the asymptotics ( [8], 8.721(3))

Pμ
ν−1/2(cosϕ) =

√
2

π sinϕ

Γ(ν + μ+ 1/2)

Γ(ν + 1)
cos

(
νϕ+

πμ

2
− π

4

)
(1 +O(1/ν)) (13)

as ν → i∞ and 0 < ε ≤ ϕ ≤ π − ε, |ν| � 1/ε can be applied. In the estimates that follow, we
shall use the asymptotics (13).

Thus we have

Wν(s, ω, ω0) =
Pν−1/2(− cos θ(ω, s))

4 cos πν

{
I(ν, s, ω0) − ∂uiν(s, ω0)

∂N
}

with

I(ν, s, ω0) =
η

2i

i∞∫
−i∞

dτ
τ tanπτ Pτ−1/2(− cos θ(ω0, s))

cosπτ + cosπν
.

First we consider an estimate of the integral I(ν, s, ω0), representing it as

I(ν, s, ω0) =
η

i

iA∫
0

dτ
τ tan πτ Pτ−1/2(− cos θ(ω0, s))

cos πτ + cos πν

+
η

i

i∞∫
iA

dτ
τ tan πτ Pτ−1/2(− cos θ(ω0, s))

cos πτ + cos πν
,
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where A is large enough. The first summand on the right-hand side of the latter relation is
estimated by O

(
1

cos πν

)
as ν → i∞. For the second summand, one has

η

4i

i∞∫
iA

dτ
τ tanπτ Pτ−1/2(− cos θ(ω0, s))

cos πτ + cos πν

= C

∞∫
A

dt

√
t tanhπt cos(it[π − θ(ω0, s)]− π/4)

cosh πt+ cos πν
(1 +O1(1/t))

= C1

∞∫
A

dt

√
t tanhπt exp[t(π − θ)])

cosh πt+ cos πν
(1 +O1(1/t))

= C2

∞∫
0

dt

√
t sinhπt [cosh πt]−a

cosh πt+ cos πν
(1 +O1(1/t)) +O

(
1

cos πν

)

= C4

∞∫
1

dp
(log(p+

√
p2 − 1))1/2

pa(p + q)
(1 +O1(1/ log p)) +O

(
1

q

)
,

where 0 < a = θ(ω0, s)/π < 1 and p = cosh πt, q = cos ν, and the notation O1(1/t) is used
for a function that has the asymptotics C/t when t is large. The latter integral admits the
estimate

∞∫
1

dp
(log(p +

√
p2 − 1))1/2

pa(p+ q)
= C5

∞∫
1

dp
(log p)1/2

pa(p+ q)
(1 +O1(1/ log p))

= C6

√
log q

qa

(
1 +O

(
1

log q

))

as q → ∞, ν → i∞. This estimate can be deduced, for instance, in the following way. Consider
the identity (see also [2, Appendix] )

∞∫
1

p−a

p+ q
dp = q−a

(
π

sinπa
− 1

1− a

)
+ q−a

(
1− qa−1

1− a

)
+ q−a

1/q∫
0

y1−a

1 + y
dy

obtained from 3.222(2) in [8].6 In this identity we compute the derivative db

dab
of both sides for

natural b, make use of the analytic continuation for real b ∈ (0, 1] and take b = 1/2; therefore,
we have

∞∫
1

dp
(log p)1/2

pa(p+ q)
= C6

√
log q

qa

(
1 +O

(
1

log q

))
.

Make use of the asymptotics (13) and the estimate

I(ν, s, ω0) = C7
√
ν

wI(s, ω, ω0)

cos[νθ(ω0, s)]

(
1 +O

(
1

ν

))
,

6The case a → 1− 0 can be regarded as a limiting one.
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then arrive at

Wν(s, ω, ω0) =
w0(s, ω, ω0)

cos[νθ(ω0, s)] cos[νθ(ω, s)]

(
1 +O

(
1

ν

))

=
w(s, ω, ω0)

cos[ν(θ(ω0, s) + θ(ω, s))]

(
1 +O

(
1

ν

)) (14)

uniformly w.r.t. s ∈ σ and ω ∈ Ωδ , ω0 ∈ Σ0 as ν → i∞, w0 and w,wI are continuous
functions of their arguments. To proceed further, it is convenient to introduce the notation
θ∗(s, ω, ω0) = θ(ω0, s) + θ(ω, s).

