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Spectral Analysis of the One-Speed Transport Operator
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Introduction

The present paper deals with the spectral analysis of the non-self-adjoint one-speed transport operator
acting in the Hilbert space L2 of distribution functions. For various geometric situations, this operator is
known to have a rich essential spectrum [1]. Therefore, it seems reasonable to attempt to apply the functional
model [2, 3, 4] to the spectral analysis of it. We shall study the particle transport operator for a slab of
multiplying medium with isotropic scattering surrounded by a perfect absorber. The phase space of this
problem is Γ = R × Ω, Ω ≡ [−1, 1]. For a particle at a point (x, µ) ∈ Γ, the number x ∈ R is the position
and µ ∈ Ω is the cosine of the angle between the particle velocity and the coordinate axis. The absorption
of particles and the production of secondaries are described by the total cross-section σ > 0, the mean
number of secondaries per collision c : R → R+ , and the collision operator K ∈ BL2(Ω). It is assumed that
c ∈ L∞(R).

Let us describe the results of the paper. It was shown in [5] that the spectrum of the transport operator
for the case in which c is proportional to the indicator function of an interval consists of finitely many
eigenvalues lying on the imaginary axis and the essential spectrum that fills the real axis. We prove the same
result for arbitrary compactly supported c ∈ L∞(R) and give an estimate of the Birman–Schwinger type
for the dimension of the subspace corresponding to the discrete spectrum. Our derivation of the spectrum
essentially follows [5] but is somewhat simplified and uses modern terminology. Next, we show that the
essential spectrum of the transport operator is absolutely continuous. The corresponding component Tess

of the operator is similar to a self-adjoint operator for the case in which c /∈ E for a certain singular set
E ⊂ L∞(R). If c ∈ E, then the transport operator is shown to have a unique point of spectral singularity at 0.
In this case, the component Tess is similar to the orthogonal sum of a self-adjoint operator and an operator
with spectrum of finite multiplicity M, which is calculated in terms of c. For the spectral component of
the transport operator corresponding to a neighborhood of the spectral singularity, we also give an estimate
of the angle between the corresponding invariant subspaces. To derive these results, we single out some
invariant subspaces of the model operator using the spectral decomposition of the operator ∆ = 1 − S∗S ,
where S is the characteristic function. The estimate of the angle between these subspaces is reduced to the
estimate of the function S−1 on the real axis.

We point out that the functional model is not involved in the statement of results about the transport
operator and is only used as a tool for their derivation. We also note that the appearance of the spectral
singularity in our problem is completely nonpathological. Namely, it turns out that for any positive compactly
supported c ∈ L∞ , the function κc belongs to E for some values of the constant κ. This distinguishes the
transport operator from another example of an operator with spectral singularities known in mathematical
physics, namely, the Schrödinger operator with complex potential [6, 7], where the spectral singularities
appear ad hoc for specially constructed potentials.

For the reader’s convenience, in Sec. 1 we give a brief description of the functional model of a dissipative
operator. The model is used in the symmetric form [3, 4]. Then we describe the construction of invariant
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subspaces corresponding to the absolutely continuous spectrum. The proofs of results in the abstract part
of the paper (Sec. 1) are omitted for lack of space.

1. The Functional Model

Let L be a closed dissipative operator with bounded imaginary part V = Im L such that σess(L) ⊂ R ,
and let E = Ran V . The characteristic function of L is the contractive analytic function S(z) : E → E ,
z ∈ C+ , defined by the formula

S(z) = I + 2i
√

V (L∗ − z)−1
√

V , z ∈ C+.

By the Fatou theorem [2], S has the boundary values S(k) ≡ S(k+ i0) on the real axis for almost all k ∈ R .
For z ∈ C+ ∩ ρ(L), the characteristic function has the bounded inverse S−1(z) = I − 2i

√
V (L − z)−1

√
V .

Let X = L2

(
I S∗

S I

)
be the Hilbert space obtained by the closure of the linear manifold L2(R, E ⊕ E) in

the metric given by the weight
(

I S∗

S I

)
. We define a subspace K ⊂X as follows:

K =
{(

g̃

g

)
∈X : g̃ + S∗g ∈ H2

−(E), Sg̃ + g ∈ H2
+(E)

}
.

