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The non-Hermitian but PT -symmetric quantum field theories are known to have a pseudo-Hermitian
interpretation. However, the corresponding intertwining operator happens to be nonlocal that raises the
question to what extent this nonlocality affects observable quantities. We consider the case when the
intrinsic parity of the interaction terms is determined by degree of coupling constant. We show that
the perturbative S matrix of the equivalent Hermitian description can be easily obtained from the
perturbative S matrix of the non-Hermitian model. Namely, the first order vanishes whereas the second
order is given by the real part of the second order T matrix of the non-Hermitian model. We compute
directly the 2-point and 4-point correlation functions in the equivalent Hermitian model for the iϕ3 model
and find the results consistent with this relation. The 1-loop correction to the mass happens to be real
reflecting the disappearance of 2-body decays. However, the 2 to 2 scattering amplitude obtained using
LSZ formula has poles taken in principal value which implies the violation of the causality.
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I. INTRODUCTION

The non-Hermitian PT -symmetric quantum theories
have attracted significant attention due to their unusual
properties [1–3]. Surprisingly, they often possess purely
real spectrum and produce an unitary evolution with respect
to the nonstandard inner product. As a matter of fact,
these Hamiltonians may be shown to be connected to the
Hermitian Hamiltonians through the nonunitary intertwin-
ing operator and thus represent a particular class of the
so-called pseudo-Hermitian Hamiltonians [4]. It is also
interesting that some seemingly unstable Hamiltonians
may be reinterpreted as non-Hermitian PT -symmetric
Hamiltonians and then as pseudo-Hermitian Hamiltonians
with purely real positive spectrum.
While most of the studies concentrated on the finite-

dimensional quantum mechanical models, the PT -
symmetric quantum field theory (QFT) was also inves-
tigated [5–12]. This line of research is especially important
because it gives a hope that some models interesting
from a phenomenological perspective but plagued by
unitarity and stability problems may be reinterpreted as
consistent quantum field theories [13,14]. It inspired
a number of proposals for the particle physics and
cosmology [15–25].

However, many basic questions about the PT -symmetric
quantum field theories that are important for their appli-
cability have not yet been sufficiently investigated. One of
such questions is whether these quantum field theories
satisfy the relativistic causality. There is a very good reason
to suspect that despite relativistic invariance, this may not be
a case. As was shown in [6–8] for the iϕ3 quantum field
theory, the intertwining operator is nonlocal,

Q ≃
Z

d3xd3yd3z½Mðx⃗; y⃗; z⃗ÞπðxÞπðyÞπðzÞ

þN ðx⃗jy⃗; z⃗ÞϕðyÞπðxÞϕðzÞ�: ð1Þ

As result the equivalent Hermitian Hamiltonian given by
h ¼ e−Q=2HeQ=2 is also nonlocal. This does not affect the
locality of the vacuum correlators of the fields of the non-
Hermitian description that were extensively studied in the
literature [5,9]. However, because such fields are not
Hermitian under the modified norm, they are related to
the observable fields through the same nonlocal intertwining
operators. Therefore, one may expect the appearance of the
causality violations.
In this paper, we are studying the S matrix in a non-

Hermitian PT -symmetric quantum field theory interpreted
in a pseudo-Hermitian fashion. We present a very simple
relation between S-matrices in the non-Hermitian and
equivalent Hermitian descriptions. However, this simple
result shows the generic violation of the causality when the
initial non-Hermitian model is local. We confirm this by
directly computing the propagator and 2 to 2 scattering
amplitude in the equivalent Hermitian model.
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It should be noted that the issue of nonlocality of the
PT -symmetric quantum models with local non-Hermitian
Hamiltonians arises already in the context of the finite
dimensional quantum mechanical systems. Its influence on
the scattering and the possibility to save the causality by
relaxing the locality of the non-Hermitian Hamiltonian
was studied in [26–29]. To our knowledge, our paper is the
first one to address these questions in the context of the
PT -symmetric QFT.
The paper is organized as follows. In Sec. II, we briefly

elucidate the basics of the pseudo-Hermitian models. In
Sec. III, we review the perturbation theory for the inter-
twining operator. In Sec. IV, this is used to compute the
formal perturbative S matrix of the equivalent Hermitian
model. In Sec. V, we derive the intertwining operator for
the generic local PT -symmetric QFT in the momentum
representation using a method that in our opinion is
significantly simpler compared to the previous work.
Section VI concludes this computation of the formal S
matrix by showing that the commutator between the
intertwining operators at large times vanishes. This leads
to the extremely simple relation for the S-matrices of two
equivalent descriptions; however, we also demonstrate the
violation of the Bogolyubov microcausality. In Sec. VII, we
formulate the simplest nontrivial PT -symmetric QFT, and
in Sec. VIII, we develop a technique to compute correlation
functions of the observable fields of the Hermitian model
equivalent to this QFT. In Secs. IX and X, we apply this
technique to the propagator and 2 to 2 scattering amplitude.
In Sec. XI, we relax the assumption of the Hermiticity of
the intertwining operator in an attempt to restore the
causality. In the Conclusions, we summarize the results
and discuss the prospects.

II. PT -SYMMETRIC QUANTUM THEORY

Consider the non-Hermitian but PT Hamiltonian,

H ≠ H†; ½PT ; H� ¼ 0; ð2Þ

where P is the intrinsic parity operator (that reflects only
fields and not spatial coordinates) and T is the usual time
reflection operator. They are defined on the canonical fields
ϕðx⃗Þ and their momenta πðx⃗Þ in the following way:

P∶ϕðx⃗Þ ↦ −ϕðx⃗Þ; πðx⃗Þ ↦ −πðx⃗Þ; i ↦ i ð3Þ

T ∶ϕðx⃗Þ ↦ ϕðx⃗Þ; πðx⃗Þ ↦ −πðx⃗Þ; i ↦ −i; ð4Þ

where the action on the imaginary unit means that P is a
linear operator whereas T is antilinear. If one introduces the
creation and annihilation operators,

ϕðx⃗Þ ¼
Z

d3k
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2Ek⃗

p �
a†
k⃗
e−ik⃗ x⃗ þ ak⃗e

ik⃗ x⃗
�
; ð5Þ

πðx⃗Þ ¼
Z

d3k
ð2πÞ3 i

ffiffiffiffiffiffi
Ek⃗

2

r
ða†

k⃗
e−ik⃗ x⃗ − ak⃗e

ik⃗ x⃗Þ; ð6Þ

the definitions above result in the following action:

Pak⃗P ¼ −ak⃗; T ak⃗T ¼ a−k⃗: ð7Þ

As was shown in [1] such Hamiltonians often have
purely real spectrum. This allows us to interpret them as a
pseudo-Hermitian ones, i.e., related to some Hermitian
Hamiltonian with the intertwining operator [4],

h≡ ηHη−1; H†η†η ¼ η†ηH: ð8Þ

The latter equation guarantees the Hermiticity of h with
respect to the initial product or equivalently the Hermiticity
of H with respect to the new inner product,

