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ESTIMATES OF THE CONCENTRATION FUNCTION OF LINEAR COMBINATIONS OF ORDER
STATISTICS OF A UNIFORM DISTRIBUTION

N. V. Gribkova

1. Introduction and Formulation of Results. The study of the limit properties of the
concentration functions of sums of independent random variables has been given and is being
given much attention in the literature; on the contrary, there are almost no publicatiouns
in which the asymptotic behavior of the concentration functions of sums of variables, con-
nected by dependence, has been investigated. The present note is devoted to the estimation
of the Lévy concentration function of linear combinations of order statistics. The results,
obtained here, generalize a result of [1].

Let Uy, . . ., Up ben independent uniformly (on (0, 1)) distributed random variables
and U< ... < Uy, be the order statistics corresponding to them. Let us consider random
variables of the form

n
Sp= zkzl Cknl kms 1.1
where cy, are arbitrary constants. Let @ (S,; ) denote the Lévy concentration function of Sy:
QmM=swP(S.Ele,z+r}  (220).
X

Let us set

n n
An=_" stl Zm:k (ckn +...F cmn)z' (1.2)
THEOREM 1. There exists an absolute positive constant C such that
o x =i/ (1.3)
Q (Sny M) < CM (1 + Un) (n + 1)14%
for alln& N.
COROLLARY 1. Let there exist a positive constant K such that
A, > Kn? (1.4)
for sufficiently large n. Then
Q (S, M) < CMY T, (1.5

where C ::,7lfjf,r being an absolute positive constant.

This result follows immediately from Theorem 1. We give one more corollary, in which
stronger, but more easily verifiable, conditions that are sufficient for an estimate of the
form (1.5) are given.

CORQLLARY 2. Let there exist a positive constant K such that

n 1.
|2k=1k(”'—k+ 1)£;.-,,]>Kn" (1.6)

for sufficiently large n. Then
Q (Sp; M) < CMYn,
where ¢ = ﬁlfﬁf;' being an absolute positive constant.

To prove the second corollary, it is sufficient to observe that
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2221 EY:-L:]E (ckn + .. Cmn) = 2::1 L (I’L —k -+ 1) Ckny

and, by the Cauchy—Bunyakovskii inequality, (1.4) follows from (1.6).

COROLLARY 3. Let ¢, >0 for all k and n (k< n) and suppose that there exist positive
constants ¢ and v such that for sufficiently large n the number of the elements

{k: cyn = ¢} = 1. (1.7
Then
Q (Sn; M) < KEMYn
where K is a positive constant depending only on ¢ and vy.
Remark 1. The last result has been obtained in [1].

Remark 2. 1In each of the above results, it i1s assumed that A depends on n.

Remark 3. TFor large n estimate (1.3) becomes trivial in the case where the number of
the nonzero coefficients in the linear combination is small in comparison with the size of
the sample and these coefficients are bounded above in absolute value by a constant that does
not depend on n.

2. Auxiliary Results. Let§&,%,, ..., be independent exponential random variables with

the common distribution function F(j)=1_e—x (z>>0). Let us set bk=2?  Cin (t<kn) and
J= *

bn;lz(), We set
. n--1 -1 n-+1
1 n= (2k=1§k) Ek_]_ bkgk (2' 1)
LEMMA 1. a) The distribution of the random variable T, coincides with the distribution
of the random variable Sp.
b) The conditional distribution of the random variable 8'12:___1 bk, under the condition

Z:::§k=s (s>>0) coincides with the distribution of Sp.

Proof. The statement b) follows from the arguments carried out in [2]. The statement
a) follows from b). The lemma is proved.

LEMMA 2.
£ Y7 S
inf ¥ — )=
x<=R k=1 * ) + 1
Proof.

int Yt —ap= Y (e 0 Y ) =

;\E_R k =]
=;—iw[<n+1>z:k=1b%~<2:*‘ S = Y B b =

The lemma is proved.

Before formulating the next lemma, we introduce the following notation:

M; ()= max |by —z|=|b,—2]
1<k<nil
M, (z) = n;i? [ by — x| is the second (in magnitude) maximum after Mi (x) and Y, = ,:_1
(b — )& (1 < k<< n 4+ 1) are independent exponential random variables (&y have been defined

above) .

Let vi(t) denote the characteristic function of the random variable Yy:

_ 1 (2.2)
vy (f) = =G, (L@
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We fix an arbitrary ¢ such that 0 < ¢ < 1 and an arbitrary n & N. We decompose the set of
real numbers R into two subsets:

3 A
R(n)={x: Z (bk—-x)2>s—n—_—?—r}, =R\ R . (2.3)
Here, and in the sequel, %' denotes summation over k=1, 2,-» 0 + 1, k%= k, One of the sub-
sets in (2.3) may be empty.
LEMMA 3. a) Let z & Rgy, Then

o n+1
T@=§" I jve@1de<Coln+ 10 by,
where C; is an absolute constant.
b) Let z < Rfy. Then M, (z) > [(1 — &) (n 4+ 1) A2

Proof. We prove a). If R(n) is not empty, we take an arbitrary z & Ry,. By virtue of
(2.2), we have

' rynl 1
I(x)_2go Hk:l Vit i G, e dz. (2.4

Let us observe that if z&=R(,, then M, (z) = 0 and, after a change of variable in (2.4),
we get

