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INTRODUCTION

The known definitions of the absolutely continuous (a.c.) subspace for non-
selfadjoint operators fall into two groups: the weak ones and the strong one. The
strong definition was first suggested by L. Sakhnovich [7] in the case of dissipa-
tive operators.

DEFINITION 0.1. Let L be a completely non-selfadjoint dissipative operator
in a Hilbert space H with a bounded imaginary part V. Any of the following
coinciding subspaces is called the strong absolutely continuous subspace Hac of L:

(i) the invariant subspace of L corresponding to the canonical factorization of
its characteristic function;

(ii) the minimal subspace containing all the invariant subspaces X of L such
that L|X = WAW−1 for an a.c. selfadjoint operator A and a bounded and bound-
edly invertible operator W : X → X;

(ii) Clos{u ∈ H : V1/2(L− z)−1u|C+ ∈ H2
+}.

The notation we use is given at the end of Introduction. The correspondence
in definition (i) is the one between invariant subspaces of an operator and regu-
lar factorizations of its characteristic function in the framework of the Szökefalvi–
Nagy–Foiaş functional model. The equivalence of (ii) and (iii) is a corollary of this
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correspondence. The equivalent definition (iii) in model-free terms was found in
[4]. In this latter form, the definition was generalized to non-dissipative pertur-
bations of selfadjoint operators [4] and non-contractive perturbations of unitary
ones [3].

The weak definitions of the a.c. subspace are obtained if we try to general-
ize directly the "selfadjoint" definition using the property expressed by the Riesz
brothers theorem as a substitute for the absolute continuity of (non-existent, in
general) spectral measure. This leads to spaces defined by the requirement that
the matrix element of the resolvent be of the Hardy class Hp. They were first
introduced and studied in [9], [10] and are called weak a.c. subspaces. A weak
a.c. subspace contains the strong one because the restriction of an operator to the
a.c. subspace is quasi-similar to an a.c. selfadjoint operator. A natural question is
whether these subspaces coincide. So far, it was answered in affirmative in two
situations (p = 2):

(i) When L is dissipative [5].
(ii) When the characteristic function of L has weak boundary values a.e. on

the real axis [6]. This holds true, for instance, for trace class perturbations of a
selfadjoint operator, and, more generally, if the function admits scalar multiple.

The first result of the present paper is an example of an operator with dif-
ferent weak and strong a.c. subspaces (Theorems 1.6 and 1.8). The example in
Theorem 1.8 is a (non-dissipative) perturbation of a selfadjoint operator. Theo-
rem 1.6 provides an analogous result for perturbations of unitary operators. The
operators we construct are in fact similar to the standard bilateral shift [8] in the
unit circle case and to the generator of bilateral shift on R in the real line case.

Whichever definition of the a.c. subspace is used, it is natural to ask whether
the orthogonal complement of it coincides with the singular subspace of the ad-
joint operator. The latter is defined to be the closure of the set of vectors such
that the matrix element of the resolvent on such a vector has zero jump a.e. while
crossing the essential spectrum. This question is sometimes referred to as the du-
ality problem for spectral components and is known to have affirmative answer
in the case of trace class perturbations [3], [9].

Our second result is Theorem 2.3: an example of an operator with trivial
singular subspace of the adjoint operator and nontrivial orthogonal complement
of the weak a.c. subspace.

The examples in Theorems 1.6 and 2.3 are optimal in the sense that they are
additive perturbations of unitary operators by operators whose s-numbers can
be chosen to be estimated above by an arbitrary given monotone non-summable
sequence.

Theorems 1.6 and 1.8 are proved in Section 1, Theorem 2.3 in Section 2. In
Section 3 we analyze the weak definition of the a.c. subspace for p 6= 2, and show
that in the dissipative case it gives the same subspace as for p = 2.

