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Association Equilibrium and Gelation in Solutions
of Cross-Associating Chains Containing Inactive Fragments1
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Abstract—Solutions of two cross-associating chain molecular species (n-chains and p-chains) containing
both associative (“sticky”) and non-associative monomer links have been simulated by molecular dynamics.
The inactive monomers increase the stickers’ association equilibrium constant due to the excluded volume
effect. In a wide concentration range, the equilibrium constant can be approximated as a simple function of
the total volume concentration of the inert monomers, the volume effectively excluded by one inert monomer
being about the same at different mixture compositions. Characteristics of molecular aggregates formed at
pre-gelation and gelation conditions are examined, including effects of local cyclization.
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INTRODUCTION
Mixed solutions of cross-associating oligomer or

polymer species in a low-molecular solvent (in more
complex cases, containing also additional low-molec-
ular and/or ionic components) are quite important as
they are able to undergo various phase and structural
transitions depending on molecular structure and
concentrations of the components. They can form gels
when intermolecular association produces infinite
aggregates, and properties of those gels (depending
particularly on lifetimes and density of the associative
bonds) can be regulated by varying the mixture com-
position and external conditions. When the associative
interaction is significantly weaker than “standard”
covalent chemical bonding, such a system forms a
(reversible) physical gel where bonds between the
associative groups are created and destroyed many
times on a macroscopic, and even microscopic, time
scale. A lot of literature has been published on such
systems and their practical applications, e.g. [1–4].
However their behavior on the molecular level remains
insufficiently studied. A number of works using
molecular dynamics (MD), Monte Carlo (MC) or
related simulation methods for modeling macromo-
lecular systems with physical gelation have been pub-
lished, see e.g. [5–9] and references therein, and also
a review by Košovan, Richter, and Holm [3]. To the
best of our knowledge, there is no systematic study of
typical characteristics of molecular aggregation and

gelation specific to mixtures containing two multi-
functional macromolecular components with cross-
association but without self-association (e.g. polyca-
tion–polyanion mixtures).

In [10], a simple molecular thermodynamic model
based on the Semenov–Rubinstein theoretical
approximation [11] was proposed for solutions of two
cross-associating polymers and used to model gelation
and phase behavior in such systems. Later, we found
from MD simulations [12, 13] that for molecules con-
taining non-associative (inert) monomers along with
associative ones, this model needs to be corrected, pri-
marily due to the excluded volume effect that causes
the inert chain fragments to increase the association
equilibrium constant (calculated from concentrations)
in comparison with a system with chains consisting of
associative monomers only. We proposed a simple
mean field approximation for the dependence of the
equilibrium constant on the concentration of inert
monomers and tested it for solutions of chain mole-
cules of two sorts one of which contains a significant
number of non-associative monomer links.

In the present article, we extend the findings of [13]
to mixtures of cross-associating chains where both
chain species contain a large number of inert mono-
mers. Then we calculate aggregation characteristics of
chains in those mixtures, examining a concentration
range where gel transition occurs and particularly dis-
cussing effects of local cyclization.1 The article is published in the original.
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MODEL
A detailed description of the model used in our

MD simulations was given in our previous publica-
tions [12, 13]. It can be summarized as follows. We
simulate two sorts of f lexible chain-like molecules,
n-component (n-chains) and p-component (p-chains)
in a simple Lennard-Jones solvent. n-Chains consist
of two kinds of monomer units, n-monomers (N) and
o-monomers (O); similarly, p-chains consist of
p-monomers (P) and o-monomers. A monomer unit
is composed of the backbone atom (AN, AP, AO) and
the excentric dummy atom (DN, DP, DO). An asso-
ciative bond can be formed between an n-monomer
and a p-monomer while o-monomers are inert. The
association is modeled as a strong attraction between
DN and DP atoms (n- and p-stickers). Other pairs of
dummy atoms (DN–DN, DP–DP, DO–DP, DO–
DN, DO–DO) do not attract and exhibit short-range
repulsion that ensures that DN–DP association is
univalent. The solvent particles (atoms) are denoted
AS. All “site-site” interactions between the atoms are
represented by Lennard-Jones or (in the case of
dummy atoms repulsion) r–12 “repulsive Lennard-
Jones” potential truncated and smoothly “switched”
to zero at some distance. The parameters are chosen to
satisfy the equations  and

