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i. In [i] one has considered the class of statistics of the following form: 

T = ~ ( X ,  . . . . .  XN), 

where T: R x -, R is a symmetric function of N variables, X I ..... X N are independent, 
distributed random variables. In [i] one has investigated the rate of convergence to the 
normal law of random variables of the form (I), when the number of arguments of the function 

tends to infinity, and one has proved the validity of the following result. 

THEOREM A. Assume that ET = 0. 5T 2 = I and there exist positive constants A and B such 
that 

E I E (T I X~) I a ~ AN-aa, ( 2 )  

t + E  {~ (T I X t  . . . . .  X x_=)) ~ - 2E {E (T I X~ . . . . .  X x-O}2<. B N  -a. ( 3 )  

Then 

sup I p (T < x) �9 (x) I f C (A + B) N- ,2  
x 

where C is an absolute constant, while ~(x) is the standard normal distribution function. 

(1) 

identically 

(4) 

One of the consequences of this theorem, obtained in [I] ,* refers to linear combinations 
of order statistics. We denote X<,)~<...< X(x) the order statistics of the sample XI,...,X N, 
we set F (x) = P {.I; 1 <~. x} and 

L - -  V-'/ '5 '~  c+Xt~), ( 5 )  

where c i are real numbers. Preserving the notations of [i], we set 

,,rex I~+1=.. N ,,,,,x I+ , -~+_ , l=b .  (6)  
l~ i~-~  ~ ' ,, 2 ~ i ~  '~ 

0 ~ 0 2 (L) • ~ ,  

COROLLARY. If 

t,"- {E I x ,  I}"l +~r-'- ( 7 ) 
r J~" ' 

then 

HI l - -6-~(  L ) [ L  -- EL r ]1 (I) (X) [ a3EIXI6:' (L) [~ . , -  < c + 

where C is an absolute constant. 

If E [ A'i I:~<~. ~, the constants a and b are bounded from above uniformly with respect to 
N, while the variance ol(L) stays away from zero, then (7) means an estimate of the rate of 
convergence of order N-I/2 

Such an estimate has been obtained for the first time in [2] for the case when the lin- 
ear combination is truncated according to the quantiles of the samples, i.e., c i = 0 if i 
=N or i > ~N (0 < = < 8 < I). The result of [2] is not generalized by the above given corol- 
lary since, in general, a truncated linear combination does not satisfy the smoothness con- 
dition of the weights (6) and, in addition, in [2] one does not require the assumptions on 
the finiteness of the moments of the initial distribution; however, in ~2] one imposes rigid 
smoothness conditions on the distribution F(x), which is not done in [i]. In this paper, 
using Van Zwet's technique, we obtain a result for linear combinations, truncated as in [2], 
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without requiring the moment assumptions and the smoothness of F(x), but imposing smoothness 
conditions on the coefficients. 

2. We assume that the coefficients of the linear combinations (5) satisfy the follow- 
ing conditions: 

(I) c i = 0 if t ~ < k  or m<i~<N, where k, m are integers such that k/N ~ ~, m/N + 
when N + ~ (0 < a < ~ < I). 

(II) F-1(u) is defined and satisfies the Lipschitz condition in ~a, ~B' fixed neighbor- 
hoods of = and 8. 

We select an arbitrary E > 0 and we consider the truncated random variables (r.v.) 

[ F - l ( a ) - - 8 ,  i f  X i < F - ' ( a ) - - 8 ,  

Xi= { Xi, i f  X , ~ I F - ' ( a ) - - s , F - ' ( ~ ) + s , I  ( 8 )  
[F - ' ( f i )  + s, i f  Xi > F'-, (~) + s, 

where i = I,...,N I, ~i are independent and identically distributed, their distribution func- 
tion (d.f.) being denoted by V(x). We introduce the order statistics (o.s.) Y(i)<q.'... <~ XIN) 
of the sample XI ..... XN and let 

be their linear combination with the same collection of coefficients as for L. We assume 
that the variance 

(III) o2(s > O. 

We consider the normalized linear combination 

L* ----- (L --  EL)/o (s 

We set 

a ~ -  max Ic~ I, b---=N max I c , + ~ - r  . ( I0)  
k--%i<~m ~'<~i~m--I 

THEOREM I. If conditions (I) and (II) hold, a and b are bounded from above uniformly 
with respect to N, and o2(L) > 7 > 0, then there exists a positive constant C, depending on 
a, 8, F, y, and E, but not on N, such that 

sup [ P (L * .~  x) - -  ~ (x) f .~< CN-' , ,  ( 1 1 )  
x 

for sufficiently large N. 

