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ON INSTABILITY
OF THE ABSOLUTELY CONTINUOUS SPECTRUM

OF DISSIPATIVE SCHRÖDINGER OPERATORS
AND JACOBI MATRICES

R. ROMANOV

Abstract. The absence of the absolutely continuous spectrum is proved for dissipa-
tive Schrödinger operators and Jacobi matrices with slowly decaying imaginary part
of the potential.

§1. Introduction

This paper addresses the question of stability of the absolutely continuous spectrum
of one-dimensional Schrödinger operators under slowly decaying perturbations. In the
selfadjoint case the absolutely continuous spectrum coincides with the spectrum of the
unperturbed operator on the positive real axis (see [1]) if the potential is of class L2. In
particular, this result means that the absolutely continuous spectrum can be preserved
when conventional scattering theory is no longer applicable. Here the paper [2] should be
mentioned, where a scattering theory was constructed for potentials belonging to L2−ε,
ε > 0. Our aim is to show that the picture is very different for nonselfadjoint Schrödinger
operators. Namely, the following two theorems hold.1

Theorem 1. Let {qj} be a sequence of complex numbers with Im qj ≥ 0 and Im qj → 0,
and let l be the discrete Schrödinger operator in l2(N) determined by the matrix⎛⎜⎜⎜⎜⎜⎝

q1 1 0 · · ·

1 q2 1
. . .

0 1 q3
. . .

...
. . . . . . . . .

⎞⎟⎟⎟⎟⎟⎠ .

If the absolutely continuous subspace of l is nontrivial, then Im q ∈ l1.

Theorem 2. Let q be a locally bounded function on R+ with Im q ≥ 0 and Im q(x) → 0
as x → ∞. Assuming that Re q is bounded below and supn

∫ n+1

n
|Re q|2 dt is finite, define

l to be the Schrödinger operator in L2(R+) with the potential q, lu = −u′′ + qu, on the
domain fixed by a selfadjoint boundary condition at zero. If the absolutely continuous
subspace of l is nontrivial, then Im q ∈ L1.
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1See (2.1) for the definition of the absolutely continuous subspace for the class of operators under

consideration.
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The abstract local scattering theory for trace class perturbations of selfadjoint op-
erators, developed in [3, 4], shows that the absolutely continuous parts of arbitrary
operators L, L0 are quasisimilar and their spectra coincide if L0 is selfadjoint and L−L0

is of trace class. In the situation under consideration this implies that the absolutely
continuous spectrum of l coincides with that of the selfadjoint Schrödinger operator Re l
provided Im q ∈ L1 (Im q ∈ l1 in the discrete case). Thus, the theorems above say
that the existence of the absolutely continuous spectrum for Schrödinger operators in
the dissipative case is equivalent to having a nontrivial scattering theory. To the best
of the author’s knowledge, no nontrivial negative results on the absolutely continuous
spectrum of nonselfadjoint differential operators with nondiscrete spectrum have been
obtained previously.

Notice that we managed to avoid using explicitly the Szökefalvi-Nagy–Foiaş functional
model [5], which is the main tool in the study of the absolutely continuous subspace of
a dissipative operator [3, 6]. However, a model-oriented reader will easily recognize the
condition of isometricity a.e. on the real axis of the characteristic function of the operator
in question in the basic criterion (2.2).

The structure of the paper is as follows. In §2 we define the absolutely continuous
subspace of a dissipative operator and provide necessary abstract preliminaries. §3 is
devoted to the proof of Theorem 1, §4 to the proof of Theorem 2.

Notation.
C± = {z : ± Im z > 0}.
Hac(L) is the absolutely continuous subspace of an operator L. The notation Hac

without an argument is used when from the context it is clear which operator it refers
to.

S1 is the trace class.
T (x, k) is the transfer matrix for the differential equation −y′′ + py = ky on the

semiaxis x ≥ 0:

T (x, k)
(

y(0)
y′(0)

)
=

(
y(x)
y′(x)

)
for any solution y of the differential equation.

‖·‖X = ‖·‖L2(0,X).
σess(L) is the essential spectrum of the operator L. We write σess(L) ⊂ Ω if the

spectrum of L in the complement of the set Ω consists of at most countably many
eigenvalues of finite geometric multiplicity.

Unless otherwise specified, the abbreviation a.e. refers to the Lebesgue measure.

§2. Absolutely continuous subspace

Let H be a Hilbert space, and let L be a maximal dissipative operator in H of the form
L = A+ iV , where A = A∗ and V ≥ 0 is bounded. We shall assume that σess(L) ⊂ R. It
is also assumed throughout that the operator L is completely nonselfadjoint, that is, has
no reducing subspaces on which it induces a selfadjoint operator. We define the Hardy
classes of vector-valued functions H2

± to be the collections of functions f : C± → H
analytic in C±, respectively, and satisfying supε>0

∫
R
‖f(k ± iε)‖2 dk < ∞.

Definition. The absolutely continuous subspace Hac(L) of the operator L is defined as
follows [3, 7]:

(2.1) Hac(L) = clos

{
u ∈ H : 1) (L − z)−1u is analytic in C+,

2) V 1/2(L − z)−1u ∈ H2
+

}
.
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The absolutely continuous subspace is regular invariant [3]; that is, (L − z)−1Hac =
Hac for all z ∈ ρ(L). This implies that the restriction L|Hac with the domain D(L)∩Hac

is a closed operator in Hac.
Various motivations of this definition and its relationship with scattering theory are

discussed in [3, 4, 7, 6, 8]. Here we only mention the following “weak” characterization
of the subspace Hac(L) (it will not be used in the paper).

Theorem (see [10]).

Hac(L) = clos

{
u ∈ H : 1) (L − z)−1u is analytic in C+,

2) 〈(L − z)−1u, v〉|C± ∈ H2
± for all v ∈ H

}
.

This theorem shows, in particular, that (2.1) can be regarded as a generalization of
the definition of the absolutely continuous subspace in the selfadjoint theory.

The triviality of the subspace Hac in the examples considered in this paper will be
established on the basis of the following criterion, which is implicit in [8].

Proposition 2.1. Hac(L) = {0} if and only if for a.e. k ∈ R we have (z = k + iε)

(2.2) D(z) ≡
√

ε(L∗ − z)−1
√

V
s−→ 0

as ε ↓ 0.

