ISSN 0012-2661, Differential Equations, 2009, Vol. 45, No. 3, pp. 305-322. (© Pleiades Publishing, Ltd., 2009.
Original Russian Text (© V.V. Basov, E.V. Fedorova, 2009, published in Differentsial’nye Uravneniya, 2009, Vol. 45, No. 3, pp. 297-313.

ORDINARY DIFFERENTIAL EQUATIONS

A Generalized Normal Form and Formal Equivalence
of Two-Dimensional Systems
with Quadratic Zero Approximation: IV

V. V. Basov and E. V. Fedorova

St. Petersburg State University, St. Petersburg, Russia
Received May 16, 2007

Abstract— We continue the study of invertible formal transformations of two-dimensional
autonomous systems of differential equations with zero approximation represented by homo-
geneous polynomials of degree 2 and with perturbations in the form of power series without
terms of order < 3. In the regular case, we consider systems that have the canonical form
(ax? —sgn a3, x122) with a # 0 as the zero approximation.

For such systems, we obtain resonance equations in closed form and use them to prove the
theorem on the formal equivalence of systems and establish a generalized normal form to which
any original system can be reduced by an invertible change of variables.
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The present paper is an immediate continuation of [1-3]; therefore, we preserve the notation
and continue the numbering of sections, formulas, theorems, remarks, corollaries, and examples.

12. SYSTEMS WITH ZERO APPROXIMATION (ax] — sgn a3, 212s)

0°. Consider system (1) whose unperturbed part belongs to the regular case and has the form
(a1,0,¢1)(0,2b5,0), where a;c; < 0 and by # 0. Then the linear change of variables (12)

((202)71,0)(0, (2[b2c1])7?)

reduces it to a system with unperturbed part («, 0, — sgn «)(0, 1, 0), that is, the canonical form (155);
here ao = a1 /(2by) # 0. Therefore, let us study the system

i = ax? — azri + X (21, 20), Ty = 19 + Xo(x1, X3) (a #0, o =sgna). (151)

Let the change of variables (2) z; = y; + hi(y1,y2) with h; = 32, A (y1,2) (i = 1,2) bring

p=2""

system (151) to system (3) of the form g, = ozyf - &y% +Yi(Y1,92)s U2 = y1y2 + Ya(y1,y2), where

00 q
Y= ZYi(pH)(yhyz)a Zi(q)(zb z) = Z Zi(S’q_S)ZfZgis‘

p=2 s=0

By differentiating (2) according to (151) and (3), by matching the coefficients of yiys™'~*

(0<s<p+1,p=>2), and by using the notation (4)

y(spti=s) _ yspti=s) _ y(sptl-s)

2

(where the Y;"""'™%) are known), we obtain a system of the form (5),

(a(s —3)+p—s+ DA _G(s 4 DAY foapg P = ylermoty,

_ (152)
(OZ(S o 1) +p— s)hgs—l,p—s+l) o CAJZ(S + 1)h;s+1,p—s—1) o hgs,p—s) _ er(s.,p—s—i—l)'
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306 BASOV, FEDOROVA

For p = 2, system (152) is consistent provided that the following equations hold:

20a - )Y, 42y -y = v =z
a(l— )" =y — 21 — )V, 4 20y = & (153)
if a=1/2, then Y*” =2 (A" is arbitrary).
Likewise, the following resonance equations should hold for p = 3:
a2Y'1(074) - Y'1(470) - aa2Y'2(173) - aY'2(371) =,
(a+1)(B3a — 1YY +3a(3a — 1)Y,*Y — 320 + 1), HY

+a(1 = 20)(3a — 1)Y>? 4+ (a+ 1)(3a — 1)(3 — 20) Y = &
if a=2, then 4YV*? +5y*Y —2y Y =% (r? is arbitrary).

(154)

In (153), (154), and all forthcoming resonance equations of the form (a,Y’) = ¢, the constant ¢ is
known and, by (7), is equal to (a,Y").
Now for the indices p > 4 and s, it is convenient to introduce the expansions

p=2r+p (TZQ’:UE{Ovl})’ s=2T+p+v (_(V+M)/2§T§T7 VE{Ovl})'
Then for arbitrary r > 2, system (152) splits into two systems

(27 + p+v—3) +2(r —7) + 1 — p)h TV LECTD D

_ a(27_ +u4v+ 1)h§2r+u+u+l,2(r77)71171) + 2ahé27’+u+1/72(r77')7u) _ )/}1(27'+u+u,2(r77')71/+1)’ (155M)
(@21 + p4 v —1) 4 2(r — 7) — p)RSTHHHY L2

_ &(27- +u+v+ 1)thT+H+V+172(T_T)_V_1) o hg27+,u+l/,2(r—‘r)—u) _ }’}’2(27'-'1-#-‘1-1/,2(7’—7')—1/—‘,-1).

(The coefficients are zero if one of the superscripts is less than zero.)
By setting v = 1 in (155%) and v = 0 in (155%) and then vice versa, for each p = 2r + u from
system (155*), we obtain two independent systems

(@27 + p— 2) + 2(r — 7)) BT
. a(ZT + M + 2)h§27+u+272(r77')72) + 2&hé27+u+172(r77')71)

= YT ()2 <1 <),

hg27'+,u—1,2(r—7')+1)

(156")
(a2 +p—1)+2(r—1))

_ a(27- fu4 1)hg27'+u+172(rf'r)71) _ h§27+u72(r77))
_ %(27+M72(r7‘r)+1) (O <7< r);
(@27 + p = 3) +2(r — 7) 4+ DAFTHIATIRY
_ a(27- fu4 1)h§27+u+172(r77')71) + 2&hg27+u72(r77'))
— YT < <),
(157+)
(@27 + p) +2(r — 1) — DRGTHACT)
. a(zT Tt 2)hg27'+u+272(r7'r)72) . h§27+u+172(r77)71)
= Y,AT) (k)2 < T <),
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A GENERALIZED NORMAL FORM AND FORMAL EQUIVALENCE ...: IV 307

In systems (156°) and (156'), we set f/fT e A R (2’7(1;2),” c ”) h . =
R =TT and BT = (M} i1yapys - Piy) (8= 1,25 p = 0,1). By passing to the new
notation and by substituting ], from the second subsystem in (156*) into the first one, we obtain

the system
crhy, +azhy o +bhy =Y, (T=—py...,7),

where
a; = —a(2a(47* + 27 + (47 + 2)p) + (2r — 27 — 1) (47 + 3+ 2u) — 3),

by = (27 4+ 24 p)(27 + 3+ ),
e = (21 =24 p)+2(r — 7)) (a2 = 14+ p) + 2(r — 7)),
Yo, =Y+ (27 — 24 p) +2(r — 7)Yy, — a27 + 2+ w)Y5 s,
or the system
ohy =17, (158)
where © is the tridiagonal (r + 1+ p) X (r 4+ @) matrix with entries 0, , = a, (1 = —p,...,r—1),
Orri1 =0, (1=—p,...,r—2),and 0, , 1 =c¢, (T =1—p,...,r) and Yy is the vector Yj =
(Yo 5.+, Yy, ); here we assume that Yy |, Yy, ., = 0.
In systems (157°) and (157'), we set ?ff = Y@roitrteren =iy (Y
h;-,— _ hz(l27—72+i+u,2(r77')+2—i)7 and b = (hzr,(Q—i)(l—uy o h:,r)'

