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A surface wave, propagating from infinity along
a semi-infinite part, interacts with the impedance
boundary of a 2D polygonal domain and gives rise
to the reflected surface wave on this side and to the
transmitted surface wave outgoing to infinity along
the second semi-infinite side of the domain. The
circular outgoing wave also propagates at infinity.
It is shown that the classical solution of the prob-
lem is unique. By use of some known extension of
the Sommerfeld–Malyuzhinets technique the prob-
lem at hand is reduced to functional Malyuzhinets
equations and then to a system of integral equations
of the second kind with the integral operator de-
pending on a characteristic parameter. The integral
equations are carefully studied. From the Sommer-
feld integral representation of the solution the far
field asymptotics is developed.

1 Introduction

The surface wave U i is incident along l1 (Fig. 1)
from infinity then the scattered wave field consists
of the reflected surface wave propagating along l1

and that transmitted, outgoing to infinity along l4.
At the same time, the circular (or cylindrical in
3D) wave goes to infinity. The excitation coeffi-
cients of the surface waves as well as the diffraction
coefficient of the circular wave are the most impor-
tant characteristics of the wave scattering. Their
study is one of the main goals in this work. These
coefficients cannot be found from any local calcu-
lations, for instance, like in the case of calculation
of the reflection coefficients for a plane impedance
boundary,1 and require complete solution of the
scattering problem at hand. We solve the problem,
compute the far field asymptotics and give repre-
sentations for these characteristics of scattering in
terms of the solution of an integral equation. We
study Fredholm property, uniqueness and solvabil-
ity of the latter. We also aim at specifying the range
of applicability of the approach [1] considering the
problem of scattering of a surface wave in its rigor-
ous formulation. In particular, this requires a new
form of the radiation condition enabling possibil-

1In wave physics the boundary, on which the Robin con-
dition is postulated, is also called impedance boundary.

ity to extract the outgoing surface waves. On the
other hand, we expect to find some limitations on
the geometry of the polygonal domain and on the
surface impedances.
We formulate the problem, postulating appropri-

ate radiation and Meixner’s conditions, and study
uniqueness of the classical solution. From the phys-
ical point of view the uniqueness is based on the
assumption that one of the finite segments of the
boundary absorbs energy. The latter circumstance
requires positiveness of the real part of the surface
impedance on this segment, see Sect. 2.5 in [2]. The
other segments of the boundary are reactive (nei-
ther active nor absorbing), i.e. the real parts of their
impedances are zero. Note that the impedances are
independent of the wave number. In the third sec-
tion we derive the problem for the functional (Ma-
lyuzhinets) equations in terms of the Sommerfeld
transformants (i.e. the functions transformed by the
Sommerfeld integral) in the framework of the men-
tioned extension of the Sommerfeld–Malyuzhinets
(SM) technique. We reduce the problem for the
functional equations on the complex plane to a ma-
trix integral equation of the second kind and give
integral representations of the meromorphic trans-
formants in terms of solution of the integral equa-
tion. Then we study Fredholm property of the in-
tegral equation at hand making use of the so called
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Incident wave

Figure 1: Diffraction of a surface wave by a
polygon. The incident surface wave propa-
gates along a semi-infinite side l1.
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analytic Fredholm alternative. Finally, appropriate
singularities of the Sommerfeld transformant are
found and the far field asymptotics is developed.
The expressions for the excitation or diffraction co-
efficients are obtained.

1.1 Formulation

In the domain Ω the total wave field

u = U i + usc

is the sum of the incident surface wave U i propa-
gating along l1 and the unknown scattered usc(r, φ)
waves written in the polar coordinates (r, φ) at-
tributed to the vertex A1 of the boundary.

The total field satisfies the Helmholtz equation
in Ω

(△+ k2)u = 0

and the impedance boundary conditions on the seg-
ments of the boundary(

∂

∂n
− ikηj

)
u

∣∣∣∣
lj
= 0, j = 1, 2, 3, 4,

where n is the external to Ω normal on the
boundary ∂Ω, ηj , j = 1, 2, 3, 4, are the surface
impedances. The finite segment l2 has the ends A1,
A2 and the length d1, the length of the segment l3

with the end-points A2, A3 is d2. The semi-infinite
side l4 of the polygon with the end-point A3 sup-
ports the transmitted surface wave.

It is convenient to introduce the parameters ϑ+,
ϑ−, ϑ1, and ϑ2 as follows:

η1 = sinϑ+, η4 = sinϑ−, η2 = sinϑ1, η3 = sinϑ2,

which are independent of the wave number k. The
following limitations for the impedances are as-
sumed

π/2 ≥ Re(ϑ1) > 0, Re(ϑ±) = 0, Im(ϑ±) < 0.