Notice that it suffices to verify strong convergence on a dense set, because the function
D(z) is bounded in C+, ‖D(z)‖ ≤ 1/2 (see a calculation in [8] or the proof of Lemma 2.3
below, where a similar calculation is carried out). To make the exposition self-contained,
here we give an elementary proof of the “if” part (the “only if” part is not needed in
this paper). In the argument we shall use the following inequality from [3]:

(2.3) ε

∫
R

‖(L∗ − k − iε)−1v‖2 dk ≤ π‖v‖2,

which is valid for any maximal dissipative operator L and all v ∈ H and ε > 0. This
inequality is an easy consequence of the existence of a selfadjoint dilation [5] of the
maximal dissipative operator −L∗; see [3] for the details.

Proof. Given a u ∈ H, we define u±(z), z ∈ C±, to be the restrictions of the function√
V (L − z)−1u to C±, respectively. By a fundamental property of dissipative operators,

u− ∈ H2
− for all u ∈ H [3, Theorem 1]. Suppose (2.2) is fulfilled and u+ ∈ H2

+ for a
certain u ∈ H. We shall show that u = 0. Define u±(k) ∈ L2(R, H) to be the boundary
values of the functions u± on the real axis. The required assertion will be established if
we show that u+ = u− in L2(R, H). For all z = k + iε, ε > 0, and e ∈ H we have

|〈u+(z) − u−(z), e〉| = 2ε|〈
√

V (L − z)−1(L − z)−1u, e〉| = 2
√

ε|〈(L − z)−1u, D(z)e〉|.

Then, for any compact interval ∆ ⊂ R we can write∫
∆

|〈u+(k + iε) − u−(k − iε), e〉| dk

≤ 2
(∫

∆

‖D(k + iε)e‖2 dk

)1/2 (
ε

∫
∆

‖(L − k − iε)−1u‖2dk

)1/2

.

(2.4)

The first factor on the right vanishes as ε → 0 by assumption and the Lebesgue theorem.
We show that the second factor is bounded in ε. An application of the resolvent identity
gives √

ε‖(L − z)−1u‖ ≤
√

ε‖(L∗ − z)−1u‖ + ‖D(z)‖ · ‖
√

V (L − z)−1u‖.
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Integrating and taking the inequality (2.3) into account, we find

ε

∫
R

‖(L − k − iε)−1u‖2 dk ≤ 2π‖u‖2 +
∫

R

‖
√

V (L − k − iε)−1u‖2 dk,

which is bounded by the assumption about u. We see that the left-hand side of (2.4)
converges to 0, which implies that 〈u+(k) − u−(k), e〉 = 0 a.e. on ∆. Since ∆ and e are
arbitrary, we conclude that u+ = u−. �

As has already been mentioned, in the case of a trace class perturbation V a local scat-
tering theory exists for the pair (L, A) [3, 4], which implies preservation of the absolutely
continuous spectrum as an easy consequence.

Theorem 2.2. If V ∈ S1, then σ(L|Hac) = σac(A), where the absolutely continuous
spectrum of the selfadjoint operator A is defined in the standard way.

Since this assertion was not formulated in [3, 4] explicitly, here we give a sketch of its
proof.

Proof. By the results in [3, 6], the nuclearity of V implies that any Borel subset ω ⊂ R

gives rise to a unique maximal invariant subspace Hω of the operator L|Hac such that
σ(L|Hω

) ⊂ ω. This subspace is trivial if |ω| = 0, coincides with Hac for ω = R, and has
the property that if ω =

⋃
n ωn, then σ(L|Hω

) =
⋃

n σ(L|Hωn
). In the course of the proof

of Theorem 5 in [3] it was shown that there exists a scalar contractive analytic function
m in the upper half-plane such that for any c > 0 the bounded local wave operators
Wω

±(A, L) : Hω → H for the set ω = {k ∈ R : |m(k)| ≥ c} exist and are complete in
the sense that Ran Wω

±(A, L) = PωH. Here Pω is the spectral projection of the a.c.
part of A corresponding to the set ω. This means that L|Hω

and Aω = A|Ran Pω
are

similar, and thus σ(L|Hω
) = σac(Aω). Now, considering the exhausting sequence {ωn}

of the sets defined as above with c = 1/n and taking into account the fact that the set
{k : m(k) = 0} has Lebesgue measure zero, from the additivity property we conclude
that σ(L|Hac) = σac(A). �

Notice that the statement of the theorem remains true if the weaker condition
(L − z)−1 − (A − z)−1 ∈ S1 is satisfied. The set σ(L|Hac) is referred to as the abso-
lutely continuous spectrum of the operator L.

In general, the question as to whether the condition L1 − L2 ∈ S1 for a pair of
dissipative operators L1, L2 implies σ(L1|Hac(L1)) = σ(L2|Hac(L2)) appears to be open if
Im L1,2 are not in S1 separately. We shall need a result of this type in a special situation.
The original work of this paper starts here.

Lemma 2.3. Let L and L̃ be dissipative operators such that L̃ − L = iΓ with a Γ ∈ S1.
Assume that Γ ≥ 0 and there exists a bounded operator T ≥ 0 such that Γ = Ṽ T ,
Ṽ = Im L̃. If Hac(L̃) = {0}, then Hac(L) = {0}.

Proof. Let Hac(L̃) = {0}. Applying the criterion of Proposition 2.1 to L̃ and taking the
assumed factorization of Γ into account, we see that

√
ε(L̃∗ − z)−1

√
Γ s−→ 0

for a.e. k ∈ R. We show that
√

ε(L∗ − z)−1
√

Γ s−→ 0 for a.e. k. We have
√

ε(L∗ − z)−1
√

Γ · G(z) =
√

ε(L̃∗ − z)−1
√

Γ,

where
G(z) = I + i

√
Γ(L̃∗ − z)−1

√
Γ.
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Let V = Im L. Then the following calculation shows that G(z) is a contractive function
in C+:

I − G∗(z)G(z) = I − (I − i
√

Γ(L̃ − z)−1
√

Γ)(I + i
√

Γ(L̃∗ − z)−1
√

Γ)

= i
√

Γ(L̃ − z)−1((L̃∗ − z) − (L̃ − z) + iΓ)(L̃∗ − z)−1
√

Γ

=
√

Γ(L̃ − z)−1(2ε + 2V + Γ)(L̃∗ − z)−1
√

Γ ≥ 0.