ðΨ;ΦÞ≡ hΨjη†ηjΦi: ð9Þ

We stress that this inner product is positively definite by
construction, and thus, no negative norm states are needed.
Note that the initial variable ϕ is not Hermitian under this
inner product and thus is not observable. To get the
observable that would correspond to the ϕ in the equivalent
Hermitian description, one has to consider η−1ϕη. In
conclusion, there are two alternative description of the
same model that are summarized in the Table I. One may
note the trade-off between simplicity of the observables and
simplicity of the evolution.
The relations above were written for time-independent

H in the Schrödinger picture. In the time-dependent case
[30–34], the relation (8) is no longer true and an extra non-
Hermitian term appears. However, one can always define η
through the following property:

ηðt2Þ†ηðt2ÞUHðt2; t1Þ ¼ ½UHðt2; t1Þ†�−1ηðt1Þ†ηðt1Þ; ð10Þ

where UH is the evolution operator generated by H. This
relation simply means that the inner product ðΨ;ΦÞ is
conserved by the temporal evolution of the state vectors and
holds in all pictures.
Though this is not required for the Hermiticity of h,

one usually assumes that the operator η transforms in the

TABLE I. The correspondence between the objects in the
description with the non-Hermitian Hamiltonian and the
equivalent Hermitian one.

Object Non-Hermitian Equivalent Hermitian

Hamiltonian H h ¼ ηHη−1

Inner product ðΨ;ΦÞ ¼ hΨjη†ηjΦi hΨjΦi
Unobservable field ϕ ηϕη−1

Observable field η−1ϕη ϕ
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following way so that the PT symmetry of H was
conserved also by h:

Pη†P ¼ η−1; T η†T ¼ η−1: ð11Þ

Also, one usually fixes η to be Hermitian; thus, fixing
the arbitrary unitary transformation one can insert into the
intertwining operator. In this paper, we will hold to the
assumptions of the Hermiticity and P parity but will not
hold to the assumption of the T parity.
For the restricted class of Hamiltonians PHP ¼ H†, the

operator C is often introduced that have the following
properties:

C≡ Pη†η; ½C; H� ¼ 0; ½C;PT � ¼ 0; C2 ¼ 1; ð12Þ

where all (11) are implied. Despite its notation, it is not
related to the charge conjugation operator. The useful
property of this operator is that C of an eigenstate of H
coincides with its PT parity. Thus if the, e.g., the vacuum
state jΩi is PT symmetric then CjΩi ¼ 1 that significantly
simplifies the computations on the vacuum state [35].

III. PERTURBATION THEORY FOR η

Let us now assume that H can be represented in the
following form:

H ¼
Xþ∞

k¼0

ðigÞkHk; Hk ¼ H†
k;

PHkP ¼ ð−1ÞkHk; T HkT ¼ Hk; ð13Þ

where the coupling constant g is assumed to be small. For
purely imaginary coupling constants, the operator becomes
Hermitian,

H̃ ¼
Xþ∞

k¼0

gkHk: ð14Þ

We will assume that the corresponding evolution operators
are also related by such analytic continuation at least within
perturbation theory. That is if,

UH̃ðt2; t1Þ ¼ T exp

�
−i

Z
t2

t1

dtH̃

�
¼

Xþ∞

k¼0

gkUH;k; ð15Þ

we will assume that

UHðt2; t1Þ ¼
Xþ∞

k¼0

ðigÞkUH;k: ð16Þ

We apply the similar decomposition to the equivalent
Hermitian operator h and to the intertwining operator η
(we omit the usual factor 1=2 to simplify the equations),

h ¼
Xþ∞

k¼0

gkhk; η ¼ exp
�
−
Xþ∞

k¼0

g2kþ1

ð2kþ 1Þ!Qk

�
; ð17Þ

where Qk is assumed to have the following properties so
that η satisfied extra assumptions of Hermiticity and (11):

Q†
k ¼ Qk; fQk;Pg ¼ 0: ð18Þ

As with η, one may also demand

fQk; T g ¼ 0: ð19Þ

This makes it possible to choose the ansatz with only odd
powers of g. As we will restrict ourselves only to the
computations up to the second order in g, we will
denote Q≡Q0.
Then from (8), one obtains the following results [3]:

i½H0; Q� ¼ H1; ð20Þ

h1 ¼ 0; h2 ¼ −H2 −
i
2
½Q;H1�: ð21Þ

To use (20), we note the following fact. As we work in
the perturbation theory, let us go into the interaction
picture,

QðtÞ ¼ eiH0tQe−iH0t; HkðtÞ ¼ eiH0tHke−iH0t: ð22Þ

Then (20) becomes a very simple relation,

∂tQðtÞ ¼ H1ðtÞ; Qðt2Þ −Qðt1Þ ¼
Z

t2

t1

dtH1ðtÞ: ð23Þ

We would like to stress that this relation can be obtained
from the general equation for (10) written in the interaction
picture. Thus, this results holds even if H1 depends on t
explicitly, e.g., if one turns off interaction asymptotically.
No matter how simple (23) may appear, it has an

important consequence. Even if the interaction falls down
at large times, generally speaking the intertwining operator
remains to be nontrivial. Thus, even though H may appear
Hermitian asymptotically, the field variables of the non-
Hermitian theory do not become observables and do not
create good asymptotic particle states that are orthogonal
with each other.
Thus, to understand the actual dynamics of the PT -

symmetric QFT, one has to use either the non-Hermitian
Hamiltonian H and the modified field variables ηϕðxÞη−1
or equivalently, the Hermitian Hamiltonian h and usual
field variables. These two approaches should be fully
equivalent, but in this paper, we choose the second one.
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IV. FORMAL S MATRIX

Let us consider the evolution operator of the equivalent
Hermitian model in the interaction picture,

UðIÞ
h ðtf; t0Þ ¼ eiH0tfe−ihðtf−t0Þe−iH0t0 : ð24Þ

We can rewrite it in terms of the similar operator for the
non-Hermitian Hamiltonian,

