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ESTIMATES OF THE CONCENTRATION FUNCTION OF LINEAR COMBINATIONS OF ORDER 

STATISTICS OF A UNIFORM DISTRIBUTION 

N. V. Gribkova 

I. Introduction and Formulation of Results. The study of the limit properties of the 
concentration functions of sums of independent random variables has been given and is being 
given much attention in the literature; on the contrary, there are almost no publications 
in which the asymptotic behavior of the concentration functions of sums of variables, con- 

nected by dependence, has been investigated. The present note is devoted to the estimation 
of the Lgvy concentration function of linear combinations of order statistics. The results, 

obtained here, generalize a result of [I]. 

Let Ul, ., U n be n independent uniformly (on (0, i)) distributed random variables 
and U~n~... ~ Unn be the order statistics corresponding to them. Let us consider random 
variables of the form 

n 

S~ = ~=~ c~Uk~, (1.1) 

where Ckn are arbitrary constants. Let O (S~; s the Ldvy concentration function of Sn: 

Let us set 

Q (s,~; s -= sup P {s.  ~ [x, x + L]} (~, ~ o). 
x ~ R  

THEOREM i. There exists an absolute positive constant C such that 

(1 .2)  

(1.3) 
0 (&; ~) < c~ (t + t/n) (n + I)v'A~ ~' 

for all n~N. 

COROLLARY I~ Let there exist a positive constant K such that 

An ~ Kn 4 (1.4)  

for sufficiently large n. Then 

Q (S~; ~) < Cs ~ (1 .5)  

where C = r/I/'K , r being an absolute positive constant. 

This result follows immediately from Theorem i. We give one more corollary, in which 
stronger, but more easily verifiable, conditions that are sufficient for an estimate of the 
form (1.5) are given. 

COROLLARY 2. Let there exist a positive constant K such that 

k (1.6) 

for sufficiently large n. Then 

q (s.; ~) ~< c~/FT, 

where C = r/l/'K-7 r being an absolute positive constant. 

To prove the second corollary, it is sufficient to observe that 
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and, by the Cauchy--Bunyakovskii inequality, (1.4) follows from (1.6). 

COROLLARY 3. Let Ckn~O for all k and n(]c~.<n) and suppose that there exist positive 
constants c and y such that for sufficiently large n the number of the elements 

{k: c~n >~ c} /> yn .  (1.7) 

Then 

Q (Sn; ~) ---.< K ~ / V n  , 

where K is a positive constant depending only on c and T. 

Remark I. The last result has been obtained in [i]. 

.Remark 2. In each of the above results, it is assumed that ~ depends on n. 

Remark 3. For large n estimate (1.3) becomes trivial in the case where the number of 
the nonzero coefficients in the linear combination is small in comparison with the size of 
the sample and these coefficients are bounded above in absolute value by a constant that does 
not depend on n. 

2. Auxiliary Results. Let~i,~,...,~n+l be independent exponential random variables with 

the common distribution function F(x)=l--e -x (x~0). Let us set b~----_.~iL~cin (l~lc~<n) and 

bn~i = O. We set 

' l  n -----" ~ /-Jk=l ~k ) "/-Jk=l k b k  , 

LEMMA i. a) The distribution of the random variable T n 
of the random variable S n. 

b) The conditional distribution of the random variable s-i~,~= i bk~ 

~nq -1 ~=ig~-----s ( s ~ O )  c o i n c i d e s  w i t h  t h e  d i s t r i b u t i o n  o f  S n .  

Proof. The statement b) follows from the arguments carried out in [2]. 
a) follows from b). The lemma is proved. 

LEMMA 2. 

r-~ n+l  A n 
i n f  ~ (b~ - -  x) 2 - -  n -4- 1 " 

x~_I{ " k = l  

(2.1) 

coincides with the distribution 

under the condition 

The statement 

Proof. 

nq-1 ~ n i l  / n + l  

,l [(n+ W.~ n + l  2 ( V , n + l  ~ ~ - ~ n  ,~---:'~ n+l A n ' ]  = - 

The lemma is proved. 

Before formulating the next lermna, we introduce the following notation: 

M i ( x )  = m a x  I b e - - x  ] = ] b ~ o - - X  1, 

1 
~/2 (x) = max ] b~ -- x [ is the se'cond (in magnitude) maximum after Mi (x) and Y~---~ ~+-T 

(b~--z)B7~ (I -~< k ~ n -[- i) are independent exponential random variables (~k have been defined 

above) . 