NOTATION. (i) C± = {z : ±Im z > 0}, T = {z : |z| = 1}; D = {z : |z| < 1};
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(ii) Hp
±, 0 < p 6 2: Hardy classes of analytic functions in C±, respectively;

(ii) H2: the Hardy space for the unit disk.
For functions with values in a Hilbert space H:

(iv) H2
±: the Hardy space of H-valued functions in C±, respectively; the norm

of an f ∈ H2
± is given by sup

ε>0

∫
R
‖ f (k± iε)‖2

Hdk;

(v) H2: the Hardy space of H-valued functions in the unit disk;
(vi) {en}: the standard basis in l2(Z).

For an operator L in a Hilbert space:
(vii) D(L): the domain of L;
(vii) fu,v(z) = 〈(L− z)−1u, v〉;
(ix) Sp, p > 1: the Shatten–von Neumann classes of compact operators with

summable p-th power of their singular numbers.
The subscripts ± with functions in the complex plane stand for their respec-

tive restrictions to C±.
Various subspaces corresponding to abstract operators are defined in the

paper. We will often suppress the explicit indication of the operator in the nota-
tion for the subspaces when it is clear which operator it refers to.

1. SECTION

Let L be a closed operator in a Hilbert space H. Throughout the paper, it
is assumed that σ(L) ∩ C± are discrete sets. For any p 6 2 one can define the
following subspaces in H:

Hw,p
ac (L) def= ClosH̃w,p

ac (L),(1.1)

H̃w,p
ac (L) def=

{
u ∈ H : (L− z)−1u is analytic in C \R,

〈(L− z)−1u, v〉± ∈ Hp
± for all v ∈ H.

}
.

In the case p = 2 such a subspace is called the weak a.c. subspace of the
operator L. If L is self-adjoint, then for all p, 1 < p 6 2, the subspaces Hw,p

ac (L)
coincide with the a.c. subspace of the operator L defined in the standard way.
We include a proof of this folklore-type assertion in the Appendix. An important
property of the weak a.c. subspace is that similarity of operators, obviously, re-
spects it. Notice that by the uniform boundedness principle the Hp-norms of the

functions fu,v(z) with u ∈ H̃w,p
ac are bounded above when v ranges over the unit

ball in H.
We shall omit throughout the index p in our notation in the case p = 2

writing Hw
ac for Hw,2

ac etc.
For clarity, we restrict our consideration to the situation of the perturbation

theory. From now on, it is assumed additionally that:
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(A) L is a completely nonself-adjoint operator of the form L = A + iV, A = A∗,
V = V∗, D(L) := D(A) ⊂ D(V), and V is A-bounded with a relative bound less than
1, that is, ‖Vu‖2 6 a‖Au‖2 + b‖u‖2, a < 1, for all u ∈ D(A).

This assumption implies, in particular, that

(1.2) iτ(L + iτ)−1 s−→ I, τ → ±∞.

DEFINITION 1.1 ([4]). The subspace

Hac(L) def= Clos H̃ac(L),

H̃ac(L) def=
{

u ∈ H : (L− z)−1u is analytic in C \R,
(|V|1/2(L− z)−1u)± ∈ H2

±

}
,

is called the strong absolutely continuous subspace of the operator L. Elements of the
set H̃ac(L) are called strong smooth vectors.

Notice that there exists a natural generalization of this definition applicable
to operators which do not satisfy the assumption (A) [6].

The main property of the strong smooth vectors is expressed by the follow-
ing

PROPOSITION 1.2 ([4], Theorem 4). There exists a Hilbert space N , an a.c. self-
adjoint operator A0 inN , and a bounded operator P : N → H such that PN = H̃ac(L)
and the equality

(L− z)−1Pg = P(A0 − z)−1g

holds for all g ∈ N and z /∈ R, z ∈ ρ(L).

COROLLARY 1.3. Hw
ac(L) ⊃ Hac(L).

