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Abstract. The wave function of excitons in GaAs-based finite square quantum wells (QWs)
is calculated by the direct numerical solution of the three-dimensional Schrödinger equation.
The precise results for the lowest exciton state are obtained by the Hamiltonian discretization
using the fourth-order finite-difference scheme. The radiative decay rate is calculated for QWs
of various widths using the obtained exciton wave function.

1. Introduction

The theoretical modeling of excitons in a bulk semiconductor is usually carried out in
the framework of the hydrogen model [1]. This model, however, becomes unsuitable for
semiconductors with a degenerate valence band. In such a case, the exciton Hamiltonian should
be generalized by introduction of the Luttinger terms describing the complex valence band [2].
The terms couple the exciton center-of-mass and intrinsic electron-hole motions. As a result, the
variables of the exciton Schrödinger equation (SE) cannot be separated and one has to consider
the multi-dimensional SE [3]. A study of the exciton in a quantum well (QW) meets further
complications of the problem. Even in the simplest case, when only the diagonal part of the
Luttinger Hamiltonian is included into the problem, the presence of the QW potential requires
one to consider at least the three-dimensional SE, which cannot be solved analytically.

The calculations of the exciton radiative decay rate (or the oscillator strength) have been
carried out in several works using different simplifications of the problem [4-8] The experimental
studies of the radiative characteristics are widespread, see, e.g., Refs. [9-14] Recent measurements
of the radiative decay rate have been carried out by Poltavtsev et al. [15, 16]. These experimental
results and lack of the available theoretical calculations motivated us for this study.

In the present paper, we report on the results of calculations of the radiative decay rate for
QWs of various widths. The radiative decay rate is obtained using the wave function found
from the SE for excitons in QWs with a degenerate valence band. Partial separation (over two
variables) of the center-of-mass motion and cylindrical symmetry of the problem allowed us to
reduce the initial SE to the three-dimensional one. The numerical solution of the problem has
been done for the GaAs/AlGaAs and InGaAs/GaAs QWs, which are widely experimentally and
theoretically studied now as model heterostructures [13, 17].
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2. Microscopic model

In our study, we assume that the exciton in a QW is described by the SE with the diagonal part
of the Luttinger Hamiltonian [2] only:

H =
k2
e

2me

+

(

k2hx + k2hy

)

2mhxy

+
k2hz
2mhz

− e2

ǫ|re − rh|
+ Ve(re) + Vh(rh). (1)

Here, indices e and h denote the electron and the hole, respectively. The relative electron-hole
distance is |re − rh|. The electron charge is denoted by e and the dielectric constant is ǫ. The
square QW potentials Ve(re) and Vh(rh) are zero inside the QW and equal to some constant
values in the barriers (conduction- and valence-band offsets, respectively). Term k2

e/2me is the
kinetic operator of the electron in the conduction band in the effective-mass approximation [3].
The kinetic terms of the hole in the valence band, the second and third terms in Eq. (1), come
from the diagonal part of the Luttinger Hamiltonian [2].

Hamiltonian (1) specifies the six-dimensional SE, HΨ = EΨ, for the electron and the hole
in QW coupled by the Coulomb interaction. The translational symmetry along the QW layer
allows us to reduce this equation to the four-dimensional one by separation of the center-of-mass
motion in the (x, y)-plane. This motion is described by an analytical part of the complete wave
function, Ψ. The relative motion of the electron and the hole in the exciton is described by
ψ(x, y, ze, zh), where x = xh − xe, y = yh − ye. One more dimension is eliminated by taking
advantage of the cylindrical symmetry of the problem and introducing the polar coordinates
(ρ, φ) for description of the relative motion, since the Coulomb potential does not depend on φ.
Representing the wave function in the form

ψ(x, y, ze, zh) = ψ(ze, zh, ρ)e
ikφφ =

χ(ze, zh, ρ)

ρ
eikφφ, (2)

where kφ = 0, 1, 2, . . ., we proceed to the three-dimensional equation, which is numerically
studied in the present paper. In Eq. (2), we introduce a factor 1/ρ in order to fulfill the cusp
condition at ρ = 0.

Since the light interacts mainly with the ground 1s state of the exciton, we study the case
when kφ = 0. In this case, the equation under consideration is written as [18]:

(

K − e2

ǫ
√

ρ2 + (ze − zh)2
+ Ve(ze) + Vh(zh)

)

χ(ze, zh, ρ) = Exχ(ze, zh, ρ) (3)

where the kinetic term reads:

K = − h̄2

2me

∂2

∂z2e
− h̄2

2mhz

∂2

∂z2
h

− h̄2

2µ

(

∂2

∂ρ2
− 1

ρ

∂

∂ρ
+

1

ρ2

)

, (4)

and µ = memhxy/ (me +mhxy) is the reduced exciton mass in the (x, y)-plane. The obtained
three-dimensional Eq. (3) cannot be solved analytically because the potential terms do not allow
further separation of the variables.

