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Abstract—We investigate the second order accuracy of the M out of N bootstrap for a Studentized
trimmed mean using the Edgeworth expansion derived in a previous paper. Some simulations, which
support our theoretical results, are also given. The effect of extrapolation in conjunction with the M
out of N bootstrap for Studentized trimmed means is briefly discussed. As an auxiliary result we
obtain a Bahadur’s type representation for an M out of N bootstrap quantile.
Our results supplement previous work on (Studentized) trimmed means by Hall and Padmanab-
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1. INTRODUCTION

This article is closely connected with our previous paper [11], where the validity of the one-term
Edgeworth expansion (EE) and the empirical Edgeworth expansion (EEE) for a Studentized trimmed
mean was established and explicit formulas for the leading terms of the EE were obtained. We study two
second-order approximations to the distribution function (df ) of a Studentized trimmed mean: EE and
bootstrap.

During the past twenty five years the attention of many authors was focussed on Efron’s boot-
strap ([8]), and nowadays there exists a voluminous literature on this topic. The consistency of the
standard nonparametric, or naive, bootstrap was proved for many interesting statistics, at least for the
asymptotically normal ones (see [1, 4, 6, 7, 12, 13, 15, 25] and references therein). One of the main
reasons of interest in the bootstrap and its application in statistics is the second order accuracy property:
under proper conditions the bootstrap approximation to the distribution function (df ) of a pivotal statistic
is more accurate than the normal one. This beneficial property of the bootstrap was proved for the sample
mean [25], for the class of Hoeffding’s U-statistics (cf. [15]) and for some other statistics. The usual way
to prove this fact is based on the congruence of the one-term EE for the pivotal statistic (in the ’real
world’) and the EE for its bootstrap counterpart (in the ’bootstrap world’). Typically the structure of
the one-term EE for the bootstrapped statistic is the same as the one for the pivotal statistic, when the
parameters of the formula of the first leading term of EE are replaced by their empirical counterparts
(plug-in estimators). So, the application of a relevant version of the Law of Large Numbers implies the
second order accuracy of the bootstrap (cf. [12, 15, 25]). However, the case of the trimmed mean is a
special one. The problem is connected with the difficulty in obtaining the explicit formula for the one-
term EE (cf. [13]).

In this paper we establish the validity of a one-term EE for the bootstrapped Studentized trimmed
mean (in the bootstrap world). We also obtain an explicit formula for the M−1/2-term (correcting for
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skewness and bias; M being the size of the bootstrap sample). Using this expansion and our previous
results [11] (extended and slightly improved here) we prove that M out of N bootstrap approximation
to the df of the trimmed mean and Studentized trimmed mean is more accurate than the normal one,
provided a natural condition (cf. (C.2)) on the size of the bootstrap resample M in relation to size N
is satisfied. Our results can be viewed as a mathematical contribution to the asymptotic theory for the
M out of N bootstrap. In a way the only thing we do is proving for Studentized trimmed mean under
minimal conditions what statisticians expect to be true in nice asymptotically normal situations.

The second order accuracy of the bootstrap for a Studentized trimmed mean was also established by
Hall and Padmanabhan [13] for the special case of the naive bootstrap, i.e., when M = N . Their proof
relies on the existence of the EE for a Studentized trimmed mean.

Our main results are more general and precise than those in [13]. In Theorem 2.5 we assume that
M = N + O(N r) for some r < 1 and that the density of the underlying distribution exists and is positive
and Hölder continuous near the two quantiles, where trimming occurs. Moreover, we establish the order
of magnitude of the M out of N bootstrap error in terms of r and a (the parameter appearing in the Hölder
condition). On the other hand, in Theorems 2.7 and 2.8, we focus on the case that M is of smaller order
of magnitude than N . We establish the asymptotic accuracy for the M out of N bootstrap in conjunction
with extrapolation, and we show that it will lead to a better performance. Our results are completed with
simulations.

The paper is organized as follows: in Section 2, we state our main results on the EE and M out
of N bootstrap, and we discuss the important special case of the naive bootstrap. In Section 3, we
present some numerical results based on simulations. In Section 4, we state and prove Bahadur-type
lemmas. A lemma on bias approximation is also presented in Section 4. In Section 5, a U-statistic
type approximation to the bootstrapped trimmed mean is established, and our result for a normalized
version of bootstrapped trimmed mean is proved. Those parts of the proof which are similar to the
corresponding ones in [11] are discussed only briefly. In Section 6, a stochastic approximation for a
plug-in estimator, which is used to construct a Studentized bootstrapped trimmed mean is established,
and the result on the EE for a Studentized bootstrapped version of the statistic is proved. In Section 7,
the bootstrap versions of the Bahadur-type lemmas are proved. In Appendix, we state and prove a lemma
on conditioning.

2. MAIN RESULTS

Let X1,X2, . . . denote a sequence of independent and identically distributed (i.i.d.) real-
valued random variables (r.v.) with common distribution function (df ) F , and let X1:N ≤ · · · ≤ XN :N

(N = 1, 2, . . . ) be the corresponding order statistics. Let X∗
1 , . . . ,X∗

M be a bootstrap resample of size
M = M(N) from the empirical df FN based on the first N original observations X1, . . . ,XN ; denote
by F ∗

M the bootstrap empirical df , i.e., F ∗
M (x) = M−1�{i : X∗

i ≤ x, 1 ≤ i ≤ M}, −∞ < x < ∞, and let
X∗

1:M ≤ · · · ≤ X∗
M :M be the corresponding order statistics. Here and throughout this paper we use the

shorthand notation M , omitting its argument N . The M out of N bootstrap (with replacement) will be
shown to be second-order accurate (cf. Theorems 2.5 and 2.7), like the classical naive bootstrap M = N ,
with reduced computation time (cf., for instance, Bickel and Sakov [7]).

Let F−1(u) = inf{x : F (x) ≥ u}, 0 < u ≤ 1, denote the left-continuous inverse function of the df F

and put F−1
N , (F ∗

M )−1 to be the inverse functions of FN and F ∗
M , respectively.

Consider the trimmed mean given by

TN =
1

β − α

β∫

α

F−1
N (u) du, (2.1)

which is precisely equal to

−cα,NX[αN ]+1:N +
1

(β − α)N

[βN ]∑
i=[αN ]+1

Xi:N + cβ,NX[βN ]+1:N ,
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where 0 < α < β < 1 are any fixed numbers, [·] represents the greatest integer function and cν,N =
(νN − [νN ])/((β − α)N), ν = α, β. This version of the trimmed mean also occurs in [18, 14]
(cf. also [4]). Indeed, (2.1) is a natural definition for the trimmed mean in a bootstrap context.

In [11] we studied the Edgeworth expansion (EE) for the trimmed mean given by

SN = ([βN ] − [αN ])−1

[βN ]∑
i=[αN ]+1

Xi:N ,

which is a more common way of defining a trimmed mean (cf. also [26, 13, 23]). The reason why we now
prefer TN (cf. (2.1)) is its convenience for the bootstrap. This will be discussed in the paragraph after
Theorem 2.5, our first main result on the M out of N bootstrap.

It is well known that a trimmed mean given by (2.1) (or the one defined as SN ) often serves as a
statistical estimator of the location parameter

µ(α, β) =
1

β − α

β∫

α

F−1(u) du. (2.2)

Let us introduce the ν-th (0 < ν < 1) quantile of F by ξν = F−1(ν), and define the sample quantile
ξνN :N = F−1

N (ν) and the bootstrap quantile ξ∗νM :M = (F ∗
M )−1(ν).

The M out of N bootstrap counterpart of TN is given by

T ∗
N,M =

1
β − α

β∫

α

(F ∗
M )−1(u) du, (2.3)

which is equal to

−cα,MX∗
[αM ]+1:M +

1
(β − α)M

[βM ]∑
i=[αM ]+1

X∗
i:M + cβ,MX∗

[βM ]+1:M ,

with cν,M = (νM − [νM ])/((β − α)M), ν = α, β.
Suppose that ξα �= ξβ (that is ξα is not an atom of the distribution F with mass at least (β − α)), and

let Wi and W ∗
i be Xi and X∗

i Winsorized outside of (ξα, ξβ] and (ξαN :N , ξβN :N ] respectively. In other
words

Wi = ξα ∨ (Xi ∧ ξβ), i = 1, . . . , N, (2.4)

W ∗
i = ξαN :N ∨ (X∗

i ∧ ξβN :N ), i = 1, . . . ,M,

where a ∧ b = min(a, b) and a ∨ b = max(a, b).
Finally, define the quantile function Q(u), the empirical quantile function QN (u), and its bootstrap

version Q∗
M (u) by

Q(u) = ξα ∨ (F−1(u) ∧ ξβ), QN (u) = ξαN :N ∨ (F−1
N (u) ∧ ξβN :N), (2.5)

Q∗
M(u) = ξ∗αM :M ∨ ((F ∗

M )−1(u) ∧ ξ∗βM :M),

for 0 < u ≤ 1. The first three central moments of W1 are given by

µW =

1∫

0

Q(u) du, σ2
W =

1∫

0

(Q(u) − µW )2 du, γW =

1∫

0

(Q(u) − µW )3 du, (2.6)

and the corresponding moments of W ∗
1 are equal to

µW,N =

1∫

0

QN (u) du, σ2
W,N =

1∫

0

(QN (u) − µW,N)2 du, γW,N =

1∫

0

(QN (u) − µW,N)3 du. (2.7)
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Define the df ’s of the normalized trimmed mean and its bootstrap counterpart by

FTN
(x) = P

(
N1/2(TN − µ(α, β))

(β − α)−1σW
≤ x

)
and F ∗

T ∗
N,M

(x) = P ∗
(

M1/2(T ∗
N,M − TN )

(β − α)−1σW,N
≤ x

)
.

Here and elsewhere P ∗ denotes the bootstrap probability measure having discrete mass points Xi:N with
atoms 1/N , and E∗ denotes the corresponding expectation.

To establish our results on the EE we will assume that the following smoothness condition is satisfied:

(C.1) Suppose that the distribution function F has a density f = F ′ in some neighborhoods
of the points ξν , with f(ξν) > 0, ν = α, β. In addition, we assume that the density f satisfies
Hölder’s condition of order a > 0 at the points ξα, ξβ , i.e., there exists a constant C such that
|f(x) − f(ξν)| ≤ C|x − ξν |a, for all x in a neighborhood of ξν , ν = α, β.

For the validity of our results on the bootstrap accuracy we will need a slightly stronger smoothness
condition:

(C.1′) In addition to (C.1) assume that the density f satisfies a uniform Hölder condition
of order a > 0 in neighborhoods of the points ξα, ξβ , i.e., there exists a constant C such that
|f(x) − f(y)| ≤ C|x − y|a, for all x, y in a neighborhood of ξν , ν = α, β.

Moreover, the following condition on the growth rate of M as a function of N will be required:

(C.2) For some 0 < d ≤ 1

M = O(N2−d),

as min(N,M) → ∞.

The purpose of condition (C.2) is to ensure that an appropriate version (cf. Lemma 4.2) of Bahadur’s
representation for M out of N bootstrap quantile is valid. If (C.2) does not hold – for instance when
M = N2 – the remainder term of our expansions will be of the same order, viz. 1/N in case M = N2, as
the first term in the expansions. Note that (C.2) implies 1/N = o(M−1/2−p) for every p < d/(2(2 − d)).
Technically speaking (C.2) enables us to obtain an error term for our expansions of order M−1/2−p in
the bootstrap world (cf. also the remark following Lemma 7.1).