Here the H2
±(E) are the Hardy classes of E -valued functions f analytic in C± , respectively, and satisfying

supε>0

∫
R
‖f(k± iε)‖2

E dk < ∞. Let Ut be the unitary shift group in X given by (Utf)(k) = eiktf(k). Then
the completely non-self-adjoint part of L is unitarily equivalent to the generator of the contraction semigroup
Zt = PKUt|K , where PK is the orthogonal projection on K in X. This generator is called the functional
model of the operator L. Note that since S is a contraction, it follows that ∆(k) = I − S∗(k)S(k) > 0 for
almost all k ∈ R , which allows us to define the space L2(R; ∆) as the closure of L2(R, E) in the metric
given by the weight ∆. In what follows, ( · , · ) stands for the angle between subspaces of a Hilbert space.

We use theorems on dissipative operators corresponding to theorems stated for contractions in [2] without
special explanations.

Throughout the paper, an invariant subspace of an operator is understood as a regular invariant sub-
space, that is, a subspace H is called an invariant subspace of the operator L if (L − z)−1H = H for
all z ∈ ρ(L). Using the functional calculus for the operator L, one can show that every regular invari-
ant subspace of it is invariant in the following natural sense: (i) Dom(L) ∩H = (L − z)−1H, z ∈ ρ(L);
(ii) L(Dom(L) ∩H ) ⊂H. This allows us to define the closed densely defined restriction LH = L|H .

In the following, we introduce some invariant subspaces of the completely non-self-adjoint part of L in
terms of its functional model. In doing so, we omit the operator that accomplishes the unitary equivalence
between the completely non-self-adjoint part of L and its functional model.

We define the absolutely continuous subspace Ne ⊂ K of the operator L [3] as the closure of the set
Ñe of smooth vectors:

Ne = Ñe, Ñe ≡
{

PK

(
g̃

−Sg̃

)
, g̃ ∈ L2(R; ∆)

}
.

Then Ne coincides with the invariant subspace of L corresponding to the canonical factorization S = SiSe

[2] of the characteristic function. We say that the spectrum of L is absolutely continuous if L = L|H0 ⊕L|Ne ,
where H0 is an invariant subspace of L such that L|H0 is a self-adjoint operator with absolutely continuous
spectrum in the sense of spectral theory [12].

Let us define a wave operator W : L2(R; ∆) → K by setting W : g̃ 7→ PK
(

g̃
−Sg̃

)
. As is shown in [4],

W = s-limt→+∞ eiLtJe−iA0t , where J : L2(R; ∆) → K is an isometric identification operator, which can
be given by an explicit formula in terms of the model, and A0 is the operator of multiplication by the
independent variable in L2(R; ∆). The main property of smooth vectors is expressed by the intertwining
relation

(L − z)−1W = W (A0 − z)−1, z ∈ ρ(L). (1)
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The following lemma describes a class of invariant subspaces of the operator L in Ne .
Let {X(k)} be a measurable family of subspaces of E defined for almost all k ∈ R , and let X = {f ∈

L2(R, E) : f(k) ∈ X(k) for almost all k}. We set H = X in L2(R; ∆). We define the multiplicity of the
spectrum of an operator A as the number m(A) = inf dimN, where N ranges over the generating subspaces
of A.

Lemma 1. H = WH is an invariant subspace of the operator L. If S(k) is invertible a.e. on the real
axis in the wide sense, then

m(LH ) = ess sup
k∈R

dim ∆(k)X(k). (2)

If ess supk∈R ‖(S(k)|∆(k)X(k))−1‖ < ∞, then W |H has a bounded inverse and LH is similar to a self-adjoint
operator.

Note that a special case of formula (2) is contained in [8].
Given X , one can always construct a second invariant subspace H ∼ of L such that Ne = HuH ∼ by

applying Lemma 1 to the family {X(k)⊥}. However, in general, the angle (H,H ∼) can hardly be estimated.
Let us describe how to choose {X(k)} so that (H,H ∼) could be estimated in terms of S .

We introduce the operator D(k) = S∗(k)S(k). Given a measurable function k 7→ γk , γk ∈ [0, 1], let
P1(k) and P2(k) be the spectral projections of D(k) for the intervals [0, γk) and [γk, 1] respectively, and
let Xi(k) = RanPi(k), i = 1, 2, so that E = X1(k) ⊕ X2(k), since 0 6 D(k) 6 I . We set Xi = {f ∈
L2(R, E) : f(k) ∈ Xi(k) for almost all k ∈ R}, i = 1, 2. By construction, the pair of orthogonal subspaces
X1, X2 ⊂ L2(R, E) reduces ∆. Let Hi = Xi , i = 1, 2, in L2(R; ∆), so that L2(R; ∆) = H1 ⊕ H2 . By
Lemma 1, Hi = WHi , i = 1, 2, are invariant subspaces of the operator L.