By substituting 2ahj . from the first subsystem in (157*) into the second one, we obtain the
System
CTh?{,T + a‘l'h‘q,7'+l + b7h1£77'+2 = )/O?:‘r (7— = M. 7T)7

where _
a; = —a(20(47% + 27 — 1+ (47 + 2)p) + (2r — 27 — 1) (47 + 3+ 2u) — 2),

b, (2T+2+u)(27+3+u)
=(a@2r=3+p)+2(r—7)+ (a2 +pu)+2(r—7)—1),
Yoz (@27 + p) +2(r — 7) = DY}, — @27 + 2+ )Y/, — 2aY;,

or the system

O"h =Y, (159#)

where ©" and Y have the same structure as in system (158*) and 17{:71, ?{T 1 =0.
1°. Let us study system (158"). To annihilate ¢, ..., ¢,, we introduce numbers d, by the formulas
dy = ag # 0, d, =a, —c;b,_1/d, .y if d,1#0 (1<7<r—-1). (160,)

The following two cases are possible:
(i) there exists a 7 (1 <7 <r — 1) such that do,...,d;_; # 0 and d; = 0;
(ii) do,...,d,_1 # 0. In the latter case, we set 7 = r.

Lemma 3. For the numbers d. in (160,), one has the closed-form expression
—a(27 4+ 3)2ar +2(r — 1) — 2), (161,)
where T =0,...,7 in case (i) and 7 =0,...,r — 1 in case (ii).

We split the set of pairs (a,r) with a # 0 and r > 2 into two families
{O‘ﬂa}% = {_k/lv (k + l)n + 1}k,l,n€N7 T = lTL; {Oé,?“}(lJ = {(Oé,?“) ¢ {Oé,’l"}}}-

Lemma 4. If (o,r) € {a,7}1, then case (i) with ¥ = 1, holds for d, in (161)y; if (o, 7) € {c, 7}7,
then case (ii) holds and 7 =19 = 1.
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308 BASOV, FEDOROVA

System (158%) can be reduced by the Gauss method to the form

OLh, =Y/, (162,)
where
dy by ... 0 0 0 o ... 0 0
0 d; 0 0 0 0 0 0
0 O ds_1 bz_; 0 o ... 0 0
0 0 0 0 b o ... 0 0
O;=| 0 0 0 Cri1 Qrpr bryr o 0 ;

0 0 0 0 Cyio Qypo - 0 0
0 0 0 0 0 0 . Gp_g by_s
0 0 . 0 0 0 0 . Cr—1 Qpr_q

0 0 0 o ... 0 Cr

Y; has the entries Y], = Y7, Y;, = Yy, — (¢./d-—1)Y ., (r = 1,...,7), and Y] = Y{,
(r=7%41,...,r), and the numbers a,, b,, ¢,, and d, are defined in (158") and (161;). Obviously,

T

vy =S (-17vy, [[ e/dr (r=0,....%).

§=0 v=j+1

The first 7 equations in system (162;) are uniquely solvable for A ,,..., A ., and the 7th equa-
tion has the form

0- hg,% +0- hg,%+1 + b;h;;ﬂ = Ydﬁ% (hg,r+1a hg,r+2 = 0)' (1631)

In case (ii), 7 = r, ©} is a bidiagonal matrix with zero last row, and Eq. (163;), which is the
last in (162,), has the form 0 - h;, = Yj .
In case (i), let us single out the last r — 7 = kn + 1 > 2 equations in (162;):

e, thyt =Y, (164,)
where ©/}" is a tridiagonal upper triangular matrix with main diagonal ¢z 4, ...,c,,
hyt = (hyspns- s hay), YT = (Yo, -, Y0,)
Let us split the pairs («,r) into three disjoint families in a different way,

{avr}%c = {Oz,’l"}%, 7_16 =ln+1;
{a,r}ie={-2k/(2l - 1),(2n — 1)(k + 1) — n + 1} 1nen, 15 =2In—-1-n+1;
{7} = {(e,r) & {a, 711" U {e, 1 }1%}.

Set ¢, = ., where ¢. = a(21 —2)+2(r —7) and ¢! = (27 — 1) + 2(r — 7).

TOT)

Lemma 5. If (a,7) € {a,7}{¢ (v = 1,2), then ¢, = 0 in (158") only for T = 7£, and if
(a,r) € {a,r}i°, then ci,...,c, #0.
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Corollary 19. In system (158°), one has cy,...,c, # 0 except that ¢, =0 if (a,7) € {a, 7}
and &1 = 0if (a,r) € {a, 7} C {a, r}).
Consequently, in case (i), one can introduce the matrix G = {g;}7 ;_,,, with entries
g-; =0 Vr=7+1,...,r (F+1<j<7-1) (gr417 = 0),
grr = 1, Grj = —(grj—10j-1 + grj_2bj_2)/c; (r+1<ji<r).

Then GO}" = {grj_2bj—2 + grj_10;_1 + grjC;}r josyy = diag{cs11,..., ¢, }, and system (164;) mul-
tiplied by the matrix G on the left is equivalent to the system

(165,)

crhy, = ZgTjY({j (r=7+1,...,r). (166,

We return to Eq. (163,) and substitute there the closed-form expression for Y, in (162;) and,
in case (i), the expression for hj ., in (166;) (cr2 # 0); then

7

0-hypn = (1) H Y- Z gr+27Yg (1671)

j=0 v=j+1 j=7+2

In (167,), we express Y ; via EA/ZTJ (¢ =1,2). To this end, we introduce the constants

¥

uy=a"7 ] (e(2v = 1) +2(r —v))/(2v + 1),

v=j+1
v; = (=20 +2(r — ) /(25 +1)  (j=0,...,7), (168,)
uzy =0, Vi1 = —20(7 + 1),
Uj = —b%9%+2j/0%+2,
i = —bz((a(2) —2) +2(r — j))gr12; — 205gr12j-1)/Cry2 (J=7+2,...,7);

then, by (158°) and (161,), u; = (—1)"~7 HV:].H c/dy—1, v, = (25 —2)a+2(r — j))u; — 2jau;_q
(j=0,...,7), ur =1, and vy = (=2a+ 2(r — 7)) /(27 + 1).
Now, by (158°), in (167,), we have

7+1

Zuj}/OTj Zuj i+ Z,UJYY;j
3=0

and
Z Gra25Y0,; = Z graz i (V7 + (a(2) — 2) +2(r — §))Y5,) — Z 20jgz42-1Y5 ;-
J=7+2 j=7+2 =713
As a result, relation (167;) acquires the form
DY+ oY) +oen Yo + Y (WY +0,¥5)) =0 (169:)

j=0 j=r+2

If (o, 7) € {a,r}], then, by Lemma 4 and Corollary 19, ¥ = 7; and ¢,, {; = 0; therefore, (166;)
with 7 = 7, + 1 provides the additional resonance relatlon 0-hy = Zj 1419115 Y0, which,
by analogy with (169;), can be represented in the form

T

Z (u 1YT —|—v1Y2Tj) =0, (a,r) € {a,7}] (R . 4, is arbitrary), (170,)

Jj=T1+1

where uj = g7, 115, vj = 2(a(j — 1) + 7 = j)gr,+1j — 20Jgr, 411, and gy; is given by (165;).