2(n41) S nt1 dt
I(z)== =1+ I,
(=) = M (@) H 1 V14+MP @) (b, — o) 1t (2.5}
where
L=2G L =5 Sl...d.
Let us estimate I;. We have
2(n -+ 1) 1
L< { ar,
S @ °H V-1+ME2($)(bk—x)zt2
where I’ denotes product over all k=1,2, ..., n+ 1, k=k, and, applying the inequality
1 o
m<92/2 (lz21<1) (2.6)

to each factor under the sign of integral, we get

L< 20D Coxp | 2My @) Y (e — 2] <(24(n+“ § era <2y Rt tpneaye (2.7)
0

M, (z) (b ,x)z)1/2

Let us estimate I,. Since M,(x) is the second (in magnitude) maximum of [bk — xi with

respect to k, the factor [, (1 4+ )1 + ©2M} (z)/M35 (2)))2 under the sign of the integral I, does
not exceed 1/(1 + t?). We set t = 1 in the remaining factors. Then

dt. (2.8)

2V 2(n 1) 1
B e Vi M3 @) (b, — 2 ),

Applying inequality (2.6) to the product in (2.8), we have
2(n 41 =\
1< 2O o [ i, @) Y1 (b — 2] 2.9)

The maximum with respect to Mo (x) (x fixed) in (2.9) is attained for M, (z)= < Z (b —
1/2
x)2> . Substituting this value in (2.9), we get
n(n 4 1)eV/2

hStse,—ape S e (n - A7 (o) (2.10)
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Combining (2.10) and (2.7), we have
I(z)=1I+ I, ¢ (n+ 1)¥2(eA,)1R,
e; = 2V a + alYe.

The statement a) is proved. Let us pass to the proof of b). If R{; is not empty, we
fix z &= R{y . Then

M (z) = Zfi(bk—x — S (b — )2, (2.11)

By Lemma 2 and the definition of the set R{y,, the right-hand side of (2.11) is greater than

A
(1——8),1—__;_11, which proves b). The lemma is proved.

3. Proof of Theorem 1. We fix an arbitrary ne=N and let Q< e« { » Where ¢ is, at
present, arbitrary. Let us set Qu (Ty; M) =P {e<{ T, <z + A}. Then

Q (Tn; 1) = sup Qs (Tn; 1)-
By Lemma 1
Q (Sn; 1) = Q (Tn; M) (3.1)
We will prove that for all 2 <R
0 (T ) <M1+

where C is an absolute positive constant. The assertion of the theorem follows immediately
from (3.2), with regard for (3.1). We prove (3.2). We have

=P b <@+ M) 2’;;“1 &) —P {E““ bk <z D Ey).

=) (n 4 AT, (3.2)

n+1i -
Let us set Zy=2,_ (by—2)& and 22=2:Zi§k.. Then

Qr (To; M) =P {2, <AZ,} —P {2, <0} =P{Z, <28, Z,<2@+D}+

PN, <A, 5> 20+ DI—P (3, <0} <<P{EZ, <20 (n+4 1)} —
—P s, < 2k(n—{—1),2>2(n+1)}—}P{21<7v22,2>2n+1)}_p{21<0}_P1+p2’

(3.3)
where -
Pi=P{O< T (b —2) & < 2x<n+1)}
1|+1
Py=P {2\ (n+ 1)<Ek__1 br—2) & < k-—lEk}
Let us estimate P;i:
nt1 nf1
=P 1 ~ _ ‘ . 3.4
P, {0<n+12k:1(bk x)§k<2k}<0( ”HY’“Z’”)' (3.4)
By Lemma 3 [3],
nlas 96 \2
(L, Y 2h) <2(g5) M @ (3.5)
1f z & Ry, then by Lemma 3, (3.4), and (3.5) we have
(3.6)

V—

and we can set

ot (B (117 ).



If z &= R?n), then we can rewrite P; in the form

- N1
Py =P{0 < M7 (2) ka(bkﬁx)gk<%}_ (3.7)

The coefficient of ‘&, in (3.7) is equal in absolute value to one, and, by a property of
the concentration function for independent random variables (see [3]),

L2 (n-1) (3.8

P1<Q(§kov Ml(z)">' \ )
It is easily verified that for the exponential random variable £ with the distribution dens-
ity p() =e* (& >>0) we have Q(§ A) < A. Therefore, by virtue of (3.8) and the fact that
xeR(Cn), we have the estimate

Py < 20 (n - 1) (1 — &) A) e 3.9
Combining (3.9) and (3.6), we see that for allz& R
Pis (VC? + 71%) A(n 4 192 A5, (3.10)

Now, we choose e. The minimum of the right-hand side of (3.10) is attained for & = CJ%/(2/ L
C;/“), Therefore, we finally have

Py < Ch(n + 1A, (3.1
where € = (G4 2 and Cm2 (BR(2YF 4 5.
< (]

It remains to estimate Ps:
+ +
Py=Ph(n+ 1) <Dyl (be—2) & <A Eb=

=3 n+41 -1
= PR+ )< ti—98 <my| 3 B=yvlr @), (3.12)

where p'(y) is the distribution density of the random variable Z:iigk Let us consider

separately the conditional probability under the sign of integral in (3.12)., We have

P LM+ 1) < S (b~ ) B <Ay | Dot &y =y} =

—P{A(+ )<y b —ay <ty| T &=y} <Plo<y? B 0& <z A | g =y}, G193

By Lemma 1, the right-hand side of (3.13) is equal to @, (T,; A); whence, using (3.12) and the
Chebyshev inequality, we get

Py < Qe (T 1) (o + 1) (3.14)
(3.2) follows from (3.3), (3.11), and (3.14). The theorem is proved.

The author thanks his guide V. A. Egorov for the formulation of the problem and assis-
tance with the note.
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