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Abstract—We investigate the second order accuracy of the M out of N bootstrap for a Studentized
trimmed mean using the Edgeworth expansion derived in a previous paper. Some simulations, which
support our theoretical results, are also given. The effect of extrapolation in conjunction with the M
out of N bootstrap for Studentized trimmed means is briefly discussed. As an auxiliary result we
obtain a Bahadur’s type representation for an M out of N bootstrap quantile.

Our results supplement previous work on (Studentized) trimmed means by Hall and Padmanab-
han [13], Bickel and Sakov [7], and Gribkova and Helmers [11].
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1. INTRODUCTION

This article is closely connected with our previous paper [11], where the validity of the one-term
Edgeworth expansion (EE) and the empirical Edgeworth expansion (EEE) for a Studentized trimmed
mean was established and explicit formulas for the leading terms of the EE were obtained. We study two
second-order approximations to the distribution function (df ) of a Studentized trimmed mean: EE and
bootstrap.

During the past twenty five years the attention of many authors was focussed on Efron’s boot-
strap ([8]), and nowadays there exists a voluminous literature on this topic. The consistency of the
standard nonparametric, or naive, bootstrap was proved for many interesting statistics, at least for the
asymptotically normal ones (see [1, 4, 6, 7, 12, 13, 15, 25] and references therein). One of the main
reasons of interest in the bootstrap and its application in statistics is the second order accuracy property:
under proper conditions the bootstrap approximation to the distribution function (df’) of a pivotal statistic
is more accurate than the normal one. This beneficial property of the bootstrap was proved for the sample
mean [25], for the class of Hoefiding’s U -statistics (cf. [15]) and for some other statistics. The usual way
to prove this fact is based on the congruence of the one-term EE for the pivotal statistic (in the ’real
world”) and the EE for its bootstrap counterpart (in the ’bootstrap world’). Typically the structure of
the one-term EE for the bootstrapped statistic is the same as the one for the pivotal statistic, when the
parameters of the formula of the first leading term of EE are replaced by their empirical counterparts
(plug-in estimators). So, the application of a relevant version of the Law of Large Numbers implies the
second order accuracy of the bootstrap (cf. [12, 15, 25]). However, the case of the trimmed mean is a
special one. The problem is connected with the difficulty in obtaining the explicit formula for the one-
term EE (cf. [13]).

In this paper we establish the validity of a one-term EE for the bootstrapped Studentized trimmed

mean (in the bootstrap world). We also obtain an explicit formula for the M ~1/2-term (correcting for
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skewness and bias; M being the size of the bootstrap sample). Using this expansion and our previous
results [11] (extended and slightly improved here) we prove that M out of IV bootstrap approximation
to the df of the trimmed mean and Studentized trimmed mean is more accurate than the normal one,
provided a natural condition (cf. (C'.2)) on the size of the bootstrap resample M in relation to size N
is satisfied. Our results can be viewed as a mathematical contribution to the asymptotic theory for the
M out of N bootstrap. In a way the only thing we do is proving for Studentized trimmed mean under
minimal conditions what statisticians expect to be true in nice asymptotically normal situations.

The second order accuracy of the bootstrap for a Studentized trimmed mean was also established by
Hall and Padmanabhan [13] for the special case of the naive bootstrap, i.e., when M = N. Their proof
relies on the existence of the EE for a Studentized trimmed mean.

Our main results are more general and precise than those in [13]. In Theorem 2.5 we assume that
M = N + O(N") forsome r < 1 and that the density of the underlying distribution exists and is positive
and Holder continuous near the two quantiles, where trimming occurs. Moreover, we establish the order
of magnitude of the M out of N bootstrap errorin terms of r and a (the parameter appearing in the Holder
condition). On the other hand, in Theorems 2.7 and 2.8, we focus on the case that M is of smaller order
of magnitude than V. We establish the asymptotic accuracy for the M out of NV bootstrap in conjunction
with extrapolation, and we show that it will lead to a better performance. Our results are completed with
simulations.

The paper is organized as follows: in Section 2, we state our main results on the EE and M out
of N bootstrap, and we discuss the important special case of the naive bootstrap. In Section 3, we
present some numerical results based on simulations. In Section 4, we state and prove Bahadur-type
lemmas. A lemma on bias approximation is also presented in Section 4. In Section 5, a U-statistic
type approximation to the bootstrapped trimmed mean is established, and our result for a normalized
version of bootstrapped trimmed mean is proved. Those parts of the proof which are similar to the
corresponding ones in [11] are discussed only briefly. In Section 6, a stochastic approximation for a
plug-in estimator, which is used to construct a Studentized bootstrapped trimmed mean is established,
and the result on the EE for a Studentized bootstrapped version of the statistic is proved. In Section 7,
the bootstrap versions of the Bahadur-type lemmas are proved. In Appendix, we state and prove a lemma
on conditioning.

2. MAIN RESULTS

Let X1, X5,... denote a sequence of independent and identically distributed (i.i.d.) real-
valued random variables (r.v.) with common distribution function (df) F, and let X1.y < -+ < Xn.N
(N =1,2,...) be the corresponding order statistics. Let X}, ..., X}, be a bootstrap resample of size
M = M(N) from the empirical df Fy based on the first N original observations X7,..., Xy; denote
by F';; the bootstrap empirical df, i.e., Fy,(z) = M~ '{i: X <z,1 <i< M}, —00 < z < oo, and let
X < - < X be the corresponding order statistics. Here and throughout this paper we use the
shorthand notation M, omitting its argument N. The M out of N bootstrap (with replacement) will be
shown to be second-order accurate (cf. Theorems 2.5 and 2.7), like the classical naive bootstrap M = N,
with reduced computation time (ci., for instance, Bickel and Sakov[7]).

Let F~1(u) = inf{z : F(x) > u},0 < u < 1, denote the left-continuous inverse function of the df F
and put FJQI, (F3;)~! to be the inverse functions of Fyy and F};, respectively.

Consider the trimmed mean given by

B
1 _
TN:B_Q/FNl(u)du, (2.1)
which is precisely equal to
1 [BN]
—Ca,NX[aN]+1:N + W Z Xi:n + cp N X[gN]+1:N
i=[aN]+1
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144 GRIBKOVA, HELMERS

where 0 < ao < 8 < 1 are any fixed numbers, [-] represents the greatest integer function and ¢, v =
(vN — [vN))/((B —a)N), v =a,p. This version of the trimmed mean also occurs in [18, 14]
(cf. also[4]). Indeed, (2.1) is a natural definition for the trimmed mean in a bootstrap context.

In[11]we studied the Edgeworth expansion (EE) for the trimmed mean given by

[BN]
Sn = ([BN] = LY X,

i=[aN]+1

which is a more common way of defining a trimmed mean (cf. also [26, 13, 23]). The reason why we now
prefer T (cf. (2.1)) is its convenience for the bootstrap. This will be discussed in the paragraph after
Theorem 2.5, our first main result on the M out of N bootstrap.

[t is well known that a trimmed mean given by (2.1) (or the one defined as Sy) often serves as a
statistical estimator of the location parameter
1 B
_a/F_l(u) du. (2.2)

Let us introduce the v-th (0 < v < 1) quantile of F by &, = F~!(v), and define the sample quantile
&n:N = Fy'(v) and the bootstrap quantile £%,,.,, = (Fi;) ' (v).
The M out of N bootstrap counterpart of T is given by

e, B) =

B
* 1 * O\ —
Ty = i—a /(FM) H(u) du, (2.3)
which is equal to
1 [BM]
_cayMX[*aM}—l-le + (5 — Oé)M Z XZ*M +cﬁ,MX[TBM}+1:M7
i=[aM]+1

with e,y = (WM — [vM)) /(B — a)M), v = «a, .

Suppose that §, # &3 (that is &, is not an atom of the distribution /" with mass at least (8 — «)), and
let W; and W;* be X; and X Winsorized outside of (£,,&] and (§an:n,&an.n] respectively. In other
words

Wi =&V (X; NEg), i=1,...,N, (2.4)
Wi =&an:n V (X ANpn:n), i=1,..., M,
where a A b = min(a, b) and a V b = max(a, b).
Finally, define the quantile function Q(u), the empirical quantile function @ x(u), and its bootstrap
version @}, (u) by
Qu) =&V (FT () A &), Qn(w) = Eanan V (Fy' (w) Apnin), (2.5)
Qs (w) = Exnranr V ((FD) ™ (W) AEfaran),
for 0 < u < 1. The first three central moments of W are given by
1 1 1
pw = [Quidn, ol = [Q)—pw)Pdu, = [@w - ) du. (26)
0 0 0
and the corresponding moments of Wy are equal to
1 1
PW,N = /QN(U) du, ofy N = /(QN(U) — pw,N) du, YW = /(QN(U) — pwn)?du. (2.7)
0 0

0
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Define the df’s of the normalized trimmed mean and its bootstrap counterpart by

NY2(Ty = p(ey, . L MYV2(TF = Tn)
FTN(a:):P< (B(—Na)—lfﬁwﬁ)) §x> and T (x):P< (B_a]\;%aw’;,v _a:>

N,M
Here and elsewhere P* denotes the bootstrap probability measure having discrete mass points X;. ;y with
atoms 1/N, and E* denotes the corresponding expectation.

To establish our results on the EE we will assume that the following smoothness condition is satisfied:

(C.1) Suppose that the distribution function F has a density f = F' in some neighborhoods
of the points &, with f(§,) >0, v=«, (. In addition, we assume that the density f satisfies
Hélder’s condition of order a > 0 at the points &,, &g, i.e., there exists a constant C such that
|f(x) = f(&)| < Cle— &% Jorall x in a neighborhood of &, v = «, 3.

For the validity of our results on the bootstrap accuracy we will need a slightly stronger smoothness
condition:

(C.1") In addition to (C.1) assume that the density f satisfies a uniform Holder condition
of order a > 0 in neighborhoods of the points &, &g, i.e., there exists a constant C such that
|f(x) = fly)| < Clz -yl forall x,y in a neighborhood of &, v = a, 3.

Moreover, the following condition on the growth rate of M as a function of N will be required:

(C.2) Forsome0<d<1
M = O(N*9),

as min(N, M) — oo.

The purpose of condition (C.2) is to ensure that an appropriate version (cf. Lemma 4.2) of Bahadur’s
representation for M out of N bootstrap quantile is valid. If (C.2) does not hold — for instance when
M = N? — the remainder term of our expansions will be of the same order, viz. 1/N in case M = N?, as
the first term in the expansions. Note that (C.2) implies 1/N = o(M ~/27P) for every p < d/(2(2 — d)).
Technically speaking (C.2) enables us to obtain an error term for our expansions of order M ~1/2-7 in
the bootstrap world (cf. also the remark following Lemma 7.1).

To state our results on the Edgeworth expansions and their bootstrap versions we need the following
notations. Set

1 1
Sw = —a®———[uw — &)* + (1 = B) 2 ———[uw — &3]3, 2.8
dw,N = —Oé?vé[,uww —an.NP (1 - ﬁN)2¥[MW,N — &nen1?, (2.9)
f(€an:N) f(&pn:n)

where vy = Fn(&un.N), v = a, 3. Define real numbers Ay and Ay by

M =yw/ob, Ao =ow/ovy (2.10)
(cf.[11, 21]) and their empirical counterparts by

)\LNZ’YW,N/O'?/V’N, >‘2,N:5W,N/UI3/V,N' (2.11)

Note that, in contrast to (2.7), (2.11) is not completely empirical, as it involves the values of the density
f at the two quantiles, where the trimming occurs; one way of estimating these unknown values is
discussed in[11]. [t was established in Gribkova and Helmers [11] that the Edgeworth expansion for the
df Fr, (z) is given by

Gn(z) = ®(x) — ?\(/”% <(>\1 +3X\o)(x? — 1) + 6@%) (2.12)
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146 GRIBKOVA, HELMERS

where @ is the standard normal distribution function, ¢ = ®’ its density and by is a bias term given by

1 1 1
bN:W{_a(l_a)f(Ea)+5(1_5)T£@}' (=19

To be more precise, in[11] the validity of the one-term EE and the explicit formula G (x) are established
for the trimmed mean Sy defined by

1

N = BN = [N

> Xiwn. (2.14)

However, it is clear from our proofs that the one-term EE’s for Ty and Sy are the same in their skewness
terms, and differ only in the bias terms. A similar comment applies to the Studentized Ty and Sy and
their bootstrap counterparts. It was shown in[11] that the bias of S in estimating of u(«, 3) is given by

dn = by + b N (2.15)
with by asin(2.13) and
o = | = (@ — [N (0 6) = &) + (BN = [N] (o) — €5)

(cf. Lemma A.1,[11], see also Lemma 4.5, Section 4).