4. Fourier transform of the spectral function and the Sommerfeld

transformant

The Sommerfeld representation for the scattered field (see [4, 7, Chap. 5]) takes the form

U(r, θ, ϕ) =
1

2πi

∫
γ

e−ikr cosα

√−ikr
Φ(α, ω, ω0) dα , (15)

where

Φ(α, ω, ω0) =
√
2π

i∞∫
−i∞

ν eiναuν(ω, ω0) dν,

|Re(α)| < θ∗(ω, ω0) and θ∗(ω, ω0) = mins∈σ(θ(ω0, s)+θ(ω, s)), γ is the double-loop Sommerfeld
contour (see [4]). Analogously, integrating by parts, from (15) we have

U(r, θ, ϕ) =

√−ikr

2πi

∫
γ

e−ikr cosα sinα Φ̃(α, ω, ω0) dα ,

where

Φ̃(α, ω, ω0) =

√
2π

i

i∞∫
−i∞

eiναuν(ω, ω0) dν ,

Φ(α, ω, ω0) =
∂
∂αΦ̃(α, ω, ω0).

The Sommerfeld transformants Φ(α, ω, ω0) and Φ̃(α, ω, ω0) in (15) should be analytically
continued from the strip |Re(α)| < θ∗(ω, ω0), where they are holomorphic functions, onto a
wider strip if it is necessary. In our case, the spectral function in the Fourier integral for the
Sommerfeld transformants is given by an explicit expression (12).

We have

Φ(α, ω, ω0) =

√
2π

i

i∞∫
−i∞

⎛
⎝ d

dα
eiνα

∫
σ

dlsWν(s, ω, ω0)

⎞
⎠ dν (1 +O(β log β))

=

√
2π

i

∫
σ

dls
d

dα

⎛
⎝

i∞∫
−i∞

eiνα Wν(s, ω, ω0) dν

⎞
⎠ (1 +O(β log β)) ,

where the change of the orders of integration and differentiation is justified. Introduce the
notation

φ̃(s, α, ω, ω0) =
1

i

i∞∫
−i∞

eiνα Wν(s, ω, ω0) dν .
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Remark 1. In explicit and formally equivalent form, the approximation (11) is written as

uν(ω, ω0) = −lβ gν(ω,O)

(
ηAuiν(O,ω0) − ∂uiν(ω0, s)

∂N
∣∣∣∣
s→O

)
(1 +O(β log β)),

where lβ is the length of σ and O is a point in the interior of S2 \ Σ. So that one has (the
change s → O, lβ =

∫
σ
dls)

Φ(α, ω, ω0) = lβ

√
2π

i

d

dα

⎛
⎝

i∞∫
−i∞

eiναWν(O,ω, ω0) dν

⎞
⎠ (1 +O(β log β)) .

Transform the integral φ̃(s, α, ω, ω0), which is the Fourier transform of Wν(s, ω, ω0), and
make use of the asymptotics (14)

φ̃(s, α, ω, ω0) =
1

i

i∞∫
−i∞

dν cos(να)
w(s, ω, ω0)

cos[νθ∗(s, ω, ω0)]

(
1 +O

(
1

ν

))
.

In view of the estimates of the preceeding section, the latter integral absolutely converges
and is a holomorphic function as |Re(α)| < θ∗. The strip |Re(α)| < θ∗, where Φ(α, ω, ω0) is
also defined and regular, can be extended onto |Re(α)| < 3π/2 with the aid of the analytic
continuation. However, we should specify the type and position of singularities of Φ(α, ω, ω0)
on the boundary of the holomorphicity strip. To this end, we use the formula 3.981(3) from [8]

∞∫
0

cos(ax)

cosh(bx)
dx =

π

2b
sech

(πa
2b

)

as Re b > a > 0 and its analytic continuation w.r.t. α = −ia onto the strip |Reα| < b.