To state our results on the Edgeworth expansions and their bootstrap versions we need the following
notations. Set

δW = −α2 1
f(ξα)

[µW − ξα]2 + (1 − β)2
1

f(ξβ)
[µW − ξβ]2, (2.8)

δW,N = −α2
N

1
f(ξαN :N)

[µW,N − ξαN :N ]2 + (1 − βN )2
1

f(ξβN :N )
[µW,N − ξβN :N ]2, (2.9)

where νN = FN (ξνN :N ), ν = α, β. Define real numbers λ1 and λ2 by

λ1 = γW /σ3
W , λ2 = δW /σ3

W (2.10)

(cf. [11, 21]) and their empirical counterparts by

λ1,N = γW,N/σ3
W,N , λ2,N = δW,N/σ3

W,N . (2.11)

Note that, in contrast to (2.7), (2.11) is not completely empirical, as it involves the values of the density
f at the two quantiles, where the trimming occurs; one way of estimating these unknown values is
discussed in [11]. It was established in Gribkova and Helmers [11] that the Edgeworth expansion for the
df FTN

(x) is given by

GN (x) = Φ(x) − φ(x)
6
√

N

(
(λ1 + 3λ2)(x2 − 1) + 6

√
N

bN

σW

)
, (2.12)
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where Φ is the standard normal distribution function, φ = Φ′ its density and bN is a bias term given by

bN =
1

2
√

N

{
− α(1 − α)

1
f(ξα)

+ β(1 − β)
1

f(ξβ)

}
. (2.13)

To be more precise, in [11] the validity of the one-term EE and the explicit formula GN (x) are established
for the trimmed mean SN defined by

SN =
1

([βN ] − [αN ])

[βN ]∑
i=[αN ]+1

Xi:N . (2.14)

However, it is clear from our proofs that the one-term EE’s for TN and SN are the same in their skewness
terms, and differ only in the bias terms. A similar comment applies to the Studentized TN and SN and
their bootstrap counterparts. It was shown in [11] that the bias of SN in estimating of µ(α, β) is given by

dN = bN + b[.],N , (2.15)

with bN as in (2.13) and

b[.],N =
1√
N

{
− (αN − [αN ])(µ(α, β) − ξα) + (βN − [βN ])(µ(α, β) − ξβ)

}

(cf. Lemma A.1, [11], see also Lemma 4.5, Section 4).
The following result is a refined version of Theorem 2.1 from [11] on the Edgeworth expansion for the

normalized trimmed mean.

Theorem 2.1. Suppose that condition (C.1) holds true. Then

sup
x∈R

|FTN
(x) − GN (x)| = o(N−1/2−p) (2.16)

for every p < min(a/2, 1/4) as N → ∞.

Let us compare this result with Theorem 2.1 in [11], where the one-term Edgeworth expansion for
the normalized trimmed mean was obtained. In [11] we assumed that the underlying distribution has a
density, which is positive and Lipschitz in neighborhoods of ξα and ξβ . Under this condition we obtained
that the remainder term of the EE is of the classical Bahadur’s order O

(
(log N)5/4N−3/4

)
. In the present

paper our smoothness condition is slightly weaker: we suppose that the density is Hölder continuous of
degree a > 0 at the points ξα and ξβ and establish the order of magnitude of the remainder term in
terms of the parameter a appearing in the Hölder condition (cf. (C.1)). At the same time we find that the
classical Bahadur order for the remainder term holds true whenever a ≥ 1/2, while in [11] the same fact
was obtained for the special case a = 1.

To prove Theorem 2.1 it suffices to repeat the arguments used for proving Theorem 2.1 in [11],
replacing the application of Lemmas 3.1, 3.2, and A.1 from [11] by applying Lemmas 4.1, 4.3, and 4.5,
respectively, of the present paper (see Section 4).

Remark 2.1. It is clear from our proofs (cf. also the proof of Theorem 2.1 in [11]) that the r.h.s. in (2.16)
is in fact of order

O

(
log N

N1/2

(
(log N/N)1/4 + (log N/N)a/2

))
, (2.17)

i.e., we obtain a slightly stronger result than the one stated in Theorem 2.1. A similar comment applies
to our results for the ’bootstrap world’.

Let us now consider the M out of N bootstrapped trimmed mean given by (2.3). The classical result
of Stigler [26] directly implies that if the inverse function F−1 is continuous at the two points α and β
and min(N,M) tends to infinity, the limiting distribution of the normalized (and also of a Studentized)
T ∗

N,M is standard normal with probability one. This fact yields the first order accuracy of the bootstrap
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approximation for the df of the trimmed mean. In the present paper we prove that if conditions (C.1′)
and (C.2) hold true, then the Edgeworth expansion for the df of a normalized version of the bootstrapped
trimmed mean is given by

GN,M (x) = Φ(x) − φ(x)
6
√

M

(
(λ1,N + 3λ2,N )(x2 − 1) + 6

√
M

bN,M

σW,N

)
, (2.18)

where bN,M is the bias term given by

bN,M =
1

2
√

M

{
− αN (1 − αN )

1
f(ξαN :N )

+ βN (1 − βN )
1

f(ξβN :N )

}
. (2.19)

In Lemma 4.5 we show that if (C.1′) and (C.2) hold, then

M1/2(β − α)(E∗T ∗
N,M − TN ) − bN,M = o(M−1/2−p)

for every

p < min
(

a

2
,
1
4
,

d

4(2 − d)

)
a.s. [P ], (2.20)

as min(N,M) → ∞, where a > 0 is the parameter in (C.1′), and d is the parameter in (C.2). Inequality
(2.20) describes the dependence of the order of magnitude of the error in the bootstrap bias estimate on
the parameters a and d.

The next assertion is a bootstrap version of Theorem 2.1.

Theorem 2.2. Suppose that conditions (C.1′) and (C.2) hold true. Then for every p satisfying
(2.20)

sup
x∈R

|F ∗
T ∗

N,M
(x) − GN,M (x)| = o(M−1/2−p) (2.21)

with probability one, as min(N,M) → ∞.

Note that if d = 1 (i.e., M = O(N) as min(N,M) → ∞) and a ≥ 1/2, then

min
(

1
4
,

d

4(2 − d)

)
=

1
4

(cf. (2.20)), therefore relation (2.21) gives a bound of Bahadur’s order in M . The proof of Theorem 2.2
can be found in Section 5.

Note also that in fact we prove in Section 5 a slightly stronger assertion, namely, that for every c > 0
and p satisfying (2.20)

P
(

sup
x∈R

|F ∗
T ∗

N,M
(x) − GN,M (x)| > M−1/2−p

)
= o(N−c)

as min(N,M) → ∞, which by the Borel–Cantelli lemma, with c > 1, directly yields (2.21). A similar
comment applies to other our results for the bootstrap world.

Now we state our results for a Studentized trimmed mean and the bootstrapped Studentized trimmed
mean. Define the df of the Studentized TN by

FTN ,S(x) = P

(
N1/2(TN − µ(α, β))

(β − α)−1σW,N
≤ x

)

and the df of the Studentized T ∗
N,M by

F ∗
T ∗

N,M ,S(x) = P ∗
(

M1/2(T ∗
N,M − TN )

(β − α)−1σ∗
W,M

≤ x

)
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respectively, where

(σ∗
W,M )2 =

1∫

0

(Q∗
M (u) − µ∗

W,M)2 du and µ∗
W,M =

1∫

0

Q∗
M (u) du

with Q∗
M as in (2.5). It was shown in [11] that the Edgeworth expansion for a Studentized trimmed mean

is given by

HN (x) = Φ(x) +
φ(x)
6
√

N

(
(2x2 + 1)λ1 + 3(x2 + 1)λ2 − 6

√
N

bN

σW

)
. (2.22)

The following result is a refined version of Theorem 2.2 in [11].

Theorem 2.3. Suppose that condition (C.1) holds true. Then

sup
x∈R

|FTN ,S(x) − HN(x)| = o(N−1/2−p) (2.23)

for every p < min(a/2, 1/4) as N → ∞.

To prove relation (2.23), it suffices to repeat the argument used when proving Theorem 2.2 in [11],
applying now Lemmas 4.1, 4.3, and 4.5 (cf. Section 4) instead of Lemmas 3.1, 3.2, and A.1 (cf. [11]).

The Edgeworth expansion for the bootstrapped Studentized trimmed mean is given by

HN,M(x) = Φ(x) +
φ(x)
6
√

M

(
(2x2 + 1)λ1,N + 3(x2 + 1)λ2,N − 6

√
M

bN,M

σW,N

)
. (2.24)

The next assertion is a bootstrap version of Theorem 2.3.

Theorem 2.4. Suppose that conditions (C.1′) and (C.2) hold true. Then for every p satisfying
(2.20)

sup
x∈R

|F ∗
T ∗

N,M ,S(x) − HN,M (x)| = o(M−1/2−p) (2.25)

with probability one as min(N,M) → ∞.

The proof of Theorem 2.4 can be found in Section 6.
Note that if (C.1) holds with a ≥ 1/2, the order of our approximation for the normalized and

Studentized trimmed mean is o(N−3/4+ε) for every ε > 0 (i.e., is of the classical Bahadur’s [2] order),
and if in addition d = 1 (that is M = O(N) whenever min(N,M) → ∞), our approximation for the df

of the bootstrap version of the trimmed mean is of order o(M−3/4+ε) for every ε > 0.
Theorem 2.4 can be compared with the main result of Hall and Padmanabhan [13], where the

existence of the asymptotic expansion for the df of a Studentized trimmed mean and its bootstrap version
was established. They restrict attention to the case M = N and obtain a bootstrap approximation with
the error of order o(N−1/2−ε) (for some ε > 0) under (C.1′) with a = 1.

Remark 2.2. It is easy to verify from the proofs of Theorems 2.2 and 2.4 that the relations (2.21) and
(2.25) are valid also for the df ’s of the bootstrap versions of the trimmed mean given by

S∗
N,M = ([βM ] − [αM ])−1

[βM ]∑
i=[αM ]+1

X∗
i:M ,

provided we replace bN,M (the bias term) in formulas (2.18) and (2.24) by

dN,M = bN,M + b[.],N,M , (2.26)

with

b[.],N,M =
1√
M

{
− (αM − [αM ])(TN − ξαN :N ) + (βM − [βM ])(TN − ξβN :N )

}
,

where TN is defined by (2.1) and bN,M as in (2.19) (cf. (2.15)).
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Define the quantity

b =
√

NbN

σW
=

1
2σW

(
− α(1 − α)

f(ξα)
+

β(1 − β)
f(ξβ)

)
. (2.27)

The following corollary is a simple consequence of our previous results.

Corollary 2.1. Suppose that conditions (C.1′) and (C.2) hold true. Then

F ∗
T ∗

N,M
(x) − FTN

(x) = −φ(x)
(

1√
M

− 1√
N

)[
1
6
(λ1 + 3λ2)(x2 − 1) + b

]

+ R1,N + R1,N,M + R1,M ,

F ∗
T ∗

N,M ,S(x) − FTN ,S(x) = φ(x)
(

1√
M

− 1√
N

)[
1
6
λ1(2x2 + 1) +

1
2
λ2(x2 + 1) − b

]

+ R2,N + R2,N,M + R2,M ,

where, for j = 1, 2, Rj,N = o(N−1/2−p) for every p < min(a/2, 1/4) as N → ∞, and Rj,N,M =
o(M−1/2N−s) for every s < a/2, a.s. [P ], as min(N,M) → ∞, Rj,M = o(M−1/2−p) for every p
satisfying (2.20), a.s. [P ], as min(N,M) → ∞.

Note that M can be of smaller order than N (cf. Theorem 2.7), as well as of larger order, i.e., M 	 N .
The border case M = N corresponds to the standard nonparametric naive Efron’s bootstrap resampling
plan. Corollary 2.1 follows directly from Theorems 2.1–2.4, our smoothness condition, and Lemma 6.2
in [11], where in the proof of this lemma (cf. [11]) we now apply Lemmas 4.1 and 4.3 of the present paper
instead of the related lemmas from [11], because in [11] we require the stronger assumption that f is
Lipschitz in neighborhoods of ξα, ξβ , while here we assume only that it is Hölder continuous.

Corollary 2.1 directly implies the following consequence.

Corollary 2.2. Suppose that conditions (C.1′) and (C.2) hold true. If 2b
λ1+3λ2

≥ 1 or λ1 + 3λ2 = 0,
then

sup
x∈R

|F ∗
T ∗

N,M
(x) − FTN

(x)| =
1√
2π

∣∣∣∣ 1√
M

− 1√
N

∣∣∣∣ ·
∣∣∣∣b − 1

6
(λ1 + 3λ2)

∣∣∣∣ + RN,1,

otherwise

sup
x∈R

|F ∗
T ∗

N,M
(x) − FTN

(x)| =
1√
2π

∣∣∣∣ 1√
M

− 1√
N

∣∣∣∣
× max

(∣∣∣∣b − 1
6
(λ1 + 3λ2)

∣∣∣∣, 1
3
|λ1 + 3λ2| exp

(
− 3

2

(
1 − 2b

λ1 + 3λ2

)))
+ RN,2,

moreover, if λ1+6b
2λ1+3λ2

≤ −1 or 2λ1 + 3λ2 = 0, then

sup
x∈R

|F ∗
T ∗

N,M ,S(x) − FTN ,S(x)| =
1√
2π

∣∣∣∣ 1√
M

− 1√
N

∣∣∣∣ ·
∣∣∣∣b − 1

6
(λ1 + 3λ2)

∣∣∣∣ + RN,3,

otherwise

sup
x∈R

|F ∗
T ∗

N,M ,S(x) − FTN ,S(x)| =
1√
2π

∣∣∣∣ 1√
M

− 1√
N

∣∣∣∣
× max

(∣∣∣∣b − 1
6
(λ1 + 3λ2)

∣∣∣∣, 1
3
|2λ1 + 3λ2| exp

(
− 1

2

(
1 +

λ1 + 6b
2λ1 + 3λ2

)))
+ RN,4,

where for j = 1, . . . , 4, RN,j = o(N−1/2−q + M−1/2N−s + M−1/2−p), a.s. [P ], for every s < a/2,
q < min(a/2, 1/4) and p satisfying (2.20) as min(N,M) → ∞.
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It is evident from our results that the second order accuracy of the M out of N bootstrap approxi-
mations (i.e., the bound of order o(N−1/2) at the right-hand sides of relations in Corollary 2.2) can be
achieved if and only if M/N → 1 as N → ∞, that is when M = N + o(N). Moreover, if we assume a
slightly stronger condition M = N + O(N r) with some 0 ≤ r < 1, then

1√
M

− 1√
N

= O(N−1/2−(1−r)).