DIFFERENTIAL EQUATIONS Vol. 45 No.3 2009
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Let us rewrite relations (169;) and (170;) in terms of the coefficients of system (3).
By definition (168;), we have u;,v; = 0 for 0 < j <7 — 1 provided that

b

II (a2v—1)+2(r—v)) =0

v=j+1

(ie., cf, -+ cf=0). In addition, v; =0 (0 < j < 7) if —2a+2(r —j) =0, ie,if j=r—a.

Let us introduce the family

{a7 7’}1) = {n7 m}m,neN, m>2 C ({a7 T}?\{a7 T}%c)'

Then v; = 0 & (a,r) € {o,7}} and j = m — n. By using Corollary 19, one can readily transform
Eq. (169,) in case (ii) for 7 = r.

Let (a,7) € {a,7}3¢ C {a, 7} e, a = =2k/(2l—1) and r = 2n—1)(k+1)—n+1 (k,l,n € N).
Then 75 =2in — 1l —n+1 (1 < 75 <r —1); therefore, uj,v; # 0 (j = 75,...,r), since they do not
contain ¢. = 0, and relation (169;) has the form

Z (ujyl(2j+172(rfj)) + ijz(Zjﬂ(T*jHl)) -7 (169%)
=75

If (o, 7) € {a,7}9\{a, 7}7¢, then Eq. (169,) acquires the form

S (YD) gy B2 5 (> 2), (1699)

=0

and all u;,v; are nonzero except for v,,_, =0 for (a,7) € {a,r}7.
Let (a,7) € {a,r}i = {a,r}® (F = 7). Let us estimate u; and v; in (169;) and (170,) by
introducing the following recursive sequence for 7 =7 4+ 1,...,r —1:

f‘r'r = —a,, ij = _aj — bj,lcj/ij,l (T + 1 Sj S T — ].) fOI' ij,:L # O (1711)
By induction over j, one can show that
9rj=9rj—1frjm/c;  (G=7+1...1r, g-=1) (1724)

in (165;) for 7 = 7.
Since a« = —k/l, r = (k+1)n+ 1, and 7, = In, we have

;= (2n(k +1) +2 — 27 — k(21 — 2)/)(2n(k + 1) + 2 — 27 — k(27 — 1)/1)

in (158°), and ¢, =0 for 7 = In + (k + 21)/(2k + 21), In + 1; therefore, ¢, > 0 for 7 > 7 + 2.

To estimate the numbers f,; from below, we introduce &§; = —2(j + 1)(«(2j +1) +2(r — j) — 2)
(j=mn+1,...,r—1). Since §; = 0 for j = —1, In — k/(2k + 2l), we have &; > 0 for j > In.
By induction, f,; > & (t=mn+1,71+2,j=7,...,r—1). By virtue of (165,) and (172,), we have
grj > Grj-1&j-1/c; >0 (j =74 1,...,7) for such 7; consequently, u; < 0 and u} > 0.

Since ¢ = 0 for j = 7 4+ 1, we have v; |, = 0 and ¢}, (2§ — 1) +2(r — j) < 0 for j > 7 + 2
in (170,); therefore, the expression

((2j = 2) +2(r — J))grj — 20g- j—1
occurring in v; in (168;) and in v; in (170;) is negative.
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As a result, if (a,r) € {a,r}], then Eq. (170,) acquires the form

uil+1Y1(2n+3,2(r—n)—2)+ Z (u;}/vl(2j+1,2(r—j))+,UJ1_}/2(2j,2(r—j)+l)) :E, (170%)
j=11+2

where uj > 0 and v; < 0 for all j; next, u; < 0 and v; > 0 for j =7 +2,...,r in Eq. (169,), and
Eq. (169, ) acquires the form

T1
Z(ujyl(2j+l72(f’—3)) _|_ij'2(2J72(T’—J)+1)) +UﬁHY2(2(71+1),2(T—ﬁ)—1)
=0

n Z 23+12T J))+U Y(QJZT J)+1)) c. (169;)

Jj=T1+2

2. Let us study system (158'). We split the pairs (o, r) (a # 0, > 2) into three disjoint sets
and introduce the corresponding constants 7, :
{a,r}y ={=2k/(20 = 1),2n = 1)(k + 1) = n+ L}rpnenmsungy,
M) =1{k>21=0, n=1}, My = {k,l,n € N}, n=2n—-1-n+1,;
{a,r}3 = {=k/l,(k + Dn}iinen, T = In;
{Oé,?"}g = {(a,r) ¢ {0&,7“}; U {Oé,?“}g}, 7o = —1.

Lemma 6. If (a,r) € {a,r}y (v =1,2), thenc,, =0andc, #0 (0 <7 <7r, 7 #71,) in O
in (158Y). If (a,r) € {a,r}3, then co, ..., c,. #0.

Corollary 20. If (o,7) € {a,7}3, thenc, >0 (0 <7 <7 —1).

We single out the last » — 7, + 1 equations in (158') into the separate subsystem
erthit =Y, (r=0,1,2), (1645)
where ©77 is a tridiagonal upper triangular matrix with main diagonal ¢, ,...,c,,

hy" = (hsryseihs,), YO = (YY)

If v = 0, then system (164;) coincides with system (158'); only the matrix ©f" has the addi-

tional zero first column, which generates the pseudoelements c_; = 0 and corresponds to 75 = —1
and hj ;.

We multlply system (1645) on the left by the matrix G defined in (165;), where 7 = 7, — 1.
Then ¢ hy . =30 gr¥o; (T =Ty 7).

By expressing the components Yy, via ?fj in accordance with (158'), we obtain the relations

T

el = (9o, Y75+ (25 — 1)+ 2(r — §))gr; — &(25 + 1)grj-1)Y5).

j=7
By Lemma 6, only c,, are zero in these relations; therefore, we have

ZT:( ”YT + v”Y{j) 0, (a,7) € {a, 7}y (v=0,1,2) (169,)

=ry

DIFFERENTIAL EQUATIONS Vol. 45 No.3 2009
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only for 7 = 7, where v} = g, ; and vy = (a(2j —1)+2(r —4))gr,; —a(2i +1)gr,1 (G = 70,...,7),
the g,; are given by (165,) with 7 = 7, — 1, and the hj, , v = 1,2, are not subjected to any
constraints. N

If v =0 (o = —1), then hy , and Y; | are missing, and relation (169,) has the form
> ug?{j +2 0 U??ij = 0 and guarantees the solvability of system (158').