(2.5)

Since Γ is of trace class, we have
√

Γ(L̃∗ − z)−1
√

Γ ∈ S1. Thus, G(z) is a contractive
analytic operator-valued function in C+ such that I−G(z) ∈ S1. Moreover, the operator
G(z) is boundedly invertible for Im z sufficiently large, because G(z) → I in the operator
norm as Im z → +∞ by the reason that L̃ has a bounded imaginary part. Hence, by the
Szökefalvi-Nagy theorem [5], the function G(z) admits a scalar multiple; that is, there
exists a scalar contractive analytic function g �≡ 0 such that G(z)Ω(z) = g(z) · I for
some bounded analytic function Ω. By the Fatou theorem [5], it follows that the strong
boundary values G−1(k) = s-limε↓0 G−1(k + iε) of the function G−1 exist for a.e. k ∈ R.
We infer that √

ε(L∗ − z)−1
√

Γ =
√

ε(L̃∗ − z)−1
√

Γ · G−1(z) s−→
ε↓0

0

for a.e. k ∈ R. Now we can verify condition (2.2) for the operator L. We have

(2.6)
√

ε(L∗ − z)−1
√

V =
√

ε(L̃∗ − z)−1
√

V − i
√

ε(L∗ − z)−1
√

Γ · Q(z),

where Q(z) =
√

Γ(L̃∗−z)−1
√

V is a bounded analytic function in C+. The latter follows
from a calculation similar to (2.5), which shows that I − G(z)G∗(z) equals the right-
hand side of (2.5) with (L̃ − z)−1 and (L̃∗ − z)−1 swapped, and therefore Q(z)Q∗(z) ≤
I. The first term on the right in (2.6) converges strongly to zero by assumption, and
an application of the Fatou theorem to the function Q(z) shows that the second term
converges strongly to zero as well. �

In the next section we establish the triviality of the absolutely continuous subspace for
an operator L by verifying condition (2.2) for an operator L̃ satisfying the assumptions
of Lemma 2.3. As the proof of the lemma shows, the final result does not depend then
on the “only if” part of Proposition 2.1.

§3. Discrete Schrödinger operator

Let {qn} be an arbitrary sequence of complex numbers such that 0 ≤ Im qn ≤ C,
C < ∞. Define Θ(z) and Φ(z), z ∈ C, to be the solutions of the difference equation

(3.1) un+1 + un−1 + qnun = zun

for n > 1 with the initial conditions Θ1 = 0, Θ2 = −1, Φ1 = 1, Φ2 = z − q1.
The discrete Schrödinger operator l acts in the Hilbert space H = l2(N) and has the

form

l = S + S∗ + Q,

(Su)n = un+1, (Qu)n = qnun.

This formula defines l on the domain of the multiplication operator Q; l is a maximal
dissipative operator, and it is easily seen to be completely nonselfadjoint if Im q �≡ 0. For
z ∈ C−, let u(z) = (l − z)−1δ1, where H � δ1 = (1, 0, . . . ); then u(z) is an l2-solution of
(3.1) for n > 1. The function u satisfies

u(z) = −Θ(z) + m(z)Φ(z),
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where m(z) def= 〈(l − z)−1δ1, δ1〉. Obviously, −m(z) is a Nevanlinna function in C−
(Im m(z) ≤ 0), and therefore the finite boundary values m(k) = limε↓0 m(k − iε) exist
for almost all k ∈ R. At such k’s, the solution u(k), uj(k) = limε↓0 uj(k − iε), of (3.1)
with z = k is well defined.

Lemma 3.1. If a finite boundary value m(k) exists, then the sum
∑

j Im qj |uj(k)|2 is
finite, and

(3.2) lim sup
ε↓0

(ε‖u(k − iε)‖2) ≤ − Im m(k).

Proof. Both assertions result immediately from the identity (z = k − iε, ε > 0)
∞∑

j=1

Im qj |uj(z)|2 + ε

∞∑
j=1

|uj(z)|2 = − Im m(z),

because each term on the left-hand side is nonnegative. To verify this identity, we notice
that the left-hand side equals

Im〈(l − z)u(z), u(z)〉 = Im〈δ1, u(z)〉 = Im m(z) = − Im m(z). �

The following lemma provides a convenient condition sufficient for the triviality of
the subspace Hac(l) and stated in terms of solutions of the equation (3.1) for real values
of the spectral parameter. For a function ψ analytic in C−, we introduce the notation
ψ̃(z) = ψ(z). Let αj =

√
Im qj , α = diag{αj}, and let D(z), z = k + iε, be the operator

defined in (2.2) with L = l.

Lemma 3.2. Let k ∈ R be such that m(k) exists finitely. If {αjΦj(k)} /∈ l2, then
D(k + iε) s−−→

ε↓0
0.

Proof. We shall check the required strong convergence on a certain dense set of compactly
supported vectors. Let us consider the action of the resolvent of l∗ on such vectors. A
straightforward calculation shows that for any compactly supported f (z = k+ iε, ε > 0)
we have

[(l∗ − z)−1f ]j = Φ̃j(z)
∞∑

n=j

ũn(z)fn + ũj(z)
j−1∑
n=1

Φ̃n(z)fn.

The first term on the right vanishes for the j’s to the right of the support of f . If k is
such that m(k) exists finitely, then ũn(z) converges as ε → 0 for each n, and both terms
on the right-hand side are bounded as ε → 0 uniformly in j ≤ N for any fixed N . Thus,
we see that

(3.3)

(l∗ − z)−1f = cε[f ]ũ(z) + r(ε),

cε[f ] =
∞∑

n=1

Φ̃n(k + iε)fn

for any k satisfying the assumption of the lemma, where r(ε) vanishes to the right of
the support of f and is bounded uniformly and, moreover, in the l2-norm, as ε →
0. Substituting (3.3) in the definition of D(z) and taking into account the fact that
ε1/2‖ũ(z)‖ is bounded as ε → 0 by (3.2), we find that

‖D(z)v‖ ≤ C|cε[αv]| + o(1), ε → 0,

for any compactly supported v. Observe now that the linear set

D =
{
v ∈ l2(N) : v is compactly supported and

∑
j

vjαjΦ̃j(k) = 0
}
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is dense in l2 if {αjΦj(k)} /∈ l2. Hence, it suffices to check that D(k+ iε)v → 0 for v ∈ D.
Indeed, cε[αv] →

∑
n αnΦ̃n(k)vn = 0 as ε → 0 for v ∈ D, and the required limit relation

follows. �

Theorem 3.3. Let {qj} be a sequence of complex numbers such that 0 ≤ Im qn ≤ C,
C < ∞, and σess(l) ⊂ R. If Im q /∈ l1, then Hac = {0}.

