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Abstract
Theoretical concepts and calculation results of the spatial parity nonconserving (PNC) effects of
electron-electron and electron-nucleus nuclear spin-independent interactions in diatomic
homonuclear molecule H2 of parahydrogen are presented. The magnetic dipole transition between
the states with the same rotational number of the vibrational = ¬v 1 0 band in the H2 ground
electronic S+

g
1 state is considered. It is shown that in this situation these effects are of the same

order of magnitude. The H2 molecule is therefore the first example of molecular system where the
electron-electron PNC interaction can be directly observed. Since the constants of the electron-
nucleus PNC interaction have been already accurately measured in atomic experiments, the
electron-electron PNC interaction constant also can be extracted from the future experiments. In
other atoms and molecules the electron-electron PNC interaction is usually deeply screened by the
electron-nucleus one. Since the nuclei of H2 contain no neutrons, in such future experiments on the
PNC effect observation one can, in principle, measure the Weinberg angle (free parameter of the
standard model) with unprecedented accuracy.

Keywords: parity nonconservation, hydrogen molecule, electron-electron weak interaction

1. Introduction

A theoretical study of the discrete symmetry (e.g. spatial
parity ) violation effects in atomic and molecular systems
plays a key role in developing theories and models of fun-
damental interaction physics. The standard model (SM) of
electroweak interactions was established in the 1960s [1–3]
after the neutral weak current hypothesis had been proposed.
The claim of the SM stimulated to look for and measure weak
interaction effects in atomic and molecular systems. It should
be stressed that in order to extract the values of the SM
constants (namely the Weinberg angle) from the atomic
experimental data, it is required to perform accurate theor-
etical calculations. These calculations are considerably
sophisticated since all electrons can contribute. As a matter of
fact, experiments on the search for parity nonconservation
(PNC) in atomic and molecular systems can be divided into
two research directions: observation of the optical dichroism

(i.e. asymmetry of the number of emitted or absorbed right
and left circularly polarized photons) and optical rotation of
the light polarization plane in vapor of atoms and molecules
which do not possess natural optical activity. The experiment
along the first research direction was suggested by M Bou-
chiat and C Bouchiat on neutral cesium atom in 1974 [4] and
carried out by the Wieman group in 1997 [5]. To date it is the
most accurate low-energy experiment that validates the cor-
rectness of the SM. The experiment of the second type was
proposed by Khriplovich on the bismuth atom in 1974 [6].
For a comprehensive list of the relevant PNC experiments see,
for example, the review [7]. Due to the difficulties of theor-
etical calculations of -odd effects in heavy atoms the search
for simpler atomic systems where effects of the same size
occur are of interest. It is well-known that PNC electron-
nucleus (e-N) interaction effect in neutral atoms increases
with the nuclear charge Z approximately as Z3 [4, 8]. That is
why, the most appropriate choice can be few-electron heavy
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highly charged ions (HCI) which combine the advantage of
high Z numbers with the absence of correlation problem. The
first proposal to measure -odd effects in He-like HCI was
made in [9] and was stimulated by the crossing of levels with
opposite parity at Z∼6, 30, 64, 90. Series of papers on
searching for the PNC effects in HCI was published during
the last few decades. Unfortunately, no experiments with HCI
have been carried out up to now. Here we only want to note
that recently in [10] a new PNC experiment with HCI in
storage rings has been suggested. The main advantage of the
experiment is the employment of the new method for polar-
izing the HCI nuclei, namely by the capture of polarized
electrons.

In all these atomic experiments only the -odd e-N
interaction was observed or proposed since it is enhanced in
heavy atoms, while the -odd electron-electron (e-e) inter-
action is negligible in these cases [4, 8, 11, 12]. The -odd
interaction of electrons with each other was observed exclu-
sively in the high energy region in elastic Møller scattering of
a polarized electron beam on an unpolarized electron target in
2005 by the SLAC-E158 collaboration [13]. No other evi-
dence for the existing of the parity violating e-e weak inter-
action has ever been reported and the independent observation
of this effect in the low-energy regime to our mind would be
desirable.

