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are satisfied. They lead to the linear dependence of the equations of system (5). In this
case iq can be expressed in terms of other variables; one can find values of 41, ..., iq—1 such
that i, is an integer as well because all the 3; are integers. But then the second condition of
the theorem is violated, and, consequently, the distribution of &;,...,£:+4—1 need not be the
distribution of ¢ independent random variables.

The theorem above does not imply that all terms in the sequence are independent.
Consider the following situation

Ezample. Suppose that the process is defined by the formula & = &4 @ ¢t © (t—2. The
generating function of its coefficients can be reduced to the form

B(s) = (1 —s2)/(1 —s*) =1/(1 + s?).

Each two successive values of the process, ¢ and &;+1 are independent and uniformly dis-
tributed. Yet, it is easy to see that the values &, &t+2, £t+4, ... are a random walk on the
circle. Thus, the process we consider decomposes into two independent processes.
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ON ANALOGUES OF BERRY-ESSEEN INEQUALITY FOR
TRUNCATED LINEAR COMBINATIONS OF ORDER STATISTICS*

N. V. GRIBKOVA
(Translated by M. V. Khatuntseva)

1. Let X1, X2, ..., Xnbe independent random variables (r.v’.s) with common distribution
function (d.f.) F and let Xn,1 < +-+ £ Xn,n be the corresponding order statistics. Consider a
linear combination of the order statistics

n
(1) L=n"12 Z Cn,iXn,i,
i=1

where the ¢, ; are real. Many authors have shown interest in studying the asymptotic prop-
erties of L-statistics (i.e., statistics of type (1)) due to their applicability in estimation theory
(references and a review of the research in this area may be found in [1]).

This paper assumes that

Cni=0, for i<k and i>m

) where k, m areintegers, l< k<mg< n,
and liminfk/n=a, limsupm/n=_4, 0<a<pB<l.
n—oo n—oo

Bjerve [2] studied the rate of convergence of the distributions of r.v.’s of type (1) to the
normal law for the truncated linear combination at the level of the central order statistics.

*Received by the editors May 10, 1990.
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He was the first to obtain an orderwise optimum estimate for L-statistics of the form

®) sup |Fn(z) — ®(z)| s Cn=/2,
T€ER

where Fy,(z) is the d.f. of normalized r.v. L, &(z) is the standard normal distribution function
and C is a constant independent of n. Inequality (3) was proved in [2] under the following
assumptions:

(F1) the second derivative [F~1(u)]" of the inverse of the d.f. F satisfies a Lipschitz
condition of order 1 in an open interval containing closed interval [a, 8],

(€1) n=r3"7 | len,il is bounded above uniformly in n;

(D1) Sn/+/n is defined by

n n n
S2 = Zaf‘,i, ani=Mm—i4+1)71 ch,jH'( Z k_l),
i=1

j=i k=n—i+1

where H' is the derivative of H = F~1(1 —exp (—z)), (z 2 0), and acts as a variation for the
normed L. H' is bounded away from zero.

In (3] an estimate of type (3) was derived for a truncated linear combination with k =
na + o(n), m = nf + o(n), n — oo, under the following assumptions:

(F2) F'(u) =inf {z: F(z) 2 u},0 < u < 1,satisfies a Lipschitz condition of order 1 in given
neighborhoods of a and B.

(€C2) an = maxicicn |cn,i|l and bp = nmaxkgicm—1 |Cn,i+1 — cn,i| are bounded above
uniformly in n;

(D2) the constant & (to be defined below in §3) normalizing L, is bounded away from
zero.

This paper proposes one more variant of assumptions which are sufficient for the estimate
of type (3):

(F3) F~1(u) satisfies a Lipschitz condition of order 1 with a factor! in an open interval I
containing the [a, G);

(C3)
n—1
ap = max |cp;| and vnp = E len,it1 — Cn,i
15isn —
i=

are bounded above uniformly in n;
(D3) = (D2).
The potentialities of the method applied here are investigated in §5.

2. The main result of this paper (as of [3]) is obtained with the help of Van Zvet’s
theorem on symmetric statistics. Let T' = (X1, ..., X»), where 7: R®* — R is a symmetric
function of n variables and ET =0, ET? = 1.