Proof. By the preceding lemma and Proposition 2.1, it suffices to show that if Im q /∈ l1,
then

∑
j Im qj |Φj(k)|2 = ∞ for a.e. k ∈ R. For k such that m(k) exists finitely, consider

the Wronskian of the solutions Φ and u,

(3.4) 1 = W [Φ(k), u(k)] ≡ Φj−1(k)uj(k) − Φj(k)uj−1(k), j > 1.

Multiplying this identity by αjαj−1 and summing over j, we obtain
n∑

αjαj−1 ≤
n∑

αj−1|Φj−1(k)| · αj |uj(k)| +
n∑

αj |Φj(k)| · αj−1|uj−1(k)|

≤ 2
( n∑

Im qj |Φj(k)|2
)1/2( n∑

Im qj |uj(k)|2
)1/2

.

By Lemma 3.1, the last factor on the right is bounded in n. We see that if
∑

j αjαj−1 =
∞, then

∑
j Im qj |Φj(k)|2 = ∞ for a.e. k ∈ R, and the theorem is proved in this case.

The general case reduces to that considered above, because if Im q /∈ l1, then there
exists a nonnegative d ∈ l1 such that q̃ = q + id satisfies

∑
j α̃jα̃j−1 = ∞ with α̃j =

(Im q̃j)1/2. Indeed, by the uniform boundedness principle, the assumption that α /∈ l2

implies that there exists ρ ∈ l2 such that
∑

j ρjαj = ∞, and, obviously, this ρ can
be chosen to be nonnegative. Now we can set dj = ρ2

j−1, for α̃j α̃j−1 ≥ ρj−1αj−1.
Application of Lemma 2.3 completes the proof. �

Since σess(l) ⊂ R as Im qn → 0, this theorem contains Theorem 1 from the Introduc-
tion. Furthermore, in the case where Im q ∈ l1 the trace class scattering theory implies
σ(l|Hac) = σac(Re l), and we see that the theorem gives a complete description of the
absolutely continuous spectrum of a dissipative discrete Schrödinger operator.

The above proof extends straightforwardly to Jacobi matrices with selfadjoint off-
diagonal part. Namely, given a bounded sequence {ρn} of positive numbers, we introduce
the Jacobi matrix J by

J = ΛS + S∗Λ + Q,

where
(Λu)n = ρnun.

Then J is a maximal dissipative operator of the class under consideration.

Theorem 3.4. Let {qj} be a sequence of complex numbers such that 0 ≤ Im qn ≤ C,
C < ∞, and σess(J) ⊂ R. If Im q /∈ l1, then Hac(J) = {0}.

Indeed, assuming without loss of generality that ρ1 = 1, we can define the solutions Θ
and Φ of the equation ρn+1un+1 +ρnun−1 + qnun = zun with the same initial conditions
as in the case of ρ ≡ 1, and put u(z) = (J − z)−1δ1. The proof then proceeds verbatim
as in the case of ρ ≡ 1 until (3.4), where we shall have

Wj [Φ, u] ≡ Φj−1(k)uj(k) − Φj(k)uj−1(k) = ρ−1
j−1

instead. Obviously, the left-hand side is bounded away from zero, since the ρj are
bounded, and the rest of the proof coincides with that of Theorem 3.3.
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§4. Continuous case

1. Preliminaries and the beginning of the proof of the main result. Let q be
a locally bounded function on R+ satisfying Im q(x) ≥ 0 a.e., and let h be an arbitrary
real number. We shall assume throughout that Im q ∈ L∞(R+) and that Re q is bounded
below. Define Θ(x, z) and Φ(x, z) to be the solutions to

(4.1) −u′′ + qu = zu, z ∈ C,

with the Cauchy data Φ(0, z) = Θ′(0, z) = 0, Φ′(0, z) = Θ(0, z) = 1. It is standard that
the solutions Θ and Φ are continuous in z uniformly in x ∈ I for any compact interval I.

The Schrödinger operator l, ly = −y′′+qy, is defined in the Hilbert space H = L2(R+)
on the domain of its real part, the Schrödinger operator with the potential Re q, fixed
by the selfadjoint boundary condition y′(0) = hy(0). Under the assumptions imposed, l
is a completely nonselfadjoint maximal dissipative operator, provided that Im q �≡ 0 [8].

The following lemma is a continuous analog of Lemma 3.1.

Lemma 4.1. For any z ∈ C+ there exists exactly one linearly independent L2-solution
u(x, z) of (4.1), which can be chosen in the form

(4.2) u(x, z) = Θ(x, z) + m(z)Φ(x, z),

where m is an analytic function in C+. For almost all k ∈ R the function m has finite
boundary values, m(k) = limε↓0 m(k + iε), and the solution u(x, k) = limε↓0 u(x, k + iε)
satisfies

(4.3)
∫

Im q(x)|u(x, k)|2 dx < ∞.

Moreover, for any ε > 0 we have

(4.4) Im m(z) =
∫ ∞

0

(Im q(t) + ε)|u(t, z)|2 dt, z = k + iε.

In particular,

(4.5) lim sup
ε↓0

(ε‖u(·, k + iε)‖2) ≤ Im m(k)

whenever m(k) exists.

Proof. As is well known (see, e.g., [13]), the assumption that Re q is bounded below
implies that the differential expression corresponding to the potential Re q is in the
limit-point case at infinity; that is, the minimal operator l̃ = Re l|C∞

0
has deficiency

indices (1, 1). It follows that the operator l0 = l̃ + i Im q satisfies dim ker(l∗0 − z) = 1 for
Im z sufficiently large, and therefore for all z ∈ C+, because C− ⊂ ρ̂(l0). Thus, (4.1) has
exactly one linearly independent L2-solution for all z ∈ C+.

Assume now that the solution is representable as in (4.2).2 Since Re q is bounded
below, the identity

(4.6) 0 =
∫ x

0

(−u′′ +(q− z)u)u dt = −u′(x)u(x)+m(z)+
∫ x

0

(q− z)|u|2 dt+
∫ x

0

|u′|2 dt

shows that the function |u′u| has a limit, finite or infinite, as x → +∞. Taking the real
part, we find

1
2

d

dx
|u(x)|2 = const +

∫ x

0

Re(q − z)|u|2 dt +
∫ x

0

|u′|2 dt,

2Once the uniqueness of an L2-solution is established, the representation (4.2) and identity (4.4) are
results of the nesting circles analysis of equation (4.1) carried out in [11]. For completeness, here we
provide a simple derivation of these facts, except for the analyticity of m.
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which implies that u′ ∈ L2 (otherwise |u(x)| → ∞ as x → +∞). This shows that
u′(x)u(x) → 0 as x → +∞. Taking the imaginary part of (4.6) and passing to the limit
as x → +∞, we obtain (4.4). This shows that m(z) is a Nevanlinna function in C+

(Im m(z) ≥ 0) and therefore has finite boundary values for a.e. k on the real axis, and
for any such k the integral

∫ x Im q(t)|u(t, k)|2 dt is bounded in x (by Imm(k)). It follows
that the integral in (4.3) is finite.