For some technical reason we shall additionally as-
sume that Re(ϑ2) > 0, although this assumption
is not necessary for uniqueness. The restriction for
the real part of ϑ1 means absorption of the wave
field energy on the segment l2 of the boundary.

It is also implied that in Fig. 1

Φ > π/2, Φ−
2 > Φ, Φ−

e > Φ−
2 . (1)

These angles and d1, d2 completely define the poly-
gonal boundary. Note that the coordinate axes at-
tributed to A1, A2, A3 are assumed to be parallel.

Such a choice of the coordinate systems is moti-
vated by the exploited technique (see also [1]). The
limitations on the geometry of the polygonal do-
main Ω in (1) are of the technical nature. They
actually mean that the polygonal scatterer R2 \ Ω
is convex.
The Meixner’s conditions at the angular points

are satisfied

Im

(∫
Sj
ϵ

∂u

∂n
u ds

)
→ 0, j = 1, 2, 3,

as ϵ → 0, where Sj
ϵ is a part of a circumference in

Ω centered at j-th vertex, the energy flux through
Sj
ϵ vanishes in the limit. Another equivalent form

of the Meixner’s conditions (see discussion in [2],
ch. 1) is also of usage herein:

u = Cj +O
(
ρ
δj
j

)
, as ρj → 0,

where δj > 0, j = 1, 2, 3, depend on the openings
of the angles with the vertices Aj correspondingly,
ρj is the distance from Aj in Ω.
Finally, the radiation condition at infinity reads∫

Si
R

∣∣∣∣∂usc∂ρ
− ikusc

∣∣∣∣2 ds
+
∑
±

∫
S±
R,b

∣∣∣∣∂usc∂ρ
− ik cosϑ±u

sc

∣∣∣∣2 ds→ 0, (2)

as R → ∞ and Si
R = SR \ (S+

R,b ∪ S−
R,b), where

SR is the part of the circumference in Ω having the
radius ρ = R and centered at the origin O,

S±
R,b =

{
(ρ, ψ) : ρ = R, 0 < Ψ∓ ψ < R−1+κ},

κ > 0 is small. In the definition of the arcs S±
R,b we

make use of the polar coordinates (ρ, ψ) in the an-
gle contained in Ω with the sides ψ = ±Ψ and with
the vertex O at the point of intersection of the con-
tinuations of l1 (ψ = Ψ) and l4 (ψ = −Ψ). These
arcs correspond to some small angular vicinities of
the semi-infinite segments l1 and l4 as R→ ∞.
The radiation condition in the integral form (2)

is a generalization of the standard Sommerfeld ra-
diation condition taking into account the outgoing
surface wave propagation at infinity along l1 and
l4. It implies that for Si

R, i.e outside close vicini-
ties of l1 and l4, in the leading approximation the
scattered field has the following far field asymptotic
behaviour

usc ∼ eikρ+iπ/4

√
2πkρ

Ds(ψ)

(
1 +O

(
1

kρ

))
,
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Ds(·) is the unknown diffraction coefficient of the
circular (cylindrical in 3D) wave, kρ = kR → ∞,
whereas the reflected u+s and transmitted u−s sur-
face waves are exponentially small for these direc-
tions corresponding to Si

R. On the other hand, for
the directions corresponding to S±

R,b, i.e. in close

vicinities of l1 and l4, one has

usc ∼ u±s (ρ, ψ) +
eikρ+iπ/4

√
2πkρ

Ds(ψ)

(
1 +O

(
1

kρ

))
(3)

with “+” for l1 and “−” for l4 in the right-hand
side of (3), where

u±s (ρ, ψ) = c±s exp
{
ikρ cos

[
ψ ∓ ψ±

s

]}
are the outgoing surface waves propagating along l1

and l4 correspondingly with yet unknown excitation
coefficients c±s , ψ

±
s = Ψ+ ϑ±.

2 An extension of the Sommerfeld–
Malyuzhinets technique and functional
equations

We make use of the known extension of the SM
technique [1] and apply it in order to get Sommer-
feld integral representations of the wave field in Ω
and formulate a problem for the corresponding sys-
tem of Malyuzhinets functional equations.