A similar theory is available for perturbations of unitary operators [3]. Let
T be a bounded completely non-unitary operator such that σ(T) has no accumu-
lation points off T.

DEFINITION 1.4. The weak absolutely continuous subspace of the operator T is
the set

Hw
ac(T) def= ClosH̃w

ac(T),

H̃w
ac(T) def= H̃w

+ (T) ∩ H̃w
− (T),

H̃w
+ (T) def=

{
u ∈ H : (T − z)−1u is analytic in D,

〈(T − z)−1u, v〉|D ∈ H2 for all v ∈ H

}
,

H̃w
− (T) def=

{
u ∈ H : (T − z)−1u is analytic in C \D,

〈(I − zT)−1u, v〉|D ∈ H2 for all v ∈ H

}
.



A.C. SUBSPACE OF NONSELFADJOINT OPERATORS 379

Let DT
def= |I − T∗T|1/2. The subspace

Hac(T) def= Clos H̃ac(T),

H̃ac(T) def=


u ∈ H : (i) (T − z)−1u is analytic in C \T,

(ii) DT(T − z)−1u|D ∈ H2,
(iii) DT(I − zT)−1u|D ∈ H2,


is called the strong absolutely continuous subspace of the operator T. Elements of the
linear set H̃ac(T) are called (strong) smooth vectors.

An analog of the Proposition 1.2 holds for the strong smooth vectors of T [3].

COROLLARY 1.5. Hw
ac(T) ⊃ Hac(T).

We now proceed to our results, first for perturbations of unitary operators.
Given a selfadjoint operator D, define λj(D) to be the eigenvalues of D enumer-
ated in the modulus decreasing order. Let {πn}, πn > 0, be a monotone decreas-
ing sequence.

THEOREM 1.6. There exists a bounded completely non-unitary operator T obeying
the following conditions,

(i) T is similar to an a.c. unitary operator (and thus Hw
ac(T) = H);

(ii) Hac(T) = {0};
(iii) I − T∗T ∈ Sp for all p > 1.

Moreover, for any sequence {πn} /∈ l1 there exists an operator T satisfying the conditions
above with (iii) replaced by

(iii’) |λn(I − T∗T)| 6 πn.

This theorem is optimal in the sense that the subspaces Hw
ac and Hac are

known ([10], Proposition 4.10 and Theorem C) to coincide if I − T∗T ∈ S1, pro-
vided that D 6⊂ σess(T). In the terminology of [2], the theorem says that no condi-
tion of the form I − T∗T ∈ Sπ where Sπ is a symmetrically-normed ideal of com-
pact operators containing S1 properly, guarantees the coincidence of Hw

ac and Hac.

Proof. Let H = `2(Z). We shall construct a sequence {ρn}+∞
n=−∞ of positive

numbers such that the weighted bilateral shift operator T defined by

Tej = ρj−1ej−1, j ∈ Z,

has the required properties. Assume that

(1.3) ∑
j
|ρj − 1|p < ∞
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for any p > 1. We are going to need the explicit formula for the resolvent of T,

((T − λ)−1 f )m =


∑

k<m
fk

λm−k−1

∏m−1
k ρj

|λ| < 1,

− ∑
k>m

fk
∏k−1

m ρj

λk−m+1 |λ| > 1.

,

the product in the second sum being treated as 1 when k = m.
Proceeding, let us check that the following implication holds:

(1.4) DT(T − z)−1u|D ∈ H2 =⇒ ∑
n>0

|1− ρ2
n|

∏n−1
0 ρ2

j

< ∞,

provided that u 6= 0. This is done by a direct computation. In the situation under
consideration

DT = diag{|1− ρ2
n|1/2}.

We have (z = reiθ):
π∫
−π

‖DT(T − z)−1 f ‖2dθ = ∑
n
|1− ρ2

n|
π∫
−π

∣∣∣ ∑
k<n

fk
zn−k−1

∏n−1
k ρj

∣∣∣2dθ

= 2π ∑
n
|1− ρ2

n| ∑
k<n

r2(n−k−1) | fk|2

∏n−1
k ρ2

j

.