In fact, we shall prove another, more general theorem. We set K = max (IF-1(a) - el, 
IF-1(B) + el). 

THEOREM 2. Assume that the conditions (1)-(IIl) are satisfied. Then there exists an 
absolute positive constant C, and positive constants CI, C=, C 3, independent of N, such that 
for all N we have 

[ 4aaK :' max = (a, b) h': (C 2 + N2e_C,.~) ],V_ %. ( 12 ) ~ e  -c,x + C Lo-5-q-~+ o2(r ) 

Remarks: 1 ~ The constants CI, C a in Theorem 2 depend only on a, B, F, ~ and on the 
properties of the sequences k and m, while C 2 depends on a, B, F, and g. 

2 ~ . The normalizing constants and the right-hand side of the estimate (12) depend on 
the a r b i t r a r i l y  selected ~, but, in general, th is  dependence is  complicated and an optimiza- 
t ion of the estimate with respect to E f a i l s .  

3 ~ I f  to the assumptions of Theorem 1 we adjoin the existence of the moment E IXI ]a 
for  some 5 > O, then with the aid of the same technique we can eas i l y  prove that  inequa l i ty  
(11) is  va l i d  with a constant C, depending only on a, B, F, 7, and 6, for  the normalizing 
constants we can take EL and o(L), and in th is  case the truncation of the i n i t i a l  r . v .  is  not 
required. 

4 ~ The cont inu i ty  and the s t r i c t  monotonicity of the d . f .  F(x) is  assumed only in the 
neighborhoods of the quanti les F-Z(a) and these assumptions cannot be dropped. For example, 
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if the conditions c i are determined with the aid of the function h (u),u----_(0, l).ci =h (i (N 
i)), then in our case h(u) is discontinuous at the points ~ and 8, but in [3] one gives an 
example which shows that the asymptotic normality of L need not exist if the discontinuity 
points of F-l(u) and of the weight function h(u) coincide. 

In order to prove Theorem 2 we need an auxiliary statement. 

LEMMA. Assume that k/N ~ e when N ~ ~, k is an integer; if F(A~) < ~ < (F&2), then 
there exists a positive constant 8, depending on ~, F, &~, ~ and on the properties of the 
sequence k, but not on N, such that for all N we have P {X(~)~={~,, ~]}<e -~ 

This lemma is proved in [2] (see Lemma i.i [2, p. 357]. In the formulation of this 
lemma one has the condition k = ~N + O(i) as N ~ ~, but its proof in [2] is based only on 
the convergence of k/N to =). 

3. Proof of Theorem 2. We consider L 
by the condition (i) we have the imbeddings 

{L < x} c {L ~ x} ~i {x<~) < 

and L, defined in (5) and (9), and we note that 
of the events 

F-* ( a ) - -  a} U {X(~) > F -l (~) + a}, 

{E ~< x } ~  {L ~<.r} L.J {X<~.) < F :~ (a) - -  s} ij  {X(~) > F- '  (~) + e}, 

and ,  t h e r e f o r e ,  we h a v e ,  u n i f o r m l y  w i t h  r e s e p c t  t o  x ~ R ,  

I P { L  ~. x} P { L  < x,} I "" D F-' i _ -.~, {X(~) < (a) -- e} + P {X(m)> F-' (~) -? e}. (13) 

From (13), by the lenmm and by condi t ion ( I )  there fo l lows that  there ex i s t s  a constant 
C z > 0, depending on ~, B, F, ~ and on the properties of the s~quences k and m, but not on N, 
such that for all N we have 

svp ]P {L* ~. x} - -  @ (x) I < e ~ 'x  -+- s . p  I P {E* C." x} - -  el) (x) I, ( 1 4 )  
X X 

where E,* ~-~ ( [ , -  E/~),,'(~ (L). [ *  is a normalized symdnetric function of independent, identically 
distributed random variables Xl .... ,X- N, and the subsequent proof reduces to the verification" 
of the conditions (2), (3) of Theorem A (see the introduction) for it. In order to establish 
the validity of (2), it is sufficient to refer to the analogous verification in [i, p. 437]. 
In [I] it is proved that for any linear combination L of the o.s. X(1), .... X(N ) of the sample 
X z ..... X N, under the condition 0 < o2(L) < ~ we have the inequality 

