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Abstract—The article presents high school educational tool 

generating problems for a test work on plasma chemistry courses 

based on the Algorithm for a wave functions fast calculating in 

the central field aproximation for many-electron atoms based on 

an iterative procedure similar in ideology to the Hartree-Fock 

method is described as well as the interface of the resulting task 

generating program. The work is a first step for a more profound 

generator which deals with calculating rate constants in plasma.  
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I. INTRODUCTION  

The new state of matter – plasma was descovered in 1879 
and the term “plasma” is in use since 1928 [1]). At the moment 
the rapid development of computer technology supports 
transition from experimental research and the development of 
empirical plasma models to a quantitative description on the 
basis of fundamental theoretical approaches and numerical 
modeling [2],[3],[4]. Calculating of a large number of 
elementary radiation and collisional processes competing with 
each other in the gas discharge requires the use of very 
laborious methods for describing the plasma as a 
multicomponent system, which generally persists in a 
substantially nonequilibrium state [5],[6],[7],[8],[9]. The 
quantitative models of these processes require knowledge of 
specific values of the probabilistic characteristics of the 
elementary processes. Despite the excecive work on collecting 
and systematizing of experimental material on elementary 
collisional and radiative processes and development of 
databases containing processes probabilistic characteristics 
(see, for example, [10]), the set of elementary processes being 
considered is usually substantially limited by the set of reliable 
experimental data [9]. As a result, the use of theoretically 
obtained data for culculating cross sections and rate constants 
of collisional processes is significant for plasma physics. 
Development of reliable and relatively simple methods of such 
calculations is still demanded. 

Calculation of the probabilities of radiation processes, cross 
sections of collision transitions and corresponding rate 
constants of plasmachemical reactions is one of the most 
traditional and developed areas of quantum mechanics [11]. 
However preparing data for systematic calculations of the 
kinetics of nonlocal plasma meets some difficuties. First, their 
computational complexity, is very havy in the preparation of 

data for the developed multi-channel plasma-chemical models. 
Second, taking into account a large set of processes close in 
probability affects the accuracy of calculating. 

On the other hand there are numerous applications of gas-
discharge plasma: in medicine [12],[13],[14] food industry 
[15], chemical analysis and environmental monitoring [16], 
demonstrate actuality of the theme. Though a fast method of 
culculating wave functions is useful for data preparetion for 
plasma dynamic simulation as well as for constracting an 
educational tool to support education of plasma-aware 
specialists. 

II. BASIC THEORY 

In the overwhelming majority of cases in the kinetics of 
low-temperature plasma, collisions of atoms with electrons 
(ionization and excitation by electron impact, mixing of excited 
states by electrons, etc.) play a key role, as well as radiation 
processes. In both cases, accuracy sufficient for plasma 
applications gained with the use of Born's method [17] where 
the wave functions of the particles (electrons in collisions and 
photons in the case of light emission and absorption) are 
approximated by a plane wave. 

Having the first order perturbation, the Born method gives 
a satisfactory description for the plasma excitation processes 
important for the plasma kinetics on "optically-resolved" 
transitions (ΔL=± 1, ΔS=0) and ionization by atoms from the 
ground state by electron impact. Its modifications (taking in 
account second-order perturbation theory elements and 
exchange effects) produce results reliable for plasmachemical 
calculations for the cross sections of collision transitions both 

between excited levels and "optically forbidden" (ΔL ≠ ± 1) 

and intercombination (ΔS ≠ 0) transitions [18]. 

Formula for total cross section σB of collision transition (in 
an electron impact) between the states of the atom γ0 and γ ' is:  
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Where Rχ is transition matrix element, k and k 'are the 
momenta of a free electron before and after a collision with an 
atom, r is the distance from the nucleus to the current point of 
space measured in relation to a0 (first Borh radius): 
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Rnl (r) are the radial parts of one-electron wave functions 
that change its state (given by the quantum numbers n and l) of 
the optical electron; jχ (qr) is the spherical Bessel function of 
order χ. Calculation of angular integrals is performed using a 
standard apparatus of nj-symbols. Though the knowledge of the 
radial parts of the wave functions is necassary for calculations. 
For second-order prcision hrough intermediate ("virtual") states 
the knowledge of the wave functions not only of the initial and 
final, but also of all intermediate ("virtual") states [19] is 
required. 