To establish the representation (4.2), it suffices to observe that Φ(x, z) cannot be an
L2-solution for z ∈ C+, for otherwise a calculation similar to the above would lead to the
formula

∫ ∞
0

(Im q + ε)|Φ|2 dt = 0 implying that Φ ≡ 0. The analyticity of the function m
was established in [11]. �

We shall often suppress the argument x in the notation and write u(z) for the element
of the space H determined by the function u(x, z) for each z ∈ C+.

From now on, we shall assume that Im q(x) → 0 as x → ∞, which guarantees that
σess(l) ⊂ R by a relative compactness argument. Then l is an operator of the class
considered in §2.

In the following lemma, D(z) is defined by (2.2) with L = l. Let uh = Θ + hΦ.

Lemma 4.2. Let k ∈ R be such that the finite boundary value m(k) exists, and let
m(k) �= h. Then

(i) for any compactly supported v ∈ H (z = k + iε) we have

(4.7) D(z)v =
√

εCε[v]u(z) + o(1), ε → 0,

where

(4.8) Cε[v] =
1

h − m(k + iε)

∫ ∞

0

uh(x, k + iε)
√

Im q(x)v(x) dx,

and the o-symbol refers to the L2-norm;
(ii) if

√
Im q uh(·, k) /∈ L2, then D(k + iε) s−−→

ε↓0
0.

Proof. The arguments are completely similar to the proof of Lemma 3.2. Let f ∈ H be
supported on a finite interval [0, X]. It is straightforward to check that

((l∗ − z)−1f)(x)

=
1

h − m(z)

[
u(x, z)

∫ x

0

uh(s, z)f(s) ds + uh(x, z)
∫ ∞

x

u(s, z)f(s) ds

](4.9)

for all z ∈ C+. Obviously, the function in the square brackets, which will be denoted by
g, coincides with (∫ ∞

0

uh(s, z)f(s) ds

)
u(x, z)

for x > X. Moreover, g(x, z) converges as ε → 0 uniformly in x ∈ [0, X]. Since the
condition m(k) �= h secures the boundedness of the common factor in (4.9), this gives

(l∗ − z)−1f =
(

1
h − m(z)

∫ ∞

0

uh(s, z)f(s) ds

)
u(z) + r(z),

where the function r(x, z) vanishes for x > X and is uniformly bounded as ε → 0. This
implies (i).

Notice that, by (4.5), ε1/2‖u(k + iε)‖ is bounded as ε → 0, so that ‖D(z)v‖ ≤
C|Cε[v]| + o(1) for any compactly supported v. Now, define C0[v] by formula (4.8) with
ε = 0. If v satisfies C0[v] = 0, then Cε → 0, and thus D(z)v → 0. Since the set
of compactly supported v such that C0[v] = 0 is dense in L2 if

√
Im quh(·, k) /∈ L2,

statement (ii) follows. �
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Since the set of all k such that m(k) = h has measure zero by the uniqueness theorem
for Nevanlinna functions, we have the following.

Corollary 4.3. If
√

Im q uh(·, k) /∈ L2 for a.e. k ∈ R, then Hac(L) = {0}.

Before proving the main result (Theorem 2), we would like to give a motivation of
it in terms of the WKB asymptotics for the solutions. As is shown in the asymptotic
theory of ordinary differential equations [12], for potentials q behaving at infinity in a
sufficiently regular way the asymptotics of solutions of equation (4.1) as x → ∞ can be
calculated explicitly. In particular, the theory asserts the existence of two solutions u±
of the equation −u′′ + qu = ku for k > 0 with the asymptotics of the form

(4.10) u± ∼ exp
[
±i

(√
kx − 1

2
√

k

∫ x

q(ξ) dξ

)]
, x → ∞,

(the WKB asymptotics) if q belongs to certain classes of decaying functions. For instance,
the asymptotics (4.10) occurs for all k > 0 if q ∈ L2 and q′ ∈ L1 [12]. Let Im q /∈ L1.
Observe that then the solution u− grows, |u−| ∼ exp

(
1

2
√

k

∫ x Im q dξ
)
, while u+ decays.

It should be noted that if the WKB asymptotics occurs for a given k > 0, and a solution
v of (4.1) with z = k > 0 satisfies

√
Im qv ∈ L2, then v must be a multiple of u+, because∫ ∞

Im q|u−|2 dx

∼
∫ ∞

Im q(x) exp
(

C

∫ x

Im q(ξ) dξ

)
dx = exp

(
C

∫ ∞
Im q(x) dx

)
= ∞.

A decaying function q will be called a WKB-class potential if the asymptotics (4.10)
occurs for a.e. k > 0. It follows that, if q is a WKB-class potential, then the solutions
uh(·, k) and u(·, k) must coincide for a.e. k > 0 such that

√
Im q uh(·, k) ∈ L2. This

is only possible on the set of k such that m(k) = h; hence
√

Im q uh(·, k) /∈ L2 for a.e.
k > 0. Applying Corollary 4.3, we thus obtain Theorem 2 for WKB-class potentials. In
particular, by a result quoted above, this shows immediately that the operator with the
potential q(x) = ix−β , 1/2 < β ≤ 1, has trivial absolutely continuous subspace. Notice
that the eigenvalues of this operator only accumulate at 0 by a complex scaling argument
(a remark due to S. Naboko).

Now, we proceed to the proof of Theorem 2. The argument becomes less direct than
in the discrete case because estimating the Wronskian of solutions u and uh requires a
bound on their derivatives, which is only available in the mean with respect to the spectral
parameter and leads to some mild conditions on the real part of the potential in the
theorem. The proof involves spectral averaging for the selfadjoint problem corresponding
to the potential Re q [14] and the Gilbert–Pearson subordinacy theory [13]. The required
part of the Last–Simon result reads as follows.