Let v = 1,2. Then the first 7, + 1 equations with 7, + 1 unknowns h;g,...,h; . (0 <7, <7)

remain unsolved in system (158'). For their solvability, it suffices to show that det ©7~ # 0, where
O~ is the tridiagonal matrix with main diagonal a_,,...,a,, 1, subdiagonal c,...,c, —1, and
superdiagonal b_y,...,b, o (v =1,2).

The Gauss method can be used to transform the matrix ©]~ into the bidiagonal matrix (:)f,‘
with main diagonal e_4,...,e,, 1 and subdiagonal cg,...,c, _; by the recursive formulas

€1 =0, 1, e =a, —bcoyi/e (r=7—-2,...,-1) (160,)

provided that e, _1,...,ey # 0, where the entries a,, b,, and ¢, are defined in (158").

Lemma 7. In the matriz (:)f,‘ (v = 1,2), the diagonal entries e,,_1,...,e_1 given by formu-
las (160,) are nonzero.

Proof. Let (o, 7) € {a,r}}. If k,I,n € MY, then (a,r) € {2k, k}ps, 71 = 0, and O]~ = a_;.
Therefore, e_; = a_; = —2k + 2 # 0.
If k,l,n € My, then o < 0 and e, in (160,) admits the closed-form expression

e, =27+ 1)2ar +2(r — 7)) (r=m—1,...,-1). (1615)

It follows from the relation e, =0 that 7 =r/(1—a) =2ln—l—n+(k+1—-1)/(2k+2l-1) ¢ Z
for k,1,n € Z. Therefore, e,,_1,...,e_; # 0 in (161,).
Let (a,7) € {a,r}3. Then a < 0. Let us show that e, 1,...,eo > 0. Set

G =021+ 1) (a2 = 1) +2(r — 7)).

Then ¢, > 0< 7 <1+ k/(2l + 2k) for 7 > 0 and, by induction, e, > (; (=7 —1,...,0).

For e_y, we set . = (27 + 2)(a(27 — 1) +2(r — 7)). Thenn, > (, >0for 0 <7 <7, —1 and
n_1 = 0. By induction, e, <7, (1 =7 —1,...,—1). The proof of the lemma is complete.

Let (a,7) € {a,7}5, k,l,n € M3. Let us estimate u} and v} in (169;) (j = 71,...,7). In (158'),
we have ¢, = (dkt — 27)(4kT + 2(k — 7)); i.e., ¢, = 0 for 7 = —k/(2k — 1), 0; consequently, ¢, > 0
for7>1=m+1. By (171,), formula (172) g,, j = gr, j—1fr, j—1/c; holds for j = 7y +1,...,r such
that f;, j_1 #0.

To estimate f, ;, set

& = (2j +3)(a(2j + 1) +2(r — ) —2) >0,
n = 2j+3)(a(2j +2)+2(r—j)—2)>0
for j > 0. By induction, §; < f,,; <n; (j =71,...,7 —1). Then

grim =1, 0< gr1j—1£j—l/cj <Ggrn;< grlj—lﬁj—l/Cj G=n+1,...,7r).

Therefore, first, uj > 0, and second, since s, = a(2j —1) 4 2(r — j) = 0 for j = 7, we have v} =0
in (169;). If j > 1 =7 + 1, then s, > 0 and vj < g, j_1(30n;_1/¢; — 2j — 1) = 0. Therefore, if
(a,7r) € {a, 7}y, kyl,n € My, then all uj > 0 and all v; < 0 except for v}, = 0, and relation (169,)
has the form

uilyl(zrﬁm(r—n))_i_ Z (U;Y-l(Zj+2,2(r7j))+UJ1_Y-2(2j+172(r7j)+1)) _z (169})
j=11+1
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Let us show that relation (1693) also holds for k,1,n € Mj. Since 7, = 2ln — [ — n + 1, we have
c; >0form>7 + 1.

To estimate f,, ;, we set (; = —(2j+3)(a(2j +2)+2(r—j)—2) > 0 for j > 7, — 1. By induction,
frni > ¢ (G = m,...,r = 1). Then u; > 0, since gr,,, = 1 and g-,; > gr,;-1¢i—1/¢; > 0
(j=7+1,...,r). Since s, = 0 for j = 71, we have v} = 0. For j > 7, + 1, we have s, < 0 and
Vj < gr, j1 (500G 1 /e +2j+1) = 0.

Now let (a,7) € {a,7}3 (72 = In). Let us estimate v} and v in (169;) for j = 7,,..., 7. In (158'),
we have

e =2((1 =20)k/l 4+ 2n(k + 1) = 27)(=kt/l+n(k+1)—7) >0
for 7 > 1 4+ 1, since ¢, =0 for 7 = In, In + k/(20 + 2k).

By induction, f,; in (171;) with 7 = 7, satisfies the formula

Jrni=—2j+4) (a2 +1)+2(r —j) —2) (j="7ay...,7).

Since f,,; =0 for j = —2, In — (2l + k) /(2] + 2k), we have f.,; > 0 for j > In = 7.
By (172), in (169;), we have u? >0 (j = 73,...,7), v, = a(2, — 1)+ 2(r — 1) = k/l > 0, and

T2

200 — 2r + 27, 2aj + 2(r — j) < 0 for j =15+ 1,...,7; therefore,
0 = gryjo1 (200 — 2r + 2§) /(205 + 2(r — j)) > 0.

As a result, if (a,7) € {a,7}3, then u?, v} > 0, and relation (169,) acquires the form

Z (u?}/l(Qj-'rQ,Z(’r‘—j)) + UJQ_}/Q(QJ--Fl,Q(’r‘—j)-‘(-l)) — E (1693)

J=T2

Let (a,7) € {a,7}9. Then w’, = 1 in (169,), but v°, = 2r —3a +2 = 0 for a = (2r + 2)/3.
If j =1, then, by (165,),

u =g-11=—(g9-1000 +b_1)/cx
= (—2a+3ar+3r* =9 +4)/(r2r —a)(a+2r —=2)(a+r—1)) =0

for o = —(3r* — 9r +4)/(3r — 2); i.e., the factors u) and v can be zero. As a result, Eq. (169,)
has the form

Y-1(0,2T+2) + Z(u?}/l(2j+272(’r‘7j)) + U?Yé<2j+1)2(r7j)+l)) — E (169(2))
§=0

3°%. Let us study system (159%). We split the pairs (a,r) (a # 0, r > 2) into three disjoint sets
and introduce the corresponding constants 7 :
{o,r}s ={=(2k = 1)/(2 = 1), (2n — 1)(k + 1 = 1) + L} unermpony,
m=2ln—1-n+2 where My={k>2 1=0,n=1}, M; ={k,l,neN}
{o,r}s ={=(2k = 1)/(20),2n = )(k +1) = n+ L nemonms,
Ty =12n—1), where M:={k=0,1>2 n=1};
{or)s = {(a,r) ¢ {a,rhs U{asr}sh,  m=0.