Lemma 2. The following inequality holds :

sin(H1,H2) > ess inf
k∈R

‖(S(k)|X2(k))−1‖−1. (3)

2. The Linear Transport Operator

In what follows, χM ( · ) is the indicator of a set M ⊂ R , 1 is the indicator of the set Ω, f∞ is the
L∞-norm of a function f , ‖ · ‖2 is the norm in the Hilbert–Schmidt class, Uδ(z) = {z′ ∈ C : |z − z′| < δ},
ωδ = Uδ(0)∩C+ , and dµ is the Lebesgue measure on Ω. We introduce the class L+

0 = {d ∈ L∞(R) : d(x) > 0
a.e. and there exists an a such that d(x) = 0 for almost all x with |x| > a}.

The evolution of the distribution function in the Hilbert space H = L2(Γ) is described by the Boltzmann
equation [1]

−i∂tu = Lu.

The generator L, which is called the one-speed transport operator, acts in H by the formula∗

L = iµ∂x + iσ(1 − c(x)K), K =
1
2

∫
Ω

· dµ′

on the domain D = {f ∈ H : f( · , µ) is absolutely continuous for almost all µ ∈ Ω and µ∂xf ∈ H} of its
real part L0 = iµ∂x . The imaginary part of L is bounded. The operator L0 corresponds to the evolution
Ut = exp iL0t, (Ut f)(x, µ) = f(x − µt, µ), of distribution functions in vacuum.

Instead of L, it is convenient to deal with the dissipative operator T = L∗ + iσ = iµ∂x + iσc(x)K .
Without loss of generality, one can set σ = 1; then V = Im T = c(x)K . The subspace RanK in H is
naturally identified with the space L2(R) of functions of the variable x, KH = L2(R) ⊗ 1 ' L2(R).

∗We do not distinguish between the operator K in L2(Ω) and the operator I ⊗K in L2(R ×Ω) = L2(R)⊗L2(Ω) in our
notation.
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3. Spectral Analysis of the Transport Operator

From now on we assume that the slab has a finite width, i.e., c ∈ L+
0 . Depending on the context, we use√

c either for the operator of multiplication by the function
√

c(x) in KH = L2(R) or for the corresponding
element of E ≡ RanV ⊂ KH .

Let R(z) = (T − z)−1 and R0(z) = (L0 − z)−1 . By multiplying the resolvent identity R(z) − R0(z) =
−iR0(z)V R(z) by

√
V , we obtain

R(z) = R0(z) − iR0(z)
√

V (I + i
√

V R0(z)
√

V )−1
√

V R0(z). (4)

Now we see that σ+(T ) ≡ σ(T ) ∩ C+ = {z : −1 ∈ σ(Q(z))}, where Q(z) = i
√

V R0(z)
√

V |Ran V , z ∈ C+ ,
is an operator in the space Ran V ⊂ L2(R). The kernel of the operator Q(z) has the form∗ (see [5])
−1

2

√
c(x)E(−iz|x − y|)√c(y), where E(s) =

∫ ∞
1

e−st dt/t for Re s > 0. The function E(s) admits the
representation

E(s) = − ln s − γ + θ(s), (5)

where θ(s) = −∑∞
m=1(−s)m/(m! m) is an entire function and γ is the Euler constant. Since E(s) = O(ln |s|)

as s → 0 and c is compactly supported, it follows that Q(z) is of the Hilbert–Schmidt class for each z ∈ C+ .
Let {ηn(z)}∞n=1 , |ηn| > |ηn+1| > 0, be the eigenvalues of the operator Q(z). Using (5), one can represent
Q(z) as

Q(z) ≡ Q̃(z) + 1
2Θ(z), (6)

where Q̃(z) is the operator with kernel 1
2

√
c(x)(ln(−iz|x − y|) + γ)

√
c(y); thus, Θ(z) is an entire function

and Q̃(z) is an analytic function in O = C\{−it, t > 0}. According to this formula, Q(z) admits an analytic
continuation from C+ to O.