Theorem 4.4 ([14, Theorem 2.1C]). Let V be a real potential locally bounded and bound-
ed below, and let dµ = min{dρD, dρN}, where the dρD/N are the spectral measures for
the selfadjoint Schrödinger operators with potential V and Dirichlet–Neumann boundary
conditions at zero, respectively. Let Θ and Φ be the solutions to −y′′ + V y = ky with
the Cauchy data Φ(0, k) = Θ′(0, k) = 0, Φ′(0, k) = Θ(0, k) = 1. Then for any compact
interval I ⊂ R there exists a constant C(I) such that for all x > 0 we have∫

I

(|Θ(x, k)|2 + |Φ(x, k)|2) dµ(k) ≤ C(I),(4.11) ∫
I

[∫ x+1

x−1

(|Θ′(y, k)|2 + |Φ′(y, k)|2) dy

]
dµ(k) ≤ C(I).(4.12)
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If additionally supn

∫ n+1

n
|V (t)|2 dt is finite, then

(4.13)
∫

I

(|Θ′(x, k)|2 + |Φ′(x, k)|2) dµ(k) ≤ C(I).

In terms of the transfer matrix T (x, k) for the differential equation −y′′ + V y = ky,
(4.11) and (4.13) together are equivalent to saying that

(4.14)
∫

I

‖T (t, k)‖2 dµ(k) ≤ C(I).

We shall need the following lemma of some interest on its own.

Lemma 4.5. Let y0 be any solution of the equation −y′′ + qy = ky such that r =
y′
0(0)/y0(0) ∈ R (or y0(0) = 0). Then for any solution y of this equation there exists a

constant C such that |y(x)| ≤ C|y0(x)| for x sufficiently large, provided that Im q �≡ 0.

Proof. As we shall see later, the solution y0(x) does not vanish for large x.3 Therefore,
it suffices to establish the required estimate for the solution

y1(x) =
(∫ x dξ

y2
0(ξ)

)
y0(x)

linearly independent of y0. Multiplying the equation for y0 by y0 and integrating from 0
to x, we obtain

−y′
0(x)y0(x)

∣∣x
0

+
∫ x

0

|y′
0|2 dt +

∫ x

0

(q − k)|y0|2 dt = 0.

Taking the imaginary part and observing that y′
0(0)y0(0) = r|y0(0)|2 is real, we find

− Im[y′
0(x)y0(x)] =

∫ x

0

Im q|y0|2 dt.

We denote the left-hand side by ρ(x). The above identity shows that ρ(x) > 0 for large
x, whence y0(x) �= 0, and we can introduce variables R, Ψ (R > 0) by y0 = Re−iΨ. By
direct inspection, we have ρ = R2Ψ′, so that Ψ′ > 0, and the phase Ψ can be chosen to
be a continuous monotone increasing function. Then we have∫ x dξ

y2
0(ξ)

=
∫ x

e2iΨ(ξ) Ψ′(ξ) dξ

R2(ξ)Ψ′(ξ)
=

∫ Ψ(x) e2iΨ dΨ
ρ(ξ(Ψ))

.

The nonnegative function ζ(s) = 1/ρ(ξ(s)) is monotone decreasing, which implies that
the integral on the right is uniformly bounded, and the result follows. �

This lemma shows, in particular, that the solution uh(x, k) estimates the solution
u(x, k) from above whenever the latter exists, u = O(|uh|) at large x. In the following
lemma we use standard asymptotic perturbation theory [12] to compare the asymptotics
of solutions corresponding to the potentials q and Re q.

Lemma 4.6. Let k ∈ R be such that m(k) exists, and let m(k) �= h. If
√

Im q uh(·, k) ∈
L2, then the equation

(4.15) −y′′ + Re q y = ky

has solutions y1,2 such that y1 = uh(1 + o(1)), y2 = u + o(|uh|) as x → ∞, and the
Wronskian W [y1, y2] satisfies

(4.16) W [y1, y2] = W [u, uh] = m(k) − h.

3This can also be seen immediately from the fact that a completely nonselfadjoint dissipative operator
has no real eigenvalues.
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Proof. Rewriting equation (4.15) in the matrix form,

Y ′ =
(

0 1
Re q − k 0

)
Y, Y =

(
y1 y2

y′
1 y′

2

)
,

and resorting to variation of the parameter formula, we obtain the equation

(4.17) Z ′ =
i

h − m(k)

(
Im q uhu Im q u2

− Im q u2
h − Im q uhu

)
Z,

where

Y =
(

uh u
u′

h u′

)
Z.

The fact that
√

Im q u(·, k) ∈ L2 (see (4.3)) and the assumption
√

Im q uh(·, k) ∈ L2 imply
that (

Im q uhu Im q u2

− Im q u2
h − Im q uhu

)
∈ L1.

Applying now the Levinson theorem to equation (4.17), we see that it has a solution Z
satisfying Z(x) = I + o(1). Since u = O(|uh|), we obtain the existence of the solutions
y1,2. Calculating the determinant of Y at infinity, we obtain (4.16). �

Proof of Theorem 2 (beginning). Suppose that Hac is nontrivial. Then, by Proposition
2.1, there exists a set M ⊂ σess(l) of positive Lebesgue measure such that D(k + iε) does
not converge to 0 strongly as ε ↓ 0 for k ∈ M , and therefore the function

√
Im q uh(·, k)

belongs to L2 for a.e. k ∈ M by Lemma 4.2(ii). For such k’s, let y1,2(·, k) be the
solutions of (4.15) described4 in Lemma 4.6. From the lemma it is immediate that the
solutions y1,2(·, k) are square integrable with the weight Im q for a.e. k ∈ M . Let µ

be the a.c. measure given by dµ = min{dρD, dρN}, where the dρD/N are the spectral
measures for the selfadjoint Schrödinger operators with potential Re q and Dirichlet–
Neumann boundary conditions at zero, respectively. We fix arbitrary c0, N , and A such
that the set

I =
{

k ∈ M : |m(k)| ≤ c0,

∫ ∞

0

Im q(|y1(t, k)|2 + |y2(t, k)|2) dt ≤ N

}
∩ [−A, A]

has positive µ-measure. This is possible because, as we shall show later, µ(M) > 0.
Let ρ(k) = 1 + max{|y1,2(0, k)|, |y′

1,2(0, k)|}, and let T (x, k) be the transfer matrix for
equation (4.15). Then |y′

1,2(x, k)| ≤ ρ(k)‖T (x, k)‖. Taking (4.16) into account, we have

(4.18) |h − m(k)| = |W [y1, y2]| ≤ ρ(k)‖T (x, k)‖(|y1| + y2|).
Multiplying this by (ρ(k))−1 Im q and integrating, we obtain∫

I

|h − m(k)|
ρ(k)

dµ(k)
∫ x

Im q dt

≤ C

(∫
I

dµ(k)
∫ x

Im q(|y1|2 + |y2|2) dt

)1/2 (∫ x

dt Im q(t)
∫

I

‖T (t, k)‖2 dµ(k)
)1/2

.