The approach developed by Hartree and Fock in the first 
half of the twentieth century allows determining stationary 
electron states in the self-consistent field of the remaining 
particles is now traditional method of solving the problem of 
constructing wave functions of an electron in a many-electron 
atom [20],[21],[22]. It requires sufficiently resource-intensive 
calculations. The accuracy of the results is often overestimated 
in comparison with the errors due to the deficit of information 
on the probabilities of elementary processes by simplifications 
of plasma-chemical models. In this paper we propouse a 
variant of constructing semiempirical one-electron wave 
functions of many-electron atoms. This approach demands 
low-cost computational resource, and the results of its testing 
in the course of calculations of atoms with a nuclear charge Z 
<12 are presented as well as its implementation for educational 
purposes. 

III. COMPORISONS OF METHODS FOR CONSTRUCTING 

SEMIEMPIRICAL WAVE FUNCTIONS 

A. Semiempirical method 

In 1970-x there was developed a simpl semiempirical 
method [18]in which the experimentally known energy of the 
electron is substituted as the eigenvalue in the Schrodinger 
equatin then, the radial part of the wave function of the external 
("optical") electron on Rnl(r) is obtained as a result of 
numerical integration of the Schrödinger equation 
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where 

ζ( )r

r  – the effective potential of the atomic residue; 
W is the eigenenergy [23]. 

The main difficulty of this approach is obtaining the 
potential of the atomic residue. Its calculation requires 
knowledge of the wave functions of internal electrons. 

B. Hydrogen like atom aproximation 

The approximation of analytically described hydrogen-like 
wave functions is traditionally used for an approximate 
calculation of the potential of an atomic residue. 
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 (3), where the effective charge is equal to the nuclear 
charge Ϛ (r)=Z, and the coefficients am of the polynomial g(r) 
are calculated from the recurrent formula for the hydrogen 
atom 
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where δl,0 is the Kronecker symbol in the case of the 
discrete spectrum of the initial states and the delta function for 
the continuous spectrum. 

It uses effective principal quantum number (dute to 
perturbation of the Coulomb field of the nucleus by 
contributions from the remaining electrons) associated with the 
experimental value of the binding energy by a relation 
analogous to that obtained for hydrogen-like ions: n*=(-
Z/2Wexper)½ is used. 

Another method for atomic risidue potential determination 
is based on the use of semi-empirical non-zero functions of 
Sletter, constructed on the basis of hydrogen-like wave 
functions (4) for l=n-1, by introducing effective quantum 
numbers and screening constant [19]. 

Finally, atoms with bigger number of electrons when 
individual features of their wave functions becomes 
insignificant, electron Fermi gas can serve as an atomic residue 
model. The potential of the atomic residue can be found with 
numerical integration of the Thomas-Fermi equation [24].  

C. A fast method for culculating radial wave function 

The approach proposed is a generalization of the above 
described method of constructing semi-empirical wave 
functions of an excited electron. Its distinguishing feature is the 
computation of wave functions in the iteratively corrected self-
consistent field, which is calculated not only for the optical 
electron, but also for all other electrons contributing into the 
atomic residue. Depending on the availability and reliability of 
experimental or other reliable information on the binding 
energies of one or several electrons of a multielectron atom, it 
is possible to improve iteration procedure. If the value of the 
electron energy is unknown, it is obtained as a result of 
processing the procedure of successive iterations. 