UðIÞ
h ðtf; t0Þ ¼ eiH0tfηe−iHðtf−t0Þη−1e−iH0t0

¼ ηðtfÞUðIÞ
H ηðt0Þ−1; ð25Þ

where we define

ηðtÞ≡ eiH0tηe−iH0t ≃ e−gQðtÞ þOðg3Þ: ð26Þ

Let us now decompose the evolution operators into series
in g,

UðIÞ
h ≃ 1þ gUðIÞ

h;1 þ g2UðIÞ
h;2 þOðg3Þ ð27Þ

UðIÞ
H ≃ 1þ igUðIÞ

H;1 − g2UðIÞ
H;2 þOðg3Þ: ð28Þ

As noted above, we assume that the perturbation series of

UðIÞ
H can be obtained by analytical continuation in g of the

perturbation series of the unitary operator UðIÞ
H̃
. Then the

unitarity implies

UH;1 ¼ −ðUH;1Þ†; 2ℜ½UH;2� ¼ ½UH;1�2: ð29Þ

Using the Dyson expansion,

UðIÞ
H;1ðtf; t0Þ ¼ −i

Z
tf

t0

dtH1ðtÞ; ð30Þ

and the relation (23), one finds,

UðIÞ
h;1 ¼ −QðtfÞ þQðt0Þ þ

Z
tf

t0

dtH1ðtÞ ¼ 0: ð31Þ

This should not come as a surprise because as we have
noted in (21), the first order of h vanishes.
For the second order, we get

UðIÞ
h;2 ¼ −UðIÞ

H;2 þ
Q2ðtfÞ

2
þQ2ðt0Þ

2
−QðtfÞQðt0Þ

− iQðtfÞUðIÞ
H;1 þ iUðIÞ

H;1Qðt0Þ: ð32Þ

Again using (30) and (23), we rewrite it as

UðIÞ
h;2 ¼ −UðIÞ

H;2 −
1

2
½UðIÞ

H;1�2 þ
1

2
½QðtfÞ; Qðt0Þ�: ð33Þ

Finally using (29), we see that the second term cancels the
real part of the first one,

UðIÞ
h;2 ¼ −ℑ½UðIÞ

H;2� þ
1

2
½QðtfÞ; Qðt0Þ�: ð34Þ

As usual, we apply the practical definition of the S
matrix as the evolution operator in the interaction picture in
the limit of large times (assuming that such limit exists),

Sh ≡ lim
tf→þ∞
t0→−∞

UðIÞ
h ðtf; t0Þ; ð35Þ

SH ≡ lim
tf→þ∞
t0→−∞

UðIÞ
H ðtf; t0Þ: ð36Þ

Again assuming the validity of the validity of the analytical
continuation from the unitary S matrix to SH, we introduce
the T matrix series in powers of g,

Sh ≃ 1þ igTð1Þ
h þ igTð2Þ

h þOðg3Þ; ð37Þ

SH ≃ 1 − gTð1Þ
H − igTð2Þ

H þOðg3Þ: ð38Þ

Let us introduce the asymptotic intertwining operators,

Qin ¼ lim
t→−∞

QðtÞ; Qout ¼ lim
t→þ∞

QðtÞ: ð39Þ

As the limit of (34), we obtain

Tð2Þ
h ¼ −ℜ½Tð2Þ

H � − i
2
½Qout; Qin�: ð40Þ

V. INTERTWINING OPERATOR IN QFT

Let H describe a PT -symmetric quantum field theory
obtained through the analytical continuation in g of the
local quantum field theory.

H1ðtÞ ¼
Z

d3xV1ðt; x⃗Þ; PV1P ¼ −V1;

T V1T ¼ −V1: ð41Þ
Then, in the perturbation theory, one should be able to
represent the interaction terms as combinations of the
creation and annihilation operators,

H1ðtÞ ¼
X
fεkg

Z Y
k

d3pk

Ep⃗k

Vfεkgðfp⃗kgÞei
P

k
εkEp⃗k

t

× δð3Þ
�X

k

εkp⃗k

�
; ð42Þ

where V is some operator valued distribution constructed
as some c function of fεkg and fp⃗kg multiplied on a
combination of the creation and annihilation operators in
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accordance with multiindex fεkg so that εk ¼ þ1 corre-
sponds to a†p⃗k

an εk ¼ −1 corresponds to ap⃗k
. The negative

P parity means that only terms with odd number of these
operators contribute.
The Hermiticity H†

1 ¼ H1 means that

Vfεkgðfp⃗kgÞ ¼ V̄σf−εkgðσfp⃗kgÞ; ð43Þ

and T H1T ¼ H1 yields

Vfεkgðfp⃗kgÞ ¼ V̄fεkgðf−p⃗kgÞ; ð44Þ

where V̄ denotes the complex conjugation of the
c-numerical coefficients and σ reverses the order in the
multiindex.
We assume that a similar decomposition may be written

for QðtÞ,

QðtÞ ¼
X
fεkg

Z Y
k

d3pk

Ep⃗k

Qfεkgðfp⃗kgÞei
P

k
εkEp⃗k

t

× δð3Þ
�X

k

εkp⃗k

�
: ð45Þ

Then (23) yields the distribution equation,

i½
X
k

εkEp⃗k
�Qfεkgðfp⃗kgÞ ¼ Vfεkgðfp⃗kgÞ; ð46Þ

that has a general solution,

Qfεkgðfp⃗kgÞ ¼ −Vfεkgðfp⃗kgÞP:v:
iP

kεkEp⃗k

þAfεkgðfp⃗kgÞδ
�X

k

εkEp⃗k

�
; ð47Þ

where P.v. denotes the principal value and A is an arbitrary
Hermitian operator value distribution. This reflects the
freedom to add an arbitrary operator commuting with
H0. The most significant constraint comes from the
Lorentz invariance of the inner product. We do not derive
the most general form of Q but instead simply choose

Afεkgðfp⃗kgÞ ¼ αVfεkgðfp⃗kgÞ: ð48Þ

This simple ansatz results in

QðtÞ ¼ −i
X
fεkg

Z Y
k

d3pk

Ep⃗k

Vfεkgðfp⃗kgÞ

×

�
P:v:

ei
P

k
εkEp⃗k

tP
kεkEp⃗k

δð3Þ
�X

k

εkp⃗k

�

þ iαδð4Þ
�X

k

εkpk

��
: ð49Þ

Such Q obviously has the same P parity as H1. From (43)
and the evenness of the δ function follows that the
Hermiticity of Q requires α ¼ α�. This is exactly what
we need if we want to shift the pole in the fraction in the
complex plane. However (44) and the symmetry of the
second term under reflection of p⃗k means that for (19) to be
true one needs α ¼ −α�. Thus, to shift the pole, one has to
relax this extra assumption and thus break PT symmetry
of h.
One may check that (49) indeed conserves the Lorentz

invariance of the inner product (9). The operator of
the Lorentz boost Λ characterized by rapidity β⃗ may be
written as

UgðΛÞ ≃ 1þ iβiðL0i
0 ðtÞ þ igL0i

1 ðtÞÞ ð50Þ

where L0i
0 is the boost operator in the free QFT and,

L0i
1 ðtÞ ¼ −

Z
d3xxiV1ðt; x⃗Þ

¼ i
X
fεkg

Z Y
k

d3pk

Ep⃗k

∇ðPÞ
i ½Vfεkgðfp⃗kgÞ�ei

P
k
εkEp⃗k

t

× δð3Þ
�X

k

εkp⃗k

�
; ð51Þ

where we define the total momentum as

P⃗ ¼
X
k

εkp⃗k; P0 ¼
X
k

εkEp⃗k
: ð52Þ

We assume that V1ðt; x⃗Þ represented using interaction
picture fields transforms as a Lorentz scalar field with
respect to the boost of the free QFT. As in (42), we used the
Lorentz invariant integration measure V transforms as a
Lorentz scalar too,