Let Vk(t) denote the characteristic function of the random variable Yk: 

1 ( 2 . 2 )  
v~  (t)  = -  t - (b~ - x)  (~ + 1)-~ it �9 
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We fix an arbitrary s such that 0 < e < 1 and an arbitrary n ~N. 

real numbers R into two subsets: 

R(m--~ (x: Z ' ( b ~ - -  x)2 ~> s An l ~ ) ,  R~ m - - R \  R(n). 

Here, and in the sequel, ~' denotes summation over k = 1, 2, ' " ,  n - F  t,k~z= k o. 
sets in (2.3) may be empty. 

LEMMA 3. a) Let x ~ R(n)~ Then 

We decompose the set of 

(2,3)  

One of the sub- 

o c e  T-Tn4"I 
z (.) = tt =, (01 at < C, (n -~ 1)8/  (sAn)-1/2 , 

where C1 i s  an abso lu te  cons tan t .  

b) L e t  x ~  R(Cn). Then M1 (x) > [(t -- e) (n -F l)- lan] 1/2. 

P r o o f .  We p r o v e  a ) .  I f  R(n ) i s  n o t  empty ,  we t a k e  an a r b i t r a r y  x ~ R(n ). By v i r t u e  of  
( 2 . 2 ) ,  we have  

S - / (x)  = 2  [ I  "+a t dt. (2.4) o ~=i ]/ t4-(n§ 

Let us observe that if x ~ R ( n  ), then M 2 (x):g= 0 and, after a change of variable in (2.4), 
we get 

I(x) = 2(n 4- l) i ~  1-I~+~ M~ix) , / _ , , , ,  dt = I i @ I 2  ' 
(2.5) o = [i-~.M22~xl~b~--xflt2__ 

where 

f i  2(n4-t)  I t 2(n4-t)  I ~ : tit, [2-= ~ dt. "" " M ,  ( x )  " " M 2  ( x )  o " i " 

Let us estimate Ii. We have 

2(,~+~) I 1 H  ' 
11 ~< M~ (~) o 

where II' denotes product over all k ---- l, 2, . .., n ,@ I, k~ko, 

t 4 - z  = 

to each factor under the sign of integral, we get 

I t <  2 (n (x) ~o I~exp t2(2M~(x))-2 (b~--x)21dt < (E'(b~ x)') 1/2 0 e-"dt<2W--~(n-~l)3/2(eA,)-I/L ( 2 . 7 )  

Let us estimate 12. Since M2(x ) is the second (in magnitude) maximum of [b k -- x I with 

respect to k, the factor [2 ((I-~ t2)(l-~ t2M~ (x)/M] (x))) -I/2 under the sign of the integral I z does 

not exceed i/(i + t2). We set t = 1 in the remaining factors. Then 

2 ]/2-(n 4- t1 1] I I ~176 i 
M2(x) --" V i  4-M~2(x)Cb --x)2 t 

(2 .8)  4 <  

Applying inequality (2.6) to the product in (2.8), we have 

t dr, 
V i 4- M~ 2 (x) (b k-- x)~ t~ 

and, applying the inequality 

(2.6) 

nlFY(n4- l) exp[_(2M~(x))-~s  
I 2  ~ 2 M ~  (x )  

(2.9) 

(+s The maximum with respect to M2(x) (x fixed) in (2.9) is attained for M~(x)-= (be-- 
x)Z) I/2. Substituting this value in (2.9), we get 

a (~ + l )  e -1/~ ~ ~ ~ .... l)~/2 
/2 < ( 2 ,  (-~-._~x)-~/" -~ ] / e  (n -F (eAa)-t/~. ( 2 . 1 0 )  
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Combining (2. i0) and (2.7) , we have 

x (x) = 6 + 4 ---< c~ (,~ + ~)~/2 (~&)-l/< 
cl = 21/~ -5 ~tlfe.  

The statement a) is proved. Let us pass to the proof of b). 
fix x ~ R~n) . Then 

M~ (x) = ~=+' (b~ -- x) 2 -- ~'  (b~ - -  x)% 
k = l  

By Lemma 2 and the definition of the set R(~), the right-hand side of (2.11) 
A 
n 

(i--g) n+i ' which proves b). The lemma is proved. 

3. Proof of Theorem i. We fix an arbitrary n~N and let 0~ e~ , where r is, at 
present, arbitrary. Let us set Q~ (Tn; %) = P {x < Tn < x ~ %}. Then 

If R~) is not empty, we 

(2.11) 

is greater than 

By Lemma 1 

Q (T.; ~) = sup G (T.; ~). 