During the iterative procedure, the an optimal set of values 
of the effective-value moduli is constructed: k*j=1/nj* (nj* is 
the effective principal quantum number corresponding to the 
energy of the electron of the multi-electron atom) and arrays 
values of the radial component of the wave function 
corresponding to this value. The criterion of success is the 

convergence of the vector  *

nl

* kK =  and the stabilization of 

the matrix of values of the wave functions  )(nl

* rRR = . 

Sredinger equation (3) can be rewriaten for each of the 
electron shells of a multielectron atom with the current number 



p, having a pair of quantum numbers p=(n,l) and the 
corresponding number of electrons ap: 
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Where Up(r) is the potential of the self-consistent field at 
the point (r) affecting the electron (the total potential without 
potential of the carrent electron). 

A difference method was used to integrate (6),. The 
integration region was split into N=200,000 intervals with a 
self-tuning integration step (the initial value dr=0.015 in the 
atomic units of the Hartree system). The iterative process 
folows the scheme: 
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where Rnl (i) is the value of the wave function at the current 
point; dRnl (i) and d2Rnl (i) are its first and second derivatives. 
The initial values were given in the form Rnl(0)=1, dRnl(0)=1, 
d2Rnl (0)=0. After several iterations the result of numerical 
integration begins to be cosistent with the wave function Rnl(j) 
regardless of the initial values. Backward iterative procedure 
ensured the coincidence with Rnl (i) of numerical values at the 
initial points i=0,1,2. 

Varying the binding energies of the electrons of the atom 
Wnl=-(1/2)/(n*)2 (or associated with the effective quantum 
number k*nl=1/n*) leads to changes in the form of 
corresponding one-electron wave functions, the number of 
zeros with (Or) axis and their positions. The target criterion for 
selecting Wnl is the condition of maximum distance from the 
origin (the nucleus) of the divergence point of the solution of 
(6) constructed for each of the electrons at the current iteration 
of the self-consistent solution construction. The set of such 
maxima is an approximation to the set of eigenvalues of the 
energy Wnl, and the wave functions calculated at these values 
with the help of the iteration procedure (7), to the 
eigenfunctions of the given system of equations. This process 
allows one to find wave functions both for atoms in the ground 
states, and for excited states and ions. Program testing 
demonstrated that a stable solution for atoms with 1<Z<10, is 
gained after 2-8 iterations, which corresponds to a counting 
time of 0.5-5 minutes on a personal computer. The increase of 
atomic number leads to a monotonous increase in the number 
of necessary iteration and computation time. The library of 
wave functions, is replenished automatically during the 
simulation of electronic states of atoms. 

D. Genetic Algorithms Approach for Determioning the 

Energy Eigenvalues 

Using genetical algorithm allows futher reducing 
computational time [25]. 

At the point of kp corresponding eigenenergy Wnl the 
function Rnl has a the most prolonged area with 

 2,1;)( rrrrRnl  obtained in the numerical integration 

(7).To identify the eigenvalues, we constructed a function 
r2(knl), such that for r <r2 the solution Rnl is limited, and for 
r>rmax it is unlimited and monotone increasing in absolute 
value. A typical graph of the dependence r2(k), where 

)(4.13/ эВWk =
 , is a set of relatively narrow maxima 

(Fig 1). 

 

Fig. 1. An example of the dependence r2 (knl) 

Thus, analising r2 we can detect eigenenergy. For this 
pupouse the aim function (representing second derivative 
aproximational formula) Ci 
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Where kj1 <ki2 <ki3. After identifying value of kp, the 
surrounding scanned area is excluded from further 
consideration. 

IV. CALCULATING RESULTS 

The testing of the described procedure was carried out 
during calculations of the energies of the ground and excited 
states of many-electron atoms. In all tests, good agreement was 
obtained between the results of the calculations with published 
measurement data or a more rigorous numerical model. 