½U0ðΛÞ�−1Vfεkgðfp⃗kgÞU0ðΛÞ ¼ VfεkgðfΛ−1p⃗kgÞjp0
k¼Ep⃗k

:

ð53Þ

For an infinitesimal boost Λ−1p⃗k ≃ p⃗k − β⃗Ep⃗k
, this implies

½L0i
0 ðtÞ;Vfεkgðfp⃗kgÞ� ¼ iP0∇ðPÞ

i ½Vfεkgðfp⃗kgÞ�: ð54Þ

Combining this with (49) and (51), one easily obtains that
the inner product (9) is indeed Lorentz invariant,

½UðΛÞ�†η†ηUðΛÞ − η†η ≃ 2igβið½L0i
0 ðtÞ; QðtÞ�

þ iL0i
1 ðtÞÞ ¼ 0: ð55Þ

This confirms and generalizes the result obtained in [8].
Indeed, in case of the iϕ3 model, if α ¼ 0, (49) gives the
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same nonlocal intertwining operator (1) as the one studied
in [6–8].

VI. FORMAL S MATRIX IN
PT -SYMMETRIC QFT

To find Qout and Qin, we first explicitly compute Tð1Þ
H by

integrating (42) and using the standard integral representa-
tion of the δ function,

Tð1Þ
H ¼ 2π

X
fεkg

Z Y
k

d3pk

Ep⃗k

Vfεkgðfp⃗kgÞδð4Þ
�X

k

εkpk

�
;

p0
k ≡ Ep⃗k

; ð56Þ

we use the following identity [36] in a sense of a
distribution on localized wave packets in E [that usually
is represented by shifting tf ↦ tfð1 − iϵÞ in the QFT
textbooks],

P:v:
eiEt

E
¼ 1

2

eiEt

Eþ iϵ
þ 1

2

eiEt

E − iϵ
⟶
t→�∞

� πiδðEÞ: ð57Þ

This yields

Qout ¼
π þ α

2π
Tð1Þ
H ; Qin ¼

−π þ α

2π
Tð1Þ
H : ð58Þ

This result makes the violation of T -symmetry by nonzero
α easily recognizable. One can also easily see that

½Qout; Qin� ¼ 0; ð59Þ

and thus (40) simplifies to

Tð2Þ
h ¼ −ℜ½Tð2Þ

H �: ð60Þ

One may then easily show that if H1 is the local
Hamiltonian the S matrix of the equivalent Hermitian
theory will almost always lead to the causality violation.
For example, the Bogolyubov microcausality condition
requires [37],

δ

δϕkðzÞ
�

δS
δϕjðyÞ

S†
�
∼ θðz0 − y0Þθððz − yÞ2Þ; ð61Þ

This condition means that if we represent the evolution of
the wave functional as a sequence of the scattering events of
the localized wave packets, the secondary wave packets
will be produced only in the future light cones of regions of
the intersections of the primary wave packets. This guar-
antees that both ordinary causality (future does not influ-
ence the past) and the relativistic causality (no superluminal
propagation) holds.
If H1 is given by (41) and H2 is also a local operator

represented as a integral of V2ðxÞ then using (60), we
obtain

Tð2Þ
h ¼ −

Z
d4xV2ðxÞ þ

i
4

Z
d4x1d4x2εðx01 − x02Þ

× ½V1ðx1Þ; V2ðx2Þ�: ð62Þ

Then we get

δ

δϕkðzÞ
�

δSh
δϕjðyÞ

S†h

�
≃
g2

2
εðy0 − z0Þ

�∂V1

∂ϕj
ðyÞ; ∂V1

∂ϕk
ðzÞ

�
;

ð63Þ

that is nonzero not only in the future light cone but also in
the past light cone. Therefore, the secondary wave packets
are produced in both the future and the past light cones of
the intersection regions of the primary wave packets. This
obviously violates the ordinary causality. In a sequence of
collisions, this also leads to the superluminal propagation;
however, there is possibility that this violation of the
relativistic causality is somehow compensated in the higher
orders of the S matrix. The obvious exception is the linear
potential V1ðxÞ ¼ aϕðxÞ. Then the operator η becomes
simply a shift of the field variable in the imaginary direction
that may be reabsorbed into other interactions without
violation of locality.

VII. EXAMPLE OF THE PT -SYMMETRIC QFT

Let us consider the model with the following action:

S ¼
Z

d4x

�
1

2
∂μϕk∂μϕk −

m2
k

2
ðϕkÞ2 − ig

μijk
3!

ϕiϕjϕk

− g2
λijkl
4!

ϕiϕjϕkϕl

�
; ð64Þ

where all coupling constants are assumed to be real and
totally symmetric under permutations of indices. As usual,
we use the canonical momenta of the free theory πkðx⃗Þ≡
_ϕkðx⃗Þ that may be represented as (6). Then the first few
terms of the Hamiltonian in the (13) become

H0 ¼
Z

d3x

�
1

2
ðπkÞ2 þ

1

2
ð∇ϕkÞ2 þ

m2

2
ðϕkÞ2

�
; ð65Þ

H1 ¼
Z

d3x

�
μijk
3!

ϕiϕjϕk þ δt;kϕk

�
; ð66Þ

H2 ¼
Z

d3x

�
λijkl
4!

ϕiϕjϕkϕl þ
δm;jk

2
ϕjϕk

þ δZ;jk
2

ðπjπk − ð∇ϕj ·∇ϕkÞÞ
�
; ð67Þ

where we introduced the counterterms (also symmetric
under permutations of indices) to absorb the divergences
and use more sensible renormalized perturbation theory.