This bound together with Corollary 2.2 directly implies the following result on the M out of N bootstrap.

Theorem 2.5. Suppose that condition (C.1′) is satisfied and let M = N + O(N r), 0 ≤ r < 1. Then
for every p < min(a/2, 1 − r, 1/4)

sup
x∈R

|F ∗
T ∗

N,M
(x) − FTN

(x)| = o(N−1/2−p), (2.28)

and

sup
x∈R

|F ∗
T ∗

N,M ,S(x) − FTN ,S(x)| = o(N−1/2−p), (2.29)

with probability one, as N → ∞.

This result means that the M out of N bootstrap approximation to the trimmed mean (given by (2.1))
is more accurate than the standard normal approximation. In addition, we want to emphasize the
fact, useful in statistical practice, that the bootstrap approximation is more accurate than the normal
approximation not only in the case when M = N (the naive bootstrap), but also in a more general
situation when the size M of the bootstrap sample differs from the size of the real data sample (but
satisfies the condition M = N + O(N r), r < 1). Note that if condition (C.1′) is satisfied with a ≥ 1/2
and r ≤ 3/4, then (2.28)–(2.29) provide the bounds of order o(N−3/4+ε) for every ε > 0.

Let us now discuss why the trimmed mean given by (2.1) is preferable for the bootstrap. Its
computation is as easy as for SN (cf. (2.14)). Asymptotic expansions for TN and SN are identical in
their skewness terms, but differ in the bias terms (cf. (2.13) and (2.15)). A similar remark applies to their
bootstrap counterparts T ∗

N,M and S∗
N,M (cf. Lemma 4.5).

Let the condition M = N + O(N r), r < 1, be satisfied, and note that the difference of two asymptotic
expansions (for SN and for its bootstrap version S∗

N,M ) contains the quantity b[.],N − b[.],N,M , which is

of order O(N−1/2) in general, because of the presence of the differences of the fractional parts of νN and
νM , ν = α, β, which do not vanish when N tends to infinity. Therefore, to establish our result on the
second order accuracy of the bootstrap for SN (an analogue of Theorem 2.5) we need to take into account
this bias contribution by a somewhat unpleasant correction of the location parameter in the definition of
the df of the bootstrapped SN : for instance, we can put

F ∗
S∗

N,M ,S(x) = P ∗
(

M1/2(S∗
N,M − TN )

(β − α)−1σ∗
W,N

−
b[.],N,M − b[.],N

σ∗
W,N

≤ x

)

(cf. second example, Section 3).

Another way to improve the accuracy of M out of N bootstrap for SN is to choose M such that the
fractional parts of νN and νM , ν = α, β, are identical.

In the general case (i.e., without any bias correction) a Berry–Esseen type result (but not second
order accuracy) can be achieved for the trimmed mean given by (2.14). Let FSN

(x), FSN ,S(x) denote the
functions FTN

(x), FTN ,S(x), where TN is replaced by SN in their definition (cf. above), and F ∗
S∗

N,M
(x),

F ∗
S∗

N,M ,S(x) are the functions F ∗
T ∗

N,M
(x) and F ∗

T ∗
N,M ,S(x) with T ∗

N,M replaced by S∗
N,M . The following

theorem is a simple consequence of our expansions.
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Theorem 2.6. Suppose that conditions (C.1′) and (C.2) are satisfied. Then

sup
x∈R

|F ∗
S∗

N,M
(x) − FSN

(x)| = O(min(N,M)−1/2)

and

sup
x∈R

|F ∗
S∗

N,M ,S(x) − FSN ,S(x)| = O(min(N,M)−1/2)

with probability one, as min(N,M) → ∞.

On the empirical EE, the M out of N bootstrap and extrapolation. Denote the functions
appearing in the Edgeworth expansions GN (x) and HN (x) (cf. (2.12) and (2.22)) by

B(x) = −φ(x)
[1
6
(λ1 + 3λ2)(x2 − 1) + b

]
,

with b as in (2.27), and

BS(x) = φ(x)
[1
6
(
λ1(2x2 + 1) + 3λ2(x2 + 1)

)
− b

]

respectively.

Hence, we know that

FTN
(x) = Φ(x) +

1√
N

B(x) + R1,N , (2.30)

FTN ,S(x) = Φ(x) +
1√
N

BS(x) + R2,N ,

where R1,N and R2,N are the remainder terms of the EE’s. In [11] we estimate the unknown parameters
appearing in B(x) and BS(x) to obtain empirical EE’s (EEE)

ĜN (x) = Φ(x) +
1√
N

B̂(x) and ĤN (x) = Φ(x) +
1√
N

B̂S(x).

We assume in [11] that (C.1) holds with a = 1, and apply plug-in estimates for the moments and step-
kernel estimates for the values of the density at the points ξα, ξβ appearing in the Edgeworth correction
terms for skewness and bias.

In practical applications, when the density is perhaps close to zero at the points ξα, ξβ , estimation of
these small values may cause problems if the sample size N is not very large. In this situation we might
prefer the bootstrap procedure and to obtain second order accuracy, provided we perform simulations
with M = N + o(N) (cf. Theorem 2.5). This will of course require a lot of computation. Fortunately,
however, we can considerably reduce the computation time by using the M out of N bootstrap (cf.
[7, 23]), when min(N,M) → ∞ and M/N → 0, in conjunction with extrapolation.

Define the functions BN (x) and BS,N (x) to be the same as B(x) and BS(x), with parameters λ1, λ2,
α, β, σW , f(ξα), and f(ξβ) replaced by λ1,N , λ2,N , αN , βN , σW,N , f(ξαN :N ), and f(ξβN :N). Then, with
M 
 N we have the bootstrap version of (2.30):

F ∗
T ∗

N,M
(x) = Φ(x) +

1√
M

BN (x) + R1,N,M , (2.31)

F ∗
T ∗

N,M ,S(x) = Φ(x) +
1√
M

BS,N (x) + R2,N,M ,

where Rj,N,M , j = 1, 2, are of order o(M−1/2−p) for every p < min(a/2, 1/4), with probability one. Note
that the functions BN (x) and BS,N(x) depend on F , N , but not on M (and here it is crucial that we
consider TN given by (2.1) instead of SN given by (2.14)).
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Therefore relations (2.31) allow us to estimate these functions with an error of order o(M−p) with
probability one. The next step is to employ extrapolation for M = N , i.e., we substitute these estimates
in the expressions for GN,N (x) and HN,N (x) to obtain the estimates

F̂ ∗
T ∗

N,N
(x) = Φ(x) +

1√
N

B̂N (x), F̂ ∗
T ∗

N,N ,S(x) = Φ(x) +
1√
N

B̂S,N (x), (2.32)

with an error of order o(N−1/2M−p), implying second order accuracy. Hence we obtain our first main
result for the M out of N bootstrap, whenever M is of smaller order than N (cf. [7, 23]).

Theorem 2.7. Suppose that condition (C.1′) is satisfied and M/N → 0 as M → ∞. Then

sup
x∈R

|F̂ ∗
T ∗

N
(x) − FTN

(x)| = o(N−1/2M−p),

sup
x∈R

|F̂ ∗
T ∗

N,N ,S(x) − FTN ,S(x)| = o(N−1/2M−p),

for every p < min(a/2, 1/4), with probability one, as M → ∞.

In particular, for a ≥ 1/2 and with M = [N q], 0 < q < 1, we obtain an M out of N bootstrap
approximation with error of order o(N−(1/2+q/4−ε)), for every ε > 0. Hence, as in Theorem 2.5, we
obtain second order accuracy of the bootstrap, but now with reduced computational time. We also note
in passing that extrapolation for the trimmed mean given by SN (cf. (2.14)) only yields a slow rate of
order O(N−1/2) (cf. Theorem 2.6). In other words: improvement over the normal approximation is not
possible here for SN .

The next step is to improve the M out of N bootstrap by extrapolation using a simple linear regression
model as proposed in [23] (cf. also [7]). In our case we need to estimate one parameter B = BN (x)
(or B = BS,N(x) for the case of Studentized statistic). Take Mk = [tkN q], k = 1, . . . ,K, where K ≥ 1
is integer, 0 < q < 1, and t1 < t2 < · · · < tK are fixed. Perform the bootstrap procedure K times with
M = Mk, k = 1, . . . ,K. We obtain

Yk(x) = F ∗
T ∗

N,Mk

(x) − Φ(x) = M
−1/2
k BN (x) + O(N−q(1/2+p)) (2.33)

with p < min(a/2, 1/4). Then, we estimate BN (x) in formula (2.33) by viewing BN (x), for fixed x, as
a parameter in a linear regression, with error term o(N−q(1/2+p)). Applying least squares we obtain the
estimate

B̂N (x) =
K∑

k=1

Yk(x)M−1/2
k

/ K∑
k=1

M−1
k = Nd/2

K∑
k=1

t
−1/2
k Yk(x)

/ K∑
k=1

t−1
k , (2.34)

and similarly for B̂S,N(x) with Yk(x) = F ∗
T ∗

N,Mk
,S(x) − Φ(x). It is evident that the order of the error

of this estimates is o(N−qp), and substituting these estimates in the formulas (2.32) gives the order
o(N−(1/2+qp)) for the error of the approximations (2.32). Thus, we obtain our second result for the M
out of N bootstrap in conjunction with extrapolation, whenever M is of smaller order than N .

Theorem 2.8. Suppose that condition (C.1′) is satisfied and estimates B̂N (x) and B̂S,N in (2.32)
are given by (2.34). Then for every p < min(a/2, 1/4)

sup
x∈R

|F̂ ∗
T ∗

N
(x) − FTN

(x)| = o
(
N−(1/2+qp)

)
,

sup
x∈R

|F̂ ∗
T ∗

N,N ,S(x) − FTN ,S(x)| = o
(
N−(1/2+qp)

)
,

with probability one, as N → ∞.
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We can expect some improvement in comparison with the previous method (K = 1) due to additional
information. We present simulations on M out of N bootstrap in conjunction with extrapolation in
Section 3.

The Naive Bootstrap. Consider the special case M = N , i.e., the so-called ’naive bootstrap’. We
apply our main results and discuss bootstrapping for both versions of trimmed mean.

(I) Bootstrapping for TN . Consider the trimmed mean TN given by (2.1). The following conse-
quence of Theorem 2.5 yields the second order accuracy of the naive bootstrap for the normalized and
Studentized TN .

Theorem 2.9. Suppose that condition (C.1′) is satisfied. Then for every p < min(a/2, 1/4)

sup
x∈R

|F ∗
T ∗

N
(x) − FTN

(x)| = o
(
N−1/2−p

)
,

sup
x∈R

|F ∗
T ∗

N,N ,S(x) − FTN ,S(x)| = o
(
N−1/2−p

)
,

with probability one, as N → ∞.

Note that the extreme terms, containing fractional parts of αN and βN in the definition of the df
of the bootstrap counterpart of TN , can be omitted when M = N . Indeed, by Lemma 4.2 the quantity
N−1/2(X∗

[αN ]+1:N − X[αN ]+1:N ) in our smoothness condition is of order O((log N)1/2/N), with P ∗-

probability 1 − O(N−c), for every c > 0, a.s. [P ], because the expression at the r.h.s. of (4.8) (with
M = N and function G(x) = x) is of order O

(
(log N/N)1/2

)
. The same is valid for N−1/2(X∗

[βN ]+1:N −
X[βN ]+1:N ). Therefore, for the df of the bootstrapped trimmed mean we have

F ∗
T ∗

N,N
(x) = P ∗

(
N1/2(T ∗

N,N − TN )
(β − α)−1σW,N

≤ x

)

= P ∗
(

N−1/2σ−1
W,N

( [βN ]∑
i=[αN ]+1

X∗
i:N −

[βN ]∑
i=[αN ]+1

Xi:N

)
≤ x + RN

)
,

where RN is a quantity of order O
(
(log N)1/2/N

)
, with P ∗-probability 1 − O(N−c), for every c > 0,

a.s. [P ]. Since the derivative G′
N,N of the one-term EE is bounded uniformly, the term RN can be

deleted, because it adds to the Edgeworth expansion GN,N (x) a quantity contributing to a remainder
term. Similarly, the df of the Studentized bootstrap trimmed mean F ∗

T ∗
N,N ,S(x) can be reduced to

P ∗
(

N−1/2σ∗−1

W,N

( [βN ]∑
i=[αN ]+1

X∗
i:N −

[βN ]∑
i=[αN ]+1

Xi:N

)
≤ x

)
.