In 1977 it was suggested to observe the effect of the
-odd optical rotation on the O2 molecule [14]. According to
rough estimates it was claimed that this effect arises mainly
due to the weak e-e interaction. The idea was as follows: in a
molecule there should be a strong enhancement of the effect
because all electrons involving in the formation of a chemical
bond are inside the internuclear region. Recently, calculation
of the -odd effects in O2 has been performed in [15]. It
appears that the -odd e-N interaction effect prevails over the
-odd e-e interaction one by 2 orders of magnitude for this
case. The -odd interactions are short-ranged. Therefore, due
to the weak overlap between electron wave functions with
different orbital angular momenta (states with opposite spatial
parities that are mixed via weak interactions) and the Z3

dependence of the PNC e-N interaction effect [4, 8], in neutral
atoms the PNC e-e interaction can be even more suppressed
compared to the PNC e-N one than in this case of the oxygen
molecule. Therefore, the idea about the possible enhancement
of the -odd e-e interaction in diatomic homonuclear mole-
cules is valid by itself. Taking into account all above-men-
tioned, lighter diatomic molecules should be investigated for
the search of the e-e PNC effect.

The aim of this paper is to perform ab initio calculations
of the nuclear spin-independent PNC effects in parahydrogen
H2, in which the spins of protons are antiparallel, so the total
nuclear spin is zero. It is obvious that in the parahydrogen
the nuclear spin-dependent PNC interaction effects vanish.
We consider the magnetic dipole (M1) transition between the
states of the same rotational quantum number N of the
vibrational = ¬v 1 0 band in the H2 ground electronic

S+X g
1 state (X stands for the spectroscopic notation of the

ground state). Ungerade u and gerade g parities under

inversion of electron coordinates alone while the coordinates
of nuclei held fixed exist only in homonuclear molecules.
Until recently these transitions were assumed to be only of the
electric quadrupole (E2) type so in such situation PNC
experiments would be meaningless. The admixture of the
PNC-induced electric dipole (E1) transition amplitude to
magnetic dipole amplitude via weak interactions is favourable
for the PNC effect observation. Recently in [16] it has been
shown that magnetic dipole transitions also take place for
such transitions, although they are significantly weaker than
the ordinary atomic ones.

2. Theory

In this section we consider the mechanism of the spatial parity
violation as applied to the case of the M1 transition between

=v 11 and v0=0 vibrational levels with the same rotational
number N=J (N is the total angular momentum (including
the rotational one) excluding the electron spin, J is the total
angular momentum of a molecule) of the ground electronic
S+

g
1 state of the H2 molecule.

Due to the -symmetry violation induced by an effective
operator of PNC interaction V the gerade wave function of
the H2 ground state y ( )gv v J0 1

( ñ∣ ( )gv v J0 1 ) gets the following
admixture

åy y y +
á ñ

-

∣ ∣ ( )

( )

( ) ( )
( )

u v N J V gv v J

E E
,

1

gv v J gv v J
i j k

i j k

gv v J u v N
u v N J

, ,

0 1

i j k

i j k0 1 0 1

0 1

where yu v N Ji j k
( ñ∣u v N Ji j k ) are the ith ungerade wave functions

(with parity opposite to the ground state one), Eu v Ni j k
and

( )Egv v J0 1
are the corresponding rovibronic energies. The PNC-

induced mixing of the states leads to appearance of the
pseudoscalar term in the probability of the process con-
sidered. The only pseudoscalar term that can be constructed is

n( · )sph , where *= ´( )s e eiph is the photon spin, n is the
photon emission direction, e is the photon polarization. Then
the probability can be expressed as

n= +( ( · ) ) ( )sW W 1 . 2ph
M1

Here  is referred to as the degree of parity nonconservation,
or the degree of circular polarization. In general

 =



( )i 2

E1

M1
, 3

gv gv

gv gv

PNC
1 0

1 0

where  E1 , M1gv gv gv gv
PNC

1 0 1 0
are the PNC-induced amplitudes

of an electric dipole transition and the amplitude of a magn-
etic dipole transition between the states of the same parity (g),
respectively. In equation (3) the pseudoscalar term is sup-
posed to be extracted. In fact, ~ ·d eE1 and ~M1
m n´· ( )e . Here d and m are the electric dipole and the
magnetic dipole operators, respectively. Expanding the scalar
products in spherical components and performing the angular
reduction it can be shown that the factor n( · )sph can be
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easily extracted. Then E1f gv gv,
PNC

1 0
reads
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gv J u v N

i j k i j k f

gv J u v N

,
PNC

, ,
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i j k
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1

By the letter f a spherical component of d is denoted. Because
of the  -invariance of the interaction, the -odd matrix
element is purely imaginary [8]. Due to different multi-
polarity, E2 doesn’t interfere neither with M1 nor with E1
transition amplitudes, therefore as it was shown in [8] the
rotation angle j of the light polarization plane does not
depend on the presence of E2 amplitude, only the light
absorption length does.