Lemma 8. If (a,7) € {a, 7}y (v = 1,2), then in the matriz O in (159°), one has ¢,, = 0 and
& 200 <7<r,7#7). If (a,7) € {a,7}3, then ¢y, ...,c. #0.

Corollary 21. If (a,r) € {a,r}; and k,I,n € Mg, then ¢, > 0 for T = 1,...,71 —2 and
Cro1 <05 if (a,r) € {a,r}3, thenc, >0 fort=1,...,75 — 1.
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We single out the last r — 7, + 1 equations in (159°) into the separate subsystem
O R =Yyt (v=0,1,2), (164;)
where ©77 is a tridiagonal upper triangular matrix with main diagonal ¢, ,...,c,,
hit=(hi,,-h,), Yo =g, Y5,

For v = 0, system (1643) essentially coincides with system (159%).
By treating (1643) by analogy with system (1645 ), we obtain the relations

T

5= (((2aj +2(r = §) = 1)gr; — 2ajg-;-1) Yy, — 20g.,Y5;),

j=r

which imply that
S WYy +vYy) =0, (ar) €f{arts  (v=0,1,2), (169;)

where v} = (2aj + 2(r — j) — 1)g,; — 2Qjgr,j-1, V5 = —2agr,; (j = 7,...,7), the g,; are given
by (165,) with 7 = 7, — 1, and the h] _ , v = 1,2, are not subjected to any constraints.
If v =0 (1o = 0), then h] , is lacking and relation (1693) acquires the form

T T
ovr o r _
Zqul,j + Z”jyz),j =0
=0 =0

and ensures the solvability of system (158;).

Let v = 1,2. Then the first 7, equations with 7, unknowns hf ;,... ki (1 < 7, <) remain
unsolved in system (158;).

Let us show that det ©]~ # 0, where O]~ is the tridiagonal matrix with main diagonal ay, ...,

a,, _1, subdiagonal cy,...,c, 1, and superdiagonal by, ..., b, 5.
The Gauss method can be used to reduce the matrix O]~ to the bidiagonal matrix (:)3_ with
diagonals dy, ...,d,, 1 and by, ...,b,, _» by the recursive formulas
do = Qo, dT = ar — b-,—,lc.,-/dT,]_ (7' = ]., ey Ty — ].) (1603)

provided that dy, ..., d, _, # 0, where a,, b,, and ¢, are defined in (159°).

Lemma 9. In the matrix (:)ff (v = 1,2), the diagonal entries dy,...,d, 1 given by (1603) are
nonzero.

Proof. Let (a,7) € {a,7}}. If k,I,n € MY, then (o, 7) € {2k — 1,k}4>2, 71 = 1, and O]~ = ay.
Therefore, dy = ag = 3 — 2k # 0.
Let k,l,n € M. Set

G=02r+2)(a2r=1)+2(r—7)—-1)(2r —27—2a—3)/(2r =27 —2a—1) >0
for 0 <7 <7, — 2. Let us show that d, > {,. Since
dy — Co = (4r° —2a(2r — 1) = 1)/(2r — 2a — 1) > 0,
we have the inductive assumption. Suppose that d,_; > (,_;. By virtue of (1603),
d: > a, —br_1c; /(v
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since, by Corollary 21, b, ¢, >0 (r=1,...,7, —2). But

ar —br 16 /G =G,
& S8ar’+4ar —2a+ 87 +6r — 872 — 107 — 5
—(2r+1)R2ar+2(r—71)—-1)(2r — 27 —2a+1)
+27+2)2r—21—2a-3)(a2r-1)+2(r—7)—1))/2r—271—2a0—1) =0
& 24 @Ar—4r—4a—-2)/2r—27—-2a0—1) =0;
ie,d, > >0for0< <71 —2.
Since b, _2¢,, 1 < 0, we have

d7—171 = a7—171 - bT172CT171/dT172 < a7—171 - bT172CT171/<T172
=4a(r —1)* + 2am — da +4rm — 4(m, — 1)* — 107, + 4
— (8a(ry —1)* + 12am, — 8a)/(2r — 21 — 22+ 1) =0

after the substitution of o and 7.

As a result, if (a,r) € {a,r}} and k,l,n € MJ, then d, #0 (1 =0,...,7 — 1).

Let (a,7) € {a,r}?. For k,l,n € M}, we set n, = (27 + 3)(27a + 2(r — 7) —2) > 0 for
0<7<2ln—-1-1=m7—1. By induction, d, > n,. For k,l,n € M, we set

& =—27+3)2ra+2a+2(r—7)—3) <0

for 0 <7 <1[l—-1=m — 1. By induction, we have d, < £,. The proof of the lemma is complete.
Let (o, 7) € {a,7}3, k,I,n € MY (1; = 1). Let us estimate u} and v} in (1693) (j = 71,...,7).
In (159°), we have

((2k —1)(2r — 3) + 2k — 27 + 1)(27(2k — 1) + 2k — 27 — 1) > 0

cr =
f]’?r T 27&2. By (171,), formula (1721) ¢,,; = gr, j—1fr j—1/¢; holds for j = 7 + 1,...,r such that
T j—1 0.

To estimate f,, ;, we set & = (2§ +3)(«(2j — 1) +2(r —j) — 1) > 0 for j > 1. By induction,
fnj>& (G=m,...,r—1). Then g, ,, =1 and g,,; > g-, j—1§;-1/¢; >0 (j=m+1,...,r). Since
2aj +2(r —j) —1 >0 for j >0, we have uj > g, ;_1((20j +2(r — j) — 1)§;-1/¢; — 25) = gr, j1
in (169;).

Therefore, if (a,7) € {a, r}3, k,I,n € MY, ie., if @ = 2r—1, then all uj > 0 and v; < 0in (1693),
and relation (169;) acquires the form

Z (u;}/l@j’2(’f—j)+1) + U;}/Z(Qj+1’2(r_j))) = (169%)
J=71

Let us show that the same equation can be obtained for k,I,n € M, with the only difference
that uj < 0 and v; > 0. Since 7y = 2In — 1 — n + 2, we have

¢, =0 for 7=7 -2+ 2k+4-3)/(4k+4 —4), m;

therefore, ¢, > 0 for 7 > 7 +1. To estimate f,, ;, weset (; = —(25+2)(a(2j —1)+2(r—j)—1) >0

for j > 7. By induction, f.,; > ¢; (j = m,...,7r—1) and g,,; > 0 (j = 7,...,7). Since

2aj +2(r—3j)—1 <0 for j > 7y, we have u} < gr, j_1((j—1(2aj +2(r—5) —1)/c; +24) = 0 in (1693).