The following result is a refined version of Theorem 2.1 from [11] on the Edgeworth expansion for the
normalized trimmed mean.

Theorem 2.1. Suppose that condition (C.1) holds true. Then
sup |Fry () — Gy ()| = o(N~V/27P) (2.16)
TER

for every p < min(a/2,1/4) as N — oc.

Let us compare this result with Theorem 2.1 in [11], where the one-term Edgeworth expansion for
the normalized trimmed mean was obtained. In[11] we assumed that the underlying distribution has a
density, which is positive and Lipschitz in neighborhoods of &, and £g. Under this condition we obtained
that the remainder term of the EE is of the classical Bahadur’s order O((log N)>/4N—3/4).In the present
paper our smoothness condition is slightly weaker: we suppose that the density is Hélder continuous of
degree a > 0 at the points &, and {3 and establish the order of magnitude of the remainder term in
terms of the parameter a appearing in the Holder condition (cf. (C.1)). At the same time we find that the
classical Bahadur order for the remainder term holds true whenever a > 1/2, while in [11] the same fact
was obtained for the special case a = 1.

To prove Theorem 2.1 it suffices to repeat the arguments used for proving Theorem 2.1 in [11],
replacing the application of Lemmas 3.1, 3.2, and A.1 from [11] by applying Lemmas 4.1, 4.3, and 4.5,
respectively, of the present paper (see Section 4).

Remark 2.1. It s clear from our proofs (cf. also the proof of Theorem 2.1 in[11]) that the r.h.s. in (2.16)
is in fact of order

0 <E‘3ﬁg ((log N/N)Y* + (log N/N)“/2)>, (2.17)

i.e., we obtain a slightly stronger result than the one stated in Theorem 2.1. A similar comment applies
to our results for the 'bootstrap world’.

Let us now consider the M out of N bootstrapped trimmed mean given by (2.3). The classical result
of Stigler [26] directly implies that if the inverse function F~! is continuous at the two points « and 3
and min (N, M) tends to infinity, the limiting distribution of the normalized (and also of a Studentized)
T’y is standard normal with probability one. This fact yields the first order accuracy of the bootstrap
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approximation for the df of the trimmed mean. In the present paper we prove that if conditions (C.1")
and (C.2) hold true, then the Edgeworth expansion for the df of a normalized version of the bootstrapped
trimmed mean is given by

() = B(z) — 6‘6% ((ALN T 3haw)(@® — 1) + 6@%) (2.18)
where by s is the bias term given by
bMM:L{—aN(l—aN)LwNu—ﬂN)%}. (2.19)
2V M f(€an:n) f(&pn:n)
In Lemma 4.5 we show that if (C.1") and (C'.2) hold, then
MY2(3 = a)(B* T — Tn) — by = o(M~H/27P)
for every
p < min <g i, ﬁ) as. [P, (2.20)

as min(N, M) — oo, where a > 0 is the parameter in (C.1"), and d is the parameter in (C.2). Inequality
(2.20) describes the dependence of the order of magnitude of the error in the bootstrap bias estimate on
the parameters a and d.

The next assertion is a bootstrap version of Theorem 2.1.

Theorem 2.2. Suppose that conditions (C.1') and (C.2) hold true. Then for every p satisfying
(2.20)

sup |Fr«  (z) — Gy m(x)| = o(M~1/27P) (2.21)

TzER M

with probability one, as min(N, M) — oo.

Note thatifd =1 (i.e., M = O(N) as min(N, M) — oo)and a > 1/2, then

(il 4 \_1
M T2 —a)) T 1

(cf. (2.20)), therefore relation (2.21) gives a bound of Bahadur’s order in M. The proof of Theorem 2.2
can be found in Section 5.

Note also that in fact we prove in Section 5 a slightly stronger assertion, namely, that for every ¢ > 0
and p satisfying (2.20)

P(sup |FT.

*
zER M

(2) = G ()] > MTH27P) = o(N79)

as min(N, M) — oo, which by the Borel—Cantelli lemma, with ¢ > 1, directly yields (2.21). A similar
comment applies to other our results for the bootstrap world.

Now we state our results for a Studentized trimmed mean and the bootstrapped Studentized trimmed
mean. Define the df of the Studentized T by

N1/2(TN - /L(Ot, B))
G- lown >

Fry s(z) = P<

and the df of the Studentized %, ,, by

M'2(TF 5y — Tn)
Fry  s(x) =P < N ix S m)
' (B —a) Ow.Mm
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respectively, where
1 1
(ot ar)? = / (@r(w) — iy du and  piya = / Qi (u) du
0 0

with @}, asin(2.5). It was shown in[11]that the Edgeworth expansion for a Studentized trimmed mean
is given by

Hy(z) = ®(x) + g\% <(2x2 + DA +3(z% + DAy — 6W%> (2.22)

The following result is a refined version of Theorem 2.2 in[11].

Theorem 2.3. Suppose that condition (C.1) holds true. Then
sup | Fry s(«) — Hy(x)| = o(N~/277) (2.23)
TER

for every p < min(a/2,1/4) as N — oc.

To prove relation (2.23), it suffices to repeat the argument used when proving Theorem 2.2 in [11],
applying now Lemmas 4.1, 4.3, and 4.5 (cf. Section 4) instead of Lemmas 3.1, 3.2, and A.1 (cf. [11]).
The Edgeworth expansion for the bootstrapped Studentized trimmed mean is given by

o(x) 2 2 b M
H = —=1 (2 1 1 —6vVM——|. 2.24
N () () + Vi 2z + AN + 3(z" + 1) Ay — 6V p— (2.24)
The next assertion is a bootstrap version of Theorem 2.3.

Theorem 2.4. Suppose that conditions (C.1') and (C.2) hold true. Then for every p satisfying
(2.20)

sup [P o(x) — Hya(x)| = o(M~/277) (2.25)
TER ’
with probability one as min(N, M) — oc.

The proof of Theorem 2.4 can be found in Section 6.

Note that if (C.1) holds with a > 1/2, the order of our approximation for the normalized and

Studentized trimmed mean is o(IN~3/4t¢) for every € > 0 (i.e., is of the classical Bahadur’s [2] order),
and if in addition d = 1 (that is M = O(NN) whenever min(N, M) — o0), our approximation for the df
of the bootstrap version of the trimmed mean is of order o( M ~3/4t¢) for every ¢ > 0.

Theorem 2.4 can be compared with the main result of Hall and Padmanabhan [13], where the
existence of the asymptotic expansion for the df of a Studentized trimmed mean and its bootstrap version
was established. They restrict attention to the case M = N and obtain a bootstrap approximation with

the error of order o( N~1/27¢) (for some £ > 0) under (C.1") with a = 1.

Remark 2.2. [t is easy to verify irom the proofs of Theorems 2.2 and 2.4 that the relations (2.21) and
(2.25) are valid also for the df’s of the bootstrap versions of the trimmed mean given by

[BM]

St = ([BM] = [aM)™" >~ X7y,
i=[aM]+1

provided we replace by, s (the bias term) in formulas (2.18) and (2.24) by
dn,v = by + by N s (2.26)
with
b N M= —\/1M{ — (aM — [aM])(Tn — éan-n) + (BM — [BM])(T — &an-n) }
where T}y is defined by (2.1) and by ar as in (2.19) (cf. (2.15)).
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Define the quantity

VNby 1 <_ al—a)  B1- 5)>‘ (2.27)

ow 20w f(&a) f(&s)

The following corollary is a simple consequence of our previous results.

Corollary 2.1. Suppose that conditions (C.1") and (C.2) hold true. Then
1 1 1
z) = Fry(2) = —¢(z) — — — ) |=(M +3X) (22 -1 —i—b}
(@) = Frya) = o) (2 = =) [0+ 33 = 1)
+ RN + BN+ Riw,

(@) = Pry, s(2) = 6(x) (\/LM _ %) [%A1(2x2 1)+ %Az(l«z L1y b]
+ Ro N + Ro N v + Ro v,

*
FT*

N,M

*
FT*

N,M>

where, for j =1,2, Rjy = o(N~Y?7P) for every p < min(a/2,1/4) as N — oo, and Rjnur =
o(M~Y2N=%) for every s < a/2, a.s. [P], as min(N, M) — oo, Rjn = o(M~Y27P) for every p
satisfying (2.20), a.s. [P], as min(N, M) — oo.

Note that M can be of smaller order than N (ci. Theorem 2.7), as well as of larger order, i.e., M > N.
The border case M = N corresponds to the standard nonparametric naive Efron’s bootstrap resampling
plan. Corollary 2.1 follows directly from Theorems 2.1—2.4, our smoothness condition, and Lemma 6.2
in[11], where in the proof of this lemma (ci. [11]) we now apply Lemmas 4.1 and 4.3 of the present paper
instead of the related lemmas from [11], because in [11] we require the stronger assumption that f is
Lipschitz in neighborhoods of &, £g, while here we assume only that it is H6lder continuous.

Corollary 2.1 directly implies the following consequence.

Corollary 2.2. Suppose that conditions (C.1') and (C.2) hold true. If ﬁ >1orA+3X =0,
then

1 1 1 1
sup |Fre  (z) — Fr ()| = — b= =AM +3X2)| + Rn 1,
zeg| TN,M( ) TN( )‘ \/% \/M N‘ ‘ 6( 1 2) N,1
otherwise
1 1 1
su F** X —F €T e —
sup B35 () = Frv @)1 = T A m‘

1
X max <‘b — 6()\1 + 3)\2)

1 3 2b
b\ A - (1-—
,3\ 1+3 2|exp< 2< )\1+3A2>>> + Ry 2,

moreover, if 2/)\‘1115’\2 < —1lor2\ +3X\y =0, then

1 1 1 1
sup |FF« z)—F z)| = — -1b—=(A1 +3X2)| + Rn 3,
zeg‘ TN,M’S( ) TN,S( )| \/% \/M \/N‘ ' 6( 1 2) N,3
otherwise
1 1 1
sup |Fi« r)—F )| = —
z€g| TN,M7S( ) Tst( )| \/ﬁ \/M \/N

1
X max (‘b - E(Al +3X2)

1 1 A1 + 6b
—[2)\ 3\ —— {14+ —-— R
,3| 1+ 2|6Xp< 2< +2>\1+3)\2>>>—|— N4

where for j=1,...,4, Ryj = o(N~V2=0 4 M~1V2N=5 4 M~Y27P), a.s. [P], for every s < a/2,
q < min(a/2,1/4) and p satisfying (2.20) as min(N, M) — oc.
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[t is evident from our results that the second order accuracy of the M out of N bootstrap approxi-
mations (i.e., the bound of order o(N~1/2) at the right-hand sides of relations in Corollary 2.2) can be
achieved if and only if M/N — 1 as N — oo, that is when M = N + o(IN). Moreover, if we assume a
slightly stronger condition M = N + O(N") with some 0 < r < 1, then

1 1
VM VN
This bound together with Corollary 2.2 directly implies the following result on the M out of N bootstrap.

O(N_l/z_(l_T)).