In the coordinate space within the SM, the -odd
effective e-e interaction and the -odd effective nuclear spin-
independent e-N interaction operators can be expressed in the
following forms, respectively:

a a

g g g d

g g d

g r r

S S

= - +

= + - - -
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Here  = =- -( )· ·G c1.027 10 2.222 49 10 a.u.F m c
5

2
14

p
is

the Fermi constant (where mp is the proton mass), the e-e
weak interaction constant q= -· ( )G G 1 4 sinee F W

2 (where
θW is the Weinberg angle—free parameter of the SM), the e-N
weak interaction constant =G G Q R,eN F W is the internuclear
distance. For the purposes of our work, the Weinberg angle
can be approximated as q »sin 0.23W

2 . Thus, »G G0.08e F .
ag g Sm, , ,5 are the Dirac matrices, QW is the weak charge of

nucleus

q= - + -( ) ( )Q N Z 1 4 sin , 6W W
2

N, Z are the numbers of neutrons and protons in a nucleus,
respectively; r ( )r is the normalized nuclear density
distribution.

The hydrogen molecule conforms very closely to Hundʼs
coupling scheme (b) which corresponds to the weak spin–
orbit coupling interaction compared to the difference between
rotational sublevels (or rotational constant). For the case (b)
the projection of the orbital electronic angular momentum on
the internuclear axis, Λ, is a good quantum number while the
projection of the total electronic angular momentum on the
internuclear axis, Ω, is not. The -odd effective operators
given by equation (5) are electronic scalars, therefore the
matrices of these operators are diagonal in Ω. It means that
these operators can be conveniently considered in the space of
Hundʼs case (a) basis functions. Coupling scheme (a) corre-
sponds to the strong spin–orbit coupling interaction compared
to the difference between rotational sublevels. But it should

be noted that these schemes play a role of the basis sets. For
our purposes it is convenient to make a transformation from
(b) basis set to (a) one (see, e.g. [17]) and perform further
calculations in Hundʼs coupling scheme (a).

The ground S+ +( )0g g
1 state of parahydrogen (with the

standard notation in brackets W
( )g u ) possesses only even

rotational quantum numbers N=J [18]. The electronic
configuration of H2 ground state y S+( )g

1 is s( )1 g
2. The -odd

nuclear spin-independent operators in equation (5) cannot mix
ortho- and para-states. For a given S+ +( )0g g

1 ground state these

interactions lead to the admixture of such L+ S
u

2 1 states in
terms of (b) basis functions, which have nonzero projection
on the -0u states in the (a) basis set.

It is known that in H2 all Σ states have Σ+ symmetry
[18]. However, the S+

u
3 para-state (with odd N quantum

numbers) includes the -0u state in terms of Ω due to spin
multiplicity and thus also can be admixed to the ground para-
state via the -odd effective operators given in equation (5).
Due to the parity, in fact, Π states become a linear combi-
nation of Λ=1 and Λ=−1 states. As the result, only P =-

u
3

L = ñ - L = - ñ(∣ ∣ )1 11

2
(with even N) and S+

u
3 (with odd

N) para-states can contribute to the PNC effects.
The -odd interaction results in the interference between

M1 and PNC-induced E1 transition amplitudes. The next step
is to derive an explicit expression for them in the considered
transition. Applying the Wigner–Eckart theorem, the M1
transition amplitude reads

m

m

=á ¢ S S ñ
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- ¢ á ñ


+ +

- ¢ ⎛
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1
1

.