Thus, the function DT(T − z)−1f is in H2 if and only if the quantity

∑
n
|1− ρ2

n| ∑
k<n

| fk|2

∏n−1
k ρ2

j

= ∑
k

(
∑
n>k

|1− ρ2
n|

∏n−1
k ρ2

j

)
| fk|2

is finite. This means that the sum in parentheses in the right hand side must
be finite for some k. Since this sum, obviously, converges or diverges for all k
simultaneously, the implication (1.4) is established.

The existence of an operator T enjoying the properties (i)–(iii) will be proved
if we construct a sequence {ρj} such that T is similar to an a.c. unitary operator,
the sum in (1.4) diverges, and condition (1.3) is satisfied. Let aj = 1 + 1/j and let

ρj = 1, j 6 1; ρ2j = aj, j > 1; ρ2j+1 = a−1
j , j > 1.

With this choice, (1.3) and the divergence of the sum in (1.4) are straightforward.
Then, define

w2j+1 = a−1
j j > 1; wj = 1 otherwise.

The diagonal operator W = diag{wj}, defined by the sequence {wj} in H, is
obviously bounded, boundedly invertible, and it is easy to check that W−1TW is
the unitary operator of (non-weighted) shift in H.

To verify the second assertion of the theorem one can assume without loss
of generality that π2j+1 = π2j. It is then enough to take {aj} to be any sequence
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of positive numbers such that aj → 1, |1− aj| 6 πj/3, but ∑ |1− aj| = ∞, in the
construction above.

REMARK 1.7. Theorem 1.6 shows that the linear resolvent growth condition

(1.5) sup
z/∈T

(|1− |z| |(T − z)−1) < ∞

does not imply the coincidence of Hac and Hw
ac. Also, it shows that in general

similarity of operators does not respect the strong a.c. subspace.

We now turn to perturbations of selfadjoint operators. Let H = L2(R), and
q(x) be a bounded real function on R satisfying

∑
n

( n+1∫
n

|q|2
)p/2

< ∞ for all p > 1;

q /∈ L1; q is conditionally integrable;

(q(x) = sin x/x is the simplest example). Let L be the operator in H defined by
the differential expression

L = i
d

dx
+ iq(x)

on its natural domain. Notice that the operator L is similar to the operator A =
i(d/dx):

L = WAW−1,

where W is the operator of multiplication by the function exp(−
∫ x
−∞ q).

THEOREM 1.8. The operator L obeys the following conditions:
(i) L is similar to an a.c. selfadjoint operator (and thus Hw

ac(L) = H);
(ii) Hac(L) = {0};

(iii) (L− z)−1 − (A− z)−1 ∈ Sp for all p > 1, Im z 6= 0.

Proof. The operator A is absolutely continuous, hence (i) is immediate. Let
V = Im L. Suppose that u is a strong smooth vector of L. Since W commutes with
the multiplication by a function, this is equivalent to saying that the restrictions
of the function

ϕ(z) = |V|1/2(A− z)−1g, g = Wu,

belong to H2
± in the respective halfplanes. In turn, the latter is equivalent to the

condition ∫
R

‖|V|1/2eitAg‖2dt < ∞

by the Parseval equality for the vector Fourier transform. We have∫
R

‖|V|1/2eitAg‖2dt =
∫
|q(x)| |g(x− t)|2dx dt = ‖g‖2

∫
|q(x)|dx = ∞
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if g 6= 0. This proves (ii). The assertion (iii) is a corollary of the following result
from [1]:

For any δ, 1 < δ < 2, and any functions f , g satisfying

∑
n

( n+1∫
n

| f |2
)δ/2

< ∞, ∑
n

( n+1∫
n

|g|2
)δ/2

< ∞,

the operator T in H defined by

(Tu)(x) =
∫
R

f (x)eixyg(y)u(y)dy

belongs to Sδ.
Applying it to f = q and g(y) = (y − z)−1, Im z 6= 0, we find that the

operator V(A− z)−1 ∈ Sp, p > 1, which implies (iii).