Theorem 2.5. Suppose that condition (C.1') is satisfied and let M = N + O(N"),0 <r < 1. Then
for every p < min(a/2,1 —r,1/4)

sup |Ffy, , (@) = Fry (@)| = o(N~1/2P), (2.28)
and
sup [Py, (@) = Fry.s(@)] = o(N~H27P), (2.29)

with probability one, as N — oo.

This result means that the M out of N bootstrap approximation to the trimmed mean (given by (2.1))
is more accurate than the standard normal approximation. In addition, we want to emphasize the
fact, useful in statistical practice, that the bootstrap approximation is more accurate than the normal
approximation not only in the case when M = N (the naive bootstrap), but also in a more general
situation when the size M of the bootstrap sample differs from the size of the real data sample (but
satisfies the condition M = N + O(N"), r < 1). Note that if condition (C.1") is satisfied with a > 1/2

and 7 < 3/4, then (2.28)—(2.29) provide the bounds of order o(IN ~3/4+¢) for every £ > 0.

Let us now discuss why the trimmed mean given by (2.1) is preferable for the bootstrap. Its
computation is as easy as for Sy (cf. (2.14)). Asymptotic expansions for Ty and Sy are identical in
their skewness terms, but differ in the bias terms (cf. (2.13) and (2.15)). A similar remark applies to their
bootstrap counterparts T ,, and S, (cf. Lemma 4.5).

Let the condition M = N + O(N"), r < 1, be satisfied, and note that the difference of two asymptotic
expansions (for Sy and for its bootstrap version S}, /) contains the quantity b) v — ) n,as, Which is

of order O(N~'/2) in general, because of the presence of the differences of the fractional parts of vN and
vM, v = a, (3, which do not vanish when NV tends to infinity. Therefore, to establish our result on the
second order accuracy of the bootstrap for Sy (an analogue of Theorem 2.5) we need to take into account
this bias contribution by a somewhat unpleasant correction of the location parameter in the definition of
the df of the bootstrapped Sy: for instance, we can put

M1/2(S}kVM_TN) byynm — b N
FSI*VM,S(x):P< (5_0[)’_10* o pe = §x>
’ W,N W,N

(cf. second example, Section 3).

Another way to improve the accuracy of M out of NV bootstrap for Sy is to choose M such that the
fractional parts of vN and vM, v = «, 3, are identical.

In the general case (i.e., without any bias correction) a Berry—Esseen type result (but not second
order accuracy) can be achieved for the trimmed mean given by (2.14). Let Fg,, (x), Fs, s(z) denote the
functions Fr, (x), Frry s(z), where T is replaced by Sy in their definition (ci. above), and ng*v M(:r),

Fg. M7S(az) are the functions Fr. (x) and 12 M7S(ac) with T, ,, replaced by S ,,. The following

theorem is a simple consequence of our expansions.
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Theorem 2.6. Suppose that conditions (C.1") and (C.2) are satisfied. Then

sup | (@) = Fiy ()] = O(min(N, M)~'/%)
and
Sup |Fsy, ,.5(@) = Foy,s (@) = O(min(N, M)~

with probability one, as min(N, M) — oo.

On the empirical EE, the M out of IV bootstrap and extrapolation. Denote the functions
appearing in the Edgeworth expansions G n(z) and Hy(x) (cf. (2.12) and (2.22)) by

B(x) = () [ (\ +30)(a* ~ 1) 8],
with b as in (2.27), and
Bs(z) = é(x) [%()\1(2952 +1) 4+ 3Ag(a? + 1)) — b]

respectively.

Hence, we know that

Fr, (@) = 9(z) + —=B(@) + Fux. (2.30)
Fry () = 0(x) + %NBS@:) 4 Rax,

where Ry y and Ry n are the remainder terms of the EE’s. In[11] we estimate the unknown parameters
appearing in B(x) and Bg(x) to obtain empirical EE’s (EEE)

~ 1 ~ ~ 1 =

Gn(z) = ®(x) + —=B(x and Hyn(z) = ®(x) + —DBgs(x).

w(o) = B(a) +—B() (o) = B(a) + —=Bs(a)

We assume in [11] that (C.1) holds with @ = 1, and apply plug-in estimates for the moments and step-
kernel estimates for the values of the density at the points &,, {3 appearing in the Edgeworth correction
terms for skewness and bias.

In practical applications, when the density is perhaps close to zero at the points &,, {3, estimation of
these small values may cause problems if the sample size N is not very large. In this situation we might
prefer the bootstrap procedure and to obtain second order accuracy, provided we perform simulations
with M = N + o(N) (cf. Theorem 2.5). This will of course require a lot of computation. Fortunately,
however, we can considerably reduce the computation time by using the M out of N bootstrap (cf.
[7, 23]), when min(N, M) — oo and M /N — 0, in conjunction with extrapolation.

Define the functions By (z) and Bg n(x) to be the same as B(x) and Bg(x), with parameters A1, Ag,

a, B, ow, f(&a), and f(§g) replaced by Ay n, Ao v, an, By, ow,N, [(&an:n), and f(£gn:n). Then, with
M <« N we have the bootstrap version of (2.30):

1
Fiy 0 (®) = (@) + =By (@) + Ry, (2.31)
* 1
Frypps@) = 2@) + 72 Bs.n(@) + Rova,

where R; y.ar, j = 1,2, are of order o(M~1/27P) for every p < min(a/2, 1/4), with probability one. Note
that the functions By (z) and Bg n(x) depend on F, N, but not on M (and here it is crucial that we
consider Ty given by (2.1) instead of Sy given by (2.14)).
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Therefore relations (2.31) allow us to estimate these functions with an error of order o(M ~P) with
probability one. The next step is to employ extrapolation for M = N, i.e., we substitute these estimates
in the expressions for Gy ny(z) and Hy n(z) to obtain the estimates

B (@)= o) + %Ném Fi, | s(0) = () + %NES,N@:), (2.32)

with an error of order o( N~/2M~P), implying second order accuracy. Hence we obtain our first main
result for the M out of N bootstrap, whenever M is of smaller order than IV (cf. [7, 23]).

Theorem 2.7. Suppose that condition (C.1') is satisfied and M/N — 0 as M — oc. Then
sup | Fiie (z) — Fry (z)| = o(N~YV2MP),
TER N

sup P 5(2) = Fry (@) = olN 1201 7),
sup | Ffy,

for every p < min(a/2,1/4), with probability one, as M — oc.

In particular, for @ > 1/2 and with M = [N?], 0 < ¢ < 1, we obtain an M out of N bootstrap

approximation with error of order o(N~—(1/2+4/4=2)) "for every ¢ > 0. Hence, as in Theorem 2.5, we
obtain second order accuracy of the bootstrap, but now with reduced computational time. We also note
in passing that extrapolation for the trimmed mean given by Sy (cf. (2.14)) only yields a slow rate of

order O(N~1/2) (cf. Theorem 2.6). In other words: improvement over the normal approximation is not
possible here for Sy.

The next step is to improve the M out of IV bootstrap by extrapolation using a simple linear regression
model as proposed in [23] (cf. also [7]). In our case we need to estimate one parameter B = By(z)
(or B = Bg n(x) for the case of Studentized statistic). Take My, = [t N9, k=1,..., K, where K > 1
is integer, 0 < ¢ < 1, and t; < ty < --- < tx are fixed. Perform the bootstrap procedure K times with
M =M, k=1,..., K. Weobtain

Yi(z) = Ff  (2) — ®(x) = M, *By(x) + O(N~91/2+)) (2.33)

N, My,

with p < min(a/2,1/4). Then, we estimate By (x) in formula (2.33) by viewing By (z), for fixed z, as
a parameter in a linear regression, with error term o(IN~2(1/24P)) Applying least squares we obtain the
estimate

K K K K
By(x) =Y Yk(:p)Mk_l/z/ZMk_l = N2 Zt,;l/2yk(a:)/ St (2.34)
k=1 k=1 k=1 k=1

and similarly for §57N(x) with Yi(z) = F:?]*V Ny g(x) — ®(x). It is evident that the order of the error
My’

of this estimates is o(N~%), and substituting these estimates in the formulas (2.32) gives the order

o(N—(/2+ap)) for the error of the approximations (2.32). Thus, we obtain our second result for the M
out of NV bootstrap in conjunction with extrapolation, whenever M is of smaller order than N.

Theorem 2.8. Suppose that condition (C.1') is satisfied and estimates é]\[(l‘) and ES,N in(2.32)
are given by (2.34). Then for every p < min(a/2,1/4)

sup \ﬁq”i* (x) = Fry (2)] = O(N—(1/2+q;v))7
zer N
Sp [Ffy () = Frys(2)] = o(N~U/27)),
re ’
with probability one, as N — oo.
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We can expect some improvement in comparison with the previous method (K = 1) due to additional
information. We present simulations on M out of N bootstrap in conjunction with extrapolation in
Section 3.

The Naive Bootstrap. Consider the special case M = N, i.e., the so-called 'naive bootstrap’. We
apply our main results and discuss bootstrapping for both versions of trimmed mean.

(I) Bootstrapping for Tx. Consider the trimmed mean T given by (2.1). The following conse-
quence of Theorem 2.5 yields the second order accuracy of the naive bootstrap for the normalized and
Studentized T).

Theorem 2.9. Suppose that condition (C.1') is satisfied. Then for every p < min(a/2,1/4)
sup IF%;V (2) = Fry(z)] = o(N~127P),

sup |Ff,  s(@) = Frys(z)] = o(N7/277),
TER

with probability one, as N — .

Note that the extreme terms, containing fractional parts of «/N and SN in the definition of the df
of the bootstrap counterpart of Ty, can be omitted when M = N. Indeed, by Lemma 4.2 the quantity

N-12(X ]+ 1:n — X[aN]+1:n) 0 our smoothness condition is of order O((log N)Y/2/N), with P*-
probability 1 — O(N~¢), for every ¢ > 0, a.s. [P], because the expression at the r.h.s. of (4.8) (with
M = N and function G(z) = ) is of order O((log N/N)/2). The same is valid for ]\f_1/2(X[*ﬁN}Jrl N —
X(gn)+1:~)- Therefore, for the df of the bootstrapped trimmed mean we have

NYVA(T} = TN) >
5 < T
(B—a) lown

F, (@) = P*(

[BN] [BN]
=P*< e *( > Xiv— ) XZ-;N>Sx+RN>,

i=[aN]+1 i=[aN]+1

where Ry is a quantity of order O((log N)'/2/N), with P*-probability 1 — O(N~°), for every ¢ > 0,
a.s. [P]. Since the derivative G’y y of the one-term EE is bounded uniformly, the term Ry can be
deleted, because it adds to the Edgeworth expansion Gy n(z) a quantity contributing to a remainder
term. Similarly, the df of the Studentized bootstrap trimmed mean F”‘]*V N,S(az) can be reduced to

(BN] [BN]

i=[aN]+1 i=[aN]+1

(I1) Bootstrapping for Sn. Next consider the trimmed mean given by Sy (cf. (2.14)). Define df’s of
the normalized and Studentized Sy by

NY2(Sy — (e,
(ﬁ( —Na)ff(awﬁ)) < l’) and FSN,S(«T) = P(

(cf. [11]). The corresponding asymptotic expansions are Gy (z) and Hy(x), where the bias term by is
replaced by dp (cf. Lemma 4.5). The bootstrap counterpart of Sy is defined by

W ) )

(B—a) lown

Fs, (z) = P<

S}kV’N:([ﬂN— Z

i=aN+1
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The df’s of the normalized and Studentized S} y are defined by

NY2(Sxn = Tn)

(B—a) town

N'2(Stn = Tn)
T Sl’>,
(B—a) Ow.Mm

F;I*VYN(m) = P*( < m) and F;R}S’S(a:) = P*<
the corresponding bootstrap asymptotic expansions are Gy ny(x) and Hy n(z) (with bias term dy n
(cf. (2.26)). Because our smoothness condition (C.1’) implies that the term by; x — by n,n (cf. (2.15),
(2.26) with M = N) is of negligible order and contributes to the remainder term, we obtain the second
order accuracy of the naive bootstrap for the r.v. Sy (cf. [13] for a similar result under somewhat stronger
conditions).