(II) Bootstrapping for SN . Next consider the trimmed mean given by SN (cf. (2.14)). Define df ’s of
the normalized and Studentized SN by

FSN
(x) = P

(
N1/2(SN − µ(α, β))

(β − α)−1σW
≤ x

)
and FSN ,S(x) = P

(
N1/2(SN − µ(α, β))

(β − α)−1σW,N
≤ x

)

(cf. [11]). The corresponding asymptotic expansions are GN (x) and HN(x), where the bias term bN is
replaced by dN (cf. Lemma 4.5). The bootstrap counterpart of SN is defined by

S∗
N,N =

1
([βN ] − [αN ])

βN∑
i=αN+1

X∗
i:N .
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The df ’s of the normalized and Studentized S∗
N,N are defined by

F ∗
S∗

N,N
(x) = P ∗

(
N1/2(S∗

N,N − TN )
(β − α)−1σW,N

≤ x

)
and F ∗

S∗
N,S ,S(x) = P ∗

(
N1/2(S∗

N,N − TN )
(β − α)−1σ∗

W,M

≤ x

)
,

the corresponding bootstrap asymptotic expansions are GN,N (x) and HN,N (x) (with bias term dN,N

(cf. (2.26)). Because our smoothness condition (C.1′) implies that the term b[.],N − b[.],N,N (cf. (2.15),
(2.26) with M = N ) is of negligible order and contributes to the remainder term, we obtain the second
order accuracy of the naive bootstrap for the r.v. SN (cf. [13] for a similar result under somewhat stronger
conditions).

Theorem 2.10. Suppose that condition (C.1′) is satisfied. Then for every p < min(a/2, 1/4)

sup
x∈R

|F ∗
S∗

N
(x) − FSN

(x)| = o
(
N−1/2−p

)
,

sup
x∈R

|F ∗
S∗

N ,S(x) − FSN ,S(x)| = o
(
N−1/2−p

)
,

with probability one, as N → ∞.

To conclude this section, we note that a completely different way of approximating FSN
and FSN ,S

is to use saddlepoint approximations. These approximations will typically work better in the tail of the
distribution in comparison with the Edgeworth expansions and bootstrap approximations considered
in the present paper. Only very recently these saddlepoint expansions were established for the trimmed
mean and the Studentized trimmed mean. We refer to [16] for more details.

3. SIMULATIONS

In this section we illustrate our results on Edgeworth expansions, bootstrap approximations, and our
previous results on the empirical Edgeworth expansion in [11] by simulations.

We consider the case of the normalized trimmed mean as well as the case of the Studentized one,
and we look at both TN given in (2.1) and SN as in (2.14) (cf. Section 2). Monte Carlo simulations were
performed for the following distributions: standard exponential and a mixture of two normal distributions.
To compute the distribution functions FTN

, FSN
(of the normalized statistics) and FTN ,S, FSN ,S (of their

Studentized versions) we use Monte Carlo procedure with 106 samples.

The values of one-term Edgeworth expansions were computed in each case by our formulas for
GN (x) and HN (x). To get the values of the empirical Edgeworth expansions we need to estimate the
parameters of the first term of the EE. We use plug-in estimates for the moments and quantiles, and
kernel estimates for the values of the density at ξα, ξβ, taking simple step-kernel with N−1/4 as the
width of the step (in the same way as in [11]). For computation of the df ’s of the bootstrapped trimmed
mean: F ∗

T ∗
N,M

, F ∗
S∗

N,M
(normalized) and F ∗

T ∗
N,M ,S, F ∗

S∗
N,M ,S (Studentized) (cf. Section 2) we also apply

a Monte Carlo procedure using 105 samples. We compute the differences of the various approximations
to the df of the trimmed mean and its true df , and plot these differences in our figures.

In Fig. 1 we present our results for the Studentized trimmed mean TN given by (2.1), where
α = 1 − β = 0.25, and as underlying distribution we take a mixture of two normal laws:

F (x) = pΦ((x − a1)/σ1) + (1 − p)Φ((x − a2)/σ2).

Here a1 = 0, σ1 = 0.5, a2 = 2, σ2 = 1, p = 0.6, sample size N = 45 and M = N (the naive bootstrap). It
can be seen that bootstrap is the best and all the second order approximations (EE, EEE and bootstrap)
are better than the normal one, as one would expect.

Our second example deals with the M out of N bootstrap (M �= N ). The simulations were performed
for the standard exponential distribution. Here we consider SN (cf. (2.14), Section 2) with α = 1 − β =
0.15. In Fig. 2 we plot the differences for the normal df , EE and bootstrap with M = N , M = 2N and
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Fig. 1. TN , Studentized, mixture of two normal distributions, N = 45
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Fig. 2. SN , Studentized, standard exponential distribution, N = 45
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M = [0.5N ], where N = 45. To obtain bootstrap approximations in this case we performed the Monte
Carlo procedure for the df given by

F ∗
S∗

N,M ,S(x) = P ∗
(

M1/2(S∗
N,M − TN )

(β − α)−1σ∗
W,M

−
b[.],N,M

σ∗
W,M

+
b̂[.],N

σW,N
≤ x

)
,

with b[.],N,M as in (2.26), b̂[.],N the estimator for b[.],N (cf. (2.15)),

b̂[.],N = − 1√
N

{
− (αN − [αN ])(TN − ξαN :N ) + (βN − [βN ])(TN − ξβN :N )

}
.

We complete this section with an example involving extrapolation. Simulations were performed with
standard exponential distribution for the Studentized trimmed mean TN given by (2.1), where N = 81,
α = 0.25 and β = 0.85. We use the regression model of extrapolation (cf. Section 1, cf. also [7]) to
estimate the first term of the EE. First we compute the values of df of the bootstrapped Studentized
statistic F ∗

T ∗
N,M ,S(x) three times with sample sizes Mk = tk

√
N , tk = 1, 2, 3, that is M1 = 9, M2 = 18,

M3 = 27, then we estimate the function BS(x) as a parameter in regression by the ’least squares
estimate’

B̂S(x) =
3∑

k=1

((
F ∗

T ∗
N,Mk

,S(x) − Φ(x)
)
M

−1/2
k

)/ 3∑
k=1

M−1
k

(cf. (2.34)), and substitute it to the formula for the one term EE. As the result we obtain an estimate
F̂TN ,S = Φ(x) + 1√

N
B̂S(x) of the df of the Studentized statistic TN .

-0.04

-0.02

0 2 4-2-4

0.04

0.02

Fig. 3. TN , Studentized, Extrapolation, N = 81, M1 = 9, M2 = 18, M3 = 27

The results of our simulations are presented in Fig. 3. We plot the differences between F ∗
T ∗

N,Mk
,S(x)

and the true df (k = 1, 2, 3) as well as the difference between the result of extrapolation F̂TN ,S(x) and
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the true df . We see that extrapolation gives the best approximation in our example. Also note that the
accuracy of the M out of N bootstrap gets better when M becomes larger. This is of course as one
would expect. Simulations show that both EE and the naive bootstrap extrapolation give second order
approximation and achieve this with reduced computational time as compared with the naive bootstrap.
We also refer to Fig. 2 of [7] for a similar result for the trimmed mean.

4. SOME LEMMAS

In this section we state and prove a few lemmas, which we will need in our proofs.

Bahadur’s type results. Let G be a function defined and differentiable with derivative g in a
neighborhood of ξα = F−1(α), 0 < α < 1.

The following lemma is an extension of Lemma 3.1 in [11] (cf. also [2] and Theorem 6.3.1 in
Reiss [22]).

Lemma 4.1. Suppose that f = F ′ exists in a neighborhood of ξα and f(ξα) > 0. In addition,
assume that the functions f and g satisfy a Hölder condition of order a > 0 at the point ξα. Then

G(ξαN :N ) − G(ξα) = − [FN (ξα) − F (ξα)] g(ξα)/f(ξα) + RN , (4.1)

where P (|RN | > N−1/2−p) = o(N−c), for any c > 0 and every p < min(a/2, 1/4), as N → ∞.

Proof. Write (cf. (4.1))

RN = G(ξαN :N ) − G(ξα) +
Nα − αN

N
g(ξα)/f(ξα), (4.2)

where Nα = �{i : Xi ≤ ξα}. Let U1, . . . , UN be independent, uniformly (0, 1) distributed r.v.’s, and
let U1:N ≤ · · · ≤ UN :N denote the corresponding order statistics. Define FN,u(x) = N−1�{i : Ui ≤ x},
0 < x ≤ 1, the empirical df and υαN :N = F−1

N,u(α) the corresponding α-quantile. Note that ξαN :N and

Nα are distributed as F−1(υαN :N ) and Nα,u = �{i : Ui ≤ α}. Therefore RN is distributed as

G(F−1(υαN :N )) − G(F−1(α)) +
Nα,u − αN

N
g(ξα)f(ξα). (4.3)

The latter quantity equals

(υαN :N − α)g(ξα)/f(ξα) + RN,1 +
Nα,u − αN

N
g(ξα)/f(ξα), (4.4)

where |RN,1| ≤ Ca|υαN :N −α|1+a, and Ca is the Hölder constant of the function g(F−1(u))/f(F−1(u))
at the point α (we may neglect here the event when υαN :N does not belong to the neighborhood, where
condition (C.1) is satisfied). By Theorem 6.3.1 of Reiss [22] (cf. also Lemma 3.1 in [11]) we have

υαN :N − α = −Nα,u − αN

N
+ RN,u, (4.5)

where RN,u is the remainder of Bahadur’s order, i.e.,

P
(
|RN,u| > A(log N/N)3/4

)
= O(N−c), (4.6)

for every c > 0 with some A > 0, independent of N . This implies that the quantity (4.4) is equal to
RN,1 + RN,2, where RN,2 satisfies (4.6), and for RN,1 we have

P
(
|RN,1| > (A log N/N)(a+1)/2

)
≤ P

(
|υαN :N − α| > C−1/(a+1)

a (A log N/N)1/2
)
, (4.7)

and by Bernstein’s inequality the last probability is O(N−c), provided A > 2cα(1 − α)C2/(a+1)
a . More-

over, our argument also implies that for any p < min(a/2, 1/4) we have |RN,j| < N−1/2−p (j = 1, 2)
with probability 1 − o(N−c) for every c > 0. This together with (4.2)–(4.3) implies (4.1). The lemma is
proved.
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Remark 4.1. It follows from the proof of Lemma 4.1 that the remainder term in (4.1) is a sum of
two terms: RN = RN,1 + RN,2, where |RN,1| ≤ A(log N/N)3/4 and |RN,2| ≤ B(log N/N)1/2+a/2, with
probability 1 − O(N−c), for every c > 0, where A > 0 is a constant depending on α and c, and B > 0 is
a constant depending on α, c, and F , but not on N . Hence our bound for RN is in fact slightly better
than the one in Lemma 4.1.

Our second lemma is concerned with the validity of Bahadur’s representation for an M out of N
bootstrap quantile.

Lemma 4.2. Suppose that f = F ′ exists in a neighborhood of ξα and f(ξα) > 0. In addition
assume that the functions f and g satisfy the uniform Hölder condition of order a > 0 in a
neighborhood of ξα, and that condition (C.2) holds true.

Then

G(ξ∗αM :M ) − G(ξαN :N ) = −[F ∗
M (ξαN :N ) − FN (ξαN :N )]g(ξαN :N )/f(ξαN :N ) + R∗

M , (4.8)

where P ∗ (
|R∗

M | > M−1/2−p
)

= o (M−c) for every p satisfying (2.20), with probability one, as
min(N,M) → ∞.

We relegate the proof of Lemma 4.2 to Section 7.

Remark 4.2. Note that if a ≥ 1/2, then the remainder term RN in (4.1) is of the order o(N−3/4+ε) for
every ε > 0, and if additionally d = 1, then the remainder term R∗

M in (4.8) is of order o(M−3/4+ε) with
probability one, for every ε > 0.