7

q gv gv J g q J g

J M

J J

, 1
1

0
1

1 0
J

1 0

Here m má ñ = + + á ñ∣∣ ∣∣ ( )( ) ∣ ( )∣gJv gJv J J J v g R v1 2 1 N1 0 1 0
where μN is the nuclear magneton and g is the rotational g-
factor. In fact, different vibrational functions corresponding to
the same electronic state are orthogonal =(⟨ ∣ ⟩ )v v 01 0 . It was
shown in [16], however, that in the leading order of the
nonadiabatic pertubation theory the g-factor depends on the
internuclear distance R, hence such matrix elements are not
zero. In this paper we used M1 amplitudes á ñ∣ ( )∣v g R v1 0 for
different J from [16]. It appears that m á ñ »∣ ( )∣v g R vN 1 0

- -( ) ·4 5 10 8 ea0 (e is the electron charge and a0 is the
Bohr radius) for J=(2−30) that is, they depend only
slightly on J.

In appendix the separation of the rotational part in the
interference contribution of M1 and E1PNC transition ampli-
tudes applied to the case of intermediate admixed P-

u
3 states

is performed. It follows that
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where

 
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The operator V denotes both Vee and VeN operators. The
similar derivations as in appendix can be performed for
the case of mixing between intermediate S+

u
3 (with odd Nk)

and the ground state (with even rotational numbers). In this
case Nk=J±1. It can be shown that the contributions
with Nk=J−1 and Nk=J+1 are equal in value but
opposite in sign. More specifically, the only difference
between these two contributions is negligibly small differ-
ence in energy denominators -S = - S+ +( )( ) ( ) ( )E Ev v J v N J, 1,g j k u1 0

1 3

and -S = + S+ +( )( ) ( ) ( )E Ev v J v N J, 1,g j k u1 0
1 3 . Hence, only P-n u

3 states
noticeably can contribute to the NSI-PNC (nuclear spin-
independent PNC) effects.

It should be also pointed out that according to
equation (4) one should consider the singlet-triplet E1
amplitudes. Although such transitions are forbidden in the
nonrelativistic approximation due to the spin selection rule
ΔS=0, still since we take into account all relativistic effects
in the framework of the Dirac–Coulomb Hamiltonian, the E1
amplitudes are not set to zero but are nevertheless quite small.

3. Electronic structure calculation details

Electronic structure calculations of the -odd matrix elements
are performed here. For this aim the full configuration inter-
action method (FCI) and Dirac–Coulomb Hamiltonian were
used to take complete account of electron correlation and
relativistic effects for H2. The Breit interaction can be
neglected in our case (e.g. in [19] it was shown that Breit
correction in Cs atom for PNC amplitude is found to be
0.4%). For the H atoms in the H2 molecule the dyall.aae4z
basis set [20, 21] in case of the one-electron e-N PNC-effect
and aug-cc-pvDZ basis set [22] in case of the two-electron e-e
PNC-effect were employed to ensure the flexibility of the
wave function description. The CI calculations were per-
formed using the DIRAC12 [23] and MRCC [24, 25] codes. The
molecular orbitals in the Hartee–Fock method were obtained
using the DIRAC12 code with the Dirac–Coulomb Hamilto-
nian. The computation of the transition reduced density
matrices of the first order (RDM-1) for the calculation of the
-odd e-N operator matrix elements and of the second order
(RDM-2) for the calculation of the -odd e-e ones and also
the electric dipole moment matrix elements in the molecule-
fixed frame were obtained using the MRCC code and the
code developed in the present paper. The transition RDMs-2
were computed in the approach of 100% contribution of the
reference determinant to the ground (initial) state wave
function (actual contribution of 99.1% is close to it). Taking
the trace product of the transition RDM with the matrix form
of the -odd effective operator in equation (5) one obtains the
-odd matrix elements  ( )V R . In order to faithfully reproduce

the potential energy curve all matrix elements were obtained
at 20 points of the internuclear distance.

It should also be noted that the MRCC code operates in
the Hundʼs coupling scheme (a) basis set in which Ω is a good
quantum number. That is why all over performing the calc-
ulation of the E1PNC it is convenient to make a transformation
from (b) to (a) basis functions. The uncertainty of the elec-
tronic structure calculations presented here can be estimated
as about 10% for the PNC e-N effect and as about 15% for the
PNC e-e effect which is sufficient to the present purpose. For
example, calculated internuclear equilibrium distances, spec-
troscopic constants for each state, electronic energy of the
excited state agree within (5–10)% with previous studies and
experimental data (see table 1).