 = 4εσ6 where ε, σ are the parameters for Len-
nard-Jones interactions between AN, AP, AO atoms,

,  are the respective parameters for interactions
between AS particles and all non-dummy atom spe-
cies, and ,  describe the repulsion between non-
associative dummy atoms. Thus, at long distances, all
monomer units (AN+DN, AP+DP, AO+DO) and
AS particles behave as equivalent Lennard-Jones sites;
this means that the solvent is approximately athermal
and that the effective size of all monomer units and AS
particles can be considered the same. Besides the non-
bonded “site-site” interactions, the model assumes a
harmonic potential for chemical bonds within chains
and a harmonic cosine potential for valence angles.

The values of parameters of the model potentials
are the same that were used in [12] for f lexible N10 and
PO8P decamers. Before that, they had been used in a
coarse-grained representation of poly(ethyleneglycol)
[14]. In our model, the mass of solvent molecules and
backbone (non-dummy) atoms is 46 atomic units
(equal to the mass of (CH3)2O molecule) while the
dummy atoms are massless. The model potential of
DN–DP attraction causing the associative bonding
corresponds to bond geometry and strength matching
those typical for hydrogen bonds or other specific
non-covalent interactions (the potential well is
24.89 kJ/mol in depth, with the minimum at
0.112 nm).

In the present work, we simulate solutions contain-
ing ON61O, O(NO)30NO, O(NO2)20NO,
O(NO3)15NO, or O4(NO8)6NO4 n-chains, and

12 12
4 4 4ε σ = εσ + ε σ12

R R' '
6

4ε σ' '

ε' σ'

εR σR
POLY
O(PO3)15PO, O(PO5)10PO, or O4(PO8)6PO4 p-chains
(hence, all the chain species are 63-mers where all
monomer links capable of association are located in
non-terminal positions in the chain). Examples of the
chains are shown in Fig. 1. The MD simulation cell
(with cubic periodic boundary conditions) contains

 = 28340 solvent particles and 820 n- and
p-chains in some proportion, so that the total number of
non-dummy atoms is  =
28340 + 63 × 820 = 80000 and the solvent molar frac-
tion is  = 0.35425. The simula-
tion temperature is T = 406 K (corresponding to the
reduced temperature ), the pressure is p =
10 bar. From our previous results [13], we can con-
clude that at those conditions, the modeled mixtures
do not show phase separation, hence averaging over
the whole volume of the MD cell gives relevant char-
acteristics of the homogeneous solution.

The MD simulations are performed using Nosé–
Hoover thermostat and Martyna–Tuckerman–
Tobias–Klein barostat. The simulation time step is
0.001 ps. For each composition, the system is equili-
brated for 3 ns, and after that, we perform 2 ns produc-
tion runs, saving configurations every 0.5 ps.

RESULTS AND DISCUSSION

Association Equilibrium and the Crowding Effect

In the same way as in [12, 13], the “apparent”
(concentration) equilibrium constants  are calcu-
lated:

(1)

where  is the number of bonded n-monomer – p-
monomer pairs in the MD cell,  and

 are the fractions of bonded n-mono-
mers and p-monomers, respectively, and V is the cell
volume.

The calculated values of  for different simulated

mixtures are presented in Fig. 2 in  coordi-

nates (  is the volume fraction of o-mono-
mers, and  is the volume per a non-dummy
atom, hence  is the volume content of

solvN

= + + +N P O solvN N N N N

=solv 28340/80 000x

ε =B / 1k T

assK

=
− −

= =
− − − −

=
− −

pairs
ass

N pairs P pairs

N P

N P P N P N

N P

N P pairs

( / )
(( )/ )(( )/ )

(1 )(1 )( / ) (1 )(1 )( / )

,
(1 )(1 )( / )