Now let (ov,7) € {,7}3 and k,l,n € M3. Then 7, =1(2n—1) and v2, = 2 in (169;); if j = > +1,

then, by (165,), v2, |, = 295, r,11 = —2ar,/Cr,11 = 0 for k,1,n = 1; i.e., u} and v} can be zero. Here
Eq. (1693) has the form

ZT:(UZ_Y'l(Qjﬂ(T*j)ﬂLl) + UQ_Y'2(2j+172(T*j))) -7 (169%1)

J J :

J=T2
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Let (a,7) € {a,r}2 and k,I,n € MZ; ie., a = 1/(2r). Then 7, = r, v? = 2ar — 1 = 0,
v? = —2ag,, = —2, and Eq. (169;) acquires the form

2y B0 = 2 (1693?)
Let (a,7) € {a,7}3. Then uf, vy # 0 in (169;). But, by (165;), v = —2age; = 2aay/c; = 0 for
a = (6r — 5)/2. Equation (1693) has the form

3 (Y, BRI Oy )y (169%)

Jj=0

4° Let us study system (159'). Let us introduce a recursive sequence d, by setting
d_i =a_q, d.=a, —c;b,_1/d; .y for d. #0 (0<7<r—1). (160,)

The following two cases are possible:
(i) there exists a 7 (—1 < 7 < r —1) such that d_4,...,d:_; # 0 and d; = 0;
(ii) d_1,...,d,_1 # 0. In the latter case, we set 7 = r.

Lemma 10. For the elements d. in (160,), we have the closed-form expression

2ar +2(r—71) - 1)(—2a+2(r—7)—3)

= —a(2
dr a2 +3) —2a+2(r—71)—-1 ’

(161,)

where T = —1,...,7 in case (i) and T = —1,...,7 — 1 in case (ii).
We split the set of pairs («,r) with @ # 0 and r > 2 into three families
{a,r}i={-2k=1)/20),(k +1)(2n — 1) — n + 1} 1 nen, 7 =1(12n—1);

{Oé, T}Z = {(2£ - 1)/27 m}f,mEZ+,m2max{Z,2}a To =1 — l— 1,

{o.r}i ={(a,r) ¢ {a,rhy U{artit,  mo=r
Using the fact that {a,7}; N {a,7}; # &, we introduce two more families

{a,r}i ={a,rhin{a, ), {ar}d = {a, i\ ey )i
Lemma 11. One has
{a,r} ={-1/2,3k —1)2n — 1) —n+ 1} pnen, 7o, =Bk —1)(2n—1) —n;
{o,r}? = {=1/2,m}pmen, U{(20 = 1)/2,m}  emen
m>max{/,2}

where My = N\({1} U{(3k —1)(2n — 1) = n+ 1}k nen)-

Lemma 12. If (a,r) € {a,r}], then case (1) with ¥ = 7, holds for the elements d, in (161,).
If (a,7) € {a,7}3?, then one has case (i) with 7 = 7. If (a,7) € {a,r}Y, then one has case (ii)
with 7 =19 = 1.

The Gauss method can be used to transform system (159') into the system
Ouhy =Y/, (162,)

where O is the matrix in (162;) with dimension increased by unity by addition of the first
row starting from the entries d_; and b_; and the vector Y; has components Y; , = Yj_,,
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Yi, =Yy, —(c;/dr )Y i, , (T =0,...,7),and Y] =Y/ (7 =7+1,...,7); the elements a-,

br, ¢;, and d. are defined in (159') and (161,); obviously, Yy, = > | (=1)" 7Y, [I,_; ., cv/dv s

j=-1
(r=-1,...,7).
The first 741 equations in system (162,) are uniquely solvable for hf , ..., h] ;, and the equation
with index 7 has the form

0y 0By sy + 0Bt oy = YVie (B0 B, = 0). (163,)

In case (ii), 7 = r and O, is a bidiagonal matrix with zero last row; Eq. (163,), that is, the last
equation in (162,), has the form 0-h7, =Y/, .
In case (i), we single out the last r — 7 > 1 equations in (162,); they form the system

ortht =Yt (164,)

which is similar to system (164, ).
We split the pairs («a,r) into five disjoint sets in a different way:

{a,r})e = {(2k + 1)/2, k}1>0, i =0;

{a,7}3¢ = {a, 1}y, Ty = 2ln — 1+ 1;

{ayr}ie={(1—=2k)/(2l = 1),(k+1—1)(2n — 1) }r1nen, 75 =2Iln — 1 —n;
{a,r}e® ={1/(2 + 1), 110, =13

{a, 733" = {(e,r) ¢ Up_i{a,r}i°).

Lemma 13. If (a,7) € {a,r}i¢ (v = 1,...,4), then ¢, = 0 in (159') only for T = 7. If
(a,7) € {a,r}}¢, then co, ..., c. #0.

Corollary 22. In (159"), one has co,...,c, # 0 except for the following cases: ¢, ., = 0 if
(a,) € fo, 1} ¢ = 0 if (a,7) € {a, 1 C {aur}ys ey = 0 if (7)€ {ay ) C {a,r}d;
=0 if () € {a,r}® C {a,r}s, where ¢, = ., ¢ = al21 —2)+2(r —7) + 1, and
d=a2r+1)+2(r—7) -1

By multiplying (1644) on the left by the matrix G in (165;), we obtain the system
chi, = ZgTjYOT’j (T=7+1,...,7). (166,)
Jj=T7

By substituting the closed-form expression for Y, .. in (162,) into (163,) and, in case (i) for 7 < r—2,
also hj ., in (1664) (cz42 # 0), we obtain the relations

7

r F—7 . Cy r b7v' - r
0 R =2 (U™ ] =¥ == D g0 (167,)

Cv
j=—1 v=j+1 T2 j—ry2

In (167,), we express Y ; via }’}er (1 = 1,2); to this end, we introduce the constants

vj=—2&%*j+12a_2(r_«z)+1 1:[ a(2y+1)+2(r—y)—17
204—2(7‘—T)+1V:j+1 0w+ 1
w = 802j+ 1) +20 )~ (20 +20r ) -7y G=-1..,7 (168

uz = —a(27 + 3); vj = 2absgry0;/Cri0 (G=T7+2,...,7),
u; = —bz(((2j +1) +2(r — j) = 1)grr2; — a(2) + 1)gry25-1)/Crra-
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Then, by (159') and (161,),

H d _TJ’
v=j+

1

uj =a(—a2j+1) —2(r—j) +1)v;/2+ (25 + 1)v;_1/2 (r=-1,...,7);
vy = —2a, ur =2(a(27+1)+2(r—7)—1)/2a — 2(r — 7) + 1).
Now in (167,), we have
- 'UjYE)T,j . L . . . S
) 5= D (@(=a(2 +1) = 2(r — §) + Do;/2 + v;-1 (25 + 1)/2)Y7))
=1 j=—1
T 74+1
+ 2};-(2’7\i + 3)}/1)7“-4_1/2 + Z ’UJ'YYQTJ ZU] C Z ’UJ 2],
j=—1 j=—1
and
Z Gri2 Yy, = Z grra;((@(2) + 1) +2(r — j) — DY, — 2aY;)
J=74+2 J=74+2
r+1 .
= Y Grrea(2) + VYL
J=743
As a result, Eq. (167,) acquires the form
va ¥y ) VT o V) e Vi + D (Y +0Yg)) =0, (1694)

§=0 j=r+2

If (a,r) € {a,r}}, then, by Lemma 12 and Corollary 22, ¥+ = 7, and ¢,,,; = 0; therefore,
relation (166,) for 7 = 7, +1 provides the additional relation 0-h7 , ,, = S i=r 41 9m+1;Yg 5, which,
by analogy with (1694), can be represented in the form

T

Z (u 1YT —|—v1Y2Tj) =0, (a,r) € {a,}} (R ., 41 is arbitrary), (170,)

Jj=T1+1

where u} = (@(2j + 1) +2(r — j) = 1)gr, 415 — @(2§ 4 1)gr, 41,1 and v = —2ag,, 11,

Let us rewrite the relations (169,) and (170,) in terms of the coefficients of system (3).