(15) 

where a = max ] ci ]; the condition of the smoothness of the coefficients (6) has not been used 
i~<i-.< N 

for the proof of (15); therefore, for a linear combination L of the o.s.s of the sample 

Xl, .... XN, I ~i I <K (i = 1 .... ~N), we have 

4aS ~V3 A2"- =/-" 
E I E (f~* 1:70 J~ < ~--q-~ . . . . .  (16) 

i . e .  ( 2 )  h o l d s  w i t h  t h e  c o n s t a n t  A = 4 a a K a / s  a (L ) .  

In order to prove (3), we introduce, as in [I], the r.v. 

Z = r,~ - -  E ( / 'J l  Y~ . . . . .  X , , _  0 - -  E (r,~ j . % , . . . ,  x,y_~., x~,,) + E (r,~ I X'~ . . . . .  -r,,-..), 

where [ I  ---- f~ -- El, for which 

EZ 2 = ETJ~ + E (E (.L][t -"Y1 . . . . .  ~N_2)} 2 - -  2F: {E (1]1 I "~;1 . . . . .  '~."q-l)} 2" ( 17 ) 

Comparing (3) and (17), we see that for the verification of (3) we have to estimate EZ =. 
We need one more formula [ i]; we introduce additional notations. Assume that for n ~ N, 

Xl, n<. �9 .~-/~Yn,, denote, as in [I], the o.s. of the r.v. Xz,~ and we set 20,n = E-I(~) - 

e~ Xn+Ln ---F-' (~)~,-e. Let RN_z, R N be the ranks of XN-I, XN in the sample Xl ..... XN o We in- 
troduce k I = min(RN_z, RN), k 2 = max(RN_l, R N) and the functions 

!i~, oo v (x) = 1 (~) @, H (x) = Ix (1 - -  V (,q)) dy,  

FL . ! / ( r )  = v (:t) (] - v (y)) d,j, 

(18) 
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where V(y) is the d.f. of the r.v. XI. The functions G and M do not decrease with respect 
to x, H does not increase. We have the formula 

x '  0z = ~i'_'_~ ~ (<+~ - c , ) ( M  (X~, ,0 - ~s (:~:.~, ,~_~.)) - 
N 

- -  ~i~'=1 (m+l - m) (a  (x~, N) - -  (7 (X~-~, ,'0) + ~i=~..: (ci - -  m-l) (H (X~+~, .~,) - -  H (2% N)) ( 1 9 )  

(see [i, p. 437]). If we denote the stuns in the right-hand side of (19) in succession by S~, 
S=, Sa, then N~/~Z = S~ - S= + $3 and 

N ~ n l z l < l S x l  + ISo. I + I S ~ I .  ( 2 0 )  

By the definition (i0) of a and b and by condition (I), we have 

+ a (~I (-gin, ,~r-~)- M (X",,_~, ~-2)) + a (M (,g~_,, r~-2) - -7PI  (X~._~, N-~)). ( 2 1 )  

In order to estimate I S = t ,  we note that . ~ , x  = X~,.~-~ for i < k , - -  t and . ~ . , , x  < X~,x_e. ;  there- 
fore, 

('Xk,, N) -- G (.Xk,-l, 'v) < G ('~k,, N-2) -r-" ~ (-~'Vh:t-1, N-2) 

a n d  

l s ~  < Y,~" <" v ~ ' - '  . ,=~ I t , + ,  - c , l ( G  (x,, ~,_.o) - a (m,_ , .  ~,-.4) ~ ~ , , = ,  I c,+a - c , l ( a  ( x , . . , _ ~ . )  - a (m,_,, ~...)), 

Consequently, for IS=l we have the estimate (21), but with the replacement of M by G in 
the right-hand side. In a similar manner we obtain that for Is~l we have (21) if instead of 
M we set -H. We note that for the derivative we have the inequalities 0 ~ j (M (x)q-G(x)- 
H(z))'< 5/4 and, therefore, from (20) and from the fact that ]Xi I~<K for i = 1 ..... N, there 
follow the inequalities 