THEOREM A ([4]). Suppose that there exist positive constants A and B such that

@) E|BT|X)| s An~32,

(5) 14+ E{E(T|X1, ..., Xn-2)}’ —2E{E(T| X1, ..., Xn-1)}" 5 Bn~>.

Then
sup ‘ P(T< z)— (I>(m)| < C(A+B)n~1/?,
zER

where C is an absolute positive constant.
Section 5 of this paper is devoted to a method of obtaining estimates connected with
Theorem A. Note that condition (C3) is weaker than (C2) although (F3) is stronger than the
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respective condition (F2). This brings up the question: Is it possible to weaken the condition
on the coefficients to (C1) (i.e., not assume any smoothness on ¢, ;), by strengthening the
smoothness conditions of the original distribution function (possibly to (1)) while remaining
in the framework of the method of [4]? It would be interesting because the proof of Bjerve’s
result [2] is quite complicated.

It turns out that Theorem A does not cover Bjerve’s result. It will be proved in §5 that
obtaining an estimate of optimal order of type (3) is closely related to v, being uniformly
bounded above in n (condition (C3)) and the further strengthening (in comparison with (F3))
of the smoothness conditions of original d.f. will not lead to new results. Therefore, the
method in (4) as applied to L-statistics is not sensitive to more than first order smoothness
of F—1(u).

The proof of these results requires the following lemma.

LEMMA. Let k = na+ o(n),n — oo, where k € N,0 < a < 1L.If F(A) < a,then P{X,; <
A} < e~ where § > 0 is a constant independent of n.

This Lemma,which is a consequence of Bernstein’s inequality,is proved in [2] (see [2,
p. 35, Lemma 1.1] and [3, Lemmal)).

3. Put
n n—1
Cp=n"! Z len,il, Un = Z len,i+1 = n,il
i=1

i=1
and suppose that conditions (2) and (#3) hold. To normalize r.v. L without using any

moment assumptions, we choose some ¢ > 0 such that [a — ¢, B8+ €] C I (see (F3)) and
introduce truncated r.v.’s X; = min (max[F~1(a —¢), X;], F~1(8+¢),i=1,...,n Let

Xn1 € +-+ s Xn,n be the order statistics for the sample X1, ..., Xn. Consider a linear
combination

n
L=n"12 E n,iXn,is
i=1

where the c, ; are the same as the coefficients of L.

Suppose, that & = (EL°— E2L)'/2 > 0. Introduce the normalized r.v.’s L* = (L— EL)/5,
I* = (Z— EZ)/&

Set

Ap = sup |P(L" <) — <I>(z)|
T€ER

THEOREM 1. If conditions (2) and (F3) hold,then for all n
An < exp(=6n) + C{(16n/5)® + (lvn/5)? } n~1/2,

where C > 0 is an absolute constant and 6 is a positive constant independent of n.
Theorems 2 and 3 follow from Theorem 1 immediately.
THEOREM 2. If conditions (2) and (F3) hold and ¢, + vn = O(3) as n — oo,then A, =
O(n~1/2) as n — oo.
THEOREM 3. If conditions (2), (F3), (C3), and (D3) hold,then A, =0(n~1/2),as n — co.

4. Proof of Theorem 1. First note that due to (2) and the definition of X, ; (see §3) the
following inclusions hold:

{L<z}c{Ls x}u {X,,,;c < F Yo —e)} U {Xn,m > F_l(,B+e)},
{Tsa}c{ls aU{Xnk <F Ha-)}U{Xnm>F(B+e)}

Thus

|P{L < o} - P{L < a}| s P{Xpk <F a—-e)}
(6) + P{Xnm>F ' (B+e)}
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for all z € R. (Similar arguments were used in generalizing Esseen’s inequality [5, p. 160].)
By the definition of A,, the lemma of §2, and inequality (6), we deduce that there exists a
positive constant § independent of n such that
o) An s exp(=6n) + sup | P(L* < z) — &(z)|.
zER

Let us verify that conditions (4) and (5) of Theorem A are obeyed for Z* a normalized
symmetric function of the independent and identically distributed r.v’s Xy, ..., Xn. Set
Xno=Fla-¢)and Xp ny1 = F~1(B+¢). Then, foralli=1,...,n