OLEG O. NOVIKOV PHYS. REV. D 99, 065008 (2019)

065008-6



Because of the way H2 contributes to h2 in (21) in the
process up to the second order of g2, the ϕ4 term gives a
contribution only as a local interaction term. Thus, we will
set for the rest of the paper λijkl ¼ 0. However, in higher
orders, one needs to take into account both the ϕ4 term and
its counterterm.
From now on, we will represent all operators in the

interaction picture. We will use the following definition for
the Feynman propagators and related functions:

DðjkÞ
F ðx − yÞ≡ h0jTfϕjðxÞϕkðyÞgj0i; ð68Þ

D̄ðjkÞ
F ðx − yÞ≡ h0jT̄fϕjðxÞϕkðyÞ�gj0�i; ð69Þ

DðjkÞðx− yÞ≡ ½ϕjðxÞ;ϕkðyÞ� ¼ εðx0ÞðDðjkÞ
F ðxÞ− D̄ðjkÞ

F ðxÞÞ;
ð70Þ

D̃ðjkÞðx − yÞ≡DðjkÞ
F ðx − yÞ þ D̄ðjkÞ

F ðx − yÞ; ð71Þ

where T and T̄ are chronological and antichronological
products, respectively,

TfϕjðxÞϕkðyÞg ¼ θðx0 − y0ÞϕjðxÞϕkðyÞ
þ θðy0 − x0ÞϕkðyÞϕjðxÞ; ð72Þ

T̄fϕjðxÞϕkðyÞg ¼ θðx0 − y0ÞϕkðyÞϕjðxÞ
þ θðy0 − x0ÞϕjðxÞϕkðyÞ: ð73Þ

Because all these functions are proportional to the δjk
symbol, we will also use DðkÞðxÞ≡DðkkÞðxÞ. This yields
the following momentum representation:

Dðx − yÞ ¼
Z

d4p
ð2π4 DðpÞe−ipðx−yÞ; ð74Þ

DðkÞ
F ðpÞ ¼ i

p2 −m2
k þ iϵ

; D̄ðkÞ
F ðpÞ ¼ −

i
p2 −m2

k − iϵ
;

ð75Þ

DðkÞðpÞ ¼ 2π

2EðkÞ
p⃗

ðδðp0 − EðkÞ
p⃗ Þ − δðp0 þ EðkÞ

p⃗ ÞÞ; ð76Þ

where EðkÞ
p⃗ ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

k þ p⃗2
q

.

We now may consider the following correlation
functions:

GH;nð1;…nÞ≡ hΩjTfϕi1ðx1Þ…ϕinðxnÞgjΩiH
¼ h0jTfϕi1ðx1Þ…ϕinðxnÞSHgj0i

h0jSHj0i
: ð77Þ

We assume that they can be obtained by simple analytical
continuation of the correlation functions in the Hermitian
ϕ3 model to the complex values of the coupling constant
(this was argued to be valid in [5] in contrast to the similar
approach to the −g2ϕ4 model plagued by the breakdown of
the ordinary perturbation theory). It is interesting that
because with extra assumption (19) the metric operator
η†η happens to act trivially on the interacting vacuum jΩi,
the inner product in this correlation function may be
understood as the modified inner product ðΨ;ΦÞ and thus
is conserved [35]. This was used extensively to study the
path integral of the non-Hermitian model. However, it is not
clear what relation these correlation functions have to
observables as ϕðxÞ are not Hermitian with respect to
the ðΨ;ΦÞ. Also because ϕðxÞ do not commute with η†η,
this trick is not particularly helpful for the scattering
processes.
The easiest counterterm to take into account is the

tadpole counterterm. It represents the shift of the field,
and in the Hermitian sigma model, it is usually fixed so that
the field was zero in the vacuum,

hΩjϕðxÞjΩiH ¼ 0; ð78Þ

that yields that the tadpole absorbs the singular term
without any extra regular part,

δt;k ¼ −
μkjj
2

DðjÞ
F ð0Þ: ð79Þ

This may also be rewritten as the statement that the
interaction Hamiltonian is normally ordered,

H1 ¼
Z

d3x

�
∶
μijk
3!

ϕiϕjϕk∶
�
: ð80Þ

In the pseudo-Hermitian model, we could add the real
regular part to δt;k. Unlike the Hermitian case, the shift of
the field would be done in the imaginary axis and would
become a part of the intertwining operatorQ. This would be
equivalent to certain shifts of the masses and coupling
constants. To not overcomplicate things, we set the tadpole
counterterm to (79).
Then we renormalize the propagator,

Πði1i2Þ
H ðpÞ ¼

Z
d4ðΔxÞeipΔxGH;2ð1; 2Þ: ð81Þ

In the perturbation theory, we can represent it as

Πði1i2Þ
H ≃Dði1i2Þ

F þ ig2Dði1Þ
F Δi1i2

H Dði2Þ
F ; ð82Þ

where

Δi1i2
H ¼ −

i
2
μi1jkμi2jkIjkðpÞ þ δm;i1i2 − δZ;i1i2p

2; ð83Þ
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IjkðpÞ ¼
Z

d4k
ð2πÞ4D

ðjÞ
F ðkÞDðkÞ

F ðp − kÞ: ð84Þ

Counterterms δm;ij and δZ;ij are used to absorb the divergent
part of this integral that depends on the choice of the
regularization, substraction scheme, and renormalization
conditions. Our results do not depend on this choices but to
satisfy the assumptions (13), we assume that the counter-
terms are real.

VIII. CORRELATION FUNCTIONS IN THE
EQUIVALENT HERMITIAN QFT

We now are interested in computation of the correlation
functions in the equivalent Hermitian model using the
standard formula,

Gnð1…nÞ≡ hΩjTfϕi1ðx1Þ…ϕinðxnÞgjΩi

¼ h0jTfϕi1ðx1Þ…ϕinðxnÞShgj0i
h0jShj0i

; ð85Þ

where Sh is understood as in (35). To compute it, we use the
Dyson series and the relation (21),

Sh ≃ 1 − ig2
Z þ∞

−∞
dt

�
−H2ðtÞ þ

i
2
½H1ðtÞ; QðtÞ�

�
: ð86Þ

As H2ðtÞ is the integral of the local operator, we may
compute its contribution in a standard way. The real
challenge is in the computation of the contribution of
the commutator. To compute it, we remember (23) to
represent it as

½H1ðtÞ; QðtÞ� ¼ ∂−1
τ ½H1ðtÞ; H1ðτÞ�jτ¼t; ð87Þ

where we define the antiderivative according to our choices
in Sec. V,

∂−1
τ eiEt ≡ −ieiEt

�
P:v:

1

E
þ iαδðEÞ

�
: ð88Þ

As in most practical QFT computations, we will assume
that all our operators are sufficiently nice operator valued
distributions and this operation commutes with all integrals
except integrals in t and τ. Also, we will assume that it
commutes with the operation of taking the vacuum expect-
ation value.
Taking the local operator representation of H1ðtÞ,

H1ðtÞ ¼
Z

d3wVðwÞ; w0 ≡ w; ð89Þ

we represent the contribution of the commutator to the S
matrix as

δSh ¼ −ig2
Z þ∞

−∞
dt

i
2
½H1ðtÞ; QðtÞ�

¼ −ig2
Z

d4zd4wδðw0 − z0Þ∂−1
w0Wðz; wÞ; ð90Þ

where

Wðz; wÞ ¼ i
2
½VðzÞ; VðwÞ�: ð91Þ

Finally, with all our assumptions we write the contri-
bution to the correlation function as

δGnð1…nÞ ¼−ig2
Z

d4zd4wδðw0 − z0Þ∂−1
w0F nð1…njz;wÞ;

ð92Þ

where we introduced

F nð1…njz; wÞ≡ h0jTfϕi1ðx1Þ…ϕinðxnÞWðz; wÞgj0i
− h0jTfϕi1ðx1Þ…ϕinðxnÞgj0i
× h0jWðz; wÞgj0i: ð93Þ

To use that formula, all we need is to represent Wðz; wÞ
in terms of the chronological product. To do so we first
rewrite it as

Wðz;wÞ ¼ i
2
εðz0−w0Þ · ½TfVðzÞVðwÞg− T̄fVðzÞVðwÞg��:

ð94Þ

We will consider the model from the previous
section, i.e.,

VðxÞ≕ μijk
3!

