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Конечно усеченные линейные комбинации порядкооых статистик 781 

Нравая часть (19) при Т -* со стремится к нулю равномерно по / и L. Лемма 5 до­
казана. 

3. Доказательство теоремы. Доказательство теоремы легко вытекает из лемм 
3—5. Следует только показать, что 

sup Е^ (ехр {+ ацт}) < со, 
J) L 

где Т1Т = VT (LT - Ef (LT)). 
Справедливость этого утверждения немедленно следует из леммы 4 и формулы 

(12) (ср. [1]). 
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О СКОРОСТИ СХОДИМОСТИ К НОРМАЛЬНОМУ ЗАКОНУ 
КОНЕЧНО УСЕЧЕННЫХ ЛИНЕЙНЫХ КОМБИНАЦИЙ 

ПОРЯДКОВЫХ СТАТИСТИК 

ГРЖВКОВА ы» в. 

1. Пусть Х1ч . . ., Хп — независимые одинаково распределенные случайные ве­
личины (св.) с функцией распределения F (х), Х(1) < . . . < Х ( п ) — соответствующие 
им порядковые статистики. Рассмотрим линейную комбинацию порядковых статистик 

£ = ^ V . _ | C i X ( i ) , (1) 

где ci — вещественные числа. В работах, посвященных исследованию скорости схо­
димости L к нормальному закону, обычно рассматривают либо линейные комбинации, 
усеченные по квантилям выборки (т. е. случай q = 0 для i <J an и i ]> ß/г, 0 < а < 
< ß < 1), либо всю комбинацию полностью. Именно для первого случая Бьервом [1] 
была впервые достигнута граница Берри—Эссеена, т. е. получена оценка вида 

sup | Р {LH < х} - Ф (я) | < Сп~г'^ (2) 
X 

где Ьн — определенным образом нормированная и центрированная с. в. L, Ф (х) — 
стандартная нормальная функция распределения и С — не зависящая от п постоян­
ная. Для неусеченных линейных комбинаций оптимальную по порядку оценку впер­
вые получил Хелмерс [2] (библиографию и обзор части работ по этой тематике можно 
найти в книге Хелмерса [3]). Следует отметить, что если результаты по скорости схо­
димости для усеченных по квантилям линейных комбинаций не требуют никаких 
моментных предположений (см. [1], [4], [5]) или требуют слабых моментных предпо. 
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ложений (см. [3], [4]), то в общем случае обязательным является условие Е | Хг | 3 < оо. 
В данной работе рассматриваются линейные комбинации, у которых обращаются в нуль, 
лишь фиксированное, не зависящее от п число крайних коэффициентов. С помощыо 
техники ван Цвета [6] показано, что если коэффициенты с% удовлетворяют определен­
ному условию гладкости, то для оценки (2) в этом случае достаточно условие Е J Xj_ j ö <̂  
< оо, при некотором ô !> 1. 

2. В работе [6] ван Цвет, изучая скорость сходимости к нормальному закону 
статистик вида Т = % (Х±, . . ., Хп), где т: R n —» R — симметричная функция п 
переменных, Хг, . . ., Хп — независимые одинаково распределенные с в . , установил 
справедливость следующего результата. 

Теорема А, Пусть ET = О, ЕГ2 = 1 и пусть существуют положительные по­
стоянные А и В такие, что 

Е\Е(Т\ Х%) |3 < An*!*, (3> 
1 + Е {Е (Т | Хъ . . . Хп_2)}2 - 2Е {Е (Т \.Хи . . . Х ^ ) } 2 < A r * . (4> 

Тогда 
sup | Р (Т < х) — Ф (х) | < С (А + В)п~Ч\ 

где С — абсолютная постоянная. 
Одно из следствий этой теоремы, полученных в [6], относится к линейным комби­

нациям порядковых статистик вида (1). 
Следствие. Пусть О < ö2 (L) < оо. Положим 

max |с . | = я , п max |с.—с,-
Тогда 

2^г^п 

sup Р 1 -
х I I 

EL 
o(L) •}-< 4 - Ф М К С [ а3 

, Ъ* {Е | Xi |}2 

( i ) а2(£) ] ^ (5), 

еде С — абсолютная постоянная. 
Предлагаемый далее результат обобщает это следствие. 

