PACS 45.10.Hj, 05.45.-a, 02.30.Yy

© 2007 г. С.В. ЗУБОВ, канд. физ.-мат. наук (Санкт-Петербургский государственный университет)

ИССЛЕДОВАНИЕ РАСЧЕТНОЙ УСТОЙЧИВОСТИ СИСТЕМ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПРИ НЕОГРАНИЧЕННЫХ ВОЗМУЩЕНИЯХ

Вводится новое понятие расчетной устойчивости движения, при котором не предполагается точная реализация этого движения в исследуемых системах. Изучается расчетная устойчивость систем с неограниченными возмущениями.

1. Введение и основные определения

Рассмотрим систему обыкновенных дифференциальных уравнений

(1)
$$\frac{dx}{dt} = F(x,t), \quad x \in \mathbb{R}^n, \quad F(x,t) = (F_1(x,t), \dots, F_n(x,t))^*.$$

Здесь и всюду далее * — знак транспонирования. Введем евклидову векторную норму $\|x\|=(x_1^2+\ldots+x_n^2)^{1/2}$. Всюду в дальнейшем будем предполагать, что n-мерная векторная функция F(x,t) задана в множестве $\Omega=\{(x,t):\|x\|< R,\, t\geqslant 0\}$, где R — число, $0< R<+\infty$. Пусть функция F(x,t) удовлетворяет в Ω условиям, гарантирующим существование, единственность и продолжимость по t от $t_0\geqslant 0$ до $+\infty$ всех тех решений системы (1), графики которых располагаются в множестве $\Omega,\, t_0$ — начальный момент.

Пусть $x(t,t_0,x_0)$ обозначает решение задачи Коши системы (1) с начальным условием $x=x_0$ при $t=t_0$. В силу сделанных выше предположений для всех пар $(x_0,t_0)\in\Omega$ и любых $t\in[t_0,\bar{t})$, где $\bar{t}>t_0$ — число или символ $+\infty$, справедливо неравенство $\|x(t,t_0,x_0)\|< R$.

Будем изучать поведение решений системы (1) в окрестности движения $x(t) \equiv 0$, которое может быть решением системы (1), а может и не быть таковым (например, в случае, когда $F(0,t) \not\equiv 0$ при $t \geqslant 0$). Таким образом, такое движение называется расчетным движением рассматриваемой системы (1). Заметим, что к этому случаю сводится исследование свойств решений системы (1) в окрестности движения, задаваемого произвольной дифференцируемой n-мерной векторной функцией $\varphi(t)$, график которой принадлежит множеству Ω . Рассматривая систему в отклонениях от интересующего нас движения, получаем, что необходимо исследовать поведение решений системы

(2)
$$\frac{dy}{dt} = F(y + \varphi(t), t) - \frac{d\varphi(t)}{dt}, \quad y = x - \varphi(t),$$

в окрестности расчетного движения $y(t) \equiv 0$.

Введем понятия расчетной устойчивости и асимптотической расчетной устойчивости движения x=0 для системы обыкновенных дифференциальных уравнений (1).

Определение 1. Движение x=0 системы (1) называется расчетно устойчивым, если для любого числа $\varepsilon>0$ можно указать такие числа $T(\varepsilon)\geqslant 0$ и $\delta(\varepsilon)>0$, что для любого значения $t_0\geqslant T(\varepsilon)$ и любого n-мерного вектора x_0 , удовлетворяющего условию $\|x_0\|<\delta(\varepsilon)$, при всех $t\geqslant t_0$ справедливо неравенство $\|x(t,t_0,x_0)\|<\varepsilon$.