N V
K

N N V N N V
p p

p p N V p p N V
p p

p p N V

pairsN
=N pairs N/p N N

=P pairs P/p N N

assK
⎛ ⎞ϕ
⎜ ⎟
⎝ ⎠

O
1/2
ass

1 ,
*K v

ϕ =O O/N N
=v* /V N
ϕ =vO O/ * /N V
MER SCIENCE, SERIES C  Vol. 60  Suppl. 1  2018



ASSOCIATION EQUILIBRIUM AND GELATION IN SOLUTIONS S97

Fig. 1. Examples of n- and p-chains in the modeled mixtures: (a) ON61O, (b) O4(NO8)6NO4, (c) O(PO3)15PO,
(d) O4(PO8)6PO4.

(а)

(b)

(c)

(d)
o-monomers; reasons for this choice of coordinates
were given in [12, 13]). One can see that the approxi-
mation proposed in [12, 13],

(2)

holds with a satisfactory accuracy in a wide range of con-
centrations, except mixtures rich in p-component (the
component with higher content of o-monomers), with
the same estimated values of K0 =  nm3

and of the effective excluded volume per o-monomer,
 nm3, for all combinations of

n- and p-components chosen for simulation, indepen-
dent of the distribution of the inactive monomers
between n- and p-chains. The calculated  is also
quite close to the values obtained in [12] for the system
containing shorter (decamer) molecules, N10+PO8P
(about 0.082 nm3 for ). It corresponds to the
“effective core diameter” σeff =  ≈ 0.535 nm ≈
1.24σ' ≈ 1.225σ'. The macroscopic volume per a non-
dummy atom, , varies between 0.089 and 0.093 nm3,
that is 11–16% higher than , for all the simulated
mixtures with .
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The simple approximation given above is based on
an interpretation of the association as a chemical reac-
tion between the two reactant species (non-associated
n- and p- monomers) producing another species
(a bonded N–P pair) where the chemical potential of
reactants depends on the free volume available for
them that decreases due to the presence of inert
o-monomers, while the chemical potential of the
bonded pairs is insensitive to the crowding, e.g.
because such pairs are mostly localized in “cages”
formed by surrounding monomer units. Another
approach is possible, expressed in analytical models
like the Semenov–Rubinstein theory [11] and SAFT
[15, 16], where the equilibrium constant is presented
as a product of factors reflecting energetic, steric
(“bonding volume”), and local composition contribu-
tions. In our model, the association energetics is fixed,
the excluded volume effect from the neighboring inert
monomers is included in the steric factor, and the
local composition contribution can be separated as a
factor  calculated as the average value of the radial
distribution function for non-associated N and P
monomers within the “reaction sphere”  where

 = 0.68 nm is the maximum observed distance

0g

≤ 0r r

0r
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Fig. 2. The concentration equilibrium constant  as a function of the volume content of o-monomers  for the simulated

mixtures with . Error bars represent the mean square f luctuation. The dashed straight line is the fit using Eq. (2),

with high-  outliers discarded. (1) ON61O + O(PO3)15PO, (2) ON61O + O(PO5)10PO, (3) ON61O + O4(PO8)6PO4,

(4) O(NO)30NO + O4(PO8)6PO4, (5) O(NO2)20NO + O4(PO8)6PO4, (6) O(NO3)15NO + O4(PO8)6PO4, (7) O4(NO8)6NO4 +

O4(PO8)6PO4. T = 406 K.
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between n- and p- monomers in a bonded pair.

Figure 3 shows the dependence of  and 

on .

One can see that the compositions, where 
deviates significantly downwards from values pre-

dicted by Eq. (2) (hence,  goes upwards), are

those where , after passing through a maximum,
decreases with further increase in the concentration of

p-component. The dependence of  on

 can be considered as representing the net effect
of local chain steric factor as a function of the inert
monomers’ content. For different mixtures where
n-component does not contain inactive fragments
within the chain (ON61O + O(PO3)15PO, ON61O +

O(PO5)10PO, ON61O + O4(PO8)6PO4), these plots are

rather close to each other in the whole concentration

range. However, they shift to lower  values
(stronger association) when both chain species con-
tain inert “spacers” forming a crowded environment
not only around p-monomers but around n-mono-
mers as well.