Theorem 2.10. Suppose that condition (C.1') is satisfied. Then for every p < min(a/2,1/4)

sup [Fi () — F, (2)] = o(NV/27),

sup ‘ngv,s(m) — Fsy ()| = O(N_l/z_p)a
T€ER

with probability one, as N — oo.

To conclude this section, we note that a completely different way of approximating Fg, and Fs, g
is to use saddlepoint approximations. These approximations will typically work better in the tail of the
distribution in comparison with the Edgeworth expansions and bootstrap approximations considered
in the present paper. Only very recently these saddlepoint expansions were established for the trimmed
mean and the Studentized trimmed mean. We refer to [16] for more details.

3. SIMULATIONS

In this section we illustrate our results on Edgeworth expansions, bootstrap approximations, and our
previous results on the empirical Edgeworth expansion in[11] by simulations.

We consider the case of the normalized trimmed mean as well as the case of the Studentized one,
and we look at both Ty given in (2.1) and Sy as in (2.14) (cf. Section 2). Monte Carlo simulations were
performed for the following distributions: standard exponential and a mixture of two normal distributions.
To compute the distribution functions Fry, Fg, (of the normalized statistics) and Frry g, Figy s (of their

Studentized versions) we use Monte Carlo procedure with 10 samples.

The values of one-term Edgeworth expansions were computed in each case by our formulas for
Gn(z) and Hy(zx). To get the values of the empirical Edgeworth expansions we need to estimate the
parameters of the first term of the EE. We use plug-in estimates for the moments and quantiles, and
kernel estimates for the values of the density at &,, {3, taking simple step-kernel with N-14 as the
width of the step (in the same way as in [11]). For computation of the df’s of the bootstrapped trimmed
mean: F;E,M’ FS*?v,m (normalized) and F;;,M,S’ Fg}kwws (Studentized) (cf. Section 2) we also apply
a Monte Carlo procedure using 10° samples. We compute the differences of the various approximations
to the df of the trimmed mean and its true df, and plot these differences in our figures.

In Fig. 1 we present our results for the Studentized trimmed mean Ty given by (2.1), where
a=1— [ =0.25, and as underlying distribution we take a mixture of two normal laws:

F(z) = p@((z — a1)/o1) + (1 = p)@((z — az)/02).

Hereay = 0,01 = 0.5,a0 = 2,09 = 1, p = 0.6, sample size N = 45 and M = N (the naive bootstrap). It
can be seen that bootstrap is the best and all the second order approximations (EE, EEE and bootstrap)
are better than the normal one, as one would expect.

Our second example deals with the M out of IV bootstrap (M # N). The simulations were performed
for the standard exponential distribution. Here we consider Sy (cf. (2.14), Section 2) witha =1 — § =
0.15. In Fig. 2 we plot the differences for the normal df, EE and bootstrap with M = N, M = 2N and
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Fig. 1. Ty, Studentized, mixture of two normal distributions, N = 45
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Fig.2. Sy, Studentized, standard exponential distribution, N = 45
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M = [0.5N], where N = 45. To obtain bootstrap approximations in this case we performed the Monte
Carlo procedure for the df given by

1/2 0 qx* 7
SN,]M?S (ﬁ _ a)_la%,M ’

with by v, s as in (2.26), ZA)H,N the estimator for by v (cf. (2.15)),
- 1
bH,N = _ﬁ{ — (aN — [aN]))(Tn — &an:N) + (BN — [BN]) (TN — fﬁN:N)}-

We complete this section with an example involving extrapolation. Simulations were performed with
standard exponential distribution for the Studentized trimmed mean T given by (2.1), where N = 81,
a =0.25 and = 0.85. We use the regression model of extrapolation (ci. Section 1, cf. also [7]) to
estimate the first term of the EE. First we compute the values of df of the bootstrapped Studentized

statistic Fi*v M’S(az) three times with sample sizes M, = t,V/N, t;, = 1,2, 3, that is M; = 9, My = 18,

M3 = 27, then we estimate the function Bg(z) as a parameter in regression by the ’least squares
estimate’

OWwam  OWN

3 3
Bs() =Y ((Fiy,,, s@) = 0@) M%) /37 ag?
k=1

k=1

(cf. (2.34)), and substitute it to the formula for the one term EE. As the result we obtain an estimate

Frys=®(x)+ ﬁBS(m) of the df of the Studentized statistic Tly.

A

0.04[

0.02r ° .

: . . *
‘., e . 0.02k- ce e Bootstrap - True (M=9)
- ++++ Bootstrap - True (M=18)
X X X X Bootstrap - True (M=27)
0000 Extrapolation - true
—————— Edgworth exp. - true
-0.04r oo Normal - true

Fig. 3. T, Studentized, Extrapolation, N = 81, My =9, My = 18, M3 = 27

The results of our simulations are presented in Fig. 3. We plot the differences between F*I*V y g(x)
My, 2

and the true df (k = 1,2, 3) as well as the difference between the result of extrapolation ﬁTN,s(l‘) and
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the true df. We see that extrapolation gives the best approximation in our example. Also note that the
accuracy of the M out of N bootstrap gets better when M becomes larger. This is of course as one
would expect. Simulations show that both EE and the naive bootstrap extrapolation give second order
approximation and achieve this with reduced computational time as compared with the naive bootstrap.
We also refer to Fig. 2 of [7] for a similar result for the trimmed mean.

4. SOME LEMMAS
In this section we state and prove a few lemmas, which we will need in our proofs.
Bahadur’s type results. Let G be a function defined and differentiable with derivative ¢ in a

neighborhood of &, = F~!(a), 0 < a < 1.

The following lemma is an extension of Lemma 3.1 in [11] (ci. also [2] and Theorem 6.3.1 in
Reiss [22]).

Lemma 4.1. Suppose that f = F' exists in a neighborhood of &, and f(&,) > 0. In addition,
assume that the functions f and g satisfy a Hélder condition of order a > 0 at the point &,. Then

G(lan:n) — G(6a) = — [Fn (&) — F(8a)] 9(&a)/ f(&a) + Rn, (4.1)
where P(|Ry| > N~1/27P) = o(N~°), for any ¢ > 0 and every p < min(a/2,1/4), as N — oo.

Proof. Write (cf. (4.1))
N, — aN
Ry = G(lanin) = G&a) + — 5 9(&)/f (&), (4.2)

where N, =#{i: X; <&,}. Let Uy,...,Un be independent, uniformly (0, 1) distributed r.v.’s, and
let U,y < --- < Un.n denote the corresponding order statistics. Define Fi () = N~ U; <z},
0 <z <1, the empirical df and von.Ny = Fjg’lu(a) the corresponding a-quantile. Note that £, 5.n and
N, are distributed as F~(van.n) and Nu, = #{i : U; < a}. Therefore Ry is distributed as

Nyow — alN
’79(

G(F~ (vanv)) = GF~H(a)) + ~

§a)f (Ea)- (4.3)

The latter quantity equals
Noyw — alN
('UaN:N - O‘)g(ga)/f(ga) + RN,I + 7TQ(&Q)/]%&Q)) (44)

where |Ry 1| < Colvan:n — att?, and C, is the Holder constant of the function g(F~1(u))/f(F~*(u))
at the point a (we may neglect here the event when v, .y does not belong to the neighborhood, where
condition (C.1) is satisfied). By Theorem 6.3.1 of Reiss [22] (cf. also Lemma 3.1 in[11]) we have

Ngoy —aN
VUaN:N — O = _7Ta + RN7u7 (45)

where Ry, is the remainder of Bahadur’s order, i.e.,
P(|Ryl > Alog N/N)**) = O(N™), (4.6)

for every ¢ > 0 with some A > 0, independent of N. This implies that the quantity (4.4) is equal to
RN + Rn,2, where Ry o satisfies (4.6), and for Ry ; we have

P(|Ry1| > (Alog N/N)“/2) < P(joann — a] > GV (Alog N/N)Y2), - (47)

and by Bernstein’s inequality the last probability is O(N~¢), provided A > 2ca(1 — a)C’f/(“H). More-
over, our argument also implies that for any p < min(a/2,1/4) we have |Ry ;| < N~Y/27P (j =1,2)
with probability 1 — o(N~¢) for every ¢ > 0. This together with (4.2)—(4.3) implies (4.1). The lemma is
proved. O
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Remark 4.1. It follows from the proof of Lemma 4.1 that the remainder term in (4.1) is a sum of
two terms: Ry = Ry1 + Rn.2, where |Ry1| < A(log N/N)?/* and |Ry 2| < B(log N/N)Y/2+2/2 with
probability 1 — O(N~¢), for every ¢ > 0, where A > 0 is a constant depending on o and ¢, and B > 0 is

a constant depending on «, ¢, and F, but not on N. Hence our bound for Ry is in fact slightly better
than the one in Lemma 4.1.

Our second lemma is concerned with the validity of Bahadur’s representation for an M out of NV
bootstrap quantile.

Lemma 4.2. Suppose that f = F' exists in a neighborhood of &, and f(&,) > 0. In addition
assume that the functions f and g satisfy the uniform Hélder condition of order a >0 in a
neighborhood of &, and that condition (C.2) holds true.

Then
G(&onm) — Gan:N) = —[Fi(€an:N) = FN(§an:N)|9(Ean:N)/ f(an:N) + Ray,  (4.8)

where P* (|R};| > M‘1/2_p) =0 (M~°) for every p satisfying (2.20), with probability one, as
min(N, M) — oo

We relegate the proof of Lemma 4.2 to Section 7.

Remark 4.2. Note that if a > 1/2, then the remainder term Ry in (4.1) is of the order o(IN=3/4t¢) for
every € > 0, and if additionally d = 1, then the remainder term R}, in (4.8) is of order o(M—3/*+¢) with
probability one, for every € > 0.

The following lemma represents a refined version of Lemma 3.2 from [11].

Lemma 4.3. Suppose that the conditions of Lemma 4.1 hold. Then
€a
(G(ZE) - G(ga)) dFyn(z) = _%[FN(SQ) - F(ga)]zg(ga)/f(ga) + Ry, (4.9)
EaN:N

where P(|[Rx| > N7Y7P) = o(N~°) Jor any ¢ > 0 and every p < min(a/2,1/4), as N — oo.

Remark 4.3. Relation (4.9)is a direct consequence of integrating the Bahadur—Kiefer process (cf. [20])
in the interval [£on. N, €a). As we need upper bounds 'in probability’, whereas in [24] 'almost sure’ results
are derived, our smoothness conditions are slightly weaker than the ones in[24] and [20]. For this reason
we include a short proof of (4.9). Relation (4.9) parallels the assertions (3.2) and (3.3) in [13]; note that
our smoothness condition on the density f is slightly weaker than the one used in [13]. The factors

(1 —a)~tand (1 — 3)~! appearing in [13] are superfluous.