ϕiðxÞϕjðxÞϕkðxÞ∶: ð95Þ

Then we use the Wick’s theorem for the chronological
product and a similar statement for the antichronological
product (that works by simply replacing DF ↦ D̄F) to
convert (94) to the normal form. The normal ordering of V
means that we should not include the terms with contrac-
tions of fields with same coordinates. As result we get

Wðz;wÞ ¼ i
8
μijkμlmk½∶ϕiðzÞϕjðzÞϕlðwÞϕmðwÞ∶DðkÞðz−wÞ

þ 2∶ϕiðzÞϕlðwÞ∶DðkÞðz−wÞD̃ðjmÞðz−wÞ
þ ðc-numberÞ�: ð96Þ

We do not track the c number as its contribution is canceled
out by the vacuum normalization. Then, we use the Wick’s
theorem again to rewrite it as
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Wðz;wÞ
¼ i
8
μijkμlmk½þTf∶ϕiðzÞϕjðzÞ∶∶ϕlðwÞϕmðwÞ∶gDðkÞðz−wÞ

− 4TfϕiðzÞϕlðwÞgDðkÞðz−wÞDðjmÞ
F ðz−wÞ

þ 2TfϕiðzÞϕlðwÞgDðkÞðz−wÞD̃ðjmÞðz−wÞ
þ ðc-numberÞ�: ð97Þ

IX. HERMITIAN FIELD PROPAGATOR

The propagator is computed according to the standard
formula,

Πði1i2ÞðpÞ ¼
Z

d4ðΔxÞeipΔxG2ð1; 2Þ; ð98Þ

For the 2-point contribution of W we obtain

F ð1; 2jz; wÞ ¼ i
4
μi1jkμi2jkD

ðkÞðz − wÞD̃ðjÞ
F ðz − wÞ

× ½Dði1Þ
F ðx1 − zÞDði2Þ

F ðx2 − wÞ
þDði1Þ

F ðx1 − wÞDði2Þ
F ðx2 − zÞ�: ð99Þ

Using our choice of (88), we find that the first term gives
the following contribution to the propagator:

δΠði1i2Þ
1 ðpÞ ¼ −

ig2

4
μi1jkμi2jk

Z
d4ðΔxÞ

Z
dz0

Z
d3zd3w

Z
d4p1

ð2πÞ4
d4p2

ð2πÞ4
d4q
ð2πÞ4

d4r
ð2πÞ4

× eiðp−p1ÞΔx−iðp1þp2Þx2eiðp0
1
þp0

2
Þz0−ip⃗1 z⃗−ip⃗2w⃗þiðq⃗þr⃗Þðz⃗−w⃗ÞDði1Þ

F ðp1ÞDði2Þ
F ðp2ÞD̃ðjÞ

F ðqÞDðkÞ
F ðrÞ

×

�
P:v:

1

q0 þ l0 þ p0
2

þ iαδðq0 þ l0 þ p0
2Þ
�
: ð100Þ

Integrals over Δx, z0, z⃗, and w⃗ introduce the δ functions that fix the momenta, and using the momentum representation of
DðkÞ in (76), we obtain

δΠði1i2Þ
1 ðpÞ ¼ −

ig2

4
μi1jkμi2jkD

ði1Þ
F ðpÞDði2Þ

F ðpÞ
Z

d4q
ð2πÞ4 D̃

ðjÞ
F ðqÞ

�
−P:v

1

ðp − qÞ2 −m2
k

þ iαεðp0 − q0Þδððp − qÞ2 −m2
kÞ
�
: ð101Þ

Similar computation for the contribution of the second term in (99) yields

δΠði1i2Þ
2 ðpÞ ¼ −

ig2

4
μi1jkμi2jkD

ði1Þ
F ðpÞDði2Þ

F ðpÞ
Z

d4q
ð2πÞ4 D̃

ðjÞ
F ðqÞ

�
−P:v

1

ðp − qÞ2 −m2
k

− iαεðp0 − q0Þδððq − pÞ2 −m2
kÞ
�
: ð102Þ

Thus, the α term cancels out. As the counterterms give the
standard contribution, the full propagator can be written in
the standard way,

Πði1i2Þ ≃Dði1i2Þ
F þ ig2Dði1Þ

F Δði1i2ÞDði2Þ
F ; ð103Þ

where

Δði1i2Þ ¼ 1

2
μi1jkμi2jkðℑ½IjkðpÞ� þ ℑ½ĨjkðpÞ�Þ

þ δm;i1i2 − δZ;i1i2p
2; ð104Þ

where IjkðpÞ is given by (84) and

ĨjkðpÞ ¼ −
Z

d4q
ð2πÞ4

1

q2 −m2
j þ iϵ

1

ðp − qÞ2 −m2
k − iϵ

:

ð105Þ
This loop integral is problematic as the standardWick rotation
fails, and its accurate computation may significantly depend
on the regularization. The issueswith theWick rotation issues
arecharacteristic for thenontrivialQFTsetting, e.g., oncurved
backgrounds or in the noncommutative geometry models
[38,39]. However, we present a simple symmetry argument
that hopefully allows us to omit this integral altogether.
We note that under j ↔ k these integrals transform as

IjkðpÞ ¼ IkjðpÞ; ĨjkðpÞ ¼ Ĩ�kj: ð106Þ
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Therefore, ℑ½IjkðpÞ� is symmetric while ℑ½ĨjkðpÞ� is anti-
symmetric. Therefore, the latter does not make any contri-
bution. Thus,

Δði1i2Þ ¼ 1

2
μi1jkμi2jkℑ½IjkðpÞ� þ δm;i1i2 − δZ;i1i2p

2

¼ ℜ½Δði1i2Þ
H �; ð107Þ

where in the endwe used the reality of the counterterms. This
is consistent with our general formula (60). The most
interesting aspect of this result is that if non-Hermitian model

admitted a two body, some ofΔði1i2Þ
H would get the imaginary

part corresponding to the decay width. However, because
h1 ¼ 0, the equivalentHermitianmodel never admits any two
body decays. Thus, according to the optical theorem, to keep
unitarity, Δði1i2Þ must remain real, and indeed, this is what
happens.