Xpi=min(Xpn_1,4, Xn)—min(Xn_1,i-1, Xn) + Xn—i,i-1,

where X,_1,i-1, ¢ = 1,...,n — 1, are the order statistics corresponding to the sample

X1, ..., Xn—1 (see [6, p. 679]). To verify (4), we note that since the distribution of X ;,
i=1,...,n—1, does not depend on X,

P E| BT X))’

=n"32E

.

n

E { ch,i [min (f'n—l,i’ Yn) — min (j(—n—l,i—la y'n.)]
i=1

3

n
- E Zc",i [min (Xn-1,i, Xn) — min (Yn_l,i_l,fn)]

=1
n 3
(8) < 8n~3/2 [E Z len,il(Xn—1, — 711-—1,1'—1)] .
i=1
Consider G(u) = inf {z: F(z) > u} the inverse of d.f. F(z) = P{X1 < z}. It is well known
(see, for example, [7]) that the joint distribution of the order statistics Xn—1,5,i=1,...,n—1,
coincides with the distribution of r.v’s the G(Un-1,), i =1, ..., n — 1, where the U,_, ; are

the order statistics of a sample of size n — 1 from the uniform distribution on (0,1). Thus the
right-hand side of (8) is equal to

n

3
8n—3/2 [E Z |cn,i|(G(Un——1,i) - G(U"_l’i_l))] ’

=1

where U,_1,0 = 0, Un—1,» = 1. By the Lipschitz condition, this last expression does not
exceed

n 3 n 3
8n=3/23 [E Z len,il(Un—1,5 — Un—-l.i—l)] =8n"%23 [n_l Z |cn,i|] =833 n=3/2,

=1 i=1

So, condition (4) of Theorem A is true with the constant A = (2¢,/5)3. Now we verify
condition (5). Let R,—: and R, be the respective ranks of X,—1 and X, in the sample
X1, .-y Xn. Let ki = min (Ro—1, Rn) and k2 = max (Rn—1, Rs). As in [4], define a r.v.

Z=L- E(I|X1, ..., Xn-1)— E(T|X1, ..., Xn—2, Xn)
+ E(E|?1, ...,Yn_.z).

Since

R — 2 g — _— 2
EZ?/ =1+ E{E(I*|X1, ..., Xn-2)} —2E{E@*|X1, ..., Xn-1)} ,
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it remains to estimate E Z2. Consider the functions

T

P(z) = / (Fw)’dy, M) = / F(y) (1-F@)) dy,

Q) = / (1-Fw)) ay.

— 00
It is clear that E|L| < oo and so

k1
n'/2z = - Z(Cn,i+1 ~Cn,i) (P(—Xn,i) - P(X.n,i—l))
i=1
ka—1
+ Z (en,it1 = eni) (M(Xnit1) = M(Xn,))

i=ky

©) - Z(cn,i = n,i-1) (QXn,i41) — QXn,3))

i=ko

((9) follows from (4.21) [4, p. 437]; a detailed derivation of these formulas was done in [8]).
Note that the difference (cn,k,+1—¢n,k,) OCcurs twice on the right-hand side of (9): once with
a non-negative factor and once with nonpositive factor. Thus, one can reject one of these
summands without decreasing the absolute value of the right-hand side of (9). The same is
true for the difference (cp x; — cn ky—1)-

Now using the inverse transform G(u), the Lipschitz condition, and the known represen-
tation

Uni 2 @+ +8&)/E+ - +bap1),  i=1, ...,

where ¢;, i =1, ..., n+1, are independent r.v’.s with the standard exponential distribution
(see, for example, [9, pp. 73-75], we obtain

n—1 2
nEZ?< ’E { Z len,i+1 —cnil &/ (€1 + -+ +€n+1)}
i=1
s 12 max{ E(&1/@+ - +&nt1)’s E(Eab2/ 61+ + en+1)'~’)}
n—1 2
x (Z len,it1 — c,.,,.|) s BPEUZ 102 =2%02 /(n+1)(n +2) < 2%vZn~2
i=1

Therefore, condition (5) holds with B = 2(lvn/5)2. Now the theorem follows from Theo-
rem A.