Proof. Let us adopt the following notation: for any integer k£ and m let

m kvm
Z()Z = sign[m — k] Z ()i
i=k i=kAm

Then we can rewrite the integral on the l.h.s. of (4.9) as N~} Zi]i“ka(G(Xi;N) — G(&,)), where as in the
proofof Lemma 4.1 N, = #{i : X; <&,}andk, = ayN is the index of the order statistic corresponding

to the a-th quantile of the sample X1,..., Xn. Now we need to estimate the remainder (cf. (4.9)):
_ 1 (Na —aN)?
RN - §T (ga /f ga sz: (ga)) (410)

MATHEMATICAL METHODS OF STATISTICS Vol. 16 No.2 2007



ON THE EDGEWORTH EXPANSION 159

Similarly to the proof of Lemma 4.1, we find that Ry is distributed as
Na,u

_ 2
L B OV e /e + 5 S (G (Uan)) — G (@), (411)
i=ke
The second term of (4.11) equals
_ 2
—t W O e )/ £(6a) + Rova + B (4.12)

2 N2
where P(|Ry 1| > A(log N/N)5/4) = O(N~°) for every ¢ > 0 and some A > 0, independent of N (cf.
Lemma 3.2 in[11]), and

Na,u
Rya=N"'>" [(GoF Y (a+0i(Uin — @) — (Go F~ V()] (Usn — ),
i=ka

where |6;| < 1. The Hoélder condition directly implies that
ka\/Na,u

1
|Rn2| < N Z ColUin — aft T
i=ka ANa.u
Co|Now — k
< Wmaxﬂva]vw—a\1+“,|UNa7u;N—a|1+“). (4.13)

Bernstein’s inequality yields that | Ny, — ko| < A1 (Nlog N)Y2, juan.y — a| < Ag(log N/N)'/2, and
|UN,...N — a| < Az(log N/N) with probability 1 — O(N~¢), for every ¢ > 0 and some A;, i =1,2,3,
independent of IV (cf. Lemma 3.2 in[11]). This together with (4.13) ensures that

P(|Ry | > As(log N/N)'H/2) = O(N~°), (4.14)
as N — oo for every ¢ > 0 with some A4 > 0, independent of V. Relations (4.10)—(4.12) and (4.14)
imply (4.9) for every p < min(a/2,1/4) and ¢ > 0. The lemma is proved. O

Our next lemma provides a bootstrap version of Lemma 4.3.

Lemma 4.4. Suppose that the conditions of Lemma 4.2 hold true. Then

EaN:N
(G(2) — G(€ann)) dF5 ()

5;]&1:]\1
1

— —~[Fr(€an-n) — Fx(€an-n)]*9(Ean-n) [ f Eanen) + R, (4.15)
2

where P*(|Ry;| > M~1P) = o(M~°) for every p satisfying (2.20), with probability one, as
min(N, M) — oc.

The proof of Lemma 4.4 is relegated to Section 7.

Bias approximations. Next, we state and prove our lemmas on the asymptotic approximation for
the bias of Ty and Sy in estimating of («, 3) and for the bias of their bootstrap counterpart. Take some
fixed 6 > 0 such that &, — 0 and {z + J belong to the neighborhoods, where the density f is positive and
Hélder continuous. Define auxiliary r.v.’s X = (o — 0) V (Xi A (§g + 0)), let F" and F}y denote the df
and the empirical df of the r.v. X respectively, and let X/, ,; be the corresponding order statistics. Define
auxiliary trimmed means

, 3 1 1 [BN]
, L d S XN
Th i a a/(FN) (u) du an SN (IBN] = [aN]) i:[gv:]ﬂ N
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Under our smoothness conditions

sup |[P(Ty <z)— P(Ty < 7)| = O(e_C5N),
T€ER

for some constant ¢5 > 0 independent of N (the same fact is valid for Sy instead of T, cf. [11, 10]).
Therefore, in absence of any moment assumptions on the distribution F, we can replace with impunity
Tn by T (which has finite moments of arbitrary order) when proving Theorems 2.1 and 2.3. That is
why we approximate the bias of the auxiliary r.v. T}, and since the bootstrapped trimmed mean TN v

has finite moments of arbitrary order (in the bootstrap world) we can approximate its own bias. A similar
comment applies to Sy .

Define
By = VN(B—a)(ETy — u(a, 8)), By = VM(B8 = a)(E* Ty — Tw), (4.16)
Dy =VN(B—a)(ESy — (e, 0),  Dnu=VM(QB—a)(E* Sy —Tv).

Lemma 4.5. Suppose that condition (C.1) is satisfied. Then for every p < min(a/2,1/4)
By — by = o(N~Y/27P), (4.17)
Dy —dy = o(N~Y27P), (4.18)
with by as in(2.13) and dy as in (2.15), as N — oo.
Moreover, if conditions (C.1") and (C.2) hold, then for every p satisfying (2.20)
Byy — by = o(M~Y27P) s, (4.19)
Dy —dyr = o(M~Y27P) as., (4.20)
with by ar as in(2.19) and dy ar as in (2.26), as min(N, M) — oo.
Proof. To prove relation (4.17) we use here the method, which corresponds to our general approach

based on Bahadur’s type approximation (cf. Lemma A.l in [11], where we employed conditioning
arguments to get a related result). Write

B B
By = V(5 — )BT, ~ e 3) = VFE( [ (B0 du~ [ ) i)
&

«

_ \/NE< F&/(ga)(FJ’v)‘l(u) du + /ﬁ (Fy)~H(u) du + /wd(Fz’v - F)(HC))-
a Fi (&) £

Since F'(z) = F(z) if € (£ — 6,5 + 6), we find that E( gf xd(F} — F)(x)) = 0. Moreover, as
E( ffflv(go‘) du) = E(Fy (&) — F(&)) = 0and E( flgjv(ﬁﬁ) du) = 0, the latter reduces to

Fl(&a) el
WE( [ () w - au - (/5 | ((Fl) () — &5) du).
« N (&3

Define N/, = #{i : X] <&}, v = «, 3, then by Lemma 4.2 the latter expression is equal to

N, —aN)? 1 (Np—BN)?* 1
\/NE<—( = + 5 >+0N_1/2_1" = by + o(N~V?7P),
N7 T T v ) T )=l )
for every p < min(a/2,1/4). This implies (4.17).
It remains to note that (4.19) follows if we replace N, F”, and F, by their bootstrap counterparts:
M, Fy, and Fy}; in the preceding argument, and use the bootstrap versions of Lemmas 4.1 and 4.3 (i.e.,
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relations (4.8) and (4.15) instead of (4.1) and (4.9)). Note that (4.19) follows also from (5.6)—(5.7) (see
below) and the proof of Lemma 5.1.

Next we prove (4.18) and its bootstrap counterpart (4.20). Define the r.v.

1 [BN]

ot /

SN = N . Z Xi:N
i=[aN]+1

and write
Dy = N'Y2(8 - a)(ES}y — p(a, 8)) = D1 + Da, (4.21)
where
Dy =NY*(8—a)ESy\ —ESYN) and  Dy=NY2ES\ — (8- a)u(e, B)).

First consider Ds. Let us note that

B
~ alN — [aN _ OGN — [BN
va = #X[IaN]—H:N + /(F],V) 1(“) du — #X[lﬁNH-l:N'

67

Therefore, by Lemma 4.1 we obtain

Dy = N1/2 (O‘N — [oV] o — N ;VWN] s+ E(/B(F]’V)_l(u) du — /BF_I(U) du> + o(N—l—P)>

N

for every p < min(a/2,1/4), and the latter equals to
oN —[aN] BN~ [3N]
N1/2 N1/2
(cf. proof of (4.17)). For D; we have
NP —«a ~ N — |BN] — aN + |aN| _ -
Dy =3 (e ~1) B8 = (P e )
and taking into account the previous computations for Do, we find that the last quantity is equal to

<ﬁN —[3N] N = [aN]

€ &5+ by + o(N1/27P) (4.22)

N1/2 N1/2
Relations (4.21)—(4.23) together imply that
D1+ Dy =0by + bH’N + O(N_l/z_p) =dy + O(N_1/2—P)

)u(a,m +O(NT2). (4.23)

for every p < min(a/2,1/4), and (4.18) follows.

Finally note that (4.20) follows if we replace N, F’, and Fj by their bootstrap counterparts M, Fy,
and Fy; in the preceding arguments and use the bootstrap versions of Lemmas 4.1 and 4.3. The lemma
is proved. O

5. PROOF OF THEOREM 2.2

To prove relation (2.21) we will need the bootstrap version of Lemma 4.1 in[11], which enables us to
approximate T%, ,, by a U-statistic of degree two in the bootstrap world.

Define 1, (X}) = Lixs<e,nin} where &, n.ny = FJQI(I/), 0 < v < 1, and 14 denotes the indicator of
event A. Then we can write

Wit = X{15(X7)(1 — 1a(X7)) + Lan:n1a(Xy) + Eanen (1 — 1p(XT))
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(cf. (2.4)). Consider a U -statistic of degree 2 defined by

M
MAUN =D L+, Y. Utriy (5.1)
i=1 1<i <j<M
where
M, — \/M i HW,N
1 * * * _
= T KT (0~ LalX7) + oy 1a(XD) + Eanen(1 = 15(X0)) — p]
with pw v as in (2.7) and
1 1
e = 57|~ Ty (1alX0) — ) (La(X]) — )
1
+— (1 Bn)(1 3
f({ﬁN:N)( 5(X{) = Bn)(1p(X7) — BN) |,
where ay = Fn(§an:n), Bn = Fn(§pn:n). Note that EXLY; = Oforalli = 1,... . M; E*UY ;=0
and E*(L}Q\,ZU]*V (”)) =0foralli,j=1,...,M (i # j). Similarly as in [11], we have that &, — 9 <

Ean:N,Epn:N < g + 0 for every 6 > 0 with probab1l1ty 1 —O(—csN) for some ¢s5 independent of N.
Let Op(M~%) (s > 0) denote a r.v. of order O(M ~*) with probability 1 — O(exp(—csV)). Then we easily
check that (UZ?MJFUJD)2 = E* (L}, + Ujp)? = oy + Op(M 1) with oy, as in (2.7), and also that

E*(Liy + Up)® = E(Lyy)’ + 3E((L3)*Usy) + Op(M~372) = (Yw.w + 30w,n) + Op(M3/2),

1
vM
Therefore,

+ Oy (M—3/2)

- <L7V, + U;4>3 _ AN +3de
UE*MJFU;, VM
with A\; ; and Ag n asin (2.11).
Next note that (cf. (2.7))

[aV] N — [BN]
pwN = " SaNiN Z Xin + ——7 S (5.2)
i=[aN]+1
Define the auxiliary r.v. T]”\‘,M = Z[ﬁ o] +1 Xaears then VM (3 — a)(Ty pr — Tv) is equal to
aM — [oM] M —[BM] .
- TX[aM}—H w+ TR + TX[QM]—H:M
\/M AL aN — N - BN
SIS X e VI e VI P v 63)
i=[aN]+1
(cf. (2.1),(2.3)). Using (C.1") and (C.2) we can apply Lemma 4.2 to obtain that (5.3) reduces to
aM — [aM] ~ BM — [BM]
- oIV + T + :
NeTi San:N + TN NiTi §BN:N
[BN]
M N N N — [N
_vM > Xin+ \/_wfaNN \/_B [5 ]fﬁN:N + Ry, (5.4)
i=[aN]+1
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where R}, is of order o(M~Y/27P) for every p < d/(2 — d), with probability one. Indeed, replacing

XE;MHI:M and X[*ﬂMH-l:M in (5.3) by £an:v and {gn. n Will lead to an error of order

1 2\ _
O<\/—M(log M/M)* 2> = o(log M /M)

(cf. Lemma 4.2), and by conditions (C.1") and (C.2), replacing X{qnj+1.5 and Xignj41.5 by §anv:v and
&sn.nv can give the error of order O(%) = o(M~Y27P) for every p < d/(2 — d) (and hence for

every p satisfying (2.20)).
Comparing now (5.2) and (5.4), we see that (5.4) is equal to

- [acM] M — [BM]
T% o + ——=Can:N + ——Esn.N — VM + R} 5.5
N,M \/Mﬁ N:N NeTi §BN:N pw,N + Ry (5.5)
with R}, as in (5.4). Define the quantity:
. M] M — [M]
B) = iy — M MM b, 5.6
foe (e, ) W, N \/MS N:N NiTi EaN:N + b v (5.6)
where by s is the bias term defined in (2.19). Then (5.3)—(5.6) together imply
VM(B = a)(Tiar = Tw) = Thear — ina (@, B) + byvar + Riye (5.7)

The next lemma ensures that under the conditions of Theorem 2.2 the approximation of T}, ;, by a

U-statistic of the form (5.1) has a remainder of order o(M ~1/27P) for every p satisfying (2.20), with
probability one.