5 / l, ",~m 1 
N'/ :  I z I ~ T I.-T t- - ,  .,--2 - X~._,, ~--4 + a (Xrn. x_~ - 

) ,~h --  _ K . .  L Xm-,. V-.~) + a (,g,;-t x-:  "%--~' ~'--~) J '7  ,V ' 

+ T5 a ((X,n.- x-.- - -  *g,~-l, x-=) - -  (-g~--1, s-a - -  .r~_=, x-=)). ( 22 ) 

We estimate the second moments of the differences in the right-hand side of (22). We 

consider the first one, Xm, N-2- Xm.-1, ~-2, the estimates for the second one are similar. If we 

denote by Vrn, m-1 (x, y)the joint d.f. of the o.s. ~Vrn.~_~ and Xm-l.w-2, then 

E (.vrn, N-~ - .vrn_,,  ,,_~)~ = lf ,~: (.~ - :~)~ , m , ~ ,  rn_~ (.r, Y) 1. 

We note that V-Z(u) satisfies the Lipschitz condition in the neighborhood f~ = Q.~ (~ (F 

(F -I (~)- e). F(F -x ([3)+ e)) of the point ~ with the same constant as F-l(u); we denote it by 
c~, we denote by ~ the preimage of this neighborhood, ~ = V-l(~), and we divide I into two 
intervals I = I~ + 12, where 

I~ = Sf.,...~..~ ( " -  :J)~ avrn, ~_, (., ,i). 

We estimate I I. We denote by U(m,m_z)(u, v) the joint d.f. of the o.s. Um,N- = and Um_z,N_ = 
of the uniform distributions on (0, I), and after a change of variables we obtain 

11 ---~ !Sn, ",'n' (V -1 (u) - -  V -I (t')) 2 dUrn, ra-, (u, v), 

and, by the Lipschitz condition, 

I 1 < e~,IS,a,f,,>:.q,e(u-- v)zdUrn, re-, (u, v) < ct~l:: (Urn, . v - 2 -  Vrn-L .X'-.,) "~. 

F o r  a l l  m = 2 . . . . .  N - 2 we h a v e  I: ( U r n , ~ _ s -  U ..... ,x_2) = = 2 / ( N ( N -  I)) ( s e e  [ 4 ,  Chap .  5 ] ) ;  t h e r e -  
f o r e  
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We consider I 2. In view of the fact that I Xi I-,<K (i = i .... ,N), we have 

II~4K'InNndVm(x)-~-4K2P{~m,N-2~?-Q}, 

where Vm(x) is the d.f. of Xn,N-2, and, by the lemma, one can find a positive constant O I, 
depending on 8, F, r and on the properties of the sequence m, but not on N, such that 

I:~4K=e-0,~. (24) 

From (23), (24) and from the similar estimates for E (X~_,. ~-2-- X~_~. N-2) 2, by (22) and by the 
Schwarz inequality there follows that for all N we have 

EZ2-~max~(a, b) K2(C~ + N~e ~,~)N -3, (25) 

C 2 depends only on ~, 8, F and e, C 3 only on a, ~, F, E and on the properties of the sequences 
m and k. From (17) and (25) we obtain that (3) is satisfied for L* with a constant B = 
max'(a, b) K2(C~ + N~e -G~) o-2(L). From here, from (14) and (16), by Theorem A we obtain (12). 
The theorem is proved. 
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SOME REMARKS ON SUMS OF DEPENDENT COMPONENTS 

L. V. Kir'yanova and V. I. Rotar' 

This note contains some very easily proven assertions which, in the opinion of the 
authors provide some useful illustrations to the question of possible limit distributions 
for sums of, generally speaking, dependent components. Some simplified variants of these 
assertions were discussed previously in [i]. 

Let n = i, 2 .... 

{X,,,. X~,, . . . .} (1) 

be series of sequences of random variables (r.v.) taking values • 

Considering the sum S n = X1n + ... + Xnn, we can asume without any loss of generality 
that the r.v. in (i) are symmetrically dependent (s.d.) - otherwise we can turn to the series 
of sequences obtained from (I) by such a random permutation of Xjn that all versions are 
equally distributed. In the sequel we assume the r.v. in (I) to be s.d. and consequently 
equally distributed. 

Let F n be the distribution of the r.v. ~n = Sn//~" 

Proposition i. For any distribution F there exists a series of sequences of symmetri- 
cally dependent random variables (I) such that 

MXln=0 for all n = I, 2 ..... (2) 

and 
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