5. Let condition (1) hold. We construct an example of a linear combination of order
statistics for which conditions (C1) and (D1) hold (see §1) with v, of order nt, 0 < t < &,
as n — oco. We prove that EZ2/52 3 Kv,n—3 for sufficiently large n, where K is a positive
constant independent of n. Now E Z2/52 coincides with the left-hand side of (5) for T = L*.
Thus the estimate of order n=1/2 for the rate of convergence of the distribution of L* to the
normal law, which is true by the theorem in [2], can not be derived by immediately applying
the results in [4] (which only allow one to obtain an estimate of order n—1/2+t),

Suppose that condition (C1) holds. First, let us show that & = O(c,) = O(1) as n — oo.
Clearly, EU,; =i/(n+1) C (a —¢,8+¢) for k < i < m for sufficiently large n. Let M be the
greatest value of the derivative G’ on [a — ¢, 8 + €] where G(u) = inf {z: F(x) 2 u} (we shall
use the notation of § 1-4). Then

n 2 n 2
#2=n"lE (ch,i (Yn,i - Eyn,i)) =n"'E (ch,i (G(Un,i) - EG(Un,i)))

i=1 i=1
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n
AM?n~'E (E len,il

. 2
(3
Unji— ——
n,i n+1|)
i=1

. 2 n 2
72, —1 v ) — O(22
(10) < AM*n kgzlgrxn E (Un¢ n+1) (lean‘tl) O(cn
i=

as n — co. Now we obtain a lower bound for E Z2.

WA

A

EZ%: E{Z?|k1 <k-1,kg>m+1} P{k1 <k—1,ks >m+1}
(11) =E{Z% k1 <k-1,k2>m+1}2(k—2), (n —m—1)/n2

Relations (11), (9), and condition (2) imply

n—1 2
(12) EZ?: 20(1-f)n~1E { D (enit1 = oni) (MKn,is1) - M (Yn,i))}

i=1

for sufficiently large n. By virtue of the lemma of §2, the probability that U, ; and Un,m
are outside of [« — ¢, B+ ¢] is exponentially small in n and all further calculations are carried
out up to an exponentially small term. If V(u) = M(G(u)), then the right-hand side of (12)
becomes

n—1 2
2a(1 — B)n~1 E{ Z(Cn,i+l —¢n,i) [V(Un,i+l) - V(Un,i)] }

i=1
=2a(1 — B)n~ ' E{Ln + Qn}?
(13) =2a(1-F)n"{ ELL +2E(LnQn) + EQL},
where
n—1 .
7
Ln= Zl(cn,i+l —eni) V' (*——'n T 1) (Un,i+1 = Un,i),
=
n—1 . . . 2
? ? (]
Qn = Z;(cmt’+l — Cn,i) [V"(m +0it1 (U,,,,~+1 - n_+1)) (Un,i+1 - n——“)
=
v o (U - Upi — — ’ 16;] < 1
ntl U™ R ™ nt1) |’ e

By the Lipschitz condition and the known estimates for moments of the uniform order
statistics

n—1
EQl= o(E { D (enit1—cay)
i=1

. . . 2
? (2 ?
g [[om (U"’i“ o+ 1) —ai(U"" Tnr 1)] (U”’”‘ - n+1)

; i
+ V"(n it (U"" - n—+—1)) (Un i1 = Uns)

2
%
X (Un’i+1 +Un;i— - _: 1)] } ) = O(’U,zl/n3).

Therefore, the quantity E Q2 may be neglected; moreover,

E(£nQn) s (ELLEQZ)Y? =0(n~5/%v})
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as n — oo.
Combining (12), (13), and the last estimates, we arrive at

(14) EZ?: 20(1-B)n~ ' EL2 + O(n~7/202),

and

2
-l E£2 =n"1E { Z(cn i+l — cn,,) \% ( " 1) (Un,,+1 Un,i)}

i=1
n—1
[n (n+1)(n+ 2) { Z Z(Cn i+1 = Cn,i) (Cn,j+1 — €n,j)
i=1 j=1

(15) xv’(nil)v'(ﬁi_l)}’

gives the main contribution to E Z2. The sum in the braces on the right-hand side of (15) is
equal to