The following lemma represents a refined version of Lemma 3.2 from [11].

Lemma 4.3. Suppose that the conditions of Lemma 4.1 hold. Then

ξα∫

ξαN:N

(
G(x) − G(ξα)

)
dFN (x) = −1

2
[FN (ξα) − F (ξα)]2g(ξα)/f(ξα) + RN , (4.9)

where P (|RN | > N−1−p) = o(N−c) for any c > 0 and every p < min(a/2, 1/4), as N → ∞.

Remark 4.3. Relation (4.9) is a direct consequence of integrating the Bahadur–Kiefer process (cf. [20])
in the interval [ξαN :N , ξα). As we need upper bounds ’in probability’, whereas in [24] ’almost sure’ results
are derived, our smoothness conditions are slightly weaker than the ones in [24] and [20]. For this reason
we include a short proof of (4.9). Relation (4.9) parallels the assertions (3.2) and (3.3) in [13]; note that
our smoothness condition on the density f is slightly weaker than the one used in [13]. The factors
(1 − α)−1 and (1 − β)−1 appearing in [13] are superfluous.

Proof. Let us adopt the following notation: for any integer k and m let

m∑
i=k

(.)i = sign[m − k]
k∨m∑

i=k∧m

(.)i.

Then we can rewrite the integral on the l.h.s. of (4.9) as N−1
∑Nα

i=kα
(G(Xi:N ) − G(ξα)), where as in the

proof of Lemma 4.1 Nα = �{i : Xi ≤ ξα} and kα = αNN is the index of the order statistic corresponding
to the α-th quantile of the sample X1, . . . ,XN . Now we need to estimate the remainder (cf. (4.9)):

RN =
1
2

(Nα − αN)2

N2
g(ξα)/f(ξα) +

1
N

Nα∑
i=kα

(
G(Xi:N ) − G(ξα)

)
. (4.10)
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Similarly to the proof of Lemma 4.1, we find that RN is distributed as

1
2

(Nα,u − αN)2

N2
g(ξα)/f(ξα) +

1
N

Nα,u∑
i=kα

(
G(F−1(Ui:N )) − G(F−1(α))

)
. (4.11)

The second term of (4.11) equals

−1
2

(Nα,u − αN)2

N2
g(ξα)/f(ξα) + RN,1 + RN,2, (4.12)

where P (|RN,1| > A(log N/N)5/4) = O(N−c) for every c > 0 and some A > 0, independent of N (cf.
Lemma 3.2 in [11]), and

RN,2 = N−1

Nα,u∑
i=kα

[
(G ◦ F−1)′(α + θi(Ui:N − α)) − (G ◦ F−1)′(α)

]
(Ui:N − α),

where |θi| ≤ 1. The Hölder condition directly implies that

|RN,2| ≤
1
N

kα∨Nα,u∑
i=kα∧Nα,u

Ca|Ui:N − α|1+a

≤ Ca|Nα,u − kα|
N

max
(
|υαN :N − α|1+a, |UNα,u:N − α|1+a

)
. (4.13)

Bernstein’s inequality yields that |Nα,u − kα| < A1(N log N)1/2, |υαN :N − α| < A2(log N/N)1/2, and
|UNα,u:N − α| < A3(log N/N) with probability 1 − O(N−c), for every c > 0 and some Ai, i = 1, 2, 3,
independent of N (cf. Lemma 3.2 in [11]). This together with (4.13) ensures that

P
(
|RN,2| > A4(log N/N)1+a/2

)
= O(N−c), (4.14)

as N → ∞ for every c > 0 with some A4 > 0, independent of N . Relations (4.10)–(4.12) and (4.14)
imply (4.9) for every p < min(a/2, 1/4) and c > 0. The lemma is proved.

Our next lemma provides a bootstrap version of Lemma 4.3.

Lemma 4.4. Suppose that the conditions of Lemma 4.2 hold true. Then
ξαN:N∫

ξ∗αM:M

(
G(x) − G(ξαN :N )

)
dF ∗

M (x)

= −1
2
[
F ∗

M (ξαN :N ) − FN (ξαN :N )
]2

g(ξαN :N )/f(ξαN :N ) + R∗
M , (4.15)

where P ∗(|R∗
M | > M−1−p

)
= o(M−c) for every p satisfying (2.20), with probability one, as

min(N,M) → ∞.

The proof of Lemma 4.4 is relegated to Section 7.

Bias approximations. Next, we state and prove our lemmas on the asymptotic approximation for
the bias of TN and SN in estimating of µ(α, β) and for the bias of their bootstrap counterpart. Take some
fixed δ > 0 such that ξα − δ and ξβ + δ belong to the neighborhoods, where the density f is positive and
Hölder continuous. Define auxiliary r.v.’s X ′

i = (ξα − δ) ∨ (Xi ∧ (ξβ + δ)), let F ′ and F ′
N denote the df

and the empirical df of the r.v. X ′
i respectively, and let X ′

i:N be the corresponding order statistics. Define
auxiliary trimmed means

T ′
N =

1
β − α

β∫

α

(F ′
N )−1(u) du and S′

N =
1

([βN ] − [αN ])

[βN ]∑
i=[αN ]+1

X ′
i:N .
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Under our smoothness conditions

sup
x∈R

|P (TN ≤ x) − P (T ′
N ≤ x)| = O(e−cδN ),

for some constant cδ > 0 independent of N (the same fact is valid for SN instead of TN , cf. [11, 10]).
Therefore, in absence of any moment assumptions on the distribution F , we can replace with impunity
TN by T ′

N (which has finite moments of arbitrary order) when proving Theorems 2.1 and 2.3. That is
why we approximate the bias of the auxiliary r.v. T ′

N , and since the bootstrapped trimmed mean T ∗
N,M

has finite moments of arbitrary order (in the bootstrap world) we can approximate its own bias. A similar
comment applies to SN .

Define

BN =
√

N(β − α)(ET ′
N − µ(α, β)), BN,M =

√
M(β − α)(E∗T ∗

N,M − TN ), (4.16)

DN =
√

N(β − α)(ES′
N − µ(α, β)), DN,M =

√
M(β − α)(E∗S∗

N,M − TN ).

Lemma 4.5. Suppose that condition (C.1) is satisfied. Then for every p < min(a/2, 1/4)

BN − bN = o(N−1/2−p), (4.17)

DN − dN = o(N−1/2−p), (4.18)

with bN as in (2.13) and dN as in (2.15), as N → ∞.
Moreover, if conditions (C.1′) and (C.2) hold, then for every p satisfying (2.20)

BN,M − bN,M = o(M−1/2−p) a.s., (4.19)

DN,M − dN,M = o(M−1/2−p) a.s., (4.20)

with bN,M as in (2.19) and dN,M as in (2.26), as min(N,M) → ∞.

Proof. To prove relation (4.17) we use here the method, which corresponds to our general approach
based on Bahadur’s type approximation (cf. Lemma A.1 in [11], where we employed conditioning
arguments to get a related result). Write

BN =
√

N(β − α)(ET ′
N − µ(α, β)) =

√
NE

( β∫

α

(F ′
N )−1(u) du −

β∫

α

F−1(u) du

)

=
√

NE

( F ′
N (ξα)∫

α

(F ′
N )−1(u) du +

β∫

F ′
N (ξβ)

(F ′
N )−1(u) du +

ξβ∫

ξα

x d(F ′
N − F )(x)

)
.

Since F ′(x) = F (x) if x ∈ (ξα − δ, ξβ + δ), we find that E
( ∫ ξβ

ξα
x d(F ′

N − F )(x)
)

= 0. Moreover, as

E
( ∫ F ′

N (ξα)
α du

)
= E

(
F ′

N (ξα) − F (ξα)
)

= 0 and E
( ∫ β

F ′
N (ξβ) du

)
= 0, the latter reduces to

√
NE

( F ′
N (ξα)∫

α

(
(F ′

N )−1(u) − ξα

)
du +

β∫

F ′
N (ξβ)

(
(F ′

N )−1(u) − ξβ

)
du

)
.

Define N ′
ν = �{i : X ′

i ≤ ξα}, ν = α, β, then by Lemma 4.2 the latter expression is equal to

√
NE

(
− (N ′

α − αN)2

2N2

1
f(ξα)

+
(N ′

β − βN)2

2N2

1
f(ξβ)

)
+ o(N−1/2−p) = bN + o(N−1/2−p),

for every p < min(a/2, 1/4). This implies (4.17).
It remains to note that (4.19) follows if we replace N , F ′, and F ′

N by their bootstrap counterparts:
M , FN , and F ∗

M in the preceding argument, and use the bootstrap versions of Lemmas 4.1 and 4.3 (i.e.,
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relations (4.8) and (4.15) instead of (4.1) and (4.9)). Note that (4.19) follows also from (5.6)–(5.7) (see
below) and the proof of Lemma 5.1.

Next we prove (4.18) and its bootstrap counterpart (4.20). Define the r.v.

S̃′
N =

1
N

[βN ]∑
i=[αN ]+1

X ′
i:N

and write

DN = N1/2(β − α)(ES′
N − µ(α, β)) = D1 + D2, (4.21)

where

D1 = N1/2((β − α)ES′
N − ES̃′

N ) and D2 = N1/2(ES̃′
N − (β − α)µ(α, β)).

First consider D2. Let us note that

S̃′
N =

αN − [αN ]
N

X ′
[αN ]+1:N +

β∫

α

(F ′
N )−1(u) du − βN − [βN ]

N
X ′

[βN ]+1:N .

Therefore, by Lemma 4.1 we obtain

D2 = N1/2

(
αN − [αN ]

N
ξα − βN − [βN ]

N
ξβ + E

( β∫

α

(F ′
N )−1(u) du −

β∫

α

F−1(u) du

)
+ o(N−1−p)

)

for every p < min(a/2, 1/4), and the latter equals to

αN − [αN ]
N1/2

ξα − βN − [βN ]
N1/2

ξβ + bN + o(N−1/2−p) (4.22)

(cf. proof of (4.17)). For D1 we have

D1 = N1/2

(
N(β − α)

[βN ] − [αN ]
− 1

)
ES̃′

N = N1/2

(
βN − [βN ] − αN + [αN ]

[βN ] − [αN ]
ES̃′

N

)

and taking into account the previous computations for D2, we find that the last quantity is equal to(
βN − [βN ]

N1/2
− αN − [αN ]

N1/2

)
µ(α, β) + O(N−3/2). (4.23)

Relations (4.21)–(4.23) together imply that

D1 + D2 = bN + b[.],N + o(N−1/2−p) = dN + o(N−1/2−p)

for every p < min(a/2, 1/4), and (4.18) follows.

Finally note that (4.20) follows if we replace N , F ′, and F ′
N by their bootstrap counterparts M , FN ,

and F ∗
M in the preceding arguments and use the bootstrap versions of Lemmas 4.1 and 4.3. The lemma

is proved.

5. PROOF OF THEOREM 2.2

To prove relation (2.21) we will need the bootstrap version of Lemma 4.1 in [11], which enables us to
approximate T ∗

N,M by a U-statistic of degree two in the bootstrap world.

Define 1ν(X∗
i ) = 1{X∗

i ≤ξνN:N}, where ξνN :N = F−1
N (ν), 0 < ν < 1, and 1A denotes the indicator of

event A. Then we can write

W ∗
i = X∗

i 1β(X∗
i )(1 − 1α(X∗

i )) + ξαN :N1α(X∗
i ) + ξβN :N (1 − 1β(X∗

i ))
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(cf. (2.4)). Consider a U-statistic of degree 2 defined by

L∗
M + U∗

M =
M∑
i=1

L∗
M,i +

∑
1≤i

∑
<j≤M

U∗
M,(i,j), (5.1)

where

L∗
M,i =

1√
M

(W ∗
i − µW,N)

=
1√
M

[
X∗

i 1β(X∗
i )(1 − 1α(X∗

i )) + ξαN :N1α(X∗
i ) + ξβN :N(1 − 1β(X∗

i )) − µW,N

]

with µW,N as in (2.7) and

U∗
M,(i,j) =

1
M

√
M

[
− 1

f(ξαN :N )
(1α(X∗

i ) − αN )(1α(X∗
j ) − αN )

+
1

f(ξβN :N)
(1β(X∗

i ) − βN )(1β(X∗
j ) − βN )

]
,

where αN = FN (ξαN :N ), βN = FN (ξβN :N ). Note that E∗L∗
N,i = 0 for all i = 1, . . . ,M ; E∗U∗

N,(i,j) = 0
and E∗(L∗

N,iU
∗
N,(i,j)) = 0 for all i, j = 1, . . . ,M (i �= j). Similarly as in [11], we have that ξα − δ ≤

ξαN :N , ξβN :N ≤ ξβ + δ for every δ > 0 with probability 1 − O(−cδN) for some cδ independent of N .
Let Op(M−s) (s > 0) denote a r.v. of order O(M−s) with probability 1− O(exp(−cδN)). Then we easily
check that (σ∗

L∗
M+U∗

M
)2 = E∗(L∗

M + U∗
M )2 = σ2

W,N + Op(M−1) with σ2
W,N as in (2.7), and also that

E∗(L∗
M + U∗

M )3 = E(L∗
M )3 + 3E((L∗

M )2U∗
M ) + Op(M−3/2) =

1√
M

(γW,N + 3δW,N ) + Op(M−3/2).