We introduce the polar axis at A1 as shown in
Fig. 1 and polar coordinates (r, φ), and assume that
the polygonal boundary is outside the angle r > 0,
|φ| < Φ. The other two auxiliary polar coordinate
systems (ρ2, φ2) and (ρe, φe) are attributed to A2

and A3 correspondingly. In the coordinates (r, φ)
the wave field is represented by the Sommerfeld in-
tegral

u(r, φ) =
1

2πi

∫
γ

dα e−ikr cosαf(α+ φ), (4)

where γ is the known Sommerfeld double-loop con-
tour [2], f(·) is the so called Sommerfeld transfor-
mant which is a meromorphic function depending
on the wave number k. The representation (4) is
definitely valid as |φ| ≤ Φ and also satisfies the
Helmholtz equation in the whole exterior Ω of the
polygon. In the same manner we introduce the rep-
resentation of the solution in the polar coordinates
attributed to A3

u(ρe, φe) =
1

2πi

∫
γ

dα e−ikρe cosαh(α+ φe), (5)

where h(·) is the meromorphic Sommerfeld trans-
formant corresponding to the solution of the
Helmholtz equation in these coordinates, −Φ−

e <
φe < π−Φ−

2 . The representations (4) and (5) spec-
ify the same wave field in the overlapping domain
of the angles |φ| ≤ Φ and −Φ−

e ≤ φe ≤ π − Φ−
2 .

For −Φ−
2 ≤ φe ≤ π − Φ we could also intro-

duce the Sommerfeld integral representation of the
wave field in the attributed to A2 polar coordinates
(ρ2, φ2) with the meromorphic Sommerfeld trans-
formant g(·).
Following the known procedure (see [1]), from the

boundary conditions we arrive at the system of Ma-
lyuzhinets functional equations for the Sommerfeld
transformants

(sinα+ sinϑ+)f(α+Φ)

+ (sinα− sinϑ+)f(−α+Φ) = 0,

(sinα− sinϑ1)f(α− Φ)

+ (sinα+ sinϑ1)f(−α− Φ)

= eikd1 cosα [(sinα− sinϑ1)g(α− Φ)

+(sinα+ sinϑ1)g(−α− Φ)] ,

(6)

(sinα+ sinϑ1)g(α− [Φ− π])

+ (sinα− sinϑ1)g(−α− [Φ− π])

= eikd1 cosα [(sinα+ sinϑ1)f(α− [Φ− π])

+ (sinα− sinϑ1)f(−α− [Φ− π])],

(sinα− sinϑ2)g(α− Φ−
2 )

+ (sinα+ sinϑ2)g(−α− Φ−
2 )

= eikd2 cosα
[
(sinα− sinϑ2)h(α− Φ−

2 )

+(sinα+ sinϑ2)h(−α− Φ−
2 )

]
,

(7)

(sinα+ sinϑ2)h(α− [Φ−
2 − π])

+ (sinα− sinϑ2)h(−α− [Φ−
2 − π])

= eikd2 cosα [(sinα+ sinϑ2)g(α− [Φ−
2 − π])

+ (sinα− sinϑ2)g(−α− [Φ−
2 − π])],

(sinα− sinϑ−)h(α− Φ−
e )

+ (sinα+ sinϑ−)h(−α− Φ−
e ) = 0.

(8)

Three connected pairs of the functional equations
(6), (7), (8) should be supplemented by additional
conditions specifying a class of meromorphic func-
tions which also ensure the Meixner’s and radiation
condition for the total field represented by the Som-
merfeld integrals.
We assume that f(·) is regular in the strip

Π(−Φ,Φ) = {α ∈ C : −Φ < α < Φ}, i.e. it is
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holomorphic in this strip, having a simple pole at
α = φs, (φs := Φ− ϑ+) on its boundary so that

f(α)− 1

α− φs

is holomorphic in the strip Π(−Φ− ϵ,Φ+ ϵ) for any
small ϵ > 0. Recall that such a condition is nec-
essary in the framework of the Malyuzhinets tech-
nique and enables one to reproduce the incident
wave in the far field asymptotics when applying the
steepest descent method to the Sommerfeld integral
and crossing the pole in the process of deformation
of the contour γ into the steepest descent paths. In
order to ensure the Meixner’s condition at A1 it is
also assumed that f(i∞) = −f(−i∞) is finite and
f(α) − f(±i∞) is of order O(exp(±iαδ1)), i.e. ex-
ponentially vanish as α→ ±i∞ and α ∈ Π(−Φ,Φ).

Similar conditions are formulated for g and h.