3. Numerical method

We performed the direct numerical solution of Eq. (3) for precise calculations of the exciton
ground state energy, Ex, and function χ(ze, zh, ρ). The exponential decrease of the exciton
wave function at large values of variables allows us to impose the zero boundary conditions
at the boundary of some rectangular domain. The size of this domain varies from dozens of
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QW widths (for small widths) down to several QW widths (for large widths). Therefore, the
studied boundary value problem (BVP) is formed by Eq. (3) and the zero boundary conditions
at ρ = 0, at some large value of ρ, and at large positive and negative values of variables ze,h.
The direct numerical solution of the BVP is feasible using available computational facilities.
For this purpose, we employed the fourth-order finite-difference (FD) approximation [19] of the
derivatives in Eq. (3) on the equidistant grids over three variables. We use the central fourth-
order FD formula for approximation of the second partial derivative of χ(ze, zh, ρ) with respect
to ze: −χk−2,l,m + 16χk−1,l,m − 30χk,l,m + 16χk+1,l,m − χk+2,l,m

12∆2
ze

. (5)

Here, the unknown function on the grid, χ(ze,k, zh,l, ρm), is denoted as χk,l,m. The same FD
formula is employed for the second derivative with respect to zh. We apply the noncentral fourth-
order FD formulas for approximation of the first and second partial derivatives of χ(ze, zh, ρ)
with respect to ρ. In the calculations, the grid steps over each variable have been taken to be
the same, ∆.

Formula (5) defines the theoretical uncertainty of the numerical solution of the order of ∆4

as ∆ → 0. However, the discontinuity of the square potential at the QW interfaces decreases
the convergence rate of the solution over ze and zh to order of ∆2, whereas the convergence rate
over variable ρ is kept ∼ ∆4. The precise values of the studied quantities are obtained by the
extrapolation of the results of calculations as the grid step goes to zero.
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Figure 1. The
calculated exciton
binding energy for
GaAs/AlxGa1−xAs
for various alu-
minium concentrations:
x = 0.15, 0.3, 0.4.

The nonzero solution of homogeneous equation (3) with trivial boundary conditions can be
obtained by the diagonalization of the matrix constructed from the operator of this equation.
This square matrix is large, non symmetric and sparse. The typical size of the matrix is of
the order of 106, so that we keep in the calculations only nontrivial matrix elements of a few
diagonals. The full diagonalization of such a matrix is impossible. However, a small part of
the spectrum can be easily obtained using the Arnoldi algorithm [20]. As a result, we have
calculated the lowest eigenvalue of the matrix and the corresponding eigenfunction. Thus, the
ground state energy, Ex, and the corresponding wave function have been obtained for various
widths of QW.

We applied the numerical algorithm for solving the SE with parameters for the
GaAs/AlxGa1−xAs and InxGa1−xAs/GaAs QWs. The material parameters used for solving the
eigenvalue problem (3) are based on the data from Ref. [21] for AlGaAs and from Ref. [8, 22]
for InGaAs. In particular, the ratios of potential barriers were taken to be Ve/Vh = 65/35. The
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difference of the electron and hole masses in the QW and in the barrier layers as well as the
discontinuity of the dielectric constant at the QW interfaces were ignored.

To check the accuracy of the numerical procedure, we have calculated the exciton binding
energy, Rx, which is defined with respect to the quantum confinement energy of the electron,
Ee, and the hole, Eh, in QW by the formula Rx = Ee + Eh − Ex. Energies Ee and Eh are
obtained from the solution of the corresponding one-dimensional SEs for the electron and the
hole in QW. The results are shown in Figure 1 for the GaAs/AlxGa1−xAs QW with three barrier
heights governed by the aluminium content. The results obtained agree well with other results
reported, e.g., in Refs. [18, 21]. We should note here that the usual approach based on the
effective mass approximation used in our work may give rise to inaccurate results for very thin
(< 10 monolayers) QWs, where one monolayer is ≈ 0.28 nm for GaAs. In the thin QWs, the
band mixing at the interfaces becomes important. The interface short-range corrections for this
approach can be used in this case to obtain more accurate results [23].