Therefore,

E∗
(

L∗
M + U∗

M

σ∗
L∗

M+U∗
M

)3

=
λ1,N + 3λ2,N√

M
+ Op(M−3/2)

with λ1,N and λ2,N as in (2.11).

Next note that (cf. (2.7))

µW,N =
[αN ]
N

ξαN :N +
1
N

[βN ]∑
i=[αN ]+1

Xi:N +
N − [βN ]

N
ξβN :N . (5.2)

Define the auxiliary r.v. T̃ ∗
N,M = 1√

M

∑[βM ]
i=[αM ]+1 X∗

i:M , then
√

M(β − α)(T ∗
N,M − TN ) is equal to

− αM − [αM ]√
M

X∗
[αM ]+1:M + T̃ ∗

N,M +
βM − [βM ]√

M
X∗

[βM ]+1:M

−
√

M

N

[βN ]∑
i=[αN ]+1

Xi:N +
√

M
αN − [αN ]

N
X[αN ]+1:N −

√
M

βN − [βN ]
N

X[βN ]+1:N (5.3)

(cf. (2.1), (2.3)). Using (C.1′) and (C.2) we can apply Lemma 4.2 to obtain that (5.3) reduces to

− αM − [αM ]√
M

ξαN :N + T̃ ∗
N,M +

βM − [βM ]√
M

ξβN :N

−
√

M

N

[βN ]∑
i=[αN ]+1

Xi:N +
√

M
αN − [αN ]

N
ξαN :N −

√
M

βN − [βN ]
N

ξβN :N + R∗
M , (5.4)
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where R∗
M is of order o(M−1/2−p) for every p < d/(2 − d), with probability one. Indeed, replacing

X∗
[αM ]+1:M and X∗

[βM ]+1:M in (5.3) by ξαN :N and ξβN :N will lead to an error of order

O

(
1√
M

(log M/M)1/2

)
= o(log M/M)

(cf. Lemma 4.2), and by conditions (C.1′) and (C.2), replacing X[αN ]+1:N and X[βN ]+1:N by ξαN :N and

ξβN :N can give the error of order O
(√

M log N
N2

)
= o(M−1/2−p), for every p < d/(2 − d) (and hence for

every p satisfying (2.20)).
Comparing now (5.2) and (5.4), we see that (5.4) is equal to

T̃ ∗
N,M +

[αM ]√
M

ξαN :N +
M − [βM ]√

M
ξβN :N −

√
MµW,N + R∗

M (5.5)

with R∗
M as in (5.4). Define the quantity:

µ̃M(α, β) =
√

MµW,N − [αM ]√
M

ξαN :N − M − [βM ]√
M

ξβN :N + bN,M , (5.6)

where bN,M is the bias term defined in (2.19). Then (5.3)–(5.6) together imply
√

M (β − α)(T ∗
N,M − TN ) = T̃ ∗

N,M − µ̃M (α, β) + bN,M + R∗
M . (5.7)

The next lemma ensures that under the conditions of Theorem 2.2 the approximation of T ∗
N,M by a

U-statistic of the form (5.1) has a remainder of order o(M−1/2−p) for every p satisfying (2.20), with
probability one.

Lemma 5.1. Suppose that the conditions of Theorem 2.2 hold true. Then

P ∗
(
|T̃ ∗

N,M − µ̃M(αN , βN ) − (L∗
M + U∗

M )| > M−1/2−p
)

= o(M−c), (5.8)

for every p satisfying (2.20), with probability one, as min(N,M) → ∞.

Proof. Define the binomial r.v.’s (in the bootstrap world) M∗
ν = �{i : X∗

i ≤ ξνN :N}, ν = α, β, and write

T̃ ∗
N,M − 1√

M

M∑
i=1

W ∗
i =

1√
M

{
sign[M∗

α − [αM ]]
M∗

α∨[αM ]∑
i=([αM ]+1)∧(M∗

α+1)

(X∗
i:M − ξαN :N )

− sign[M∗
β − [βM ]]

[βM ]∨M∗
β∑

i=([βM ]∧M∗
β)+1

(X∗
i:M − ξβN :N ) − [αM ]ξαN :N − (M − [βM ])ξβN :N

}

(cf. the proof of Lemma 4.1 in [11]). By Lemma 4.4 the latter quantity is equal to

−(M∗
α − αNM)2

2M
√

M

1
f(ξαN :N)

+
(M∗

β − βNM)2

2M
√

M

1
f(ξβN :N )

− [αM ]√
M

ξαN :N − M − [βM ]√
M

ξβN :N + R∗
M ,

where |R∗
M | = o(M−1/2−p) for every p satisfying (2.20), with probability one. This implies that

T̃ ∗
N,M − µ̃M(α, β) − L∗

M − U∗
M =

1
2
√

M
r̄∗M + R∗

M , (5.9)

where

r̄∗M =
1
M

M∑
i=1

{
− 1

f(ξαN :N)
[(1α(X∗

i ) − αN )2 − αN (1 − αN )]

+
1

f(ξβN :N )
[(1β(X∗

i ) − βN )2 − βN (1 − βN )]
}

.
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Note that r̄∗M is the average of M i.i.d. (conditionally) bounded (with probability 1 − O(exp(−cδN)) for
some cδ > 0) and centered (E∗r̄∗M = 0) r.v.’s, and by Hoeffding’s inequality (cf. [17])

P ∗(|r̄∗M | > A(log M/M)1/2
)

= O(M−c)

for every c > 0 and some A > 0, not depending on M , with probability one. Therefore, 1
2 r̄M/

√
M on the

r.h.s. of (5.9) is negligible for our purposes. This together with relation (5.9) implies (5.8). The lemma is
proved.

Proof of Theorem 2.2. Using Lemma 5.1 and relation (5.7), we find that the df F ∗
T ∗

N,M
(x) (cf. Section 2)

is equal to

P ∗
(

L∗
M + U∗

M

σW,N
≤ x − bN,M

σW,N
− R∗

M

σW,N

)
, (5.10)

where L∗
M + U∗

M is a U-statistic of degree two and R∗
M is as in Lemma 4.1 (cf. (5.7), (5.9)). The

probability that the kernel of L∗
M + U∗

M is bounded, uniformly in M , is of order 1 − exp(−cδN) with
some cδ > 0 (cf. [11]). This means that the moment assumptions of Theorem 1.2 of Bentkus et al. [3]
are satisfied (cf. also [11]). To complete the proof we have to verify that Cramér’s condition is also satisfied
in the bootstrap world. Note that the bootstrap (conditional) canonical function is

gN,M (x) = E∗(L∗
M + U∗

M | X∗
1 = x)

=
1√
M

[x1β(x)(1 − 1α(x)) + ξαN :N1α(x) + ξβN :N(1 − 1β(x)) − µW,N ],

and therefore gN,M (X∗
1 ) = 1√

M
(W ∗

1 − µW,N). It follows that we have to check that

lim sup
|t|→∞

|E∗ exp(itW ∗
1 )| ≤ l < 1 (5.11)

for some fixed 0 < l < 1 independent of N . Obviously

E∗ exp(itW ∗
1 ) =

[αN ]
N

eitξαN:N +
1
N

[βN ]∑
i=[αN ]+1

eitXi:N +
N − [βN ]

N
eitξβN:N . (5.12)

The sum of the first and the third terms in (5.12) is in absolute value bounded by∣∣∣∣ [αN ]
N

eitξαN:N +
N − [βN ]

N
eitξβN:N

∣∣∣∣ ≤ α + 1 − β + O(N−1).

Next we consider the second term on the r.h.s. of (5.12). Write

1
N

[βN ]∑
i=[αN ]+1

eitXi:N =
[βN ] − [αN ]

N

1
[βN ] − [αN ]

[βN ]∑
i=[αN ]+1

eitXi:N . (5.13)

By conditioning on X[αN ]:N = u and X[βN ]+1:N = v (we can take u and v from neighborhoods of radius

A(log N/N)1/2 of the points ξα and ξβ respectively) the conditional distribution of

1
[βN ] − [αN ]

[βN ]∑
i=[αN ]+1

eitXi:N

is the same as the distribution of an average of i.i.d. bounded r.v.’s having expectation qu,v(t) = EeitXu,v ,
where Xu,v is a r.v. with df Fu,v(x) = (F (x) − F (u))/(F (v) − F (u)), u < x < v (Fu,v(x) = 0, x ≤ u,
and Fu,v(x) = 1, x > v). Due to our smoothness condition the distribution Fu,v has a nontrivial abso-
lutely continuous component, and we can conclude that lim sup|t|→∞ |qu,v(t)| = qu,v < 1. Moreover, by
Hoeffding’s [17] inequality
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P

(∣∣∣∣ 1
[βN ] − [αN ]

[βN ]∑
i=[αN ]+1

eitXi:N − qu,v(t)
∣∣∣∣ > A(log N/N)1/2

∣∣X[αN ]:N = u,X[βN ]+1:N = v

)

= O(N−c)

for every c > 0 with some A > 0 independent of N , t, and of u, v (boundedness of summands, uniformly
in u, v and t). Now note that by our smoothness condition

qu,v(t) =

∞∫

−∞

eitx dFu,v(x) =

∞∫

−∞

eitx dFξα,ξβ
(x) + RN = qξα,ξβ

(t) + RN ,

and |RN | ≤ C(log N/N)1/2, where C is a constant independent of N , u, v and t. So, supu,v qu,v < q < 1,
where supremum is taken over all u, v in the neighborhoods of the points ξα and ξβ respectively; q is a
constant independent of N . Thus, by (5.12) and (5.13) for all sufficiently large N we obtain

lim sup
|t|→∞

|E∗ exp(itW ∗
1 )| ≤ α + q(β − α) + 1 − β = l < 1.

This proves (5.11). Then we can apply Theorem 1.2 of Bentkus, Götze and van Zwet [3]. Define
F̃ ∗

M (x) = Φ(x) − φ(x)λ1,N +3λ2,N

6
√

M
(x2 − 1), with λ1,N and λ2,N as in (2.11). We can conclude that

sup
x∈R

∣∣∣∣P ∗
{

L∗
M + U∗

M

σW,N
≤ x

}
− F̃ ∗

M (x)
∣∣∣∣ = O(M−1)

with probability one. For R∗
M (cf. (5.10)) we have |R∗

M | = o(M−1/2−p), for every p satisfying (2.20),
with probability one. Therefore, since (F̃ ∗

M )′(x) and x(F̃ ∗
M )′(x) are bounded functions, we obtain that

the P ∗-probability (5.10) is equal to

F̃ ∗
M (x) − φ(x)

bN,M

σW,N
+ o(M−1/2−p) = GN,M (x) + o(M−1/2−p)

for every p satisfying (2.20), with probability one. This proves (2.21) and Theorem 2.2.

6. PROOF OF THEOREM 2.4

Recall that M∗
ν = �{i : X∗

i ≤ ξνN :N}, ν = α, β, and αN = FN (ξαN :N ), βN = FN (ξβN :N ). To prove
relation (2.25), we will need the following lemma, which is nothing but a bootstrap counterpart of
Lemma 5.1 in [11].

Lemma 6.1. Suppose that the assumptions of Theorem 2.4 are satisfied. Then, for any c > 0 and
every p satisfying (2.20)

P ∗(|(σ∗
W,M)2 − σ2

W,N − V ∗
M | > M−1/2−p

)
= o(M−c), (6.1)

with probability one, as min(N,M) → ∞, where

V ∗
M = V ∗

M,1 + V ∗
M,2,

V ∗
M,1 = 2α

1
f(ξαN :N )

M∗
α − αNM

M
[µW,N − ξαN :N ] + 2(1 − β)

1
f(ξβN :N )

M∗
β − βNM

M
[µW,N − ξβN :N ],

V ∗
M,2 =

1
M

M∑
i=1

[(W ∗
i − µW,N )2 − σ2

W,N ].