Now,
∫

I
‖T (t, k)‖2 dµ(k) is bounded uniformly in t by Theorem 4.4 (see (4.14)). Here we

have used the assumption that Re q is uniformly locally L2-bounded. This gives

C

(∫ x

Im q dt

)1/2

≤ C

(∫
I

dµ(k)
∫ x

Im q (|y1|2 + |y2|2) dt

)1/2

≤ C
√

Nµ(I),

and so the integral on the left is bounded.

4Without loss of generality, we may assume that m(k) exists and m(k) �= h for all k ∈ M .
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Thus, it remains to show that µ(M) > 0. This will occupy the rest of the paper and
requires developing an analog of the subordinacy theory [13] for dissipative Schrödinger
operators.

2. Subordinacy theory and the end of the proof of Theorem 2. Recall [13]
that a solution u1 of a second-order differential equation on the semiaxis [0,∞) is called
subordinate if

‖u1‖N

‖u2‖N
→ 0

as N → ∞ for any solution u2 linearly independent of u1. Here ‖·‖N ≡ ‖·‖L2(0,N).

Theorem 4.7. Let Im q �≡ 0. Then for a.e. k ∈ R the following assertions are equivalent.
(i) D(k + iε) s−−→

ε↓0
0.

(ii) There exists a subordinate solution to −y′′ + qy = ky.

As the proof shows, the set of full measure in this theorem can be identified with the
set of real k such that m(k) exists finitely and m(k) �= h. We shall provide a complete
proof of the implication (ii) =⇒ (i) only, because the reverse implication is not used in
this paper. The proof is subdivided into several assertions.

Lemma 4.8. For any real k such that m(k) exists and m(k) �= h, assertion (i) is
equivalent to saying that

(4.19) ε‖u(·, k + iε)‖2 → 0.

Proof. Lemma 4.2(i) shows that for any compactly supported v ∈ H we have

‖D(k + iε)v‖ ≤ Cε1/2‖u(k + iε)‖ + o(1),

because Cε[v] given by (4.8) converges as ε → 0. This implies that if (4.19) is satisfied,
then D(k + iε)v → 0 for any compactly supported v ∈ H, and (i) follows.

To establish the reverse implication, we choose v to be uh(x, k)χ(x) where χ is the
indicator of an interval ∆. Then

Cε[v]−→
ε→0

1
h − m(k)

∫
∆

|uh(s, k)|2
√

Im q ds �= 0

if ∆ is sufficiently large. Now, Lemma 4.2(i) shows that if D(z)v → 0, then (4.19) is
true. �

The proof of the following assertion, which is central in the subordinacy theory, carries
over, with a slight simplification, from the selfadjoint theory [13].

Proposition 4.9. If the equation −y′′ + qy = ky has a subordinate solution for some
k ∈ R such that m(k) exists and m(k) �= h, then this solution is a multiple of u(x, k).

Proof. Without loss of generality, we may assume that u(·, k) /∈ L2. Let v be the subor-
dinate solution in question, with the normalization chosen so that v = Θ + c0Φ, so that
the Wronskian W [Φ, v] is equal to 1. This is possible since, by Lemma 4.5, Φ cannot be
a subordinate solution. We must prove that c0 = m(k).

A straightforward calculation shows that the solution u(x, z) satisfies the following
integral equation:

g(x) = Θ(x, k) + m(z)Φ(x, k) − iε

[
Φ(x, k)

∫ x

0

v(s)g(s) ds − v(x)
∫ x

0

Φ(s, k)g(s) ds

]
.

We consider this equation in L2(0, A(ε)) with a finite A(ε) to be chosen so that A(ε) → ∞
as ε → 0. If

(4.20) ε‖Φ(·, k)‖A(ε)‖v‖A(ε) <
1
2
,
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then the equation can be iterated in L2(0, A(ε)) to give

‖u(·, z)‖A(ε) � ‖Θ(·, k) + m(z)Φ(·, k)‖A(ε) = ‖v(·, k) + (m(z) − c0)Φ(·, k)‖A(ε)

= (|m(z) − c0| + o(1))‖Φ(·, k)‖A(ε),

where we have used the fact that v is subordinate, and therefore

‖v‖A(ε)/‖Φ(·, k)‖A(ε) → 0.

We define A(ε) by

‖Φ(·, k)‖A(ε)‖v‖A(ε) = 1
3C ‖u(·, k + iε)‖2,

C = lim supε→0 Im m(k + iε).

Then (4.20) is satisfied by (4.5), and A(ε) tends to infinity as ε ↓ 0 because otherwise
‖u(·, k)‖ ≤ lim inf‖u(·, k + iε)‖ would be finite. Thus, we obtain

|c0 − m(z)| ≤ ‖u(·, k + iε)‖
‖Φ(·, k)‖A(ε)

+ o(1) =
(

3C
‖v‖A(ε)

‖Φ(·, k)‖A(ε)

)1/2

+ o(1) → 0. �

Proof of Theorem 4.7. (ii) =⇒ (i) To establish this implication it remains to show that
if u(·, k) is a subordinate solution, then (4.19) is satisfied. We shall actually show that if
u(·, k) is subordinate, then, moreover,∫ ∞

0

Im q(x)|u(x, k)|2 dx = Im m(k).

From (4.4) it is clear that condition (4.19) then follows. We shall use an argument from
the proof of Lemma 4.5. Multiplying the identity −u′′ + (q − k)u = 0 by u, integrating
and taking the imaginary part, we obtain

Im[u′(x, k)u(x, k)] = Im m(k) −
∫ x

0

Im q(t)|u(t, k)|2 dt.

By (4.4), the right-hand side is nonnegative for all x, and so the required assertion is
immediate if the left-hand side has a zero. Suppose now that the left-hand side does
not vanish for all x > 0, so that, at least, u(x) �= 0, and we can introduce variables
R, Ψ (R > 0) by u = ReiΨ. Then the left-hand side becomes ρ(x) := R2(x)Ψ′(x). Since
ρ(x) is positive, it follows that the phase Ψ can be chosen to be a continuous monotone
increasing function.