By (168,), v; = 0 if Hj:j+l(a(2u+1)+2(r—1/) —1)=0,ie,ifcf,, - ci=0(-1<j<7-1),
andu; = 0ifcf - cf =0 (=1 < j < 7). By using Corollary 22, we readily transform relation (169,)
in case (ii) with 7 = 7.

Let (a,7) € {a,r}i® C {a,r}}; then 75 = 2In — | — n. Therefore, v.¢,..., v, Urgs1, ..., Uy 70,
since they do not contain C/Tlg =0, and Eq. (169,) acquires the form

UT§%(275+2,2(T—T§))+ Z (ujyl(2j+1,2(r—j)+1)_|_UjY2(2j+2,2(r—j))) —z (169%)
J=T§+1

Let (a,r) € {a,r}}® C {a,7}}; ie,, @« = 1/(2r +1). Then 75 = r; therefore, only v, # 0, and
Eq. (169,4) acquires the form
oyt % (r > 2). (169%)
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Now if (a,7) € {a,7}\({a, 7}3¢ U ({o, 7}1°), in particular, (a,7) € {a, 7} C {a,7}], then all
uj,v; # 0, and relation (1694) acquires the form

2}_1Y2(0,2r+2) + Z(ujyl(zjﬂ,z(r—j)ﬂ) n 2}jY2(2j+2,2(r—j))) —z (1699)
j=0

Let
(aa T) € {aa r}iz = {_1/27 m}m€M4 U {(2€ - 1)/27 m}&mel\h m>max{{,2}+

If (a,r) € {—1/2,m}men,, then 7, =r — 1, all u;,v; # 0, and

r—1
2),1Y'2(07ZT+2) + Z(ujyvl(2j+l72(r7j)+l) + vjyv2(2j+272(r7j))) + uryvl(2r+1,1) -z (1694211)
j=0

Now let (a,r) € {(20 —1)/2,m}e men, m>maxqe,2y (T = T2 =m — € —1). We estimate u; and v;
for j =7 +2,...,7in (169,) with regard of the condition b; > 0 (j > —1).

If ¢ =1, then j =r =m, a = 1/2, and ¢,, = m(m — 1/2) > 0 in (159'). Then v,, =
2b,,—2Gmm/Cm > 0, and u,, = —b,,_o(m —1/2)/c,, <O0.

Let £ > 2. For a = (2¢ —1)/2 and r = m in (159'), we have

e=(20-1)(r—-1)+2m—-2r+1)((¢(-1/2)27+1)+2m—27—1) >0 for 72>0.
If £ =2, then j = m — 1, m. Therefore,
Um-1=2bm_3Gm-1m—1/Cm_1 >0, Up—1 = —bp_3(3m —1/2)/¢c,,_1 < 0.
By formula (165;), we have
Vm = 2bm—39m—1m/Cm-1 = —2bm_30m_1/(Cm-1Cm) = 2bm_s(12m? — 2m — 4) /(cn_1¢m) > 0.

We have u,, = —b,,_3(12m? —2m — 4)(3m + 1/2)/(cpp_1¢m) —2m — 1 < 0.

Now let £ > 3. By (172,),

Grov2j = Grar2j-1Srat2-1/¢
for j =7 +3,...,r such that f,,45;,_1 #0.

To estimate f,,;2; from below, set (; = (2j+4)(2aj+2(r—j)—1) > 0 for j > —1. By induction,
frar2j > ¢ for j =1 +2,...,r — 1. Therefore, g, 0,42 =1 and gr,42; > Gry42j-1(—1/c; > 0 for
j=Ta+3,...,r

Since s = a(2j + 1) +2(r —j) —1 >0 (j > 0), we have

4Gyt — (25 + 1)gryiojo1 > Gryr2jo1(2ajo1/c; — 25 — 1) = gryi0jo1 >0

for u; in (1684).
Thus if (a,r) € {(20 — 1)/2,M}rmen, m>max{e,2}, then all u; < 0 and v; > 0, and Eq. (1694)
acquires the form

T2
v,lYg(O’QTH) i Z(ujyl@ﬁm(rﬂ)ﬂ) _i_ij2(21+2,2(r7g)))
j=0

+UT2+1Y1(272+3,2(T—72)—1)+ Z (qu1(2j+172(r7j)+1)_’_ij2(2j+272(r7j))):a (1692)
j=12+2

Finally, let (o,7) € {a,r}; = {a,r}i° [f = 71 = (2n — 1)]. We estimate u; and v; for
j=m+2,...,rin (169;) and uj and vj for j =7 +1,...,7r in (1704).
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In (159'), we have

e-=02Fk+0)2n—-1)-2n—-274+3-2k-1)(7—1)/)(2(k +1)(2n — 1)
—2n—-21+1—-(2k-1)27+1)/(20)) >0
for 7 > 7 + 2. By (172,), grj = grj—lfrj—l/cj for ;-1 #0 (r=m+1,7+2).
To estimate f.; from below, we introduce
& =—12+3)2aj+2(r—35)—1)>0

for j > 7 + 1. By induction, f,;_ 1 > &1 (t=n+1, 71 +2, j=7+1,...,r); therefore, g, =1
and g,; > g, ;-1&-1/c; > 0 for the same 7 and j.
Since 4 < 0 for j > 7y, it follows that, for u; in (1684) and w; in (170,), one has

#3975 — (2] +1)gr 1 < grj1(&-1(3a/c; + 25 — 1)) =0,

T=n+1l,n+2, j="1,...,r.
Therefore, if (a,7) € {a,7}}, then all u},v} < 0; and relation (1704) has the form

Z (u}}/l(2j+172(7'7j)+1) + ,U;_}/Q(2j+272(7'7j))) — fcv’ (170411)

Jj=11+1
uj,v; > 01in (1694) for j =7 +2,...,r, and relation (169,) acquires the form
T1
v Y02 | Z(ujyl@]ﬂa(rﬂ)ﬂ) +,ij-2(2j+2,2(r7j)))
=0
+UT1+1Y1(2T1+3,2(T771)71) " Z (ujyvl(2j+l72(r7j)+l) +vj}/2(2j+272(r7j))) _E (169

Jj=T1+2

5%, Let us state the obtained results. For p = 2r +u (r > 1, u € {0,1}), we split the coefficients
of the forms Y,"™" and Y,"*" into four disjoint sets {Y}3* (A=1,...,4):