Moreover,

E∗(V ∗
M ) = 0; E∗(V ∗

M )2 = Op(M−1) as M → ∞.
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As in Section 5, Op(M−1) is our shorthand notation for a term of order M−1 on a set of P-probability
1 − O(e−cδN ) for some cδ > 0.

Proof. Similarly to the proof of Lemma 5.1 in [11], we define the auxiliary quantity

(S∗
W )2 =

1
M

M∑
i=1

(W ∗
i )2 −

(
1
M

M∑
i=1

W ∗
i

)2

.

First we establish that

(σ∗
W,M)2 = (S∗

W )2 + V ∗
M,1 + R∗

M,1. (6.2)

Here and elsewhere R∗
M,1, R

∗(r)
M,1, r = 1, 2, . . . , denote remainder terms, which are of smaller order than

M−1/2−p with P ∗-probability 1 − o(M−c), for every p satisfying (2.20), with probability one. We have

(σ∗
W,M )2 − (S∗

W )2 =
[
[αM ]
M

(ξ∗αM :M )2 +
1
M

[βM ]∑
i=[αM ]+1

(X∗
i:M )2 +

M − [βM ]
M

(ξ∗βM :M)2

− M∗
α

M
(ξαN :N )2 − 1

M

M∗
β∑

i=M∗
α+1

(X∗
i:M )2 −

M − M∗
β

M
(ξβN :N )2

]

+
[(

1
M

M∑
i=1

W ∗
i

)2

− (µ∗
W,M)2

]
. (6.3)

Rewrite now the term in the first square brackets on the r.h.s. of (6.3) as

sign(M∗
α − [αM ])
M

[αM ]∨M∗
α∑

i=([αM ]∧M∗
α)+1

(
(X∗

i:M )2 − (ξαN :N )2
)

−
sign(M∗

β − [βM ])

M

[βM ]∨M∗
β∑

i=([βM ]∧M∗
β)+1

(
(X∗

i:M )2 − (ξβN :N )2
)

+
[αM ]
M

(
(ξ∗αM :M)2 − (ξαN :N )2

)
+

M − [βM ]
M

(
(ξ∗βM :M)2 − (ξβN :N )2

)
. (6.4)

By Lemmas 4.2 and 4.4 we find that the r.h.s. of (6.4) can be replaced by

−2αξαN :N
1

f(ξαN :N )
M∗

α − αNM

M
− 2(1 − β)ξβN :N

1
f(ξβN :N)

M∗
β − βNM

M
+ R

∗(1)
M,1, (6.5)

where the quadratic terms (cf. Lemma 4.4 above) are of negligible order and contribute to the remainder

term R
∗(1)
M,1. Now consider the term in the second square brackets at the r.h.s. of (6.3). Arguing as before,

we can rewrite this expression as
(

2
M

M∑
i=1

W ∗
i − α

1
f(ξαN :N )

M∗
α − αNM

M
− (1 − β)

1
f(ξβN :N )

M∗
β − βNM

M
+ R

∗(2)
M,1

)

×
(

α
1

f(ξαN :N )
M∗

α − αNM

M
+ (1 − β)

1
f(ξβN :N )

M∗
β − βNM

M
+ R

∗(3)
M,1

)

=
2
M

( M∑
i=1

W ∗
i

)(
α

1
f(ξαN :N )

M∗
α − αNM

M
+ (1 − β)

1
f(ξβN :N )

M∗
β − βNM

M

)
+ R

∗(4)
M,1. (6.6)
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Relations (6.3)–(6.6) together imply that

(σ∗
W,M )2 − (S∗

W )2 = V ∗
M,1 + R∗

M + R
∗(5)
M,1,

where R∗
M is equal to

2
[
α

1
f(ξαN :N )

M∗
α − αNM

M
+ (1 − β)

1
f(ξβN :N )

M∗
β − βNM

M

]
1
M

M∑
i=1

(W ∗
i − µW,N).

Note that W ∗
i , i = 1, . . . ,M , are uniformly bounded (with probability 1 − exp(−cδN), for some cδ > 0)

i.i.d. r.v.’s. Therefore by Hoeffding’s inequality and by using also Bernstein’s inequality for the binomial
r.v.’s M∗

α and M∗
β , we obtain that |R∗

M | is of negligible order of magnitude for our purposes (cf. [11]).
Next we show that

(S∗
W )2 = (σW,N )2 + V ∗

M,2 + R∗
M,2, (6.7)

where |R∗
M,2| = o(M−1+ε) with P ∗-probability 1 − o(M−c), for every ε, c > 0, a.s. P . We find that

(S∗
W )2 − (σW,N)2 − V ∗

M,2 = −(W ∗ − µW,N)2 = R∗
M,2.

An application of Hoeffding’s inequality to the bounded (a.s. [P ]) i.i.d. r.v.’s W ∗
i proves (6.7). Relations

(6.2) and (6.7) together imply (6.1). The lemma is proved.

We are now in a position to prove Theorem 2.4. To establish the bootstrap version of the EE
for a Studentized trimmed mean (i.e., relation (2.25)) we use the same argument as in the proof of
Theorem 2.2 of [11], and employ Lemma 6.1 (i.e., the bootstrap version of Lemma 5.1 in [11]). The
verification of Cramér’s condition is the same as before (cf. the proof of Theorem 2.2). Theorem 2.4 is
proved.

7. PROOF OF LEMMAS 4.2 AND 4.4
In this section we state and prove two lemmas, which will imply Lemmas 4.2 and 4.4 in Section 4.

Throughout this section we suppose that the following condition holds true:

(C.2′) log N/N = O
(
(log M/M)1/2

)
as min(N,M) → ∞.

Note that when (C.2) (cf. Section 2) holds true then (C.2′) is also automatically satisfied. In other
words, assumption (C.2′) is a weaker requirement than (C.2), but sufficient for our purposes here, i.e.,
for establishing Bahadur type results in the bootstrap world (cf. Lemmas 4.2 and 4.4). We will write
(g/f)(x) to denote the ratio g(x)/f(x), set M∗

α = �{i : X∗
i ≤ ξαN :N}, and recall that αN = FN (ξαN :N ).

Lemma 7.1. Suppose that f = F ′ exists in a neighborhood of ξα and f(ξα) > 0. In addition,
assume that the functions f and g satisfy the uniform Hölder condition of order a > 0 in a
neighborhood of ξα and that condition (C.2′) holds true. Then

G(ξ∗αM :M ) − G(ξαN :N ) = −[F ∗
M (ξαN :N ) − FN (ξαN :N )](g/f)(ξαN :N ) + R∗

M , (7.1)

where

P
(
P ∗

(
|R∗

M | > Amax
(
(log M/M)(a+1)/2, (log M/M)3/4, (log N/N)1/2(log M/M)1/4

)
> M−c

))

= O(N−c)

with some A > 0 independent of N and M , for every c > 0, as min(N,M) → ∞.

This lemma implies Lemma 4.2, because (log M/M)(a+1)/2 = o(M−1/2−p) for every p < a/2,
(log M/M)3/4 = o(M−1/2−p) for every p < 1/4 and by an application of (C.2),

(log N/N)1/2(log M/M)1/4 = o(M−1/2−p) for every p < d/(4(2 − d)).

We can conclude that the maximum of these quantities is of order o(M−1/2−p) for every p satisfying
(2.20), and Lemma 4.2 follows.
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Proof. First we note (cf. (7.1))

R∗
M =

M∗
α − αNM

M
(g/f)(ξαN :N ) + G(ξ∗αM :M ) − G(ξαN :N ).

Similarly to the proof of Lemma 4.1 we first transform R∗
M into a quantity involving uniform (0, 1)

r.v.’s. Let U1, . . . , UN be a sample of N independent, uniform (0, 1) distributed r.v.’s, let FN,u denote
the corresponding empirical df , and let υαN :N = F−1

N,u(α) be the empirical α-th quantile. Since the joint

distribution of the Xi:N , i = 1, . . . , N , is the same as the joint distribution of F−1(Ui:N ), i = 1, . . . , N ,
we may as well take our bootstrap resample of size M without replacement from N independent
uniform (0, 1) values U1, . . . , UN . Note also that

αN = FN (ξαN :N ) = FN,u(υαN :N ) = N−1([αN ] + sign(αN − [αN ])),

where sign(0) = 0. Now it suffices to consider

M∗
α,u − αNM

M
(g/f)(F−1(υαN :N )) + G(F−1(υ∗

αM :M )) − G(F−1(υαN :N )), (7.2)

where M∗
α,u = �{i : U∗

i ≤ υαN :N} and υ∗
αM :M is the α-th quantile of the bootstrap sample U∗

1 , . . . , U∗
M .

We can rewrite the second term of (7.2) as

(g/f)(F−1(υαN :N ))(υ∗
αM :M − υαN :N ) + R∗

M,1

with |R∗
M,1| ≤ Ca|υ∗

αM :M − υαN :N |a+1, where Ca is the Hölder constant of the function (g/f)(F−1(u))
in a neighborhood of α. Therefore we can rewrite (7.2) as

(g/f)(F−1(υαN :N ))
[
M∗

α,u − αNM

M
+ υ∗

αM :M − υαN :N

]
+ R∗

M,1. (7.3)

Next we evaluate (7.3). First consider R∗
M,1. We have

P ∗(|R∗
M,1| > (A log M/M)(1+a)/2

)
≤ P ∗(|υ∗

αM :M − υαN :N | > C−1/(a+1)
a (A log M/M)1/2

)
, (7.4)

where A is some positive constant we will choose later. Set A1 = AC
−2/(a+1)
a , then the r.h.s. of (7.4) is

equal to

P ∗(υ∗
αM :M > υαN :N + (A1 log M/M)1/2

)
+ P ∗(υ∗

αM :M < υαN :N − (A1 log M/M)1/2
)
. (7.5)

We consider now only the first term in (7.5), since the second term can be treated in a completely similar
fashion. Let kα = αNN denote the index of the sample quantile υαN :N among U1:N ≤ · · · ≤ UN :N , and
consider the binomial r.v. S∗

M with parameters (M,p∗) defined by

S∗
M = �

{
i : U∗

i ≤ Ukα:N + (A1 log M/M)1/2
}

=
M∑
i=1

1{U∗
i ≤Ukα:N+(A1 log M/M)1/2},

where p∗ = P ∗(U∗
i ≤ Ukα:N + (A1 log M/M)1/2). Note that p∗ is equal to

N−1
(
kα + �{i : Ukα:N < Ui ≤ Ukα:N + (A1 log M/M)1/2}

)
.

Then

E∗S∗
M =

M

N

(
kα + �

{
i : Ukα:N < Ui ≤ Ukα:N + (A1 log M/M)1/2

})
.

Let kα,M = [αM ] + sign(αM − [αM ]) be the index of υ∗
αM :M among U∗

1:M ≤ · · · ≤ U∗
M :M . Then, we

can rewrite the first term of (7.5) as

P ∗(S∗
M < kα,M ) = P ∗

(
S∗

M − E∗S∗
N < kα,M − kα

M

N
− Mα

)
, (7.6)
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where Mα = M
N

(
�{i : Ukα:N < Ui ≤ Ukα:N + (A1 log M/M)1/2}

)
. Define

NUi = �
{

i : Ukα:N < Ui ≤ Ukα:N + (A1 log M/M)1/2
}

and note that NUi has the same distribution (in the ’real world’) as �{i : Ui ≤ (A1 log M/M)1/2}, then
Bernstein’s inequality directly implies that

|NUi − N(A1 log M/M)1/2| ≤ N(B1 log N/N)1/2(A1 log M/M)1/4 (7.7)

with probability 1 − O(N−c) for any c > 0 and some B1 > 2c(1 +
√

C0), where C0 is a constant
satisfying log N/N ≤ C0(log M/M)1/2 (cf. condition (C.2′)), for all sufficiently large M and N . Since

(log N/N)1/2 ≤ C
1/2
0 (log M/M)1/4, the r.h.s. of (7.7) can be bounded by

N(B1C0A
1/2
1 )1/2(log M/M)1/2.

Therefore, with proper choice of the constants A1 and B1 such that A2 = A1 −B1C0A
1/2
1 > 0 we obtain

that Mα > (A2M log M)1/2. Finally, note that∣∣∣kα,M − kα
M

N

∣∣∣ =
∣∣∣[αM ] + sign(αM − [αM ]) − αNN

M

N

∣∣∣
≤ |α − αN |M + 1 ≤ M

N
+ 1

≤ M

log N
C0(log M/M)1/2 + 1 = o(M log M)1/2. (7.8)

Then an application of Bernstein’s inequality at the r.h.s. of (7.6) ensures the required bound

P
(
P ∗(|R∗

M,3| > (A log M/M)(1+a)/2) > M−c
)
≤ BN−c,

for every c > 0, where A,B > 0 are some constants independent of M and N .