We have preferred to construct directly the example for the real line case,
rather than use the Cayley transform. The reason is that the Cayley transform
of the operator in Theorem 1.6 does not belong to the class for which we have
defined the strong a.c. subspace. It would give the example required if we used
the general definition of Hac(L) from [6] mentioned above.

2. SECTION

Let T be a bounded operator such that σ(T) ⊂ T.

DEFINITION 2.1. The closure of the linear set of vectors u ∈ H such that for
all v ∈ H the nontangential limits

f±u,v(z) = lim
w→z, |w|±1∈D

〈(T − w)−1u, v〉

exist and coincide for a.e. z ∈ T, is called the singular subspace of the operator T. It
is denoted by Hs(T).

As discussed in the Introduction, the duality problem [10] is the question
whether the equality

(2.1) (Hw
ac(T))⊥ = Hs(T∗)

holds.

PROPOSITION 2.2 ([3], Proposition 6.7). If I− T∗T ∈ S1, then (2.1) is satisfied.

In fact, the quoted proposition in [3] establishes (2.1) for completely non-
unitary operators with the strong a.c. subspace in the place of Hw

ac(T). These
subspaces coincide when I − T∗T ∈ S1.
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More generally, (2.1) is known to hold if the characteristic function has weak
boundary values a.e. [6]. In the following example of a non-contractive conjunc-
tion of two bilateral shifts (2.1) fails. In the notation of Definition 1.4 let

CN(T) def= Clos(H̃w
+ (T) ∨ H̃w

− (T)).

Let {ρn}, n > 0, be a sequence of positive numbers monotone decreasing
to 0, and R be an operator in l2(Z) defined by Ren = ρ|n|en, n ∈ Z. Let H =
l2(Z)⊕ l2(Z), and let U be the operator of right shift in l2(Z), Uen = en+1. Define
an operator T in H by

T =
(

U R
0 U

)
.

Obviously, σ(T) = T.

THEOREM 2.3. Let {ρj} /∈ l1. Then the operator T obeys the following conditions:
(i) CN(T) 6= H;

(ii) Hs(T∗) = {0};
(iii) T = T0 + S, where T0 is unitary and S is an operator whose singular numbers,

µn(S), satisfy µn(S) 6 ρ[n/2].

Proof. The assertion (iii) is obvious (in fact, µ2n(S) = µ2n+1(S) = ρn for
n > 1). Then, for any λ /∈ T we have

(T∗ − λ)−1 =
(

(U∗ − λ)−1 0
−(U∗ − λ)−1R(U∗ − λ)−1 (U∗ − λ)−1

)
.

Let

f =
(

f1
f2

)
be from the dense set in the definition of Hs(T∗). Considering the matrix element

〈(T∗ − λ)−1 f , g〉 with g of the form g =
(

f1
0

)
, we conclude that f1 = 0, since U

is an absolutely continuous unitary operator. Then, by the same reason, taking

g =
(

0
f2

)
, we obtain that f2 = 0, hence Hs(T∗) is trivial. Also, the absolute

continuity of U implies that CN(T) ⊃
(

l2(Z)
0

)
. Let us show that in fact

CN(T) =
(

l2(Z)
0

)
.