Theorem 1. Suppose that c ∈ L+
0 . Then the nonreal spectrum σ+(T ) of the operator T consists of

finitely many eigenvalues lying on the imaginary axis. Moreover, T has no associated vectors. The dimension
N(c) of the subspace corresponding to the discrete spectrum satisfies the estimate

N(c) 6 1 +
1
4

∫∫
ln2|x − y| c(x)c(y) dx dy. (7)

The essential spectrum of T coincides with the real axis : σess(T ) = R .
Proof. The operator

√
V R0(z) is compact, since so is Q(z) and

Re Q(z) =
i

2
(
√

V (R0(z) − R0(z))
√

V ) = − Im z
√

V R0(z) · R0(z)
√

V .

By the resolvent identity, it follows that the difference R(z) − R0(z) is compact for z ∈ ρ(T ), Im z 6= 0. By
the Weyl theorem [12], one concludes that σ+(T ) is discrete in C+ and σess(T ) = R

Next, ηn(z) /∈ R for all n (and, in particular, −1 /∈ σ(Q(z))) provided that k ≡ Re z 6= 0. It suffices
to show that the operator ImQ(z) is strictly positive or negative for k 6= 0. Consider the operator Ξ(z) =
iKR0(z)|KH acting in the space KH . In the Fourier representation with respect to the variable x, the
operator Im Ξ(z) acts as the multiplication by the function

rz(p) =
1
4p

ln
(p − k)2 + (Im z)2

(p + k)2 + (Im z)2
. (8)

Clearly, rz(p) < 0 or −rz(p) < 0 and hence Im Ξ(z) < 0 or − Im Ξ(z) < 0 depending on sign k. Since
ImQ(z) =

√
c Im Ξ(z)

√
c|E , it follows that ImQ(z) < 0 or − Im Q(z) < 0. Therefore, σ+(T ) ⊂ iR .

∗This integral kernel is actually calculated in [5, §2] for the case c = c∞χ[−a,a] . The result for arbitrary c ∈ L+
0 is obtained

by an obvious transformation. Below we use some auxiliary estimates on Q obtained in [9, 10] for the case c = c∞χ[−a,a] when

deriving the spectrum, since their proofs in the general case are absolutely the same.
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Let z = iε, ε > 0. In the Fourier representation, Ξ(iε) = Ξ∗(iε) acts as the multiplication by the
function

ξε(p) = −ε

2

∫ 1

−1

dµ

|pµ + iε|2 = − 1
|p| arctan

|p|
ε

.

Thus, Q(iε) =
√

c Ξ(iε)
√

c|E is a negative operator and a monotone increasing function of ε. Consider
Q′(iε) = −i

√
c (dΞ(iε)/dε)

√
c|E . In the Fourier representation, the operator in parentheses acts as the mul-

tiplication by the function (p2 + ε2)−1 . Thus iQ′(iε) > 0. According to standard arguments of perturbation
theory, this implies that (I +Q(z))−1 has simple poles at the points of σ+(T ), and the same is true of R(z)
by (4). Hence T has no associated vectors.

We shall now estimate N(c). Let Nε(c) be the rank of the spectral projection corresponding to the
interval [iε, i∞). Since σ+(T ) is discrete in C+ , it follows that Nε(c) < ∞ for ε > 0. By the monotonicity
and continuity of the functions ηn(iε), we have Nε(c) ≡ #{s > ε : ker(I + Q(is)) 6= 0} = #{τ ∈ (0, 1] :
ker(I + τQ(iε)) 6= 0}, counting multiplicity. According to (6),

2Q(iε) = Q0 + Θ(iε) + (γ + ln ε)P1 ≡ 2Q1(iε) + (γ + ln ε)P1, (9)

where P1 = 〈 · ,√c〉√c, 〈 · , · 〉 is the inner product in L2(R) and Q0 is the operator with kernel√
c(x)c(y) ln |x − y|. Since rankP1 = 1, it follows that

#{τ ∈ (0, 1] : ker(I + τQ(iε)) 6= 0} 6 1 + #{τ ∈ (0, 1] : ker(I + τQ1(iε)) 6= 0} 6 1 + ‖Q1(iε)‖2
2.

We now use the following estimate for Θ(z) (see (5), (6)):

‖Θ(z)‖2 6
∞∑
1

‖Am‖2|z|m
m! m

6 c1

∞∑
1

(2a |z|)m

m! m
6 c1

∞∑
1

(2a |z|)m

m!
= c1(e2a|z| − 1), (10)

where c1 =
∫

R
c(x) dx and Am is the operator with kernel

√
c(x) |x−y|m√

c(y), which satisfies the estimate
‖Am‖2

2 =
∫∫ |x − y|2mc(x)c(y) dx dy 6 (2a)2mc2

1 . This gives

Nε(c) 6 1 + ‖Q1(iε)‖2
2 = 1 + 1

4‖Q0‖2
2 + O(ε).