4. Results and discussion

Let us turn to the results of the calculation. Only the
contribution of the first P-c u

3 ( P-1 u
3 ) state was taken into

account. Next highly excited states ( P-n u
3 with n>2) are

described by more diffuse functions in the basis set (i.e.
extended Gaussian basis functions with a small exponent).
Since also according to equation (4) the energy denominators
for these states are larger, the total contribution of them to
the PNC effects can be neglected in the framework of the
uncertainty claimed. For obtaining the contribution of the
intermediate P-c u

3 state and reproducing potential energy
curves at different internuclear distances R the electronic
structure calculations were performed for ( ) ( )d R V R, ,ee

( )V ReN (20 points of curve). The dependencies of the ima-
ginary component of the -odd e-N and e-e matrix elements,
the dipole moment matrix element on the internuclear dis-
tance R (see equation (9)) are given in figures 1(a)–(b). For
performing the averaging of d(R), Vee(R) and VeN(R) over the
vibrational wavefunctions of the ground and excited states the
VIBROT code of MOLCAS was used [27]. In our calculations
the total Franck–Condon factors for the first 20 discrete
vibrational levels å á = S P ñ ==

+( ( )∣ ( ) )v X v c0 0.996i g i u0
19 1 3 2

and å á = S P ñ ==
+( ( )∣ ( ) )v X v c1 0.969i g i u0

19 1 3 2 . Since these
values are very close to unity, one can neglect the contrib-
ution of the continuum vibrational spectrum.

Table 1. Comparison of the present paper results for the S+X g
1 and

Pc u
3 internuclear equilibrium distances, spectroscopic constants Be

and De, and also the electronic energy of the excited Pc u
3 state with

the experimental data [26].

Present
paper

Experimental
data [26]

Present
paper

Experimental
data [26]

S+X g
1 S+X g

1 Pc u
3 Pc u

3

R (a0) 1.407 1.401 1.954 1.96
Te (cm

−1) – – 97287 95838
Be (cm

−1) 58.4 60.853 30.7 31.07
De (cm

−1) 0.043 0.047 1 0.018 2 0.019

4

J. Phys. B: At. Mol. Opt. Phys. 52 (2019) 025003 D V Chubukov et al



The final result for the nuclear spin-independent E1PNC

amplitudes in the hydrogen molecule is as follows:

=
+
+

=
+
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Then, the parity nonconserving degrees for these effects now
read





=
+

=
+

-

-
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·
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J J

J J

1

1
1.6 10 ,

1

1
1.2 10 . 11

ee

eN

17

17

From equations (10)–(11) it follows that for the hydrogen
molecule the -odd e-e interaction effect is of the same order
of magnitude and slightly larger than the -odd e-N one.
Thus, in principle, it is possible to separate out the contrib-
ution of the PNC e-e interaction from the experimental data
using our calculations, i.e. for the first time to manifest the
existence of this kind of interaction in the low-energy regime.
For this aim it suffices to mention that from any other atomic
experiment on the NSI-PNC e-N interaction effect observa-
tion it is possible to extract the value of the weak charge QW.
Then, using this value and calculation presented here one can
extract the contribution of the NSI-PNC e-e interaction effect.
Consequently the idea [14] about the enhancement of the
-odd e-e interaction effect for the molecules is justified at
least for H2. The homonuclear molecules with larger Z have a
strong additional enhancement about Z3 for the -odd e-N
interaction effect. So in such molecules this effect strongly
prevails over the e-e one, therefore the latter one cannot be
separated out. We conclude that it is quite possible that H2 is
the only candidate for revealing the -odd e-e interaction in
the low-energy regime and extracting the e-e interaction
constant (which should be compared with the one obtained
from the high energy experiments).