X. 2 TO 2 SCATTERING AMPLITUDE

To find a 2 to 2 scattering amplitude, we first separate the
connected part of the 4-point correlation function,

G4ð1; 2; 3; 4Þ ¼ G4;cð1; 2; 3; 4Þ þ G2ð1; 2ÞG2ð3; 4Þ
þ G2ð1; 3ÞG2ð2; 4Þ þ G2ð1; 4ÞG2ð2; 3Þ:

ð108Þ

To compute the G4;c, one needs to include only the terms
where all external fields ϕikðxkÞ are contracted with fields
in W. That means that only the 4-field term in (97) gives
contribution. It can be further separated into three scattering
channels,

G4;cð1; 2; 3; 4Þ ¼ G̃4ð1; 2j3; 4Þ þ G̃4ð1; 3j2; 4Þ
þ G̃4ð1; 4j2; 3Þ; ð109Þ

G̃4;cð1; 2j3; 4Þ ¼ −ig2
Z

d4zd4wδðw0 − z0Þ

× ∂−1
w0 F̃ 4ð1; 2j3; 4jz; wÞ: ð110Þ

For each scattering channel, we get

F̃ 4ð1; 2j3; 4jz; wÞ ¼
i
2
μi1i2kμi3i4kD

ðkÞðz − wÞ½Dði1Þ
F ðx1 − zÞ

×Dði2Þ
F ðx2 − zÞDði3Þ

F ðx3 − wÞ
×Dði4Þ

F ðx4 − wÞ þ ðð1; 2Þ ↔ ð3; 4ÞÞ�:
ð111Þ

In the momentum representation,

ˆ̃G4;cð1; 2j3; 4Þ≡
Z Y

k

fd4xkeipkxkgG̃4;cð1; 2j3; 4Þ

¼ g2

2
μi1i2kμi3i4kD

i1
Fðp1ÞDi2

Fðp3ÞDi4
Fðp3Þ

×Di4
Fðp4Þ½AðkÞðp1 þ p2jp3 þ p4Þ

þ AðkÞðp3 þ p4jp1 þ p2Þ�; ð112Þ

where we introduced

AðkÞðpinjpoutÞ ¼ −i
Z

dz0d3zd3w
Z

d4q
ð2πÞ4D

ðkÞðqÞ

× eiðp
0
inþp0

outÞz0þiq⃗ðz⃗−w⃗Þ−ip⃗in z⃗−ip⃗outw⃗

×

�
P:v:

1

p0
out − q0

þ iαδðp0
out − q0Þ

�
:

ð113Þ

The integrals over z and w result in δ functions for
momenta, and using the momentum representation of
DðkÞ in (76), we obtain

AðkÞðpinjpoutÞ ¼ −ið2πÞ4δð4Þðpin þ poutÞ
�
P:v:

1

ðpoutÞ2 −m2
k

þ iαεðp0
outÞδððpoutÞ2 −m2

kÞ
�
: ð114Þ

Because the α term happens to be antisymmetric under
the pin ↔ pout exchange, it cancels out, and we get

ˆ̃G4;cð1; 2j3; 4Þ ¼ −ið2πÞ4δð4Þ
�X

n

pn

�
g2μi1i2kμi3i4kD

i1
Fðp1Þ

×Di2
Fðp2ÞDi3

Fðp3ÞDi4
Fðp4Þ

× P:v:
1

ðp3 þ p4Þ2 −m2
k

: ð115Þ

Let us apply the standard LSZ formula for the 2 to 2
scattering amplitude,

Ĝ4;cð1; 2; 3; 4Þ ∼
on-shell

ð2πÞ4δð4Þðp1 þ p2 þ p1 þ p2ÞDði1Þ
F ðp1Þ

×Dði2Þ
F ðp2ÞDði3Þ

F ðq1ÞDði4Þ
F ðq2Þ

×Aði1i2ji3i4Þ
2→2 ðp1; p2j − p3;−p4Þ; ð116Þ

we obtain a simple result,
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Aði1i2jj1j2Þ
2→2 ðp1;p2jq1;q2Þ

¼−ig2μi1i2kμj1j2k
�
P:v:

1

s−m2
k

þP:v:
1

t−m2
k

þP:v:
1

u−m2
k

�
;

ð117Þ

where ðs; t; uÞ are the standard Mandelstam variables. One
may recognize the scattering amplitude of the ϕ3 theory
analytically continued to the imaginary coupling. However,
the poles are taken in principal value. This is in a perfect
agreement with the general formula (60).
However, this simple result has a significant problem.

The scattering amplitude (117) violates the well-known
causality constraints on the analytical structure of the
scattering amplitude [40,41]. In fact, we can represent
the amplitude above as

A2→2 ¼ −
1

2
AðþiϵÞ

2→2 þ 1

2
Að−iϵÞ

2→2 : ð118Þ

The first term corresponds to the 2 to 2 scattering amplitude
in the Hermitian ϕ3 QFT that respects the causal nature of
the scattering—the scattered particles are produced only in
the future light cone of the collision event of the ingoing
particles. On the other hand, the second term respects the
reversed causality—the scattered particles are produced
only in the past light cone of the collision event of the
ingoing particles. Thus, the total scattering amplitude is
acausal in a full accordance with (63). One could conjecture
that this happens because of the extra restriction (19) and
may be avoided by a T -violating extra term that shifts the
poles in (88) to the lower complex half-plane. However, as
we have shown, the result happened to not depend on α.
Indeed among the extra assumptions in our derivation of
(60), we used only (18) but not (19).

XI. ATTEMPT AT RELAXING THE
HERMITICITY ASSUMPTION

One may conjecture that the equivalent Hermitian theory
may actually be causal but the field operators obtained with
use of the Hermitian intertwining operator correspond to
nonlocal configurations. Then there may exist an unitary
transformation that makes the causal nature of the model
apparent. While not proving that such operator does not
exist, we show how the simplest ansatz of this sort fails.
Let us take the Hermitian Q satisfying (23) but modify

the formula for the intertwining operator,

η ¼ e−gð1þiθÞQ þOðg3Þ: ð119Þ

Then the metric operator η†η remains to be the same, and
therefore such intertwining operator converts a non-
Hermitian theory into the Hermitian one.