0g 1/2

0 ass( / )g K
ϕ vO/ *

assK

1/2

ass1/K
0g

1/2

0 ass( / )g K
ϕ vO/ *

1/2

0 ass( / )g K
POLY
Gelation

When bonding between the stickers results in
aggregation of associated molecules into an infinite
cluster, a (weak physical) gel is formed. Some authors
make a distinction between this “geometrical percola-
tion” and “macroscopic gelation” when chain dynam-
ics and mechanical/rheological properties change
qualitatively [6]; however, there is another, broader
interpretation of physical gelation allowing even water
with its network of transient hydrogen bonds to be
considered as a weak gel [17].

Predicting quantitatively those concentrations
where the percolation transition (gelation, in the
broad sense) occurs is not a trivial problem. In the
simplest approximation (on which the classical
approaches of Flory and Stockmayer are based), the
molecules’ connectivity graph is described as a Cayley
tree. For the system of cross-associating n- and
p-chains, this approximation predicts the gelation
threshold at

(3)− − =N P( 1) ( 1) 1,f p k p
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Fig. 3. (a)  and (b)  as functions of the content of o-monomers. (1) ON61O + O(PO3)15PO, (2) ON61O +

O(PO5)10PO, (3) ON61O + O4(PO8)6PO4, (4) O(NO)30NO + O4(PO8)6PO4, (5) O(NO2)20NO + O4(PO8)6PO4,

(6) O(NO3)15NO+O4(PO8)6PO4, (7) O4(NO8)6NO4 + O4(PO8)6PO4.
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where f and k are the number of n-stickers per n-mol-
ecule and the number of p-stickers per p-molecule,

respectively,  and  are defined above [10]. The
average number of molecules in j-th shell of n-chains
(“coordination sphere”) around a “root” n-chain is

(4)

while j-th shell of p-chains around a “root” n-chain
contains, on the average,

(5)

molecules; hence,  and  dependences

are linear [10, 18]. Actually, however, an infinite Cay-
ley tree (a Bethe lattice) cannot exist in the physical 3-
dimensional space, and in a real system with signifi-
cant aggregation, the molecules’ connectivity graph
always contains a non-negligible number of loops. As

a result of this cyclization,  and 

dependences deviate downwards from linearity, and

percolation occurs at higher  values than pre-
dicted by Eq. (3).

Np Pp
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In our simulations, we calculate the connectivity
graph for each saved configuration along the MD tra-
jectory and examine clusterization of the chains. With
periodic boundary conditions, it is easy to find out
whether the system contains an infinite cluster: the
necessary and sufficient criterion of its existence is the
presence of a molecule that is connected by N–P
associative bonds with its own translational image. In

Table 1, we present , the proportion of configura-
tions with an infinite cluster among all the configura-

tions saved during the MD run, and , the average

finite cluster size, as well as , , and ( f –

1)  at a number of compositions including
the percolation region, for O(NO3)15NO +

O4(PO8)6PO4 (f = 16, k = 7) and O4(NO8)6NO4 +

O4(PO8)6PO4 (f = 7, k = 7) mixtures. (When calculat-

ing , we do not include isolated chains, that is,
those not bonded to any other chain, in averaging
because in a cross-associating system without self-
association, the stoichiometric excess of one of the
components distorts the pattern.) Figure 4 shows the

calculated  and  dependences.

Figure 4 demonstrates the sublinear behavior of

 and  due to formation of loops of asso-

infy

fins
Np Pp

−N P( 1)p k p

fins

ln ( )nS j ln ( )pS j

ln ( )nS j ln ( )pS j
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Table 1. The number of n- and p-molecules in the MD cell (  and ), , , , the

proportion of configurations with an infinite cluster, , and the average finite cluster size, , for the model