3 Reduction to integral equation and its
Fredholm property

Instead of the three unknown Sommerfeld trans-
formants f , g, h we introduce the new unknown
functions Vf , V

±
g , Vh. The Sommerfeld transfor-

mants f, g, h are expressed by means of Vf , V
±
g , Vh

in terms of the so called S-integrals, not written
in this paper but discussed in [2]. It is possible to
determine these new unknowns from the integral
equations

Vf (α) = V i
f (α) +

∫ i∞

−i∞
dτ

(
K1,2(α, τ ; k)V

+
g (τ)

+K1,3(α, τ ; k)V
−
g (τ)

)
,

V +
g (α) = V +,i

g (α)+

∫ i∞

−i∞
dτ K2,1(α, τ ; k)Vf (τ),

V −
g (α) = V −,i

g (α)+

∫ i∞

−i∞
dτ K3,4(α, τ ; k)Vh(τ),

Vh(α) = V i
h(α) +

∫ i∞

−i∞
dτ

(
K4,2(α, τ ; k)V

+
g (τ)

+K4,3(α, τ ; k)V
−
g (τ)

)
,

where the expressions of the kernel entries
Kij(α, τ ; k) are some known meromorphic functions
of α and τ and V i

f , V
±,i
g , V i

h are specified by the
incident wave,

V = K V + Vi, (9)

where K = {Kij}4i,j=1 is the matrix integral oper-
ator with the entries Kij(α, τ ; k) of the kernel,

V = (Vf (α), V
+
g (α), V −

g (α), Vh(α))
t,

Vi = (V i
f (α), V

+,i
g (α), V −,i

g (α), V i
h(α))

t.

The equation (9) is studied in

L2(iR) := L2(iR)⊕ L2(iR)⊕ L2(iR)⊕ L2(iR).

The integral operator

K : L2(iR) → L2(iR),

holomorphically depends on the wave number k in
some domain of the characteristic parameter k. It
can be shown that analytic Fredholm alternative
can be applied to (9). Thus we have

Theorem. Let k take a non-characteristic value
and Im(k) ≥ 0, Re(k) > 0, then (I − K)−1 is
bounded and the equation (9) is uniquely solvable
in L2(iR).

4 The excitation and diffraction coeffi-
cients

Consider the Sommerfeld representation (4) of the
total field implying that the Sommerfeld transfor-
mant f has been determined via the procedure de-
scribed above. Herein we are interested in the ex-
pressions for the excitation coefficients of the re-
flected and transmitted surface waves as well as in
the determination of the diffraction coefficient of
the circular wave in the far field asymptotics. To
this end, we consider deformation of the double-
loop Sommerfeld contour γ in (4) into the steepest
descent paths γ± shown in [2], p. 88. In the process
of such deformation the poles of the transformant
f can be captured. The pole at α = φs := Φ− ϑ+
with unit residue gives rise for the incident surface
wave U i, whereas the pole at α+

∗ = π + Φ + ϑ+
belongs to the strip Π(Φ, 3Φ). The latter is respon-
sible for the reflected surface wave. Thus we have
the asymptotics

u(r, φ) = U i(r, φ) + u+s (r, φ)

+
eikr+iπ/4

√
2πkr

Df (φ)

(
1 +O

(
1

kr

))
(10)

as 0 ≤ Φ−φ ≤ −gd(Im(ϑ+)) (gd is the Guderman-
nian function), otherwise, the first two summands
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in (10) are omitted. Note that the excitation coef-
ficient

C+
s = resz=α+

∗
f(z) = (−2) tanϑ+ f(Φ− π − ϑ+)

(11)
with Φ − π − ϑ+ ∈ Π(−Φ,Φ). The excitation
coefficient C+

s in (11) is specified by the value
f(Φ−π−ϑ+), i.e. it requires solution of the integral
equations in order to determine f . The reflected
surface wave propagating along l1 takes the form

u+s (r, φ) = C+
s eikr cos[φ−Φ−ϑ+]

as 0 ≤ Φ − φ ≤ −gd(Im(ϑ+)), otherwise, the pole
is not captured.

In the same manner, making use of the Sommer-
feld representation for u in (5) and the second equa-
tion in (6), written as

h(α) = −h(−2Φ−
e − α)

sin(α+Φ−
e ) + sinϑ−

sin(α+Φ−
e )− sinϑ−

,

we compute the pole α−
∗ = −(π + Φ−

e + ϑ−) and
the transmitted surface wave propagating along l4

u−s (ρe, φe) = C−
s eikρe cos[φe+Φ−

e +ϑ−]

as 0 ≤ Φ−
e +φs ≤ −gd(Im(ϑ−)), otherwise, u

−
s = 0,

with the excitation coefficient

C−
s = 2 tanϑ− h(π − Φ−

e + ϑ−) .

Provided that ϵ − Φ−
e ≥ φe ≥ −Φ−

e , ϵ > 0,
i.e. in some angular vicinity of l4, we obtain the

asymptotics

u(ρe, φe) = u−s (ρe, φe) +
eikρe+iπ/4

√
2πkρe

Dh(φe)

×
(
1 +O

(
1

kρe

))
(12)

with Dh(φe) = h(−π + φe)− h(π + φe).
In a domain, where both asymptotics (10), (12)

are valid, they give asymptotically equivalent re-
sults.
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