The described algorithm was implemented in the Basic 6 
language. Test calculations were carried out on a computer 
with Intel (R) Core (TM) I5-2537M CPU 1.40GHz CPU, 4 GB 
memory. The calculation time was varied from a few seconds 
for H and He atoms, up to two hours for complex multi-
electron atoms such as uranium. The number of cycles of 
successive approximations, after which each of the wave 
functions changed by less than 0.001, also varied from two 
cycles for H to 50 for Cu. The practice of calculation showed 
that the obtained wave functions are independent of the initial 
values after normalizing. The shape of the wave function is 
completely determined by the shape of the potential U(r) and 



the values of n and l, which rearrange the initial wave function 
to the one that should correspond to the Schrodinger equation 
with the selected parameters U(r), n, l, W. 

There was performed a test calculation of the ionization 
energies of the ground states of many-electron atoms having 
groups of equivalent electrons. For the calculation, no a priori 
or experimental data on the electron shells of atoms were used. 
The results of calculations of the ionization energy of atoms 
from the ground states together with the corresponding 
experimental values are given in the table. 

TABLE I.  COMPARISON OF THE RESULTS OF CALCULATIONS OF THE 

IONIZATION ENERGY OF ATOMS 1-3 GROUPS WITH EXPERIMENTAL DATA 

Element  
E valus 

Eexp(eV)  Eculc (eV)  
(Eexp–Eculc)/ 

Eexp (%) 

H 13,6 13,54 0,44 

He 24,6 24,8 –0,81 

Li 5,4 4,77 11,67 

Be 9,3 7,81 16,02 

B 8,3 6,15 25,90 

C 11,3 8,2 27,43 

N 14,5 10,23 29,45 

O 13,6 12,32 9,41 

F 17,4 14,5 16,67 

Na 5,1 4,47 12,35 

To verify the accuracy of calculating the shape of the radial 
component of the wave function, the results for the hydrogen 
atom were compared with the results obtained from the well-
known recurrence relation (5). The modulus divergence was 
less than 0.001, which was considered a good approximation 
for this type of computation. 

The calculation of the non-normalized Born cross sections 
according to formulas (1) - (2), using the developed methods 
when compared with the experimental values, led to standard 
overestimations for this type of calculation, not exceeding 
20%. When switching to the use of semiempirical wave 
functions corresponding to the experimental values of the 
energies of an optical electron, the discrepancy of the results 
decreased by a factor of 1.5-2. 

The results of systematic calculations of the wave functions 
of light atoms in the ground and excited states demonstrate a 
qualitatively correct dynamics of the variation of the wave 
functions as the energy of the optical (excited) electron 
increases. As expected, the wave function of an optical electron 
approaches the Rydberg-like state as the state energy grows. 
Simultaneously with this process, the wave functions of the 
atomic residue gradually "cling" to the nucleus, which is due to 
a decrease in the effects of its screening by the electrons of the 
atomic residue. 

The algorithm presented allows calculating radial 
components of wave function almost for any electron state in 

any atom that is a useful educational tool for educational 
process as it is. On the basis of generated values there was a 
problem generator for student’s test works developed that can 
costruct a number of tests. 

V. EDUCATIONAL IMPLEMENTATION 

Reactions in plasma (and chemical reactions in genearl) are 
described by stoichiometric, equation of general form that 
allows generalized approach to be use when calculating and 
constricting these equations.  

There are test constructed for the general reaction shcems: 