O(NO3)15NO + O4(PO8)6PO4 and O4(NO8)6NO4 + O4(PO8)6PO4 mixtures

Nn Np pP

O(NO3)15NO + O4(PO8)6PO4

50 770 0.376 ± 0.016 0.056 ± 0.003 2.36 ± 0.20 0.1320 13.53

55 765 0.372 ± 0.018 0.061 ± 0.003 2.54 ± 0.26 0.2467 14.68

60 760 0.374 ± 0.017 0.067 ± 0.004 2.83 ± 0.26 0.4154 14.51

80 740 0.360 ± 0.014 0.089 ± 0.004 3.59 ± 0.28 0.9170 10.07

100 720 0.344 ± 0.011 0.109 ± 0.004 4.20 ± 0.26 0.9950 6.70

620 200 0.068 ± 0.002 0.485 ± 0.013 3.72 ± 0.20 1.0000 4.11

680 140 0.046 ± 0.002 0.507 ± 0.015 2.60 ± 0.16 0.8583 7.15

700 120 0.038 ± 0.002 0.508 ± 0.018 2.17 ± 0.16 0.4806 9.14

710 110 0.035 ± 0.002 0.517 ± 0.018 2.03 ± 0.15 0.3032 9.60

720 100 0.032 ± 0.002 0.526 ± 0.019 1.88 ± 0.14 0.1745 9.46

760 60 0.018 ± 0.001 0.531 ± 0.024 1.09 ± 0.10 0.0039 6.60

O4(NO8)6NO4 + O4(PO8)6PO4

100 720 0.373 ± 0.020 0.052 ± 0.003 0.95 ± 0.10 0.0076 5.04

200 620 0.330 ± 0.014 0.106 ± 0.005 1.72 ± 0.14 0.1225 6.43

230 590 0.322 ± 0.012 0.125 ± 0.005 1.98 ± 0.15 0.3349 6.67

250 570 0.312 ± 0.012 0.137 ± 0.005 2.09 ± 0.16 0.4810 6.49

280 540 0.293 ± 0.012 0.152 ± 0.006 2.19 ± 0.17 0.5937 6.18

310 510 0.278 ± 0.011 0.169 ± 0.007 2.31 ± 0.17 0.7304 5.67

410 410 0.229 ± 0.008 0.229 ± 0.008 2.58 ± 0.17 0.9493 4.32

= N /nN N f = P /pN N k Np Pp − −N P( 1) ( 1)f p k p

infy fins

Np − −N P( 1) ( 1)f p k p infy fins
ciated molecules. This effect is relatively weak in solu-

tions far from the percolation threshold (where  is

zero or close to zero, non-associated molecules and

small clusters dominate, and  and  vanish at some,

not very high, j) but becomes quite important in mix-

tures with higher content of N–P bonds. At composi-

tions close to the gel transition,  and 

have a distinctive shape with inflection. For the system

O(NO3)15NO + O4(PO8)6PO4, we have detected com-

positions ( ,  and ,  =

110, with  about 0.25–0.3) where  and  first

slightly increase with j, then decrease and then start

increasing again. The same compositions are charac-

terized by the highest value of . This marks an

approximate location of the percolation threshold. For

the system O4(NO8)6NO4 + O4(PO8)6PO4, the com-

position closest to the transition is ,  =

infy

nS pS

ln ( )nS j ln ( )pS j

= 55nN = 765pN = 710nN pN

infy nS pS

fins

= 230nN pN
POLY
590 (or vice versa, as the system is symmetric). Actu-

ally, as  values show, the gelation transition in the
model systems is quite diffuse, and their behavior near
the transition is likely strongly influenced by system-
size effects.

The inflected shape of  and  in the

gel transition region allows to suggest that the transi-
tion occurs when already existing compact clusters
start forming interconnections, to produce a large-
scale network. This suggests inhomogeneity of the
spatial distribution of bonds in systems with strong
local cyclization tendencies, as was discussed previ-
ously in literature [19, 20]. The dependence of the

average gyration radius  of a finite cluster on the

number of chains in it, , shown in Fig. 5, confirms

the compactness of molecular aggregates:  is approx-

imately proportional to  in all simulated mixtures

infy

ln ( )nS j ln ( )pS j

gr
s

gr
1/3s
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Fig. 4. (a, c)  and (b, d)  dependences for the model (a, b) O(NO3)15NO + O4(PO8)6PO4 and (c, d)