Actually, we shall show that if for a u =
(

u1
u2

)
∈ H the function

(2.2)
〈
(T − λ)−1u,

(
ej
0

)〉
= 〈(U − λ)−1u1, ej〉 − 〈(U − λ)−1R(U − λ)−1u2, ej〉

is in H2 for all j, and the H2-norm of it is bounded above in j, then u2 = 0. By the

uniform boundedness principle, this is going to imply that H̃w
+ ⊂

(
l2(Z)

0

)
.
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Taking into account that

‖〈(U − ·)−1u1, ej〉‖2
H2 =

∞

∑
1
|u1,k+j|2 6 ‖u‖2,

we only have to check that the H2-norm of the second term in the right hand side
in (2.2) is unbounded as j → ∞ if u2 6= 0. Indeed, a straightforward calculation
gives that for λ ∈ D

〈(U − λ)−1R(U − λ)−1u2, ej〉 =
∞

∑
s=0

λsu2,s+j+2

s+1

∑
m=1

ρ|m+j|.

Thus, the H2-norm of the left hand side is
∞

∑
s=0
|u2,s+j+2|2

∣∣∣ j+s+1

∑
m=j+1

ρ|m|

∣∣∣2.

Suppose that u2,r 6= 0 for some r. Then for j negative enough this norm is

bounded below by |u2,r|2
∣∣∣ r−1

∑
m=j+1

ρ|m|

∣∣∣2 which goes to infinity when j → −∞ by

the assumption about ρj. The inclusion H̃w
− ⊂

(
l2(Z)

0

)
is checked similarly.

As is clear from the proof, in this example the subspaces CN(T) and Hw
ac(T)

coincide. One should mention that the linear resolvent growth condition (1.5) is
violated for the operator T.

3. SECTION

We now turn to the case p 6= 2.

LEMMA 3.1. (L− z0)−1Hw,p1
ac = Hw,p1

ac ⊂ Hw,p2
ac for all z0 ∈ ρ(L) and 1 6

p2 6 p1 6 2 save for p1 = 1.

Proof. An application of the Hölder inequality to the resolvent identity

f(L−z0)−1u,v(z) =
1

z− z0
( fu,v(z)− fu,v(z0))

shows that

(L− z0)−1H̃w,p1
ac ⊂ H̃w,p2

ac

for all z0 ∈ ρ(L). Since the linear set in the left hand side is independent of the
choice of z0 ∈ ρ(L), the asymptotics (1.2) implies that the set is dense in Hw,p1

ac .

It is also easy to check that

(3.1) ‖(L− z)−1u‖ 6 Cu|Im z|−1/p

for any u ∈ H̃w,p
ac , 1 < p 6 2.
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THEOREM 3.2. If L is dissipative (V > 0) and 1 < p 6 2, then Hw,p
ac (L) =

Hw
ac(L).

Proof. Since the inclusion Hw
ac ⊂ Hw,p

ac is contained in Lemma 3.1, it remains
to check that Hw,p

ac ⊂ Hw
ac. We do so by proving that any vector u from a dense

subset in Hw,p
ac is a strong smooth vector. Recall [4] that for a dissipative operator L

the restriction of the function V1/2(L− z)−1w to C− belongs to H2
− for all w ∈ H.

Hence, we only have to verify that

(3.2) (V1/2(L− z)−1u)+ ∈ H2
+

for all u from the dense subset.
Let D = (L + i)−2H̃w,p

ac . This is a dense subset in Hw,p
ac . Let u ∈ D. Taking

into account (3.1) one easily checks that the function (L− · − iε)−1u ∈ L2(R, H)
for any ε > 0. We are first going to show that

(3.3) sup
ε>0

(
ε
∫
R

‖(L− k− iε)−1u‖2dk
)

< ∞.

For ε > 0 and t < 0 we define

(3.4) u(t) = − 1
2πi

lim
N→∞

N∫
−N

ei(k+iε)t(L− k− iε)−1u dk.

Then:
1◦ The limit in (3.4) exists for all t < 0, and is independent of ε > 0.
2◦ sup

t<0
‖u(t)‖ < ∞.