Then we have that α = θ∗ is a simple pole of

φ̃(s, α, ω, ω0), φ̃(s, α, ω, ω0) = O(1/(α − θ∗))

or
φ̃(s, α, ω, ω0) = O

(
[cos(α/2) − cos(θ∗/2)]−1

)
if α is located in the vicinity of θ∗. From the latter estimate one easily derive that φ̃(α, s, ω, ω0)
[cos(α/2) − cos(θ∗(s, ω, ω0)/2)] is holomorphic in some neighborhood of α = θ∗. Since

θ∗(s, ω, ω0) = θ(ω, s) + θ(s, ω0) = π +O(β1−δ),

we have that
φ̃(α, s, ω, ω0)[cos(α/2) − cos(θ∗(s, ω, ω0)/2)]

is also holomorphic in some small vicinity of the point α = π.
As a result, from

Φ(α, ω, ω0) =
∂

∂α
Φ̃(α, ω, ω0) =

√
2π

i

∂

∂α

∫
σ

dls φ̃(α, ω, ω0)

we obtain

Φ(α, ω, ω0) =

√
2π

i

∫
σ

dls

(
Ψ1(α, s, ω, ω0)

[cos(α/2) − cos(θ∗(s, ω, ω0)/2)]

+ Ψ2(α, s, ω, ω0)
1
2 sin(α/2)

[cos(α/2) − cos(θ∗(s, ω, ω0)/2)]2

)
,

(16)
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where
Ψ2(α, s, ω, ω0) = φ̃(α, s, ω, ω0)[cos(α/2) − cos(θ∗(s, ω, ω0)/2)]

and

Ψ1(α, s, ω, ω0) =
∂

∂α
Ψ2(α, s, ω, ω0)

are holomorphic in the vicinity of α = π and θ∗ ∼ π.
If θ∗ > π + δ1, δ1 > 0, then Φ(α, ω, ω0) is holomorphic in the vicinity of α = π and

Φ(π, ω, ω0) =

√
2π

i

∫
σ

dls

(
Ψ1(π, s, ω, ω0)

(− cos(θ∗(s, ω, ω0)/2))
+

1
2Ψ2(π, s, ω, ω0)

cos2(θ∗(s, ω, ω0)/2)

)
. (17)

5. The far field in the close vicinity of a narrow impedance cone

�

�

π Re(α)

Im(α)

O

�

�

γ′

θ∗

	���

Fig. 2. The contour of integration γ′.

We make use of the integral representation (15) and deform the Sommerfeld contour into
the contours of the steepest descent; then7

U(r, θ, ϕ) =

√
2π

i

∫
σ

dls
1

πi

×
∫
γ′

e−ikr(2 cos2 α/2−1)

√−ikr

(
Ψ1(α, s, ω, ω0)

1
2 sin(α/2)

1
2 sin(α/2)[cos(α/2) − cos(θ∗(s, ω, ω0)/2)]

+ Ψ2(α, s, ω, ω0)
1
2 sin(α/2)

[cos(α/2) − cos(θ∗(s, ω, ω0)/2)]2

)
dα(1 +O(β log β)) ,

(18)

7The function Φ(α, ω, ω0) is odd w.r.t. α, so that it is sufficient to consider the contribution of only one
stationary point +π of the Sommerfeld integral; further the result is to be multiplied by two.
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where γ′ is the contour of the steepest descent comprising the pole of Φ(α, ω, ω0) in (16) (see
Fig. 2). Outside the real axis, the contour γ′ coincides with the curve Reα = π − gd(Imα)
of the steepest descent. We made use of the identity kr cosα = −kr + 2kr cos2(α/2) in the
exponent and then change the orders of integration.