{y3°
vy
v}’
v

Theorem 20. 1. System (151) is formally equivalent to system (3) with

Y(1,2r)7 Yl(3,2r72) Y(2r+1,0) Y(072r+1) Y(272r71) y.2rD)

sy 42 )7

}/1(0,2r+2), Yl(z,zr) Y(2r+2 ,0) Y(l ,2r+1) Y(s 2r— 1) Y(2r+1 1))

0,2r+1 2.2r—1 2r,1 1,2r 3,2r—2 2r+1,0
(0200 'y > >,...,Y1 Ly vy >,...,Y2< ),

BRI

:<

= (
= (
= (
= (

1,2r4+1 3,2r—1 2r+1,1 0,2r+2 2,2r 2r+2,0
YRy Pl e v ),

g ooy

P =(ay! —sgnays,yiy)  (a#0)

if the coefficients of the homogeneous polynomials Y(er )

nance equations for all p > 2 :
(a) Eq. (153) for p=2;
(b) Eq. (154) for p =3;

(¢) if p=2r (r > 2, u =0), then, depending on «, the coefficients in {Y}° satisfy one of
Eqgs. (1693°), (1699), and (1691); and if (o, ) € {a,r}} = {—k/l, (k +1)n+ 1}x1nen, then they also
satisfy Eq. (1701) and have nonzero factors in it except for the coefficient Y, > ™2™ in (1699)
if (@, 7) € {n,M}mmen, m>2; depending on «, the coefficients in {Y'}5° satisfy one of Eqs. (1691),

of system (3) satisfy the following reso-
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(16932), (1693'), and (1693); moreover, in the first two equations, the coefficients have nonzero
factors, and in the last two equations, the coefficients can be zero for some (a,1);

(d) if p=2r+1 (r > 2 u = 1), then, depending on «, the coefficients in {Y}5' satisfy
one of Egs. (169}), (1693), and (1693); moreover, in the first two equations, the coefficients have
nonzero factors, and in the last equation, the factors can be zero for some (a,r); depending on «,
the coefficients in {Y}7" satisfy one of Egs. (1695), (1693), (1699), (1692"), (169%2), and (169});
if (a,r) € {a,r}; = {—(2k—1)/(2l) and (k +1)(2n — 1) — n 4 1}11nen, then they also satisfy
Eq. (170}) and have nonzero factors in these equations.

2. For each p > 2, the coefficients of the forms Y.P*Y that do not occur in the above-listed

K3

resonance equations or have only zero factors in them are monresonance and can take arbitrary
values.

3. If (a,r) € {a,r}}, then, in the change of variables (2) relating (151) and (3), the resonance
coefficients RS T2 Cwhere 7 = In (I,n € N), are not subjected to any constraints; if
(a,r) € {a,r}l, then the resonance coefficients h\*™ 32—~
subjected to any constraints.

2 if p=3,a#2,p=2r, (a,r) & {a,7},
p=2r+1, (a,7) & {a,7}}
Letn,=¢3 if p=2,a#1/2,p=3, a=2,
p=2r, (a,r) €{a,rH,p=2r+1, (o,7) € {a,7}}
4 if p=2, a=1/2.

, where 71 = [(2n — 1), are not

Corollary 23. In system (3), n, distinct resonance coefficients of the forms Yi(p +1) form a res-
onance set if these coefficients are the following.

’ Forp/: 2: (i) any of (1531); (ii) Y;**; (iii) any of (153%) except for Y20 for oo = 1/2; (iv) V*”
ifa=1/2.

For p=3: (i) any of (154"); (ii) any of (154%); (iii) if & = 2, then any of (154%) other than the
one chosen in (154').

Forp=2r (r>2): (i) any coefficient in {Y'}5° occurring in the corresponding equation (1693),
(1693"), (1693%), or (1693) with a nonzero factor; (i) any coefficient in {Y'};° occurring in the
corresponding equation (1693°), (1699), or (169}) with a nonzero factor; (iii) if (a,r) € {a,r}}, then
any coefficient in (1707) other than the coefficient chosen in (1697) but such that these equations
are solvable for them.

Forp=2r+1 (r >2): (i) any coefficient in {Y}y" occurring in the corresponding equation
(1691), (1692), or (1699) with a nonzero factor; (i) any coefficient in {YYy" occurring in the
corresponding equation (1695°), (1695°), (1693), (1693"), (1693?), or (169}) with a nonzero factor;
(iii) if (o, ) € {a,r}], then any coefficient in (170}) other than the one chosen in (169;) but such
that these equations are solvable for them.

Corollary 24. System (3) with the nonperturbed part (15,) is a generalized normal form if, for

each p > 2, the forms Yi(p T contain at most n, terms with arbitrary coefficients that form one of
the resonance sets described in Corollary 23 and the remaining coefficients are zero.

Theorem 21. Let us arbitrarily fix the structure of the generalized normal form (3); i.e., for

each p > 2, one fizes the order of those n, terms of the forms Yi(pﬂ) whose coefficients occur
in the resonance set chosen for a given p; in addition, in the change of variables (2), one fixes
the coefficient KRG T2 G (o) € {1}t or APTTRECTTOIN e (a0 r) € {a,r}l. Then
there exists a unique normalizing change of variables (2) reducing an arbitrary system (151) to the
generalized normal form (3) with the chosen structure in which, for each p > 2, the coefficients

in the chosen resonance set described in Corollary 23 are uniquely determined from the resonance
equations containing them.

DIFFERENTIAL EQUATIONS Vol. 45 No.3 2009



322 BASOV, FEDOROVA

Example 9. Consider the general case in which a occurs in none of the above-introduced
families {a,r}; therefore, a # —k/l, 1/1, (21 —1)/2, k (k,l € N). Then system (151) can be
reduced to a generalized normal form (3) that has, say, the following structures:

. ~ 3,0 1,2r r 1,2r+1 r
= oyl —ay: + Y00+ (gl 4 vyt
r=1

0,2r+1 r 0,2r+2 r
+ YOt gy (022, and 2y

Y2 = Y1Y2;

. ~ 3,0 0,2r+1) 2y 0,2r42) 2r
b= oy —ayi + YO0y Y (Ot gt 4y 02y gy,

r=1

Yo = y1y2 + Z(YQ(O’ZTH)yng + }/'2(0727’+2)ygr+2).
r=1

In conclusion, we note that various methods for the normalization of systems whose linear part
matrix has zero eigenvalues were discussed in [4, 5]. The so-called resonance equation method
was suggested in [6] for the practical finding of all possible structures of generalized normal forms,
which can be called generalized normal forms of the first order. Systems with linear-quadratic
unperturbed part were studied in [5] with the use of this method. Next, systems with eleven
distinct canonical forms of the quadratic unperturbed part were studied in [1-3] and in the present
paper in accordance with the partition [1] of the set of two-dimensional quadratic systems by linear
nondegenerate changes of variables into seventeen disjoint classes according to the minimization
principle for the number of nonzero terms in the resulting canonical forms. Finally, systems whose
unperturbed parts contain cubic terms were studied in [6, 7] by the resonance equation method.
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