The assertion 1◦ follows immediately from the possibility to rewrite (3.4) in
the form (λ = k + iε)

u(t) = − 1
2πi

∫
R

eiλt

(λ + i)2 (L− λ)−1u2 dk− et(it u1 + u)

where u1 = (L + i)u, u2 = (L + i)2u.
Let us establish 2◦. For any v ∈ H the scalar product 〈u(t), v〉 equals to

− 1
2πi

∫
R

eiλt

(λ + i)2 fu2,v(λ) dk + rt

where |rt| 6 C‖v‖, the bound being uniform in t < 0. Since fu2,v ∈ Hp, one can
pass to the limit ε → 0 in the integral obtained, and use the Hölder inequality to
estimate the modulus of it by

C‖ fu2,v‖Hp 6 C‖v‖

with a constant C independent of t and v. This implies 2◦.
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Let F stand for the conjugate Fourier transform in L2(R, H). Then (3.4)
means that the restriction of the function

Ψ(t) = − 1
i
√

2π
F [(L− · − iε)−1u]

to t < 0 coincides with eεtu(t). On the other hand, Ψ(t) = 0 for t > 0 by the
Paley–Wiener theorem. Applying the Parseval equality and taking into account
the property 2◦, we find

∫
R

‖(L− k− iε)−1u‖2dk = C
0∫

−∞

e2εt‖u(t)‖2 dt 6 Cε−1.

The estimate (3.3) is proved.
We are now going to use the following easily verified identity valid for all

λ ∈ ρ(L) (ε = Im λ),

‖V1/2(L− λ)−1u‖2 = ε‖(L− λ)−1u‖2 − Im fu,u(λ).

The second term in the right hand side can be rewritten in the form

Im
[ 1

λ + i
( fu1,u(λ)− fu1,u(−i))

]
,

which implies that the term is conditionally integrable in Re λ over the real line,
and the integrals are uniformly bounded in ε. Together with (3.3), this shows that
(3.2) is satisfied for all u ∈ D.

REMARK 3.3. In a similar way, the subspaces Hw,p
ac (T) can be defined for

perturbations of unitary operators. These subspaces can be shown to coincide
with Hac(T) for all p, 1 6 p 6 2. The subspaces Hw,p

ac (T) can also be defined
for 0 < p < 1 but they coincide with H for any unitary operator T, rendering
the definition meaningless. The reason is that the Cauchy transform of any finite
measure is in Hp(D) for 0 < p < 1. In the real line context, the definition of the
subspace for p = 1 requires a regularization at infinity.

4. APPENDIX

PROPOSITION 4.1. Let L be a selfadjoint operator and let Hac(L) be its a.c. sub-
space defined via the spectral theorem. Then Hw,p

ac (L) = Hac(L) for all p ∈ (1, 2].

Proof. Let dµu,v(t) be the matrix element of the spectral measure of L on
vectors u, v ∈ H. Then

fu,v(z) =
∫
R

1
t− z

dµu,v(t)



A.C. SUBSPACE OF NONSELFADJOINT OPERATORS 387

for all u, v ∈ H. Let u = (L− z0)−1w with a w ∈ H̃w,p
ac and z0 ∈ ρ(L), then fu,v is

represented as the Cauchy transform of its boundary values:

fu,v(z) =
∫
R

1
(t− z)(t− z0)

fw,v(t)dt.

Notice that (t− z0)−1 fw,v(t) dt is a finite Borel measure. Comparing the two rep-
resentations and using the Riesz brothers theorem, one concludes that the mea-
sure

dµu,v(t)− (t− z0)−1 fw,v(t)dt

is a.c. for all v. Hence dµu,v is a.c. as well. Since the set of such u’s is dense in
Hw,p

ac , the inclusion Hw,p
ac ⊂ Hac follows. The inclusion u ∈ Hw,p

ac is obvious for
any u ∈ Hac satisfying dµu,u/dt ∈ L∞(R). Since the set of such u’s is dense in
u ∈ Hac, this implies thatHac ⊂ Hw,p

ac .
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