Lemma 5.1. Suppose that the conditions of Theorem 2.2 hold true. Then
P*(1T5ar = fins (o, ) = (Lig + Up)l > M7Y277) = o(M7), (58)
for every p satisfying (2.20), with probability one, as min(N, M) — oo.

Proof. Define the binomial r.v.’s (in the bootstrap world) M} = #{i : X} <& n.N}, v = o, (3, and write

) LM . M*V[aM]
Ty ——F—= ) W'= —{ sign[M} — [aM]] (Xiar — Sanen)
MMM ; VM i=([aM}+Zl>:A(M;+1) "
[BM)V M}
s MY (X o) — (Mo — (M [BM])fﬁN:N}

i=([BM]AM)+1
(cf. the proof of Lemma 4.1 in[11]). By Lemma 4.4 the latter quantity is equal to
C(Mp—anM)? 1 N (Mj—ByM)?* 1 [aM]é o M= [BM]
2MVM  f(€an:N) oMVM  f(Enen) VMY VM
where | R, | = o(M~1/27P) for every p satisfying (2.20), with probability one. This implies that

- 1
TN v — (e, 8) — Ly, — Ul = ——=—7r + Ry, 5.9
N,M i (@, B) M M o/ M M M (5.9)

&gn:N + Ry,

where
=% 1 J 1 * 2

i = 2 2o~ gy (1)~ (i —ax)

1

* 2
+ m[(lﬁ@(@ ) = BNn)° = Bn(1 - ﬁN)]}-
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Note that 7}, is the average of M i.i.d. (conditionally) bounded (with probability 1 — O(exp(—csN)) for
some ¢s > 0) and centered (E*7}, = 0) r.v.’s, and by Hoeffding’s inequality (cf. [17])

P*(‘f}k\ﬂ > A(logM/M)l/z) — O(M~°)

for every ¢ > 0 and some A > 0, not depending on M, with probability one. Therefore, %fM/\/M on the
r.h.s. of (5.9) is negligible for our purposes. This together with relation (5.9) implies (5.8). The [emma is
proved. O

Proof of Theorem 2.2. Using Lemma 5.1 and relation (5.7), we find that the df F”‘]*V y (z) (cf. Section 2)

is equal to

L* * *

P <7M U, v Ry ) (5.10)
OW,N OW,N OW,N

where L3, + Uy, is a U-statistic of degree two and R}, is as in Lemma 4.1 (cf. (5.7), (5.9)). The

probability that the kernel of L}, 4+ U}, is bounded, uniformly in M, is of order 1 — exp(—csN) with

some ¢s > 0 (cf. [11]). This means that the moment assumptions of Theorem 1.2 of Bentkus ef al. [3]

are satisfied (cf. also[11]). To complete the proof we have to verify that Cramér’s condition is also satisfied
in the bootstrap world. Note that the bootstrap (conditional) canonical function is

gnm(x) = E*(Ly + Uy, | X7 = )

1
= \/—M[xlﬁ(@(l — 1a(2)) + Lan:nla(2) + Eanen (1 — 15(2)) — pwn],
and therefore gy a (X)) = ﬁ(Wf — pw,n). It follows that we have to check that
liln‘asup |E* exp(itW])| <l <1 (5.11)
t|—o0

for some fixed 0 < [ < 1 independent of V. Obviously

[BN]
* . * [OéN] 173 1 it X N — [5N] it
E* exp(itW7) = ———=¢"SeN:N 4 — Z et rEN f S elSANN, (5.12)
N N i=[aN]+1 N

The sum of the first and the third terms in (5.12) is in absolute value bounded by

[ajifV] eitlanin weitfmw <a+1-8+0(Nh.

N
Next we consider the second term on the r.h.s. of (5.12). Write

[BN] ]
E itx;n _ PN — [aV] 1 itXiN
N [ZN] TN BN [N [ZNH ~ (5.13)

By conditioning on Xj,nj:x = w and X|gnj41.x = v (We can take u and v from neighborhoods of radius
A(log N/N)'/2 of the points &, and & respectively) the conditional distribution of

) LU
I

i=[aN]+1

is the same as the distribution of an average of i.i.d. bounded r.v.’s having expectation gy, (t) = Ee!Xuv,
where X, ,, is a r.v. with df Fy, ,(z) = (F(x) — F(u))/(F(v) — F(u)), u <z <v (Fyu(z) =0,z <,
and F, ,(x) =1, x > v). Due to our smoothness condition the distribution F,, ,, has a nontrivial abso-
lutely continuous component, and we can conclude that lim supyy| |qu,v(t)] = qup < 1. Moreover, by
Hoeffding’s [17] inequality
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[BN]
1 X
P(‘m Z e/ XN — qqm)(t)‘ > A(log N/N)1/2 | X[aN]:N = qu[,BNH-l:N = U>
i=[aN]+1
=0O(N79

for every ¢ > 0 with some A > 0 independent of IV, ¢, and of u, v (boundedness of summands, uniformly
in u, v and t). Now note that by our smoothness condition

Quo(t) = / it dFy,(z) = / it dFe, ¢5(7) + RN = qe, 6,(t) + Ry,

and |Ry| < C(log N/N)l/Q, where C'is a constant independent of N, u, vand t. So, sup,, , quw < q < 1,
where supremum is taken over all u, v in the neighborhoods of the points &, and £z respectively; ¢ is a
constant independent of V. Thus, by (5.12) and (5.13) for all sufficiently large IV we obtain

limsup |[E* exp(itW7)| <a+q(B—a)+1-F=1<1.

|t|—o0

This proves (5.11). Then we can apply Theorem 1.2 of Bentkus, Gotze and van Zwet [3]. Define
Fi(z) = ®(z) — ¢($)A1’N+3>‘2’N (22 — 1), with A\ v and Ao y as in (2.11). We can conclude that

6v/ M

Ly, +U; -
sup P*{M < a:} —Fy(x) =0
TER OW,N

with probability one. For R%, (cf. (5.10)) we have |R%,| = o(M~/27P), for every p satislying (2.20),
with probability one. Therefore, since (F7,)(z) and z(F;,) (x) are bounded functions, we obtain that
the P*-probability (5.10) is equal to

Fiola) = 6(0) 22 4 oM /22 = Gy a) + oM7)

for every p satisfying (2.20), with probability one. This proves (2.21) and Theorem 2.2. O

6. PROOF OF THEOREM 2.4

Recall that M} = #{i : X7 <& nnv}, v =a,f, and ay = Fy(§an:~), v = Fn(&n:n). To prove
relation (2.25), we will need the following lemma, which is nothing but a bootstrap counterpart of
Lemma 5.1 in[11].

Lemma 6.1. Suppose that the assumptions of Theorem 2.4 are satisfied. Then, for any ¢ > 0 and
every p satisfying (2.20)

P*(|(oiyar)® = oty = Varl > M7V277) = o(M ™), (6.1)
with probability one, as min(N, M) — oo, where
Vit = Vara + Vara,

1 M:—axM 1 Mj—pOBnM
al [ww,n — &an:n] +2(1 = B) &

V]*W,]_ =2«

f(éocN:N) M f(fﬁN:N) M [NWJV _éﬁN:N]a
| M
Vita = 57 2_LWF = pwn)* = oy .
i=1
Moreover,

E*(Vyy) =0; E*(Vi)? =0,(M™Y) as M — co.

MATHEMATICAL METHODS OF STATISTICS Vol. 16 No.2 2007



166 GRIBKOVA, HELMERS

Asin Section 5, O, (M 1) is our shorthand notation for a term of order M~ on a set of P-probability
1 — O(e=N) for some c5 > 0.

Proof. Similarly to the proof of Lemma 5.1 in [11], we define the auxiliary quantity
M LM 2
(i = 3y 2070 = (5 owr )
First we establish that
(@Fv00)? = (Sw)? + Vira + Riga- (6.2)

Here and elsewhere R”]‘M’l, Rf\%, r=1,2,..., denote remainder terms, which are of smaller order than
M~1/2=P with P*-probability 1 — o(M ), for every p satisfying (2.20), with probability one. We have

[BM]
M 1 M — M
inar? = i = B+ 5 X i+ 2 G
i=[aM]+1
-
M 1 = M — Mg
- M?(EaN;N)Q ~ > (Xiw)? - Tﬁ(ﬁﬁN:N)Q
i=Mx+1
1 & 2
+[<MZW5‘> —<u”V‘V,M>2} (6.3)
i=1

Rewrite now the term in the first square brackets on the r.h.s. of (6.3) as
) [a MV M
sign(Mp} — oM .
a5 () — avw?)
i=([aM]AMZ)+1
. [BM]v M
sign(Mj — [BM]) ’ .
- 6\4 > (Xia)? = (Eanen)?)

i=([BM]AM)+1

[aj\jf] ((Ehran)® — (Canin)?) + M_TWM]((&;;M:MF — (&an:n)?). (6.4)

By Lemmas 4.2 and 4.4 we find that the r.h.s. of (6.4) can be replaced by

_|_

1 M:—anM 1 Mj—-pBnM
M= - 2(1 - B)gann 2
f(€an:n) M f(&pn:n) M
where the quadratic terms (ci. Lemma 4.4 above) are of negligible order and contribute to the remainder

term R}k\/(lli Now consider the term in the second square brackets at the r.h.s. of (6.3). Arguing as before,
we can rewrite this expression as

+ Ry (65)

—2a€aN:N

o M 1 M;—ayM 1 Mj—pyM *(2)>
— W — _(1—
<MZ STy R T A (e B
1 M —ayM - 1 M- pyM *(3)>
. <af(§aN N) M +( ﬁ)f(fﬁN:N) Vi + Ry
9 1M . 1 M —anM 1 Mg—ﬂNM> “(@)
Y i - . (6.6
M@WZ ) e O gy PR 69
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Relations (6.3)—(6.6) together imply that
(000) = (Siv)? = Vit + Ris + Ry,

where R}, is equal to

1 M —ayM 1 Mj;—pvM] 1 &
B _Z(

+(1-p
flann) M ( )f(fﬁN:N) M M
Note that W*, i =1,..., M, are uniformly bounded (with probability 1 — exp(—cs;N), for some ¢5 > 0)

i.i.d. r.v.’s. Therefore by Hoeffding’s inequality and by using also Bernstein’s inequality for the binomial
rv.’s M and M, we obtain that | R}, | is of negligible order of magnitude for our purposes (cf. [11]).

2o

Wi — pw,n)-

Next we show that
(Si)? = (ow,n)? + Viga + Riga, (6.7)
where |[R}, | = o(M~1+¢) with P*-probability 1 — o(M ~¢), for every &, ¢ > 0, a.s. P. We find that

(Si)? = (ow,n)® = Vira = —(W — pwn)? = Rz

An application of Hoeffding’s inequality to the bounded (a.s. [P]) i.i.d. r.v.’s W proves (6.7). Relations
(6.2) and (6.7) together imply (6.1). The lemma is proved. O

We are now in a position to prove Theorem 2.4. To establish the bootstrap version of the EE
for a Studentized trimmed mean (i.e., relation (2.25)) we use the same argument as in the proof of
Theorem 2.2 of [11], and employ Lemma 6.1 (i.e., the bootstrap version of Lemma 5.1 in [11]). The
verification of Cramér’s condition is the same as before (cf. the proof of Theorem 2.2). Theorem 2.4 is
proved. O

7. PROOF OF LEMMAS 4.2 AND 4.4

In this section we state and prove two lemmas, which will imply Lemmas 4.2 and 4.4 in Section 4.
Throughout this section we suppose that the following condition holds true:

(C.2" log N/N = O((log M/M)*?) as  min(N, M) — cc.