Since N(c) = limε↓0 Nε(c), we arrive at (7).
Note that σ+(T ) is not empty for any nonzero function c ∈ L+

0 , since ‖Q(it)‖ → ∞ as t → 0 and
‖Q(it)‖ → 0 as t → ∞.

The proof of the finiteness of N(c) given in [5, 9] for the case c = c∞χ[−a,a] is based on the same
considerations (the monotonicity of Q(iε) and the finite rank of the divergent term in the asymptotics of
Q(iε) at 0) but does not contain the estimate (7) of multiplicity, which is apparently new.

Let us decompose the space H into a linear sum of invariant subspaces corresponding to the components
of the spectrum σ(T ), H = Hd uHess , where Hd = PdH , Hess = (I−Pd)H , and Pd is the Riesz projection
corresponding to σ+(T ). By Theorem 1, the subspace Hd is finite-dimensional, and so (Hd, Hess) > 0. An
estimate of the angle (Hd, Hess) for small c is given by the following assertion (we omit the proof).

Proposition 1. Let c be such that the integral in (7) is less than 4 and hence dim Hd = 1. Then

sin(Hd, Hess) > e−γ

4 + π2

1
ac∞

exp
(
− 2

c1

)
.

We now proceed to study the component Tess = T |Hess by means of the functional model.
Note that ReQ(z) 6 0 for z ∈ C+ by the definition of the operator Q, and hence I − Q(z) has a

bounded inverse, ‖(I − Q(z))−1‖ 6 1. For z ∈ C+ , the characteristic function S(z) of the operator T is
expressed in terms of Q as follows [11]:

S(z) =
I + Q(z)
I − Q(z)

. (11)

We see that S admits an analytic extension into an open set containing R \0. The following lemma reduces,
to some extent, the study of the operator-valued function S to that of a scalar analytic function. Recall that
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a scalar analytic function f is called a scalar multiple [2] of S if there exists a bounded analytic function Π
in C+ such that f(z)I = S(z)Π(z) = Π(z)S(z) for z ∈ C+ .

Lemma 3. S has a scalar multiple.
Proof. It follows from (11) that T (z) ≡ S(z) − I , as well as Q(z), belongs to the class S2 for every

z ∈ C+ . Let us show that ‖T (z)‖2 is uniformly bounded in C+ . Indeed, by (6),

T (z) = (A + Θ(z))(I − Q(z))−1 + M(z),

where rankM(z) = 1 and ‖A‖2 < ∞. Since ‖T (z)‖ 6 1 + ‖S(z)‖ 6 2, we have ‖M(z)‖2 = ‖M(z)‖ 6
2 + ‖A‖ + Cδ|z| 6 C1,δ for |z| 6 δ . It follows that supz∈ωδ

‖T (z)‖2 6 C̃δ < ∞, since ‖Θ(z)‖2 6 Cδ|z| for
|z| 6 δ by (10). Lemma 5 in [10] states, in our notation, that∗

‖Q(z)‖2
2 6 Cε

1 + |Re z| (12)

for z ∈ Πε ∩ {z : |Re z| > 1} for any ε > 0, where Πε = {z : 0 6 Im z 6 ε}. Choosing an arbitrary ε ∈ (0, 1]
and taking δ >

√
2, we obtain ‖T (z)‖2 6 C < ∞ for z ∈ Πε . Then, by the obvious inequality |E(s)| 6

E(Re s) 6 E(Re s0), which is valid for 0 < Re s0 6 Re s, we have ‖Q(z)‖2 6 ‖Q(iε)‖2 < ∞ for z ∈ C+ \Πε .
Combining these estimates, we obtain supz∈C+

‖T (z)‖2 < ∞. Let m(z) ≡ det(I − T 2(z)). We now use the
following fact, essentially proved in [13]. If A( · ) is an S2 -valued function on a domain D ⊂ C analytic in
the operator norm and satisfying supz∈D ‖A(z)‖2 < ∞, then s(z) = det(I − A2(z)) is a scalar multiple of
S(z) = I + A(z) provided that s(z) 6≡ 0. Since T ( · ) is obviously analytic, we conclude that m is a scalar
multiple of S .