O4(NO8)6NO4 + O4(PO8)6PO4 mixtures. (a, b) (1) Nn = 50, Np = 770, (2) Nn = 55, Np = 765, (3) Nn = 60, Np = 760, (4) Nn =

80, Np = 740, (5) Nn = 100, Np = 720, (6) Nn = 620, Np = 200, (7) Nn = 680, Np = 140, (8) Nn = 700, Np = 120, (9) Nn = 710,

Np = 110, (10) Nn = 720, Np = 100, (11) Nn = 760, Np = 60; (c, d) (1) Nn = 100, Np = 720, (2) Nn = 200, Np = 620, (3) Nn = 230,

Np = 590, (4) Nn = 250, Np = 570, (5) Nn = 280, Np = 540, (6) Nn = 310, Np = 510, (7) Nn = 410, Np = 410.
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except for those with the lowest concentration of
bonded pairs (and no gelation tendencies). One can
expect such a behavior (the cluster fractal dimension
close to 3) for a concentrated homogeneous solution
(while the different pattern in mixtures poor in associ-
ated N–P pairs, especially O4(NO8)6NO4 +

O4(PO8)6PO4 with , , where small

clusters are denser, and large ones, looser, can be
attributed to high relative f luctuations of local concen-
tration not only of the associated pairs but of the stoi-
chiometrically deficient component as well).

Table 1 shows that at the transition, ( f –

1)  is significantly higher than 1, especially

for mixtures containing chains with more dense
arrangement of stickers that is more favorable for local
cyclization.

= 800nN = 20pN

−N P( 1)p k p
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Figure 6 presents the fractions (in proportion to 

and ) of n- and p-chains participating in small local

loops schematically shown in the same figure: 2-loops

( , ), 4-loops ( , —counting only those

chains that are not parts of 2-loops), and 6-loops ( ,

—counting only those chains that are not parts of

2-loops or 4-loops). 2-Loops (formed by two chains

attached to each other by more than one bond) clearly

prevail over larger cycles. While in O4(NO8)6NO4 +

O4(PO8)6PO4 mixtures, no more than 10–11% of mole-

cules are part of the small loops, in O(NO3)15NO +

O4(PO8)6PO4, the total fraction of such chains reaches

60% for n-chains and 44% for p-chains. This fraction

nN

pN

β(2)

n β(2)

p β(4)

n β(4)

p

β(6)

n

β(6)

p
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Fig. 5. dependence for some simulated mixtures at pre-gel compositions. The straight lines correspond to .

(a) O4(NO8)6NO4 + O4(PO8)6PO4, Nn = 800, Np = 20, (b) ON61O + O4(PO8)6PO4, Nn = 800, Np = 20, (c) O(NO3)15NO +

O4(PO8)6PO4, Nn = 760, Np = 60, (d) O4(NO8)6NO4 + O4(PO8)6PO4, Nn = 620, Np = 200.
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is still higher in solutions when at least one component

contains a larger number of stickers per chain.

Figure 7 shows the composition dependence of ,

the ratio of the number of independent 2-loops in the

system to the total number of non-isolated n- and

p-chains, for O(NO3)15NO + O4(PO8)6PO4 and

O4(NO8)6NO4 + O4(PO8)6PO4 solutions. One can

suggest that at gel transition and closely post-transi-

tion compositions, there is a slowdown or even a short

interruption in the increase of  with increasing con-

centration of the stoichiometrically deficient compo-

λ2

λ2
POLY
nent. This corresponds to the assumption that small
cycles are partly being broken when the infinite
molecular network is formed (cf. Monte Carlo simula-
tions of a different cross-associating system—a telech-
elic chain plus a trifunctional junction—in [21]).