5. Theoretical simulation of the PNC experiment

In this section we present a theoretical simulation of a pos-
sible PNC experiment on the H2 molecule, namely the
observation of -odd rotation of the polarization plane of
the light propagating through the vapor of H2 molecules. The
observable quantity is the rotation angle of the light polar-
ization plane j ~ ( · )Im E1 M1PNC

PNC . The total E1PNC

amplitude that should be observed is equal to =E1PNC

+
+

-· [ ]
( )

G iea0.7 10 a.u.J

J J F
1

2

2 1

2 1
10

0. Due to the rapid pro-

gress in the cavity-enhanced technique discussed in [28] and
intracavity absorption spectroscopy (ICAS) experiments
described in [29, 30] where a special construction of cavities
allows to reach very large optical pathlength (to date up to
7×104 km) and to measure very accurately the optical
rotation angles (to date up to the record birefringence phase-
shift 3×10−13 rad), the observation of such a small -odd
effect looks very promising in the future.

Now let us perform an estimate of the rotation angle
jPNC. It is known that the value of optical pathlength is
limited by the absorption of light in a medium. It is obvious
that on resonance all light will be quickly absorbed. However
the proposal [28] is based on the fact that it is possible to shift
off-resonance where the -odd optical activity has its max-
imum and the absorption is small (see also [8]). The optical
rotation angle increases linearly with the pathlength l, but the
transmission of the light beam through the vapor defined by
the Beer–Lambert law [31] falls as -e l l0 (l0 is the absorption
length). Then the PNC signal, i.e. the product of the rotation
angle and the transmission function, is proportional to -le l l0.
The signal-to-noise ratio is optimal when l=2l0 [8, 32].

The PNC optical rotation angle is given by [8]:


j

p w r
m= -

G +
á ñ( ) ∣∣ ∣∣ [ ]

( )

l

c J
g u v gJv gJv

4

3 2 1
, Im E1 ,

12
D

PNC 1 0
PNC

where ÿ is the reduced Planck constant, c is the speed of light,
ω is the resonant transition frequency, ρ is the number density
of vapor. The Doppler width ΓD is defined as [28]

wbG = ( ) ( )T , 13D

Figure 1. (a) Represents the dependence of the imaginary component of the  -odd e-N and e-e matrix elements in the units of - G10 F
5 on the

internuclear distance R in bohr (see equation (9)). (b) represents the dependence of the dipole moment matrix element in - ea10 5
0 on the

internuclear distance R in bohr (see equation (9)). Figures 1(a) and (b) correspond to the case of mixing between Pc u
3 and S+X g

1 .
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where b =( )T k T

Mc

2 B
2 (kB is the Boltzmann constant, T is the

vapor temperature in Kelvin, M is the mass of a molecule).
We define the Voigt profile for the resonant transition line
function

 p= - - +- +( ) [ ( ( ))] ( )( )u v e i u iv, 1 Erf . 14u iv 2

In equation (14) Erf(z) is the error function. The dimension-
less variable u is defined as a ratio

w
=

D
G

( )u , 15
D

where Δω is the detuning of the frequency. The dimension-
less variable v is defined as a ratio

=
G
G

( )v
2

, 16
D

where Γ is the collisional broadening width and

rs b
G

~ ( ) ( )T c
2

, 17col

where σcol is the collisional cross-section. The refractive
dependence of the profile is defined via

º( ) ( ) ( )g u v u v, Im , . 18

The absorption length is given by



p w r
m=

G +
á ñ- ( ) ∣∣ ∣∣ ( )l

c J
f u v gJv gJv

4

3 2 1
, , 19

D
0

1
1 0

2

where

º( ) ( ) ( )f u v u v, Re , . 20

Since we are interested in off-resonance observation of the
PNC effects (that is u? 1) the following asymptotics for g(u,
v) and f (u, v) is applicable

»

»

( )

( ) ( )

g u v
u

f u v
v

u

,
1

,

, . 21
2

Now from the optimal signal condition l=2l0 one can
express the number density ρ and then substitute this quantity
in equation (12). As the result we obtain


r

b w
p m s

=
á ñ +

( )
∣ ( )∣ ( )

( )T u

l v g R v J J

3

2 1
, 22

N

1 2 2

2
1 0

2
col


j

p w
b s

=
+

-· ( [ ])
( ) ( )

( )

G
l

c T J J
ea0.7 10 a.u.

3 1
.