Repeating the computations from Secs. III and IV, one
obtains the following equivalent Hermitian Hamiltonian:

hðθÞ ≃H0 þ gθH1 þ g2
�
−H2 þ

1þ θ2

2
½H1; Q�

�
ð120Þ

and the corresponding formal S matrix looks like

SðθÞh ≃ 1þ igθTð1Þ
H þ ig2

�
−Tð2Þ

H þ i
2
ð1þ θ2Þ½Tð1Þ

H �2
�
:

ð121Þ

Using the results of the previous section, it is trivial to
confirm that the 2 to 2 scattering amplitude computed for

hðθÞ is in agreement with the above formula for SðthetaÞh and
can be written as

Aði1i2jj1j2Þ
2→2 ðp1; p2jq1; q2Þ

¼ −ig2μi1i2kμj1j2k
�
P:v:

1

s −m2
k

þ iπθδðs −m2
kÞ
�

þ ðt andu termsÞ: ð122Þ

Sadly, θ pushes the pole in the wrong direction. The most
curious case is when θ ¼ 1. Then, the first order T matrix
coincides with a first order T matrix of the Hermitian ϕ3

model. However, while the propagator remains to have the
right iϵ prescription, the 2 to 2 scattering amplitude is
analytical in the wrong complex half-plane. Thus, this
simple ansatz can not help us restore causality.

XII. CONCLUSIONS

In this work, we have considered the perturbative
scattering in the local non-Hermitian PT -symmetric quan-
tum field theory interpreted in a pseudo-Hermitian fashion.
We explicitly showed that the intertwining operator remains
to be nontrivial even when the interactions asymptotically
vanishes. In fact, the intertwining operator in the limit of
large times is proportional to the first order T matrix of the
non-Hermitian model. This makes it quite hard to associate
the field variables of the initial non-Hermitian model with
any actual observables even in the asymptotic region. Thus,
we resort to the computations with equivalent Hermitian
Hamiltonian.
Despite this equivalent Hamiltonian being quite com-

plicated and nonlocal, the surprising result is that the
leading order of its S matrix is very simply related to
the S matrix of the original non-Hermitian model. The
generic consequences of this relation include the disap-
pearance of two body decay that are also reflected in the
1-loop correction to the mass of particles but also the
violation of the causal analytic structure of the 2 to 2
body scattering amplitude. These effects were explicitly

SCATTERING IN PSEUDO-HERMITIAN QUANTUM FIELD THEORY … PHYS. REV. D 99, 065008 (2019)

065008-11



demonstrated for the iϕ3 model. Our result raise a question
whether the causality violation in such models may prevent
possible applications from being phenomenologically
viable.
The modifications of the analytic structure of the

propagators that destroy the ordinary notion of the micro-
scopic causality were studied before in the context of the
models with indefinite metrics or CPT violation [42–44].
As a matter of fact, our results bear strong similarity to the
models of the so-called shadow states [41,45]. While
nowhere in our consideration, the indefinite norm appears
(see [46] and references therein for the discussion on the
positivity of the norm in the PT -symmetric models), one
may conjecture that the pseudo-Hermitian interpretation of
the local PT -symmetric QFT may be equivalent to the
positive norm sector of some QFT with indefinite metrics.
At this level, this conjecture remains to be purely hypo-
thetical and will be explored in the future work.
As was noted in [27–29], the causality issues of the

finite dimensional PT -symmetric quantum mechanics
may be tackled by introducing certain degree of nonlocality
into the non-Hermitian Hamiltonian. Similar strategy may
work in case of QFT, and the simple form of our results
may imply that a certain modified notion of locality of the
non-Hermitian Hamiltonian may arise.
In the end of Sec. VI, we mentioned that the case

of the linear potential is exceptional and preserves causal-
ity. This happens because the intertwining operator
becomes simply a shift of the field variable in the imaginary
direction and thus preserves the local structure of the
Hamiltonian. Because we restricted ourselves to the lowest
orders of perturbation theory about free bosonic QFT
with polynomial interactions, this case may appear to be
somewhat trivial. However in [47], it was shown that
the shift intertwining operator can be used for the non-
perturbative construction of the PT -symmetric Sine-
Gordon model.
We conclude by reviewing several shortcomings one

may see in our consideration.
(i) The results presented in this paper are derived with a

level of rigor typical for the practical QFT compu-
tations that involves rather liberal operations with
integrals of the operator-valued distributions and no
discussions of the domain issues and existence of
operators in question beyond the perturbation theory
level. It should be stressed however that this sloppy
(though highly fruitful) approach is characteristic
also to the field of the PT -symmetric quantum
theories even when finite-dimensional quantum
mechanics is considered. In the opinion of the
author, many questions about the Hilbert spaces
involved and existence of the intertwining operator
in a strict sense (not just on the Hamiltonian
eigenstates but also on a generic quantum state)
are yet to be addressed. Thus, we deem it premature

to consider the PT -symmetric QFT on a more
rigorous level and are prepared for the loopholes
associated with singular transformations of a generic
wave functional even within the realm of the
perturbation theory.

(ii) As we mentioned in Sec. XI, the causality problem
may be simply an artifact of choosing the bad
variables, and some unitary transformation may
fix it. We were not able to do so by choosing the
simplest ansatz, but it may be possible to find
the more appropriate one by studying accurately
the asymptotic conditions. Our results were also
restricted to the lowest nontrivial order with com-
putations in the higher orders being much more
nontrivial.

(iii) Throughout the paper, we assumed the applica-
bility of the perturbation theory as it is presented
in Sec. III. The acausal poles may actually signify its
breakdown and may disappear after an appropriate
resummation. The applicability of the perturbation
theory for the formal correlation functions in the
PT -symmetric non-Hermitian QFT was studied in
[5]. But again for the correlation functions of the
equivalent Hermitian model, we have no simple
form beyond the lowest order and thus leave this
important question for the future investigation.

(iv) As we mentioned above, the solution (49) for the
intertwining operator that has a smooth momentum
representation and does not break the Lorentz
invariance is not unique because an arbitrary integral
of motion of the free QFT can be added. This
may greatly improve the locality of the resulting
equivalent Hermitian Hamiltonian [48]. Our general
formula (40) implies that for this to work the
commutator ½Qout; Qin� must not vanish. One may
give a specific example in case of the fermionic QFT
considered in [47]. In that case, one may construct
the quadratic non-Hermitian interaction satisfying
the parity conventions (13),

L ¼ ψ̄ðiγμ∂μ −m1 −m2γ5Þψ : ð123Þ

Interestingly, the aforementioned paper presents the
local intertwining operator in the form,

Q ∼
Z

dxψ†γ5ψ ; ð124Þ

whereas the ansatz similar to (49) would produce a
different highly nonlocal intertwining operator,

Q ∼
Z

dxψ̄γ5ð−iγk∂k þmÞ−1ψ . ð125Þ

However, one may see many differences with the
bosonic case considered in this paper. With bosonic
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fields, H1 should contain the odd number of fields
to have the appropriate P parity. More so the
spinor field rotation does not introduce derivative
terms into the interaction Hamiltonian because Ψ†

serves as a canonical momentum for Ψ as opposed
to _ϕ in the bosonic case. Thus, the fermionic
PT -symmetric QFT may be more well behaved
and deserves additional analysis. At this point, it is
not clear whether a good Q that preserves both

causality and Lorentz invariance exists for bosonic
field interactions.
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