• XXXX +→+  elastic collisions of two atoms 

• 
−− +→+ eXeX  elastic scattering of an electron 

by an atom 

• 
−+− +→+ eXeX 2  direct ionization of an atom 

from the ground state by electron impact 

• wallhXeX ++→+ −+    two-particle radiative 

recombination 

• 
−− →+ XeX  the formation of a negative ion by 

electron attachment 

• 
*XXXX +→+ −+

 ion-ion recombination 

• 
−− +→+ eXeX *

 excitation of an atom by 

electron impact 

• 
−+− +→+ eXeX 2*

 sealed ionization 

• 
−− +→+ eXeX *

 collision quenching 

• hXX +→+
 spontaneous emission 

•  hXhX 2+→++
 stimulated emission 

• 
*XhX →+   photoexcitation 

• eXhX +→+ +*
 photoionization 

• 
−+ ++→+ eXXXX ***

 Penning ionization 

• 
−+ +→+ eKXК  emission of electrons from the 

cathode during ion bombardment 

The given schemes of elementary processes in a low-
temperature plasma of a gas discharge is a model of real 
complex procesess. They are convenient for educating process 
because of its simplicity and presence of elementary processes 
necessary for the compilation of more real models of one-
component plasma. On the other hand, the simplest set of 
elementary processes presented can be used (and actually used) 
in simplified plasma calculations in those cases when the set of 
excited levels of an atom can be approximated by one effective 
excited level. 

Generally, for a selected pair of particles in the collisional 
process, there are several channels for the reaction. The main 



criteria for the elimination of the channel are the following: 1) 
energy considerations, 2) selection according to the conformity 
of the process to the requirements of conservation of the 
angular momentum, 3) a soft requirement for the consideration 
of collisional and radiative processes that do not co-develop the 
spin part of the wave function of atoms. The relative simplicity 
of using the method of constructing wave functions and 
calculating with their help the probabilistic characteristics of 
radiation processes and collisions between atom atoms and 
structureless particles opens up new opportunities for 
quantitative estimates of the probabilities of reactions 
proceeding through an unrestricted open channel. This 
significantly expands the set of training exercises in the field of 
plasma arc discharges and makes it expedient to create test 
tasks, which requires active use of computer accounts and/or 
numerical modeling. Additional chems for collisional 
transitions from the ground state of atoms: 
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 (9) 

radiative recombination process hXeX +→++ *
 

photodetachment eXhX +→+− *  ; 

eXhX +→+ +   

spontaneous de-excitation eXX +→ 2*1*
 

collisional detachment heXXX ++→+− 2  

These schemes allows constructing test problems ether on 
the electron energy, or on the radiation energy, or on reaction 
possibility.The general algorithm of a generator can be 
considered as an operator that takes text scheme and valid 
numerical values and constructs a text of the task. 

CONCLUSION 

On the basis of the developed algorithms, a working 
prototype of the program has been created, using otdinary 
computers for simulation, and able to perform systematic 
modeling of a large number of elementary processes that are 
taken into account in plasmachemical models. The use of 
genetic algorithms to optimize the solution in the case of 
calculations of atoms with a large number of electrons, 
accelerates the convergence of the iterative procedure. Test 
calculations performed to verify the created software module 
and its operation algorithms consisted in determining the 
energies of the ground states of many-electron atoms with 
groups of equivalent electrons on outer shells. The results 
obtained without using any additional empirical information on 

the energies of groups of cloud electrons agree with the 
experimental ones within the limits of accuracy acceptable for 
input data for numerical simulation of the kinetics of 
nonequilibrium plasmas. The wave functions constructed in 
this way are used as input data for the developed software 
modules for calculating cross sections and rate constants for 
elementary processes involving electrons and atoms within the 
framework of the "generalized Born method" [18]. The latter, 
along with the standard calculations of optically resolved 
collision transitions in the first order of perturbation theory, 
includes accounting for substantially more resource-intensive 
procedures: normalization of cross sections, allowance for 
exchange processes, and calculation of contributions from 
transitions through intermediate ("virtual") states, taken into 
account in the second and higher approximations. The accuracy 
calculations depends on the number of additional states, which 
requires solving a large number of problems in the construction 
of wave functions and makes a practically no-alternative idea 
of using simplified versions of their variants, walking. Finally, 
the developed semiempirical approach allows construction of 
wave functions of optical electrons of simple molecules, 
information on the rates of electronic excitation and ionization 
which is extremely necessary for modeling plasmas of gas 
discharges in air and other gas mixtures important for 
applications. 

Developed eductional tool that uses described above 
computational approach demonstrates is usefullness for the 
plasma chemistry lessons. 
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