The estimate (12) was used in [10] for the derivation of some pointwise asymptotics of solutions of the
Boltzmann equation. However, the derivation itself contains an error. Namely, the logarithmic estimate for
(I + Q(z))−1 in the vicinity of 0 given by Lemma 6 in [10] is false in general.

Let Bc = {kn = limε↓0 ηn(iε) : |kn| < ∞}. We define the singular set E = {c ∈ L+
0 : −1 ∈ Bc}. Note

that for any c ∈ L+
0 the function κc belongs to E for the infinite discrete set {−k−1

n , kn ∈ Bc} of values of
the constant κ > 0. The following lemma explains why we consider the set E.

Lemma 4. 1. If c ∈ E, then S(iρ)f(ρ) → 0 as ρ → 0 for some function f : (0, 1) → {u ∈ E, ‖u‖ = 1}.
2. If c /∈ E, then supz∈ωδ

‖S−1(z)‖ < ∞ for sufficiently small δ > 0.
Proof. 1. By the definition of the set E, there exists a normalized eigenfunction ϕρ of Q(iρ), Q(iρ)ϕρ =

η(ρ)ϕρ , such that η(ρ) → −1 as ρ → 0. It suffices to take f(ρ) = ϕρ .
2. By (11), we have S−1(z) = −I + 2(I + Q(z))−1 for z ∈ C+ \ σ+ , and thus the desired estimate is

equivalent to the finiteness of supz∈ωδ
‖(I + Q(z))−1‖. Suppose, on the contrary, that (I + Q(zn))ϕn → 0

as zn → 0 for some sequence {ϕn}, ‖ϕn‖ = 1. Then 〈Im Q(zn)ϕn, ϕn〉 → 0. Taking into account the fact
that ImQ(z) is sign-definite for Re z 6= 0 and ImQ(z) = 0 for Re z = 0, we see that Im Q(zn)ϕn → 0 and
hence (I + Re Q(zn))ϕn → 0. By (6), ReQ(z)−Q(i|z|) → 0 in the operator norm as z → 0. It follows that
(I + Q(i|zn|))ϕn → 0, which contradicts the assumption that c /∈ E.

Thus, for c ∈ E the function S−1( · ) is unbounded in a neighborhood of 0. A priori there are two possible
causes of this behavior, namely, the presence of a “singular” inner factor in the canonical factorization of
the function S and/or a spectral singularity at the point 0. Following [3], we say that a point k ∈ R is a
spectral singularity if supz∈Uδ(k)∩C+

‖S−1
e (z)‖ = ∞ for all δ > 0. In Proposition 2 below, we show that only

the second possibility can occur. Let us first obtain an explicit description of the set E.
Lemma 5. S( · ) is continuous at 0 in the operator norm, and

c ∈ E ⇐⇒ ker
(
I − Q̃2

0 −
2
ϑc

〈 · ,√c〉√c
)
6= 0, (13)

where Q̃0 is the integral operator with kernel 1
2

√
c(x) ln(|x − y|/(2a))

√
c(y) and ϑc = 〈(I − Q̃0)−1

√
c,
√

c〉.
∗This estimate was essentially established in the course of the proof. The statement of Lemma 5 in [10] is weakened to

the estimate of the operator norm of Q(z).
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Proof. Since ‖Θ(z)‖ = o(1) as z → 0, it follows from (6) that (I − Q̃(z))−1 exists and is bounded for
z ∈ ωδ provided that δ is sufficiently small. We see from the identity

(I − Q(z))−1 − (I − Q̃(z))−1 = −(I − Q(z))−1 Θ(z)
2

(I − Q̃(z))−1 (14)

that S is continuous at 0 whenever so is (I − Q̃(z))−1 , since S(z) = −I + 2(I − Q(z))−1 by (11). We
now use Lemma 7 in [9], which states, in our notation, that Q̃0 < 0, and hence the operator I − Q̃0 has a
bounded inverse and ϑc 6= 0. Set α(z) = 1

2 ln(−2aeγiz). A straightforward computation from the formula
Q̃(z) = Q̃0 + α(z)P1 gives

(I − Q̃(z))−1 = (I − Q̃0)−1 +
α(z)

1 − α(z)ϑc
(I − Q̃0)−1P1(I − Q̃0)−1. (15)

Thus, S is continuous at 0, and

S(0) =
I + Q̃0

I − Q̃0

− 2
ϑc

(I − Q̃0)−1P1(I − Q̃0)−1.