(16) Z(cn w—end)V' (5
i=1
I=1\ _y(_3 . I(_L_)
Bi= Zc””( (n+1) v (n+1)) FenittVi T )
For n sufficiently large, we have cp,1 = cn,n = 0 and as a result of Abel’s transform, we find
that (16) is equal to

n
i—1 6 1 i
z ~V"(' ‘) S V'( ) i1-%)| =8
Cn,t[ n+1+n+l nt+l i—-1+ ntl (211 1) 1+ S2,

=1

where

where 0< 0; < 1 and
= i—1 6 1
8 = ~v"('_ : ) i
! Zlc"” ntl nti)nEiY

n . n . 2
@am) S2 = ch,iV' (;_—:—1) (Bim1—35) = Z;Cn,i(cn,i —Cn,it1) (V' (n -zl- 1)) .
=

i=1

Now we construct an example. Suppose that V/(u) > v > 0 for all u € [@ — ¢, B8+ €].
Let cni =co >0, forall i € ({k, k+1, ..., mP\{i1, 42, ..., is}) where s < n* as n — oo for
some 0 <t < % withij—ij_3>1,j=2,...,s5,and let cps =0 for i =1i; j=1,...,s
Condition (F1) holds by assumption. It is clear that (C1) and (D1) also hold in this example.
So, the estimate of the rate of convergence to the normal law of order n=1/2 of type (3) is
true due to the theorem in [2]. On the other hand, we can note that v, < nt, v2 = o(n1/2),
and n=7/2y2 = o(n~3) as n — oo. In view of the definitions of Sy, %;, and conditions (C1) and
(F1), we have

2|S1| ( —2)
(n+1)(n+ 2)

as n — oo and (17) implies that 2S3/{(n+1)(n+2)} 2 veoun/{(n+1)(n+2)} xn*~2 as n — oo.
Relations (10), (14)—(17) together with the last estimates imply the existence of a constant
K > 0 independent of n such that E Z2/52 » Kn*~3. So, the best order of the estimate which
may be achieved with the help of Theorem A is in our example n—1/2+¢,
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TRANSIENT PHENOMENA FOR REAL-VALUED MARKOV
CHAINS*

D. A. KORSHUNOV
(Translated by N. A. Berestova)

This paper considers transient phenomena arising in investigations of stationary real-
valued ergodic Markov chains. They are similar in a sense to nonergodic chains having paths
tending to infinity. This approach enables one to construct approximations for the stationary
distributions of the chains.

Let {x{ }2., be a sequence (in €) of homogeneous real-valued Markov chains (in n)
with transition function P (®)(z, B), ¢ € R, B € %B(R), where B(R) is the o-algebra of the
Borel sets in R. An invariant measure 7(¢) corresponding to the chain {X{*}, i.e., a measure

satisfying the equation

@) =&)(B) = / PE(z, Byn®)(dz), #O(R)=1,
R

is our main subject of study. If the chains {X,(f)} are ergodic for £ > 0, then the asymptotic
behavior of their stationary distribution (as e — 0) will be discussed. In the sequel, it is
supposed that equation (1) has a unique solution when ¢ > 0. This is the case if conditions
hold for the chains {X,(f)} to be ergodic involving a “mean drift” of the chain towards some
compact set (see Theorem A) and a “mixing” condition of Doob-Doeblin type (see [2]). In
this situation the distribution P (€)(x, =, -) converges in variation to #(¢)(-) with the measure
w(€) () unique.

Consider a family of random variables (r.v.’s) £()(z) whose distribution coincides with
the distribution of the step of the chain {X{*)} from the state z: P{z + £®)(z) € B} =
Pz, B). Below we shall use some regularity conditions. The first one concerns the
assumption of “loadability” of the Markov chains {X,(f)} meaning that the “average drift”
tends to zero: E£(6)(z) — 0 as ¢ — oo and ¢ | 0. We then assume that the transient kernel
is “weakly continuous” (we shall omit the index (0) for the parameters of the limiting chain
Xn=X®): P©(z,.)=> P(y,-)asz —y, | 0 for any y € R, and that the limiting kernel
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