23

FPNC
10

2
col

0

Equation (23) was derived for the case of large J quantum
numbers when it is possible to neglect the contribution of the
E2 amplitude (see [16]). The expression for the optimal jPNC

does not depend on the M1 amplitude but has the smallness
∼1/J (Note: however there is no benefit from choosing small
J values since in this case the M1 transition will be sup-
pressed by E2 transition which provides no PNC effect).
Hence in our estimate we use J≈(28−30). The angle is

proportional toj b~ ~- -( )T TPNC
1 2 1 4 thus possible laser

cooling of vapors can only very slightly improve the results.
In our estimate the following values were used: rovibrational
transition of interest with ω≈8×1014 s−1, the characteristic
collision cross-section for H2 s » -10col

15 cm2,
= ´l 7 10 cm9 [29]. This leads to the optimal PNC optical

rotation angle

j ~ - ( )10 rad 24PNC
17

while the number density

r ~ - ( )10 cm . 2517 3

Recall that the record birefringence phase-shift 3×10−13 rad
has been recently measured [30]. Our estimate of the PNC
rotation angle is by 4 orders of magnitude smaller than the
record achievable in the experiment value. It is hardly
believable also that the pathlength can be further increased
(j ~ lPNC ). Concluding we can state that none of the recent
ICAS experiments can provide at present a measurement of
the PNC effects in the parahydrogen molecule, but in view of
the rapid progress we have seen in ICAS such optical rotation
angles may in the course of time be observed. Consequently,
it would make it possible to reveal the weak electron-electron
interaction at low-energies.

6. Conclusion

In this paper we put forward a proposal which may allow for
the first time to observe directly the electron-electron weak
PNC interaction in the low-energy regime. The parahydrogen
molecule is the unique candidate for this purpose.

Our main goal of this paper was to demonstrate that the
e-e PNC interaction can be directly observed in H2. For this
purpose ab initio calculations of the corresponding effects
were performed.

In the SLAC-E158 measurements the parity-violating
asymmetry was measured to be = -  ( )A stat131 14PV

´ -( )syst10 10 9 [13]. Since the observed effect is roughly
proportional to the factor q-( )1 4 sin W

2 (see equation (5))
which appears to be quite small, the accuracy of determina-
tion of qsin W

2 from this experiment is better than 1%. The
parahydrogen molecule H2 is the unique molecular system
where GeN=Gee and hence the total weak interaction effect
is also proportional to q-( )1 4 sin W

2 as in the SLAC-E158
experiment. If the cavity-enhanced technique will achieve the
benchmark accuracy of about 10−17 rad then this can lead to
very accurate determination of the Weinberg angle as well as
revealing for the first time the electron-electron PNC inter-
action at low-energies.
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Appendix. Separation of the rotational part in the
matrix elements of the E1PNC for 3Π�

u states

For our purposes it is convenient to perform calculations in
the basis functions of (a) Hundʼs coupling case. Case (b) basis
functions can be expressed in terms of the (a) ones in the
following way (see, e.g. [17]):

åL ñ= - +

´
W -S -L

L S Wñ

S=-

+
- +L

⎜ ⎟
⎛
⎝

⎞
⎠

∣ ( ) ( )

∣ ( )

NSJ N

J S N S J

1 2 1

, A1

S

S
J S 1 2

where Σ is the projection of the electronic spin momentum S
on the internuclear axis. Consider the contribution of the
P = L = ñ - L = - ñ- (∣ ∣ )1 1u

3 1

2
to the PNC effects. Taking

into account the fact that in the matrix element of the weak
interaction V only the components with Ω=0 survive, we
perform the angular reduction and the transformation from the
laboratory to the molecule-fixed frame ([18] and [17]) for the
product of PNC and E1 matrix elements (see equation (4)):







å

á S P ñ

´ á P S ñ

= á ñ - + +

´
- -

á ñ

= á ñ - +

´
-

á ñ



 ¢



¢ 

¢

+ -

- - +



- ¢

- +

- +

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

( )

( )

( )∣( ) ∣ ( )

( ( ))∣ ∣ ( )

∣( ) ∣ ( ) ( )

( )∣ ∣ ( )

∣( ) ∣ ( ) ( )

( )∣ ∣ ( )
A2

d

d

d

gv JM u v N JM

u v N JM V gv JM

gv JM u v N JM N J

J N J J
M M

J J u v V gv

gv JM u v N JM N

J N
u v V gv

0

1 2 1 2 1

1
0 1 1

0
0

0
0 0 0

0 0

1 2 1

1
0 1 1

0 0 .