Multiplying this equality on the left and right by I − Q̃0 , we obtain (13), since c ∈ E if and only if
kerS(0) 6= 0.

Proposition 2. The spectrum of the component Tess of the operator T is purely absolutely continuous.
Proof. Note that the scalar multiple m admits an analytic continuation into an open neighborhood

of R \ 0, since so does Q(z) as an S2 -valued function. This means that the singular component ms in the
canonical factorization of m has the form ms(z) = eiµ1z−µ2i/z with some µ1, µ2 > 0.

We see from (15) that (I − Q̃(z))−1 is a bounded analytic function in Uτ (0)∩O, τ = (2aeγ)−1 . Solving
identity (14) with z ∈ ωτ for (I − Q(z))−1 and taking into account the fact that ‖Θ(z)‖ = o(1) as z → 0,
we find that (I − Q(z))−1 , and therefore S(z), admits a bounded analytic continuation into Uδ(0) ∩ O for
sufficiently small δ . Arguing as in the beginning of the proof of Lemma 3, we see that m admits an analytic
continuation into Uδ(0)∩O, which is bounded in view of the inequality |det(I −A2)| 6 exp(‖A‖2

2), A ∈ S2 .
It follows that µ2 = 0. Indeed, otherwise an application of the Carlson theorem [12] to the function g(1/z),
where g(z) = eµ2i/(2z)m(z), implies g ≡ 0.

Next, ‖Q(iε)‖2 → 0 as ε → ∞ by the Lebesgue theorem. Hence m(iε) → 1 as ε → ∞. This implies
µ1 = 0. Finally, m(z) = 0 for z ∈ C+ if and only if z ∈ σ+ . Indeed, m(z) = det(S(z)(2 + S(z))) and thus
m(z) = 0 if either kerS(z) 6= 0 or ker(2 + S(z)) 6= 0. The latter is impossible, since ‖S(z)‖ 6 1. It follows
that the canonical factorization of m has the form m = bme , where me is an outer function and b is the
finite Blaschke product corresponding to the set σ+ . Let S = BS̃ be the canonical factorization of S . The
factor S̃ coincides with the characteristic function of the operator T̃ess = T |Ne , where Ne is the absolutely
continuous subspace of the operator T [3]. Since me is a scalar multiple of S̃ by [2, Proposition V.6.4], we
have σ(T̃ess) ⊂ R , and so T̃ess ⊂ Tess .

It remains to note that Ne = Hess ª H0 . Indeed, since (Hd, Hess) > 0, we have H ª H0 = Ne uNi ,
where Ni is the inner subspace of T (see [3]). In our case Ni = Hd , and the desired equality follows.

Thus, the point 0 is a spectral singularity of the operator T if c ∈ E. According to the Nagy–Foiaş
criterion [2], this means that if c ∈ E, then Tess is not similar to a self-adjoint operator.

Proposition 3. If c /∈ E, then Tess is similar to a self-adjoint operator.
Proof. First, we note that supz∈X ‖S̃−1(z)‖ < ∞ for any compact set X ⊂ C+ , since σ(Tess) ⊂ R .

Next, ‖Q(z)‖ 6 ‖Q(i Im z)‖ → 0 as Im z → ∞. From this and the estimate (12), we conclude that S(z) → I
in the operator norm as z → ∞ in C+ uniformly in arg z . By passing to the limit as Im z → 0 in (8), we see
that, depending on sign k, either Im Q(k) < 0 or − Im Q(k) < 0, and so ker S(k) = 0 for k 6= 0. Combining
these assertions, we see that supz∈C+\ωδ

‖S̃−1(z)‖ < ∞, since S̃−1 = S−1B with B a contraction. Note that
this conclusion does not depend on the assumption that c /∈ E. Finally, taking into account item 2 of Lemma
4, we obtain supz∈C+