4. Exciton-light coupling

The radiative properties of an exciton are defined by the parameter, called the radiative
decay rate or the oscillator strength, see Refs. [1, 4, 5, 24]. The radiative decay rate, Γ0,
characterizes the decay of electromagnetic field emitted by the exciton ensemble after the pulsed
excitation: E(t) = E(0) exp(−Γ0t). A consistent exciton-light coupling theory is presented in
the monograph of Ivchenko [24]. It gives the expression for Γ0:

Γ0 =
2πq

h̄ǫ

(

e|pcv|
m0ω0

)2

∣

∣

∣

∣

∣

∣

∞
∫

−∞

Φ(z) exp(iqz)dz

∣

∣

∣

∣

∣

∣

2

, (6)

where q =
√
ǫω/c is the light wave vector, ω0 is the exciton frequency, |pcv| = 〈uv|ǫ · p|uc〉

0 0.5 1 1.5 2

38

40

42

44

46

48

∆ (nm)

 ℏ
 Γ

0Γ
(µ

eV
)

0 1 2 3 4

45

50

55

60

65

70

∆ (nm)

 ℏ
 Γ

0Γ
(µ

eV
)

Figure 2. The dependence of the radiative decay rate, h̄Γ0, on the grid step, ∆, for QW width
L = 10 nm (left panel) and for QW width L = 200 nm (right panel). The solid points are the
values of the radiative decay rate calculated using the fourth-order FD scheme. The solid line
indicates the fit of the calculated values by function y = a∆b + c.

is the matrix element of the momentum operator between the single-electron conduction- and
valence-band states, and Φ(z) ≡ ψ(z, z, 0) that is when z = ze = zh and ρ = 0. The wave
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function obtained from the microscopic calculation allowed us to calculate the radiative decay
rate Γ0 of the exciton ground state according to Eq. (6). The convergence of h̄Γ0 as the grid
step ∆ goes to zero is shown in Figure 2. The precise results are obtained by the extrapolation
of ∆ to 0.

We calculated Γ0 for GaAs/Al0.3Ga0.7As and In0.02Ga0.98As/GaAs QWs of various widths in
the ranges of 1 ÷ 300 nm and 1 ÷ 200 nm, respectively. In calculations, |pcv|2 = m0Ep/2,
where Ep = 28.8 eV for GaAs and Ep = 21.5 eV for InAs are taken from Ref. [22]. The exciton
frequency ω0 is calculated using bandgap Eg = 1.520 eV for GaAs [24] and relevant parameters
from [21, 22].

Figure 3 shows the radiative decay rate in energy units, h̄Γ0, as a function of the QW
width. The radiative decay rate reaches its maximum at the QW width of about 130 nm. It
approximately corresponds to the half of the light wavelength in the QW material. So, this
maximum of Γ0 corresponds to the maximal overlap of the exciton wave function Φ(z) and
the light wave, see Eq. (6). For thick QWs, L > 150 nm, the calculated decay rate decreases
with the well width rise, which can be qualitatively explained by the decrease of the overlap.
The applicability of our model for the GaAs/AlGaAs QWs, however, may be limited. The
energy distance between the heavy-hole and light-hole exciton states becomes small in the thick
QWs so that their coupling by the off-diagonal terms of the Luttinger Hamiltonian omitted in
our model becomes important. Heavy-hole-light-hole coupling redistributes oscillator strength
between the heavy-hole and light-hole excitons. In the case of InGaAs/GaAs QWs, the strain-
induced splitting of the heavy-hole and light-hole excitons suppresses their coupling, therefore
our model is still applicable even for thick QWs.
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As the QW width decreases, Γ0 also decreases due to the diminishing overlap integral in
Eq. (6). For small QW widths, however, the behavior of Γ0 for GaAs/Al0.3Ga0.7As and
In0.02Ga0.98As/GaAs is different. For GaAs/AlGaAs one can see the growth of h̄Γ0 and a
local maximum at L ∼ 5 nm. This result is also confirmed by the experimental data in Ref. [15].
We may suppose that this maximum of Γ0 is caused by squeezing of the exciton in the narrow
QWs by the QW potential. The squeezing increases the probability to find the electron and the
hole in the same position (ze = zh and ρ = 0).

The opposite behavior is observed for In0.02Ga0.98As/GaAs as L decreases. One can see that
h̄Γ0 diminishes as the QW width L decreases and there is no peak of h̄Γ0 at small QW widths.
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We believe that this difference is related to different depths of the QWs. The absence of a peak
is the indication of the weak exciton squeezing due to a small QW potential depth.

The rapid growth of h̄Γ0 at L→ 0 in the InGaAs/GaAs QWs can be explained by a stronger
penetration of an exciton into the barriers as compared to the much deeper GaAs/AlGaAs
QWs. Due to the penetration, the overlap of the exciton wave function Φ(z) and the light wave
increases and, in turn, the radiative decay rate increases as L→ 0.

5. Conclusions

In summary, we have numerically obtained the radiative decay rate for the exciton ground state.
For that, we have solved the three-dimensional equation, which was deduced from the electron-
hole Hamiltonian with the Luttinger terms for the valence band. The direct microscopic solution
using the fourth-order finite-difference scheme has been carried out for the first time. It allowed
us to precisely calculate the exciton ground state energy and the exciton radiative decay rate.
We obtained the radiative decay rates for GaAs/AlGaAs and InGaAs/GaAs heterostructures
for various QW widths in the ranges of 1 ≤ L ≤ 300 nm and 1 ≤ L ≤ 200 nm, respectively.
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