Q (S~; Z) = Q (T~; ~). (3 .1)  

We w i l l  prove  t h a t  f o r  a l l  x ~  R 

Qx (T.; ~) < CK (tq-  + ) ( n  q- {)"]2AnI/2 , (3.2)  

where C is an absolute positive constant. The assertion of the theorem follows immediately 
from (3.2), with regard for (3.1). We prove (3.2). We have 

Q= (T . ;  ~) ~--- P {T~ ~< x -+- ~.} - -  P { T,~ < x} -= 

Wink= I �9 

~?+~ (G -- x) ~ Let  us se t  ~ 1 ~ = 1  

where 

and ~.~----- ~=i ~ "  Then 

G(T~;  x ) = e { z l K x Y d - e { 2 1 < o } = e { L < x ~ , ~ ,  ~ < 2 ( ~ + t ) } +  

q- P {El ~ ~E2, E2 > 2 (n -5 i)}-- P {El < 0} < P {El ~ 2~ (n -5 1)} -- 
- - P { E I ~ < 2 X ( n +  i), E3 > - 2  (n -s i)} ff-P {EI~<tE2,  E 2 > 2 ( n q - i ) } - - P  { E I < 0 } = P l q - P ~ ,  

(3.3) 

k=1 

.+1 y?+l ~} 

Let us estimate PI: 

By Lemma 3 [3], 

t ~-~3, n+l ~2%} ~ ~-~nA=l YG 2~). 

If X~R(n) ,  then by Lemma 3, 

and we can set 

/ ~-~n+l YG 2%) 96 2 . 

(3.4), and (3.5) we have 

C2 P~ < FF ~ (n + tpn ATy ~, 

c. = 2 t 95 7 + ~) 

(3.4) 

(3.5) 

(3.6) 
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If x ~ R~n), then we can rewrite PI in the form 

2~ (n @ I)  M,(x) }. (3.7) Pl = P {0 ~ M~ 1 (x) 

The c o e f f i c i e n t  of  '~ko in  ( 3 . 7 )  i s  e q u a l  in  a b s o l u t e  v a l u e  to  one ,  and ,  by a p r o p e r t y  of  
t h e  c o n c e n t r a t i o n  f u n c t i o n  f o r  i n d e p e n d e n t  random v a r i a b l e s  ( see  [ 3 ] ) ,  

M~(~) 1" 

It is easily verified that for the exponential random variable ~ with the distribution dens- 
ity p (x) = e -~ (x ~ 0) we have Q (~; ~) ~ %. Therefore, by virtue of (3.8) and the fact that 

c x ~ R(n), we have the estimate 

P~ < 2~ (n + i)'l, ((i - -  e) A,,)-'/,. (3 .9)  

Combining (3.9) and (3.6), we see that for allx~R 

2 

Now, we choose  e.  The minimum of  t he  r i g h t - h a n d  s i d e  o f  (3 .10)  i s  a t t a i n e d  f o r  ~ = C~/~/(2~/~4- 
C~h), T h e r e f o r e ,  we f i n a l l y  have 

Pl ~ C~ (n + I)'/'A-~', (3 .11)  

where C ---- (C~' %- 2'h) ' / ' and  C2=2{c36~2- (2 V ~+  ~ ) 
\95/ \ ~- " 

It remains to estimate P2: 

Se~ 2 (n"]-l) (/'& Z : I I I  __n'+l ( 3 . 1 2 )  

where p '  (y) i s  t he  d i s t r i b u t i o n  d e n s i t y  o f  t h e  random v a r i a b l e  ~ .  L e t  us c o n s i d e r  

s e p a r a t e l y  the  c o n d i t i o n a l  p r o b a b i l i t y  under  t h e  s i g n  of  i n t e g r a l  in  ( 3 . 1 2 ) .  We have  

_ ~ n + l  "b ~ n @ l  ~k = Y} P { 2 ~ ( ~ + i ) < ~ = ~  ~ - x ) ~ < ~ u [  ~=~ = 

- -  . ~ ~.~lk~ 1 �9 

By Lemma 1, t he  r i g h t - h a n d  s i d e  o f  (3 .13)  i s  e q u a l  to  Q~ (T~; L);  whence ,  u s i n g  (3 .12)  and the  
Chebyshev i n e q u a l i t y ,  we ge t  

P ~  Qx (T..; L) (n + i)-L (3 .14)  

(3.2) follows from (3.3), (3.11), and (3.14). The theorem is proved. 

The author thanks his guide V. A. Egorov for the formulation of the problem and assis- 
tance with the note. 
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