За Полошим цз = я - 1 2 I ci I3 E I X/i < i ) l п шах | с. • 
2^i^n г 

Теорема 1. Пусть О < о2 (L) < оо. Тогда 

sup •в i — E i 
W О (*) < с 

jig + б3 {Е | X t J}3 

а2(£) 
(6) 

гд# С — абсолютная постоянная. 
Неравенство (6) представляет интерес только если величины рГ3 НЕ Е j Хг | конеч­

ны. Если Е | Хг \ 3 < оо, то и pJ3 < оо, в этом случае мы получаем по существу резуль­
тат ван Цвета. Однако теорема 1 имеет и другие следствия. Известно (см., например,. 
[7], с. 41), что если Е [ Хг f < оо для некоторого ô > 0, тоЕ | X ( i ) \k < оо для лю­
бого к > 0 и для всех i таких, что kà~~x ^ i ^ п + 1 — ко"1. Поэтому правая часть 
неравенства (6) будет конечна, если выполнены следующие условия: (1) Е | Хг f < оо, 
à > 1, (2) ci = 0, если i < Зо"1 или i > п + 1 — Зо"1, (3) a2 (L) > 0. Условие (2) 
показывает, что если ô ^ 3, то усечения нет. Далее будет показано, что из теоремы 1 
вытекают следующие две теоремы. 

Теорема 2. Пусть Е | Хг \ < оо, а = 0, <?л/ш i = 1, 2, п — 1, /г, к о>2 (L) > 0.. 
Тогда 

sup 
L — EL 
c(L) < x\ — Ф (x) < £ 

&3{Ej*il}8 

o*(L) 
b*{E\Xx\}* 

o*(L) 
,-V*. 

где С — абсолютная постоянная. 
Теорема 3* Пусть Е | Хх |3/г < оо, Cl = % = 0, о2 (L) > 0. Тогда 

sup 
-EL 

о(£) О | — Ф (х) < С 
' { E l ^ f / y &2{EjXxl}2 

а 3 (£) + (j2(L) 

(7)' 

(8) 

где 6* — абсолютная постоянная. 
Если величина 5 ограничена сверху, а дисперсия а2 (£) отделена от нуля равно­

мерно по п, то (7) и (8) — оценки порядка п~^2. 
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4. Д о к а з а т е л ь с т в о т е о р е м ы 1. С. в. L* = (L — EL)ia (L) является 
нормированной симметричной функцией независимых одинаково распределенных с в . 
Xi, * . -, Хп. Проверим, что для нее выполняются условия (3) и (4) теоремы А. В [6] 
при аналогичной проверке (см. [6], с. 437) установлено, что (4) имеет место для любой 
линейной комбинации вида (1) (если только 0 < о2 (L) < оо) с постоянной В = 
= 25Ь2а~2 (L) {E | Х± |} 2 . Доказательство неравенства (3) проведем иначе, чем в [6]а 
Имеем: 

Е 1 E (L * | Хг) |3 = а"3Е | E (L — EL | Х{) |3. (9) 

Оценим Е | E (L — EL \ Хг) |3. Введем У(1) < У(2) < . . . < Y{n^ — порядковые 
статистики выборки Х2, . . ., Хп. Пусть (» Д •) означает min (•, •). Для всех i = 2, . ?, 9 

. . ., га -— 1 с вероятностью единица 

•V = (VAXi>-(Vi)Ä*i) + Vi> (Ю) 
(см. [8], с. 679). Если положить Y,Q^ = —оо, у . v = -f-oo и считать, что оо — оо = 0§ 

то (10) будет справедливо и для i = 1 и i = п* Тогда с вероятностью единица 
п 

L = „-V.2 ^ [(У№ д *i) - ( V > Л *i) + V D 1 

и, посколькудраспределение У ^ , i = 1, . . ., и — 1, не зависит от Х ь получаем, что 
п 