Note that when (C.2) (cf. Section 2) holds true then (C.2) is also automatically satisfied. In other
words, assumption (C.2') is a weaker requirement than (C.2), but sufficient for our purposes here, i.c.,
for establishing Bahadur type results in the bootstrap world (ci. Lemmas 4.2 and 4.4). We will write
(9/f)(x) to denote the ratio g(x)/ f (), set M = #{i : X} < &yn.n}, and recall that any = Fn(an:n)-

Lemma 7.1. Suppose that f = F' exists in a neighborhood of &, and f(&,) > 0. In addition,
assume that the functions f and g satisfy the uniform Hoélder condition of order a >0 in a
neighborhood of &, and that condition (C.2") holds true. Then

G(&anrm) — Gléan:n) = —[Fy(§an:n) — EN(Ean:N)(9/ ) (Ean:N) + Ry, (7.1)
where

P(P* (|R}“V[| > Amax ((log M/M)@D/2 (log M/M)**, (log N/N)"/(log M/M)*) > M—C))
=O(N™9)
with some A > 0 independent of N and M, for every ¢ > 0, as min(N, M) — oc.

This lemma implies Lemma 4.2, because (log M/M)©@+t1D/2 = o(M~1/27P) for every p < a/2,
(log M/M)3/* = o(M~1/2=P) for every p < 1/4 and by an application of (C.2),
(log N/N)Y2(log M/M)Y* = o(M~Y?%7P)  forevery p < d/(4(2—d)).

We can conclude that the maximum of these quantities is of order o(M~/27P) for every p satisfying
(2.20), and Lemma 4.2 follows.
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Proof. First we note (cf. (7.1))

Ry = Ma O () ) + GlEaran) — GlEann).

Similarly to the proof of Lemma 4.1 we first transform R}, into a quantity involving uniform (0, 1)
r.v.’s. Let Uy, ..., Uy be a sample of NV independent, uniform (0, 1) distributed r.v.’s, let Fi,, denote

the corresponding empirical df, and let von.n = F]Qlu(a) be the empirical a-th quantile. Since the joint

distribution of the X;.n, i = 1,..., N, is the same as the joint distribution of F~*(U;.y), i =1,..., N,
we may as well take our bootstrap resample of size M without replacement from N independent
uniform (0, 1) values Uy, ..., Un. Note also that

ay = Fy(éan:n) = FNu(van:n) = N7 ([aN] + sign(aN — [aN])),

where sign(0) = 0. Now it suffices to consider

M., —anM

’T
where M}, = #{i : U < wvan.n}and v}, is the a-th quantile of the bootstrap sample U, ..., Uj;.
We can rewrite the second term of (7.2) as

(9/F)(F~ (Van:N)) (Vipr — Van:n) + Riyq
with |Ry; 1| < Calvfpras — van:n|*Th, where C, is the Holder constant of the function (g/f)(F~" (u))
in a neighborhood of a.. Therefore we can rewrite (7.2) as
M, —anM
M

(9/HF " (Wanen)) + GE (Wanrar)) = GF ™ (Van:n), (7.2)

(9/F)(EF (vanw))

+ UZM:M — UaN:N| + RTM,I' (73)
Next we evaluate (7.3). First consider R}, ;. We have
P*(|Riral > (Alog M/M)TD2) < P (juiagar = vann] > O /D (Alog M/M)Y?). - (7.4)

where A is some positive constant we will choose later. Set A; = ACa_z/(aH), then the r.h.s. of (7.4) is
equal to

P*(Uiarnr > van:n + (A1 log M/M)Y?) + P* (0% < van:n — (Arlog M/M)Y?). (7.5)

We consider now only the first term in (7.5), since the second term can be treated in a completely similar
fashion. Let k, = an N denote the index of the sample quantile v, n.ny among Uy < --- < Un.n, and
consider the binomial r.v. S}, with parameters (M, p*) defined by

M
Sir=t{i: U7 <Upon + (Atlog M/M)Y?} =5 "1 i a0 janyiszys
=1

where p* = P*(U} < Uy,.n + (A1 log M/M)l/z)_ Note that p* is equal to
N1 (ka +#{i: Ug,.n <U; <Up,.n+ (41 logM/M)l/Q})'
Then

M
E*S}kw = W(k‘a + ﬁ{’b : Uk’a:N < Ui < Uka:N + (Al 10gM/M)1/2}),

Let ko ar = [aM] + sign(aM — [aM]) be the index of v} ,,.,, among Us.;; < -+ < Ujyy.py- Then, we
can rewrite the first term of (7.5) as
M

P*(S%; < ko) = P* (s& — B'SYy < ko = ka gy - Ma>, (7.6)
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where M, = % (8{i : Up,.ny < U; < Up,.n + (A1 log M/M)Y/?}). Define
Ny, = ﬁ{i : Ugy:n < Ui < Up,.n + (Aqlog M/M)l/z}
and note that Ny, has the same distribution (in the 'real world’) as #{i : U; < (A; log M/M)'/?}, then
Bernstein’s inequality directly implies that
|Ny, — N(A; log M/M)'?| < N(B;log N/N)"?(A; log M /M) (7.7)

with probability 1 — O(N™¢) for any ¢ > 0 and some B; > 2¢(1 + /Cy), where Cj is a constant
satisfying log N/N < Cy(log M/M)'/? (cf. condition (C.2')), for all sufficiently large M and N. Since
(log N/N)Y/2 < CY?(log M/M)Y/4, the r.h.s. of (7.7) can be bounded by

N(ByCo ALY /2(1og M /M)
Therefore, with proper choice of the constants A; and By such that Ay = A; — BlCoAi/2 > 0 we obtain
that M, > (AsM log M)'/2. Finally, note that

M ) M
konr — kaﬁ‘ = ‘[on] + sign(aM — [aM]) — aNNN

M
< la — M+1<—+1
<|la—an|M+ _N+

M
<
~ log N

Then an application of Bernstein’s inequality at the r.h.s. of (7.6) ensures the required bound

Co(log M/M)Y? +1 = o(M log M)'/?, (7.8)

P(P*(|R}y3] > (Alog M/M)H0)/2) > A=¢) < BN,

for every ¢ > 0, where A, B > 0 are some constants independent of M and N.
[t remains (cf. (7.3)) to evaluate
Mg, —anM
e
Since M}, has (conditionally on Uy, ..., Uy ) a binomial distribution with parameters (ay, M), Bern-
stein’s inequality directly implies that P*(|M;, — anyM| > (ApM log M)Y/?) = O(M~°) for every
¢ > 0 (provided that Ap > 2can(1 — ay)). Therefore, we can bound our remainder R}k\m on the
event EB* = {|M}, — anM| < (ApM log M)1/2}. Let, as before, ko s = [aM] + sign(aM — [aM]).
If M;;u > koM, then UZM:M < von:N and if M;;u < ko, then UZM:M > van+1:N (Where van11:N 1S

the next order statistic after vy .y among Uy, . .., Un.n ). Our proof is based on the fact (cf. Lemma A,
Appendix) that conditionally on M, on the event E* and provided that ko pr < M, (otherwise we

proceed in a similar way with respect to the interval [van11.n7,1) instead (0,v,n.n]) the bootstrap

Ryo = + Vpri:M — VaN:N- (7.9)

quantile v 5.5, is distributed as ko, ar-th order statistic Wy, ..arz , of the sample W', . Wy, ~ofsize
My, ,, from the discrete uniform distribution with the values Uy, . . . , Uk,.n (Where Ug,.ny = van:n)and

the probability mass 1/k, at each of them.
For the case ko, v < Mg, We rewrite R}, (cf. (7.9)) as

Uko:N (Mg o — ka,1)
Mg

Riro = varrn = Ukaev + + Rjy s, (7.10)

where

Mé,u —anM _ Uka:N(M;7u - ka,M)

s =N M;,
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Since | — an| < 1/N and |kq,p — aM| < 1, the latter is equal to

(M, — ko) [i U’“‘“N] +O(1 + 1)

M M, N M
(M;c,u - kOé,M)(M;,u - M(Oé + (Uka:N - a))) 1 1
- MM, + O(N + M)
(Mg, = ka)?  (ME, = kanm)(Ug,:n — @) 1 1
=—= . ’ —4+—). 7.11
MM, M, +0(5+177) (7.1D)

The difference M ,, — ko, ar can be bounded in absolute value by
M — ko] < MG, — an M|+ |anyM — kon| < (ApMlog M)Y? + |a — an|M +1
M
< (AgpM log M)'/? + ~ T 1< (ApMlog M)Y? 4 o(M log M)'/? (7.12)

(cf. (7.8)). Thus, the first term at the r.h.s. of (7.11) is of order O(log M /M) on the event E* and by
Lemma 4.1 the second term is of order O ((log M/M)/?(log N/N)'/2) with P*-probability 1 — O(M )
with P-probability 1 — O(N~¢) for every ¢ > 0. Finally, by condition (C.2") we obtain that the latter is
of order O((log M/M)?/*). Hence, R}, 5 contributes to the remainder term.

In the case My, ,, < kq,p We proceed in a similar way with respect to the interval [VaN+1:N, 1): now
conditionally on M, , the bootstrap quantile v}y, = Uy, is distributed as (ko,ar — Mg, ,,)-th order
statistic of the sample W, ... , Wy, .. ofsize M — Mg, from the discrete uniform distribution with

values Uy, +1:n, - - -, Un:n and the probébility mass 1/(N — k) at each of them. And similarly on the
event E* and My, ,, < ko, n we write

Riro = Vo — Uka+1:N — J;\/[ Y — + R4 (7.13)

where

Mo —anM (1 = Ugotr:v) (Ko — Mg )

Ry, =
M M M — Mg, ’

and, as before, R}, , is of order O((log M/M)3/* + 1/N), i.e., contributes to the remainder term. It

should be noted also that the spacing van+1.8 — Van.ny = O(log N/N), and by condition (C.2) it has
the order of our remainder (cf. (7.1)).

Consider R} 5 given by (7.10) in the case ka,p < Mg, ,, (the treatment for (7.13) is similar). Relation
(7.10) implies

* * U - *
Riga = Viars = 3o kot + Rigg. (7.14)

We have found (cf. above) that R}, 5 is of order O ((log M/M)3/* + 1/N).Now we show that the quantity
O arr — 22Xk, apis of order v(N, M) = (log M/M)Y* max ((log N/N)'/2, (log M/M)'/?). Write

P

o Uka:Nka,M
aM:M — M*
a,u

‘ > Azv(N, M) | M, ko < M;,u>

* k M
= PW <Wk’a,M¢M§,u > Uka:N]\;; + Ag’U(N, M)>

a,u

ko
+ Pﬁ/ <Wk’a,M¢M§,u < Uka:NM;M — Ag’U(N, M)), (715)
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where Fyj, denotes the conditional distribution, and Aj is a positive constant, which may take different
values in the course of the proof. Consider the first term in the r.h.s. of (7.15); our treatment of the second
one is similar and therefore omitted. First note that we can assume that

ka,M
Mg .,

Uky:N + (A3 + )v(N, M) < Ug,:~N (7.16)

for some ¢t > acQ(Ag4), where Ap is a constant from the definition of the event E* and ¢ is an arbitrary
constant (cf. the statement of the lemma), otherwise we can take a new Az equal to Az + ¢, then the first
term in the r.h.s. of (7.15) will be equal to zero, therefore, the necessary bound is trivial.

Define the binomial r.v.
Mg
M Zi_l (W; < Shagel i Aso(N.0)}
with parameters (py,, M ), where

Uko:NEa,m

Po w — M;,u

+ Agu(N, M)).