J g f i j k J u

i j k J u u J g

M
J f i j k J

J M
k

k

J J
i j u g

J f i j k J
J

k

k
i j u g

1
1 3

3
0

1

1

0

1

0

J

J

Now we consider the E1 matrix element in equation (4).
In order to separate out the rotational part one has to make
the transformation to (a) Hundʼs basis functions and the
transformation from the laboratory to the molecule-fixed

frame [18]:

å

å

¢

¢

¢

¢

¢

á L = = L¢ = ñ

- á L = = L¢¢ = - ñ

=
- +

W¢ -S -L¢
á W¢ ñ

-
W¢¢ -S -L¢¢

á W¢¢ ñ

=
- + +

-

´
W¢ -S -L¢ -W¢ W¢

á W = W¢ñ

-
W¢¢ -S -L¢¢ -W¢¢ W¢¢

á W¢¢ñ

S=-

+

-

S=-

+

¢

+
¢

⎜ ⎟

⎜ ⎟
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⎜ ⎟

⎜ ⎟

⎛
⎝⎜
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠⎟ ( )

( ( )∣( ) ∣ ( )

( )∣( ) ∣ ( ) )

( )
∣( ) ∣

∣( ) ∣

( ) ( )

( )∣( ) ∣

( )∣( ) ∣
A3

d

d

d

d

d

d

gv JM u v N JM S

gv JM u v N JM S

N J N
gv JM u v JM

J N
gv JM u v JM

J N J J
M f M

J N J J gv u v

J N J J gv u v

1

2
0 1, 1

0 1, 1

1 2 1

2

1

1

1 2 1 2 1

2

1

1 1
0

0

1 1
0

0 .

J f i j k J

J f i j k J

J
k k

J f i j J

k
J f i j J

J M
k

J J

k
f i j

k
g f i j

1

1

1

1

1

1

1

1

1

1

J

Note that f′=Ω−Ω′(Ω″)=−Ω′(Ω″). The terms with
W¢ W¢¢ = ( ) 0, 2 vanish since corresponding 3j-symbols are
set to zero. Since P-

u
3 and S+

g
1 in parahydrogen possess only

even rotational numbers then Nk=J. Now consider the
interference contribution of M1 (equation (7)) and E1
transition amplitudes performing the summation over the
projections of J and f=q:

* *m=
+
+

á ñ

´ á ñ - á - ñ

P

+
-

+
+

-·
( )

∣∣ ∣∣

( ( )∣( ) ∣ ( ) ( )∣( ) ∣ ( ) )
( )

d d

J

J J
gJv gJv

gv u v gv u v

2M1 E1
1

3

2 1

1

0 1 0 1 .

A4
g i j u g i j u

1 0

1 1 1 1

u
3

Here we should note that the factor 1/3 originates from the
interference of M1 and E1 matrix elements after angular
reduction then it is more convenient to separate this factor
out from their definition. Since we use adiabatic approx-
imation, let us denote the electronic matrix elements as

= á ñ - á - ñ+
-

+
+( ) ( )∣( ) ∣ ( ) ( )∣( ) ∣ ( )d dd R g u g u0 1 0 1g i u g i u1 1 and

 = á ñ- +( ) ( )∣ ∣ ( )V R u V g0 0i u g (where R is the internuclear dis-
tance). Then substituting Nk=J in equation (A2) we obtain
the interference contribution of M1 and E1 P-

PNC
u

3 transition

amplitudes:

* *





å

m=
+
+

á ñ

´
á ñá ñ

-

-
á ñá ñ

-

P-

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

·
( )

∣∣ ∣∣

∣ ( )∣ ∣ ( )∣

∣ ( )∣ ∣ ( )∣
( )

J

J J
gJv gJv

gv d R u v u v V R gv

E E

gv V R u v u v d R gv

E E

2M1 E1
2 1

2 1

. A5

i j

i j i j

gv u v

i j i j

gv u v

PNC
1 0

,

1 0

1 0

u

i j

i j

3

0

1

Note that the minus sign in formulae (A5) is due to the
imaginary matrix element  ( )V R .
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