‖S̃−1(z)‖ < ∞, and the result follows from the Nagy-Foiaş criterion.
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At the abstract level, one can always construct a decomposition Tess = T1 u T2 of Tess into a linear
sum such that the component T2 is similar to a self-adjoint operator by setting γk ≡ β , β ∈ (0, 1), in the
construction of Sec. 1. If S(z) ∈ I + S∞ and the function S is continuous up to the real axis and at infinity
in the operator norm, as is the case in our problem, then the multiplicity of the spectrum of T1 is finite
for any β ∈ (0, 1). Note that if S fails to be continuous at least at one point, then it may happen that
m(T1) = ∞ for all β > 0. Let M = dim kerS(0). Since the point 0 is the unique spectral singularity of T
for c ∈ E, it follows that m(T1) = M for sufficiently small β , and this number is the minimum possible. At
the same time, an effective estimate of the angle between the corresponding invariant subspaces does not
follow from abstract arguments. As is shown in Theorem 2 below, which summarizes the results pertaining
to the case c ∈ E, one can choose the function γk in our problem in such a way that m(T1) = M, while for
the spectral component of Tess corresponding to a neighborhood of the spectral singularity the angle can be
estimated in terms of the operator Q.

Let χδ be the operator of multiplication by the indicator function of the set R \ [−δ, δ], δ 6= 0, in
L2(R; ∆). Then Pδ = I − WχδW

−1 is the spectral projection of the operator T for the interval [−δ, δ]
in the following sense: (i) Pδ is a bounded operator in Ne and P 2

δ = Pδ ; (ii) Pδ commutes with R(z)
for all z ∈ ρ(T ) and thus RanPδ is an invariant subspace of the operator T ; (iii) σ(T |RanPδ

) = [−δ, δ];
(iv) any invariant subspace G ⊂ Ne of the operator T such that σ(T |G) ⊂ [−δ, δ] is contained in RanPδ .
Properties (i)–(iii) follow from Lemma 1 and relation (1). Property (iv) follows, say, from the existence of a
scalar multiple [2, Theorem VII.6.2].

Theorem 2. If c ∈ E, then for all sufficiently small δ 6= 0 the operator Tess can be represented as the
linear sum Tess = T1 u T2 of operators T1 and T2 acting in invariant subspaces H1 and H2 such that

(1) T1 has the spectrum σ(T1) = [−δ, δ] of multiplicity M = dim ker S(0);
(2) T2 is similar to a self-adjoint operator and σ(T2) = R ;
(3) (H1,H2) > 0. The angle (H1,PδH2) admits the estimate

sin(H1,PδH2) > p/
√

2, p = dist(0, σ(S(0)) \ {0}).
Proof. Choose a δ 6= 0 such that the rank of spectral projection of the operator D(k) for the interval

[0, p2/2) is equal to M for all k ∈ [−δ, δ]. We define the subspaces X1(k), X2(k) ⊂ E according to the
construction of Sec. 1 with γk = 1

2p2χ[−δ,δ](k). By Lemma 1, Hi = WXi , i = 1, 2, are invariant subspaces
of T , m(T1) = M, and the restriction T2 = T |H2 is similar to a self-adjoint operator. Indeed, S|X2 has a
bounded inverse, since supk∈[−δ,δ] ‖(S(k)|X2(k))−1‖ 6

√
2/p < ∞ and sup|k|>δ ‖S−1(k)‖ < ∞ (see the proof

of Proposition 3).
Using the estimate (10) and formulas (14), (15), we can readily estimate δ from below. The result is as

follows.
Remark. The assertions of items (1)–(3) of Theorem 2 hold for

δ <
1
2a

exp
(
− 64Υ2

p2

ac2
2

c1
− γ

)
,

where c2 = ‖c‖L2(R) and Υ =
( ∫ 1

−1

∫ 1

−1
ln4 |x − y| dx dy

)1/4 .

4. Concluding Remarks

(a) In the limit case of our model, when c(x) ≡ c∞ for all x ∈ R , the spectrum of the operator T can
readily be calculated with the use of the Fourier transform with respect to x. The result is σ(T ) = R∪[ic∞, 0).
This fact is natural in the sense that for arbitrary c ∈ L+

0 we have N(cε) → ∞ for cε(x) = c(εx) as ε → 0.
Note that in this case T is not a spectral operator (see [14]) for all c∞ > 0. Indeed, it can be shown

that although the spectral projection Pα of T for the interval [iα, ic∞] is bounded for α > 0, ‖Pα‖ → ∞
as α → 0, that is, T does not possess property (B) of spectral operators.

(b) The subcriticality condition c∞ 6 1 is necessary and sufficient for the dissipativity of L. At the
same time, the operator T is dissipative for any nonnegative c ∈ L∞ . Thus, for c∞ > 1 one can use (7) as
a rough estimate of the number of exponentially increasing modes for the supercritical transport problem.
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