Определение 2. Движение x=0 системы (1) называется асимптотически расчетно устойчивым, если оно расчетно устойчиво и, кроме того, для любого n-мерного вектора x_0 , удовлетворяющего условию $\|x_0\| < \delta(\varepsilon)$, и любого $t_0 \geqslant T(\varepsilon)$, где $\delta(\varepsilon)$, $T(\varepsilon)$ выбраны по числу ε , $0 < \varepsilon < R$, в соответствии c определением расчетной устойчивости, справедливо предельное соотношение $\|x(t,t_0,x_0)\| \to 0$ при $t \to +\infty$.

2. Основной результат

В теории устойчивости расчетных движений [1] представляет интерес исследование следующей задачи. Пусть x=0 является расчетно устойчивым (асимптотически расчетно устойчивым) движением системы обыкновенных дифференциальных уравнений

(3)
$$\frac{dx}{dt} = G(x,t), \quad x \in \mathbb{R}^n, \quad t \geqslant 0.$$

Правые части G(x,t) системы (3) определены на множестве $\Omega=\{(x,t):\|x\|< R,\ t\geqslant 0\}$ $(R={\rm const}>0)$ и удовлетворяют условиям существования, единственности и продолжимости решений. Если функция $\|G(0,t)\|$ не ограничена при $t\geqslant 0$ (сингулярное возмущение в правой части), то исследование свойств решений системы (3) в окрестности движения x=0 становится затруднительным. Возникает вопрос, существует ли такое преобразование $y=x+\psi(t)$, где $\psi(t)-n$ -мерная дифференцируемая функция, заданная при всех $t\geqslant 0$ и удовлетворяющая условию $\|\psi(t)\|\to 0$ при $t\to +\infty$, что для соответствующей системы уравнений

(4)
$$\frac{dy}{dt} = H(y,t) \equiv G(y - \psi(t), t) + \frac{d\psi(t)}{dt}, \quad y \in \mathbb{R}^n, \quad t \geqslant 0,$$

функция $\|H(\psi(t),t)\|$ ограничена при всех $t\geqslant 0$. Таким образом, расчетно устойчивое (асимптотически расчетно устойчивое) движение x=0 системы (3) соответствует расчетно устойчивому (асимптотически расчетно устойчивому) движению $y=\psi(t)$ системы (4), для которой исследование свойств решений в окрестности движения $y=\psi(t)$ встречает меньше трудности.

Tе о р е м а $\ 1.$ Предположим, что правые части G(x,t) системы (3) таковы, что интеграл

$$\int_{0}^{+\infty} G(0,t)dt$$

cxodumcs. Тогда искомая функция $\psi(t)$ может быть выбрана следующим образом:

$$\psi(t) = \int_{t}^{+\infty} G(0,\tau)d\tau + \int_{t}^{+\infty} \varphi_1(\tau)d\tau,$$

где $\varphi_1(t)$ — любая n-мерная заданная непрерывная u ограниченная npu всех $t\geqslant 0$ функция такая, что интеграл

$$\int_{0}^{+\infty} \varphi_1(t)dt$$

сходится.

 \mathcal{A} о казательство сводится к тому, что соответствующая система (4) принимает вид

$$\frac{dy}{dt} = H(y,t) \equiv G\left(y - \int_{t}^{+\infty} G(0,\tau)d\tau - \int_{t}^{+\infty} \varphi_{1}(\tau)d\tau, t\right) - G(0,t) - \varphi_{1}(t),$$

причем $H(\psi(t),t) \equiv -\varphi_1(t)$ при всех $t \geqslant 0$.

3. Заключение

В данной работе обосновано утверждение о том, что свойства расчетной устойчивости движений систем обыкновенных дифференциальных уравнений с неограниченными возмущениями могут быть исследованы ранее разработанными методами [1] после некоторого преобразования исходной системы.

СПИСОК ЛИТЕРАТУРЫ

1. Зубов С.В., Зубов Н.В. Математические методы стабилизации динамических систем. СПб.: Изд-во С.-Пб. ун-та, 1996.

Статья представлена к публикации членом редколлегии В.Н. Буковым.

Поступила в редакцию 20.01.2005