The significant presence of small cycles in clusters
formed by chains containing many associative sites
means that not only the classic approaches of Flory
and Stockmayer [22] but also the approximations
developed by Erukhimovich, Tamm et al. assuming
mesoscopic cyclization [23–25] do not give a good
quantitative description of gelation characteristics.
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Fig. 6. The fractions of (a, c) n- and (b, d) p-chains that are part of (1) 2-loops, (2) 4-loops, and (3) 6-loops in the model

(a, b) O(NO3)15NO + O4(PO8)6PO4 and (c, d) O4(NO8)6NO4 + O4(PO8)6PO4 mixtures.
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Indeed, according to [23, 26], the rough criterion of
insignificance of corrections due to small loops for a
system containing one kind of associating molecules is

 where  is the density of stickers and  is
the average distance between neighboring stickers in
one molecule. Among our model systems with cross-
association, the one with the lowest content of small
cycles, the symmetric O4(NO8)6NO4 + O4(PO8)6PO4

−ρ �
3 1

( ) 1a ρ a
POLYMER SCIENCE, SERIES C  Vol. 60  Suppl. 1  20
mixture, has  nm–3 and 

1.86 nm, hence —not an insig-

nificant value. Attempts to develop an analytical the-

ory describing the delay of gel transition due to small

loops’ formation were made earlier (see e.g. [27, 28]).

However, even more recent advanced models [21] fall

= ≈N P/ / 0.39N V N V ≈a
−+⎛ ⎞ ≈⎜ ⎟

⎝ ⎠

1
3N P 0.2

N N a
V
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Fig. 7. The number of independent 2-loops as a fraction of the total number of non-isolated n- and p-chains in the model (a)

O(NO3)15NO + O4(PO8)6PO4 and (b) O4(NO8)6NO4 + O4(PO8)6PO4 mixtures. The dashed lines show the approximate loca-

tion of gel transition.
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short of a quantitative description of clustering of mol-
ecules with many associative sites (particularly, in our
simulations, we do not observe a clear relationship
between the numbers of 2-loops and larger cycles as
the results presented in [21] would suggest).

CONCLUSIONS

Our results allow us to conclude that in binary mix-
tures of cross-associating chains with inert fragments,
where the inert monomers act as crowders, the com-
position dependence of the “apparent” equilibrium
constant of association can be interpreted as an
excluded volume effect expressed both through local
composition change (p-stickers concentrated around
n-stickers and vice versa) and through steric restric-
tions directly produced by neighboring inert mono-
mers. In systems where two chain components with
different proportions of inactive monomers are mixed,
the whole concentration range can be divided into two
sub-ranges. As long as the local N–P correlations’

measure, , increases with the concentration of the
component containing more inert monomer per mol-

ecule (p-component),  depends uniformly on the

volume content  of the inactive monomers, with
a constant excluded volume per each inert monomer
unit. At higher concentrations of p-component,

decreasing  leads to lower . The direct local ste-

ric effect, as can be seen from the 
dependence, differs for systems where n-chains have
no inert “spacers” (ON61O + O(PO3)15PO, ON61O +

0g

assK
ϕ vO/ *

0g assK
ϕ1/2

0 ass O( / ) ( / *)g K v
POLY
O(PO5)10PO, ON61O + O4(PO8)6PO4) and for those

where both n-chains and p-chains have at least two
inert monomers between the stickers (O(NO2)20NO +

O4(PO8)6PO4, O(NO3)15NO + O4(PO8)6PO4,

O4(NO8)6NO4 + O4(PO8)6PO4), but is almost the

same within each of these groups, with the mixture
O(NO)30NO + O4(PO8)6PO4 (one inert monomer

between the stickers in the n-chain) falling in between.
This latter difference is not surprising because the
closest neighborhood of one sort of stickers (n-mono-
mers) differs for the two groups of systems quite sig-
nificantly, as their neighbors along the chain are other
n-monomers in the first group, and o-monomers in
the second group. Thus, a simple mean-field model
can satisfactorily describe the effect of inert chain
fragments on the association equilibrium as a combi-
nation of the two “sub-effects” characterized above.

Our data on the local topology of clusters around
gelation transition confirm an important role of small
loops, in agreement with the previous findings [21].
For chains of different structure, the value of the left
hand side of Eq. (3) at gelation threshold is much
greater than the value of the classical criterion and
depends on the system composition. Analytical
description of this transition still remains among the
major challenges for future work.
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