Then, for a solution v linearly independent of u, we have

v(x) =
( ∫ x

a

dξ

u2(ξ)

)
u(x)

=
( ∫ x

e−2iΨ(ξ) Ψ′(ξ) dξ

R2(ξ)Ψ′(ξ)

)
u(x) =

(∫ Ψ(x)

e−2iΨζ(Ψ) dΨ
)

u(x),

where ζ(s) = 1/ρ(Ψ−1(s)) is a positive monotone increasing function. It follows that
ζ(s) → ∞; otherwise the integral would be bounded and v would be bounded above by u,
which contradicts the assumption that u is subordinate. Thus,

∫ x

0
Im q|u|2 dt → Im m(k)

as x → ∞, as required. �

Remark 1. In the selfadjoint theory the assertion corresponding to the last part of the
proof of Theorem 4.7 (if u(·, k) is a subordinate solution, then Imm(k) = 0) is trivial,
because a subordinate solution normalized by the condition u(0) = 1 must be real when
Im q ≡ 0.
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Remark 2. We have left unproved only one assertion in the implication (i) =⇒ (ii) of
Theorem 4.7: if ε‖u(k + iε)‖2 → 0 for some k ∈ R such that m(k) exists and m(k) �= h,
then u(x, k) is a subordinate solution. The proof of this fact can be taken verbatim from
the corresponding assertion in the selfadjoint theory [13].

Proof of Theorem 2 (end). We must show that µ(M) > 0. Suppose, by contradiction,
that µ(M) = 0. Since µ is equivalent to the a.c. part of the spectral measure of the
selfadjoint Schrödinger operator with the potential Re q, the following assertion of the
selfadjoint Gilbert–Pearson theory applies.

Proposition (see [13]). Let V be a locally bounded real potential in the limit point case at
infinity, and let dν be the a.c. part of the spectral measure for the selfadjoint Schrödinger
operator with the potential V and a selfadjoint boundary condition at zero. If ν(S) = 0,
then the equation −y′′ + V y = ky has a subordinate solution for Lebesgue-almost-all
k ∈ S.

This shows that equation (4.15) has a subordinate solution for a.e. k ∈ M . Lemma
4.6 now implies that the equation −y′′ + qy = ky has a subordinate solution for a.e.
k ∈ M as well. Indeed, let y = c0y1 + y2 be a subordinate solution of (4.15). Then
y ∼ u + c0uh + o(uh), whence

‖u + c0uh‖N

‖uh‖N
∼ ‖y‖N

‖y1‖N
→ 0;

that is, u + c0uh is a subordinate solution of (4.1) with z = k. Since y1 cannot be a
subordinate solution, we are done. Applying Theorem 4.7, we obtain D(k + iε) s−→ 0 for
a.e. k ∈ M , a contradiction. �

As was mentioned above, conditions on the real part of the potential in Theorem 2 are
required to apply spectral averaging. In particular, the condition that Re q is uniformly
locally L2-bounded allows us to use the following standard estimate for derivatives of
solutions of a second-order differential equation (see, for instance, [15, Lemma 3.1]): if
supn

∫ n+1

n
|V (t)|2 dt is finite, then

|g′(x)|2 ≤ C(1 + k2)
∫ x+1

x−1

|g(s)|2 ds

for any solution g to −y′′ + V y = ky with a constant C depending on the potential
V only. As was noticed in [14], a combination of this bound with (4.11) allows us to
drop the additional integration in y in (4.12) and to arrive at (4.13). By the following
theorem, if we omit the condition on the positive part of Re q, then the nontriviality of
Hac implies that Im q is in L1 in an averaged sense.

Theorem 4.10. Let q be a locally bounded function on R+ with Im q ≥ 0, Im q(x) → 0
as x → ∞. Assume that Re q is bounded below. If the absolutely continuous subspace of
the Schrödinger operator l is nontrivial, then∑

n

(∫ n+1

n

√
Im q dt

)2

< ∞.

Proof. The argument develops as before until the Wronskian estimate (4.18), which we
multiply by (ρ(k))−1

√
Im q and integrate in t from n to n + 1 and in k, to obtain∫

I

|h − m(k)|
ρ(k)

dµ(k)
∫ n+1

n

√
Im q dt ≤ C

(∫
I

dµ(k)
∫ n+1

n

Im q(|y1|2 + |y2|2) dt

)1/2

.
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Here we have taken (4.12) into account. Squaring and summing over n, we arrive at the
result. �

It remains unclear if it is possible to carry the proof of Theorem 2 over to the discrete
case. The difficulty here is that no appropriate discrete analog of the trigonometric
substitution u = ReiΨ in the proof of Theorem 4.7 is known.

Finally, it should be mentioned that the condition of pointwise decay of Im q as x → ∞
in Theorem 2 can be replaced by any other condition guaranteeing that σess(l) ⊂ R.

§5. Concluding remarks

As is well known [5], the triviality of the subspace Hac implies that the characteristic
function of the operator is inner. So far, the analysis of operators with inner characteristic
functions has mainly been developed for the discrete part of the spectrum and requires
the existence of a scalar multiple [16], thus rendering it efficient in the case of trace
class perturbations only. Examples considered in this paper suggest that a nontrivial
“singular” inner factor of the characteristic function appears naturally in applications
when the perturbation is not of trace class.

It should also be mentioned that the instability phenomenon described in this paper is
likely to be a specific feature of dissipative Schrödinger operators. In the nondissipative
case, a WKB-class potential will have all solutions of (4.1) bounded for a.e. z > 0 if its
imaginary part is conditionally integrable. This suggests that, in this case, the absolutely
continuous subspace can be nontrivial even if Im q /∈ L1.

Acknowledgements. The author is indebted to S. Naboko for helpful and encouraging
discussions and to M. Marletta for noticing a mistake in the initial formulation of Lemma
4.6.
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pp. 179–184. MR2103375 (2005g:47064)

[11] A. R. Sims, Secondary conditions for linear differential operators of the second order, J. Math.
Mech. 6 (1957), no. 2, 247–285. MR0086224 (19:144g)

[12] M. S. P. Eastham, The asymptotic solution of linear differential systems, London Math. Soc.
Monogr. New Ser., vol. 4, The Clarendon Press, Oxford Univ. Press, New York, 1989. MR1006434
(91d:34001)

[13] D. B. Pearson, Quantum scattering and spectral theory, Techn. Phys., vol. 9, Acad. Press, London,
1988. MR1099604 (91k:81198)

[14] Y. Last and B. Simon, Eigenfunctions, transfer matrices, and absolutely continuous spectrum of
one-dimensional Schrödinger operators, Invent. Math. 135 (1999), no. 2, 329–367. MR1666767
(2000f:47060)

[15] B. Simon, Bounded eigenfunctions and absolutely continuous spectra for one-dimensional
Schrödinger operators, Proc. Amer. Math. Soc. 124 (1996), 3361–3369. MR1350963 (97a:34223)
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