It is sufficient to perform the integration w.r.t. α over a neighborhood of the point π of
the size O([kr]−1/2+δ) as kr → ∞ in order to compute the leading term of the Sommerfeld

integral. Let Bρ(π) be a circle with center at α = π and radius ρ = O([kr]−1/2+δ). Replace
2Ψ1(α, s, ω, ω0)/ sin(α/2), Ψ2(α, s, ω, ω0) by their values at the point α = π, which contributes

the error O([kr]−1/2+δ). Assume that 0 < β < Const[kr]−1/2+δ , so that θ∗ ∈ Bρ(π). No-
tice that the infinite segments of the integration in the exterior of the circle Bρ(π) give an
exponentially small contribution to the leading term of the asymptotics.

�

�

�

		
Γ′

Im t

Re t

t∗



Fig. 3. The contour of integration Γ′ and the position of the pole t∗.

Thus we obtain

U(r, θ, ϕ) ∼ −
√

2

π
eikr

∫
σ

dls

∫
γ′∩Bρ(π)

e−2ikr cos2 α/2

√−ikr

(
2Ψ1(π, s, ω, ω0)

1
2 sin(α/2)

[cos(α/2) − cos(θ∗(s, ω, ω0)/2)]

+ Ψ2(π, s, ω, ω0)
1
2 sin(α/2)

[cos(α/2) − cos(θ∗(s, ω, ω0)/2)]2

)
dα (1 +O(β log β)) ,

(19)

θ∗ = π +O(β1−δ) > 0 as ω ∈ Ωδ , ω0 ∈ Σ0 .

Upon the change of the integration variable α, t =
√
2ikr cosα/2, we have

U(r, θ, ϕ) ∼ −
√

2

π
eikr

∫
σ

dls

(
(−2)Ψ1(π, s, ω, ω0)√−ikr

F1(t∗(s))

+
√
2iΨ2(π, s, ω, ω0)F2(t∗(s))

)
(1 +O(β log β)),

(20)
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t∗(s) =
√
2ikr cos[θ∗(s, ω, ω0)/2], ω = (θ, ϕ), the contour Γ′ is shown in Fig. 3 (see also [9,

Sec. 7],

F1(t∗) =
∫
Γ′

e−t2

(t− t∗)
dt, F2(t∗) =

∫
Γ′

e−t2

[t− t∗]2
dt.

If θ∗ > π + δ1, then t∗ → −eiπ/4∞ (Fig. 3); we make use of the asymptotics

F1(t∗) =

√
π

t∗

(
1 +O

(
1

t2∗

))
,

F2(t∗) = −
√
π

t2∗

(
1 +O

(
1

t2∗

))

and formula (17) and arrive at an expression for the far field in the oasis (see (2)):

U(r, ω, ω0) = −
√

2

π
Φ(π, ω, ω0)

exp{ikr}
−ikr

(
1 +O

(
1

kr

))
,

D(ω, ω0) = −
√

2
π Φ(π, ω, ω0) is the diffraction coefficient of the spherical wave from the vertex

of the cone.

Remark 2. It seems that a formal simplification of formula (20) is possible by the substitution
of the argument of the function s → O, then changing the integral by lβ =

∫
σ
dls as β � 1.

Asymptotic formula (20) represents the main result of the work. It describes the wave
behavior of the far field scattered in some small vicinity of a narrow cone with impedance
boundary condition. The applicability domain of the asymptotics was discussed above. In
particular, for any kr � 1 there exists a small β from the interval 0 < β < C[kr]−1/2+δ such
that the asymptotic formula (20) in the leading approximation correctly describes the wave

field for ω ∈ Ωδ , ω0 ∈ Σ0 . Note that as θ∗ ∼ π + O([kr]−1/2), the scattered field U(r, θ, ϕ)
in (20) is formally not vanishing as kr → ∞. However, U(r, θ, ϕ) = O(β) as β � 1; moreover,

as has been already remarked, 0 < β < C[kr]−1/2+δ. We shall consider computational aspects
connected with the application of formula (20) for the numerical calculation of the wave field
in the continuation of this study.

The work was supported by the grant of the Russian Scientific Foundation, RSCF 17-11-
01126.

Translated by the authors.
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