Then the first term at the r.h.s. of (7.15) equals

Piy(Sigs < kar) = Py (Sigs . — Mol < kot — MZ,00). (7.17)
Note that
1 . kaM
* = — . i < 2 .
ol katt{z U; < M;’uUka_N—l—Agv(N,M)}
1 ke
= <k‘a - ﬁ{l : M;iUka:N + Azv(N, M) < U; < Uka:N}>- (7.18)

As our estimation is in probability, we can replace the latter quantity by 1 — éNUi, where

My, —k

NUi = ﬁ{l U < MTmUkQ;N - Ag’l)(N, M)}

Now we note that by Bernstein’s inequality
k

M(zu - ha,M
NUZ- — N(TUka:N - A3’U(N, M))

k

Mg ., — o, M 1/2
< Bullog M)V (e Sy aa(v) (7.19)

with probability 1 — O(N~¢), where By is a constant depending only on ¢ (Bi/2 > ¢). Dueto(7.16) the

.
M~k

quantity in the r.h.s. of (7.19) is less than BN (log N/N)1/2(M7*Uka:N)l/2, and on the event

E* the latter is less than ByN(log N/N)Y2(Ag)'/*(log M/M)Y*. Thus, with proper choice of As

(A3 > Bi(Ap)Y*) we get (cf. (7.18)—(7.19)):

1 M; u ka M

pe>1———"—"Ui, .N + Agv(N, M) (7.20)
« M;;’u

with some A4 > 0independent of M and N and such that the quantity in the r.h.s. of (7.20) is less than 1
(cf.(7.16)). Now we get

1 M5, — koM
E*Sits,, = Maupa = Mg, <1 - Uy + Aw(N, M>>.
a,u
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Note that Uy, .y = a — w + Ry with Ry = O,((log N/N)3/4) (cf. Lemma 4.1), where O,(.)
denotes a quantity having the indicated order with probability 1 — O(N~¢), for every ¢ > 0. Therefore,
we obtain the following bound:

E'Sij, > M, <1 L <a -ty RN> + Agw(N, M)>
— o g 4 M 2o T Ry ) + Ago(N, M) ).
M T O"“(a Mz, < N + N> + Agv( )>

Since |N, — aN|/N < As(log N/N)'/? with probability 1 — O(N~¢) and v(N, M) > (log M/M)3/*,
we obtain (with proper choice of A3) that

E*Sirz > ko + Agv(N, MM, > ko + Az M4 (log M)3/*,
and by (7.17) the first term in the r.h.s. of (7.15) is not greater than
P*(Stp: . — E* Sy < —Ar MY (log M)*/*) (7.21)

with some positive A7 independent of N and M. By Bernstein’s inequality the latter is less than exp(—h),
where
3 AZMY2(log M)/
- 2[ME i (1= ph) + (1/3) A7 M4 (log M)3/4 max(ph, 1 — p)]
[t remains to note that (7.20) implies that
1M, —k

L= ph < =240 = Ollog M/M)'/2,

h

therefore in the denominator of the last expression we have a quantity of exact order O(M/2(log M)'/?).
Thus, relations (7.14)—(7.15), (7.17), (7.21) and the latter estimate imply [R}, 5| = O(v(NN, M)), with

P*-probability 1 — O(M ~¢) with P-probability 1 — O(N~¢) for any ¢ > 0. This, together with estimates
for Ry 4 (cf. (7.4)—(7.7)), imply (7.1). The lemma is proved. O

The following lemma implies Lemma 4.4.

Lemma 7.2. Suppose that the conditions of Lemma 7.1 are satisfied. Then

aN:N
(G(z) — G(éan:N)) dF 3 (x) = —% [Fir(Eanin) — FN(faN:N)]z(Q/f)(faN:N) + Ry, (7.22)
SZAJ:]VI
where

P(P* (|RM > Amax ((log M/M)"9/2 (log M/M)"TY/4 (log N/N)Y2(log M/M)3/*) > M—C))
= O(N")
with some constant A > 0 independent of N and M, for every ¢ > 0, as min(N, M) — oc.
Again we note that if condition (C.2) is satisfied, then
max ((1og M/M)H/2 (log M/M)*/4 (log N/N)Y/2(log M/M)3/4) = o(M~1P)
for every p satisfying (2.20), and Lemma 4.4 follows by Lemma 7.2.
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Proof. We need to estimate (cf. (7.22))

*_ o 2 Ms,
RY, = W@m@”) + % > (G(Xiar) = Gléan:n))-
7::koz,M

An argument similar the one used in the proof of Lemma 7.1 guarantees that we may as well consider

(M5, — anM)?
2M?

Mg
GID)E wara)) + 37 D (G Uia) — GF (wae).

1=kq, M
Our smoothness assumptions allow us to rewrite the latter quantity as

*
Mg .

_ (M, —avM)® 1 . .
(9/H)(F 1(UaN:N))[ S +of > Uinr — vanen) | + Riga, (7.23)
=Ko, M
where
* O‘l|M:¢u _k'a,M| * a * a
Ryl < i max (|’UaM:M — van:n [, \Ubis o — Vann | >a (7.24)

where C, is a constant from the Holder condition on the function (g/f)(F~!(u)) in a neighborhood
of a. We have proved earlier (cf. the proof of Lemma 7.1) that [M} ,, — ko m| < (ApM log M)'/2 and
[0 vps — Vanen| < (Ag log M/M)Y/2 with P*-probability 1 — O(M~¢) with P-probability 1 — O(N~¢)
for every ¢ > 0, with some positive Ap, Ay independent of M and N, as min(N, M) — oo. It remains to
estimate |U}(/[é’u:M — van:n|. Conditionally on M, ,, on the event

E* = {|M}, — anM| < (ApM log M)"/?}

we have

P*(van:n = Uiy onr > (Azlog M/M)V2 | M, )
= Py, (Wl*Mau > Uy + (Azlog M/M)l/Q)

(1~ ]Z_Z)M (7.25)

where Ny, = #{i : Us < Up.y + (Aglog M/M)'/?} > N/, =t{i: U; < (Aylog M/M)'/?}. As belore
(cf.(7.19)), we find that [N/, — N(Alog M/M)'/?| < By N (log N/N)'/?(Aglog M/M)'/*, with prob-
ability 1 — O(N~°), where By is a positive constant independent of N and M. Condition (C.2") directly

implies that the latter quantity can be bounded by BIC’S/QA;MN(Iog M/M)'/2 where as before (cf.
the proof of Lemma 7.1) Cy denotes a constant from condition (C.2"). So, with a proper choice of As,

Ay > 3105/214;/4, we have N(’]Z_ > N(Aszlog M/M)l/2 with some positive A3. This implies that

N\ M N\ Mz
(1 a ]Z_U> = <1 - k:_U> = o(exp(—M?)).

This, together with (7.24) implies
P*(|Rj1| > A(log M/M)'T/2) = O(M~°), (7.26)
for every ¢ > 0 and some constant A > 0 independent of M and N, with probability 1 — O(N~°).

Finally, consider the expression in square brackets in (7.23). Fix an arbitrary ¢ > 0 and take ¢; =
c+ 1. Similarly to estimating R}, in the proof of Lemma 7.1 fix Mj, on the event E*, where

a,u
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P*(E*) =1— O(M~°) with probability 1. If M ,, > kq, ar, We can write

1 M3 . 1 Mg . M:z,u i 1 M., Mé,u i
M (Ui:M_UO‘N:N):M‘Z Ui:M_UaN:N—l-T v N
Z:ka,M ZZkQ’M Z:koe,M
(M; u aNM)z _ «
= e+ O (M) + Ry, (7.27)
where O, (M ~3/2) denotes a quantity of order O(M ~3/2) with P*-probability 1 — O(M ), and
M*
* 1 - * M; u i
Ryo = i Z ( oM <UaN;N - T)) (7.28)
i=ke 01
When M;, ,, < ko, ar, we write
1 Mgz,u 1 ka,]%
i > Uinr — vanen) = i > (Uiar = vanew)
i=ka, M =My,
(Mz,u - aNM)Q _ %
=+ O (M) + Ry (7.29)

where

ko, v .
* 1 : * Z_M*
Ryg = M Z ( M T (UaN:N + Tau>>

=M,
Relations (7.23), (7.27)—(7.29) imply that it remains to prove that
Ryt oX(arg ko iy + Bhrslivz , <ho )

is of order O ( max[(log N/N)/2, (log M /M)*/?](log M/M)*/*) on the event E*. We estimate R}, ,, for
R} 5 the treatment is similar. Consider the i-th term of the sum in (7.28). Similarly as in the proof of

% .
a,u?

Lemma 7.1 we find that U}, — (van.n — MM ) can be replaced by

e M;, SR Mg,

*
Ui:M -

Uka:N -1
M*

a,u

*
Ui:M -

Let, as before, v(N, M) = max ((log N/N)'/2, (log M/M)'/?)(log M/M)*/*. Then
> A4U(N, M) | M;u : ka,M < M;u)
Uka:N 1

P
= By <‘ Wins, —
? o,u M;7u

with Wi . and Py, as in (7.15). Now we can repeat the arguments which were used in the proof of

Lemma 7.1 (cf. (7.15)—(7.21)) to find that the r.h.s. of (7.30) is of order O(M ~¢), uniformly in ko ar <
i < My, with probability 1 — O(N~), for some constant Ay independent of M and N (cf.[11]). Since

a,u’

the remainder term (7.28) contains M;; ,, — ka,m < (ApM log M)'/2 such summands, we obtain that

> Ag(N, M)> (7.30)

P*(|Rjy ol > As(log M/M)**o(N,M)) = O(M ™),

where Aj is some positive constant independent of M and N (cf. the proof of Lemma 3.2 in [11]). This
together with the estimates for R}, ; implies (7.22). The lemma is proved. O
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8. APPENDIX

Let, as before, X1,..., Xy beiid. r.v.’s with common df F,and N, = #{i: X; <&,},0<a< 1.
Our proofs of Lemma 3.2 in[11] and Lemmas 4.2 and 4.3 in this paper use the following fact: condition-
ally on N, the order statistics Xi.n,..., Xy, .y are distributed as the order statistics corresponding to
a sample of N, i.i.d. r.v.’s with distribution function F'(z)/a, < &,. Though this fact is well known
(cf. Theorem 12.4, [19], cf. also [11, 13]), we give a brief proof of it. The proof given here corrects an
error in the argument given on p. 68 of [11]. Let Uy, ..., Ux be independent r.v.’s uniformly distributed
on (0,1) and let Uy n,...,Un n denote the corresponding order statistics. Put Ny, = #{i : U; < a}.

Since X;.n 4 F~YU;.n) and N, 4 Ne,u, itis enough to prove the assertion for the uniform distribution.

Lemma A. Conditionally given N, the order statistics Uy n, ... ,Un, ., n are distributed as the
order statistics corresponding to a sample of N, ,, independent (0, a)-uniformly distributed r.v.’s.

Proof. (a) First consider the case N, = N. Take arbitrary 0 < u; < --- < uy < o and write
P(Uin <ut,...,Ung N S un | Now = N)

ul U uN
PUi.ny < N < N!
— Uy = u, ’UN'N—UN):—N//... / dxidzsy ... dxy,
a
0 =1

aNv

TN-—1

and the latter is the d.f. of the order statistics corresponding to the sample of N independent (0, «)-
uniformly distributed r.v.’s.

(b) Consider the case Ny, = K < N. The lemma follows now from the Markov property of order
statistics and the validity of this fact for IV, ,, = N. More precisely, let

FK,KH(u,v):P(UK;NSU,UKH;Ngv), u,v € (0,1),
be the joint d.f. of Ux.n and Uk 41.n. Then for arbitrary 0 < u; < -+ < ug < o we can write
PUin <ui,....,Un, N S uk | Ny = K) = [P(Noy = K)| !
1
X /P(UI:N <u,...,Ugn < ug | Ugin < o, Ugq1ny = v > a) dFg (o, v),

and since conditionally given Uy 11.5 = v the order statistics Uy.n, ..., Uk.n are distributed as order
statistics corresponding to a sample of K independent (0,v)-uniformly distributed r.v.’s, the latter
expression is equal to

Ul U UK
K! 1
[P(Nam = K)]_li % // / drydxs ... daEKP(UK,N <a< UK+1:N)
0 z1

(a/v)K oK
K' Ul U2 UK
0 z1

TK—1

TK—1

which corresponds to the (0, a)-uniform distribution. The lemma is proved. O
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