Е 1 Е (Л - E i | X,) |» = «-"/'E | Е { ̂  *г l(Y( i) Д Хх) - ( V i ) Д * i ) ] -

- Е S сг U V Л *0 - ( V i ) А ^0] 1 Ц | s . (11) 

Обозначим R ранг Xj в выборке Хг, . . ., Хп . После перегруппировки слагаемых 
правая часть (11) оказывается равной 

«- 3 % | Е { % (с, - ei+1) V - E S ' («I - « W V + «Я*1 - ЕсдХг | Хг} |3 < 

П - 1 
< тг^'Е [2Е 2 i сг ™ с*+1 I i Yd) I + E (I C B Z * ~ E *B X i ! I ̂ f . (12) 

K - l 

Оговорим, что если в (12) R = 1, то 2 (сг ~~ ci+i) Yn) = ®- ^ ° неравенствам Иен-
г = 1 

сена и Гёльдера правая часть (12) не превосходит 

п—1 

32?rV2 [(Е .S 1 С* - °i+l ' ' У(^) 'Г + Е (Е {| C ß X l !" I X l » ] < 

< 32»-3/, £(JL (в _ 1) Е | Хг i)' + 4" Ü Е il сяХ» Is I « = *}] < 
< 3 2 д - 3 ^ [ Ь 3 ( Е | Х 1 | ) 3 + ] х 3 ] . 

Из этой оценки и из (9) следует, что неравенство (3) для с.в, L* выполняется с по­
стоянной А = 32а~3 (Zr)[pbs + Ь3 {Е ) Хх |}3]. 

Таким^образом, по теореме А имеет место неравенство (6). Теорема доказана. 
5. Д^о к адз_а тше л ь с т в о т е о р е м ы 2, По теореме 1 достаточно доказать, что 

fX3<C63{E lXil}% (13) 

С здесь и далее^означает абсолютную постоянную, не везде одну и ту же. Докажем 
(13). 

г п—1 

Заметим, что с. = 2 (с
г ~ сг-д = 2l (сг ~~* cr+i)* поэтому при всех * = 1 , . . . тг 

| ь с . К < ф . (14) 
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Покажем теперь, что при всех i = 3, . . . п — 2 

E | X ( i ) | 3 < C { E | Z 1 | } 3 [ - ^ : 0 
По неравенству Чебышёва | х \ F (х)(1 — F (х)) < Е | X j | . Пусть вначале 3 
< п — 2, тогда 

(15) 

Е l X(i) I3 - B(i,n — i + l) 

В (i — 3, re — i — 2) 
<{E\Xl\r—K

B{iin_i^~<C{E\X1\y 

[ \ x \* F1-1 (x) (1 ~ F (х))п~1 dF (x) < 

ï(n — i) J * 

Для 1 = 3 ж i = » =— 2 одновременно имеем: 
oo 

{E|Xi|}« 
Е 1 * « ! 3 = 5 ( i , B - i) J \x\dF(z)<çc{E\x1\p[ .*_t) ] 3 ; 

(15) доказано. Из (15), (14) и определения [х8 следует (13). Теорема доказана. 
6. Д о к а з а т е л ь с т в о т е о р е м ы 3. По теореме 1 достаточно доказать, что 

j i s ^ c è M E I X i f 7 2 } 2 - (i6> 

Для коэффициентов ci имеем оценку (14), поэтому (16) будет верно, если мы по­
кажем, что при всех i = 2, . . ., п — 1 

Е | X(J) |» < С .{E l* ! |V.}« 
i (n — i) 

(17) 

По неравенству Чебышёва \ x\'2F (x)(i — F (x)) < Е | Хг | '2. Пусть вначале 
2 << i < я — 1, тогда 

3/ £(г — 2,n~i — 1) 3/ Г тг2 

Е1^)|'<{Е|дтх1^Ча,в-< + 1) <С{Е1^1 /2}ЧТ(^Г7Г 
Для i = 2 и i = /г — Î одновременно имеем: 

оо 

— oo 

Теорема доказана» 
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