It remains (cf. (7.3)) to evaluate

R∗
M,2 =

M∗
α,u − αNM

M
+ υ∗

αM :M − υαN :N . (7.9)

Since M∗
α,u has (conditionally on U1, . . . , UN ) a binomial distribution with parameters (αN ,M), Bern-

stein’s inequality directly implies that P ∗(|M∗
α,u − αNM | > (ABM log M)1/2

)
= O(M−c) for every

c > 0 (provided that AB > 2cαN (1 − αN )). Therefore, we can bound our remainder R∗
M,2 on the

event E∗ =
{
|M∗

α,u − αNM | ≤ (ABM log M)1/2
}

. Let, as before, kα,M = [αM ] + sign(αM − [αM ]).
If M∗

α,u ≥ kα,M , then υ∗
αM :M ≤ υαN :N and if M∗

α,u < kα,M , then υ∗
αM :M ≥ υαN+1:N (where υαN+1:N is

the next order statistic after υαN :N among U1:N , . . . , UN :N ). Our proof is based on the fact (cf. Lemma A,
Appendix) that conditionally on M∗

α,u on the event E∗ and provided that kα,M ≤ M∗
α,u (otherwise we

proceed in a similar way with respect to the interval [υαN+1:N , 1) instead (0, υαN :N ]) the bootstrap
quantile υ∗

αM :M is distributed as kα,M -th order statistic Wkα,M :M∗
α,u

of the sample W ∗
1 , . . . ,W ∗

M∗
α,u

of size

M∗
α,u from the discrete uniform distribution with the values U1:N , . . . , Ukα:N (where Ukα:N = υαN :N ) and

the probability mass 1/kα at each of them.

For the case kα,M ≤ M∗
α,u we rewrite R∗

M,2 (cf. (7.9)) as

R∗
M,2 = υ∗

αM :M − Ukα:N +
Ukα:N (M∗

α,u − kα,M )
M∗

α,u

+ R∗
M,3, (7.10)

where

R∗
M,3 =

M∗
α,u − αNM

M
−

Ukα:N (M∗
α,u − kα,M )

M∗
α,u

.
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Since |α − αN | ≤ 1/N and |kα,M − αM | ≤ 1, the latter is equal to

(M∗
α,u − kα,M )

[
1
M

− Ukα:N

M∗
α,u

]
+ O

( 1
N

+
1
M

)

=
(M∗

α,u − kα,M )(M∗
α,u − M(α + (Ukα:N − α)))
MM∗

α,u

+ O
( 1

N
+

1
M

)

=
(M∗

α,u − kα,M )2

MM∗
α,u

−
(M∗

α,u − kα,M )(Ukα:N − α)
M∗

α,u

+ O
( 1

N
+

1
M

)
. (7.11)

The difference M∗
α,u − kα,M can be bounded in absolute value by

|M∗
α,u − kα,M | ≤ |M∗

α,u − αNM | + |αNM − kα,M | ≤ (ABM log M)1/2 + |α − αN |M + 1

≤ (ABM log M)1/2 +
M

N
+ 1 ≤ (ABM log M)1/2 + o(M log M)1/2 (7.12)

(cf. (7.8)). Thus, the first term at the r.h.s. of (7.11) is of order O(log M/M) on the event E∗ and by
Lemma 4.1 the second term is of order O

(
(log M/M)1/2(log N/N)1/2

)
with P ∗-probability 1−O(M−c)

with P-probability 1 − O(N−c) for every c > 0. Finally, by condition (C.2′) we obtain that the latter is
of order O

(
(log M/M)3/4

)
. Hence, R∗

M,3 contributes to the remainder term.

In the case M∗
α,u < kα,M we proceed in a similar way with respect to the interval [υαN+1:N , 1): now

conditionally on M∗
α,u the bootstrap quantile υ∗

αM :M = U∗
kα,M :M is distributed as (kα,M −M∗

α,u)-th order
statistic of the sample W ∗

1 , . . . ,W ∗
M−M∗

α,u
of size M − M∗

α,u from the discrete uniform distribution with

values Ukα+1:N , . . . , UN :N and the probability mass 1/(N − kα) at each of them. And similarly on the
event E∗ and M∗

α,u < kα,M we write

R∗
M,2 = υ∗

αM :M − Ukα+1:N −
(1 − Ukα+1:N )(kα,M − M∗

α,u)
M − M∗

α,u

+ R∗
M,4, (7.13)

where

R∗
M,4 =

M∗
α,u − αNM

M
+

(1 − Ukα+1:N )(kα,M − M∗
α,u)

M − M∗
α,u

,

and, as before, R∗
M,4 is of order O

(
(log M/M)3/4 + 1/N

)
, i.e., contributes to the remainder term. It

should be noted also that the spacing υαN+1:N − υαN :N = O(log N/N), and by condition (C.2′) it has
the order of our remainder (cf. (7.1)).

Consider R∗
M,2 given by (7.10) in the case kα,M ≤ M∗

α,u (the treatment for (7.13) is similar). Relation
(7.10) implies

R∗
M,2 = υ∗

αM :M − Ukα:N

M∗
α,u

kα,M + R∗
M,3. (7.14)

We have found (cf. above) that R∗
M,3 is of order O

(
(log M/M)3/4 + 1/N

)
. Now we show that the quantity

υ∗
αM :M − Ukα:N

M∗
α,u

kα,M is of order v(N,M) = (log M/M)1/4 max
(
(log N/N)1/2, (log M/M)1/2

)
. Write

P ∗
(∣∣∣∣υ∗

αM :M − Ukα:Nkα,M

M∗
α,u

∣∣∣∣ > A3v(N,M)
∣∣ M∗

α,u : kα,M ≤ M∗
α,u

)

= P ∗
W

(
Wkα,M :M∗

α,u
> Ukα:N

kα,M

M∗
α,u

+ A3v(N,M)
)

+ P ∗
W

(
Wkα,M :M∗

α,u
< Ukα:N

kα,M

M∗
α,u

− A3v(N,M)
)

, (7.15)
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where P ∗
W denotes the conditional distribution, and A3 is a positive constant, which may take different

values in the course of the proof. Consider the first term in the r.h.s. of (7.15); our treatment of the second
one is similar and therefore omitted. First note that we can assume that

Ukα:N
kα,M

M∗
α,u

+ (A3 + t)v(N,M) < Ukα:N (7.16)

for some t > αc2(A1/4
B ), where AB is a constant from the definition of the event E∗ and c is an arbitrary

constant (cf. the statement of the lemma), otherwise we can take a new A3 equal to A3 + t, then the first
term in the r.h.s. of (7.15) will be equal to zero, therefore, the necessary bound is trivial.

Define the binomial r.v.

S∗
M∗

α,u
=

M∗
α,u∑

i=1

1
{W ∗

i ≤
Ukα:N kα,M

M∗
α,u

+A3v(N,M)}

with parameters (p∗α,M∗
α,u), where

p∗α = P ∗
W

(
W ∗

i ≤ Ukα:Nkα,M

M∗
α,u

+ A3v(N,M)
)
.

Then the first term at the r.h.s. of (7.15) equals

P ∗
W (S∗

M∗
α,u

< kα,M ) = P ∗
W (S∗

M∗
α,u

− M∗
α,up∗α < kα,M − M∗

α,up∗α). (7.17)

Note that

p∗α =
1
kα

�
{

i : Ui ≤
kα,M

M∗
α,u

Ukα:N + A3v(N,M)
}

=
1
kα

(
kα − �

{
i :

kα,M

M∗
α,u

Ukα:N + A3v(N,M) < Ui ≤ Ukα:N

})
. (7.18)

As our estimation is in probability, we can replace the latter quantity by 1 − 1
kα

NUi , where

NUi = �

{
i : Ui <

M∗
α,u − kα,M

M∗
α,u

Ukα:N − A3v(N,M)
}

.

Now we note that by Bernstein’s inequality∣∣∣∣NUi − N

(
M∗

α,u − kα,M

M∗
α,u

Ukα:N − A3v(N,M)
)∣∣∣∣

≤ B1(log N)1/2N1/2

(
M∗

α,u − kα,M

M∗
α,u

Ukα:N − A3v(N,M)
)1/2

, (7.19)

with probability 1− O(N−c), where B1 is a constant depending only on c (B1/2
1 > c). Due to (7.16) the

quantity in the r.h.s. of (7.19) is less than B1N(log N/N)1/2
(M∗

α,u−kα,M

M∗
α,u

Ukα:N

)1/2, and on the event

E∗ the latter is less than B1N(log N/N)1/2(AB)1/4(log M/M)1/4. Thus, with proper choice of A3

(A3 > B1(AB)1/4) we get (cf. (7.18)–(7.19)):

p∗α ≥ 1 − 1
α

M∗
α,u − kα,M

M∗
α,u

Ukα:N + A4v(N,M) (7.20)

with some A4 > 0 independent of M and N and such that the quantity in the r.h.s. of (7.20) is less than 1
(cf. (7.16)). Now we get

E∗S∗
M∗

α,u
= M∗

α,up∗α ≥ M∗
α,u

(
1 − 1

α

M∗
α,u − kα,M

M∗
α,u

Ukα:N + A4v(N,M)
)

.
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Note that Ukα:N = α − Nα−αN
N + RN with RN = Op((log N/N)3/4) (cf. Lemma 4.1), where Op(.)

denotes a quantity having the indicated order with probability 1 − O(N−c), for every c > 0. Therefore,
we obtain the following bound:

E∗S∗
M∗

α,u
≥ M∗

α,u

(
1 − 1

α

M∗
α,u − kα,M

M∗
α,u

(
α − Nα − αN

N
+ RN

)
+ A4v(N,M)

)

= kα,M + M∗
α,u

(
1
α

M∗
α,u − kα,M

M∗
α,u

(
Nα − αN

N
+ RN

)
+ A4v(N,M)

)
.

Since |Nα − αN |/N ≤ A5(log N/N)1/2 with probability 1 − O(N−c) and v(N,M) ≥ (log M/M)3/4,
we obtain (with proper choice of A3) that

E∗S∗
M∗

α,u
≥ kα,M + A6v(N,M)M∗

α,u ≥ kα,M + A7M
1/4(log M)3/4,

and by (7.17) the first term in the r.h.s. of (7.15) is not greater than

P ∗(S∗
M∗

α,u
− E∗S∗

M∗
α,u

< −A7M
1/4(log M)3/4

)
(7.21)

with some positive A7 independent of N and M . By Bernstein’s inequality the latter is less than exp(−h),
where

h =
A2

7M
1/2(log M)3/2

2[M∗
α,up∗α(1 − p∗α) + (1/3)A7M1/4(log M)3/4 max(p∗α, 1 − p∗α)]

.

It remains to note that (7.20) implies that

1 − p∗α ≤ 1
α

M∗
α,u − kα,M

M∗
α,u

Ukα:N = O(log M/M)1/2,

therefore in the denominator of the last expression we have a quantity of exact order O(M1/2(log M)1/2).
Thus, relations (7.14)–(7.15), (7.17), (7.21) and the latter estimate imply |R∗

M,2| = O(v(N,M)), with
P ∗-probability 1−O(M−c) with P-probability 1−O(N−c) for any c > 0. This, together with estimates
for R∗

M,1 (cf. (7.4)–(7.7)), imply (7.1). The lemma is proved.

The following lemma implies Lemma 4.4.

Lemma 7.2. Suppose that the conditions of Lemma 7.1 are satisfied. Then

ξαN:N∫

ξ∗αM:M

(
G(x) − G(ξαN :N )

)
dF ∗

M (x) = −1
2
[
F ∗

M (ξαN :N ) − FN (ξαN :N )
]2(g/f)(ξαN :N ) + R∗

M , (7.22)

where

P
(
P ∗

(
|R∗

M | > Amax
(
(log M/M)1+a/2, (log M/M)1+1/4, (log N/N)1/2(log M/M)3/4

)
> M−c

))

= O(N−c)

with some constant A > 0 independent of N and M , for every c > 0, as min(N,M) → ∞.

Again we note that if condition (C.2) is satisfied, then

max
(
(log M/M)1+a/2, (log M/M)1+1/4, (log N/N)1/2(log M/M)3/4

)
= o(M−1−p)

for every p satisfying (2.20), and Lemma 4.4 follows by Lemma 7.2.
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Proof. We need to estimate (cf. (7.22))

R∗
M =

(M∗
α − αNM)2

2M2
(g/f)(ξαN :N ) +

1
M

M∗
α∑

i=kα,M

(
G(X∗

i:M ) − G(ξαN :N )
)
.

An argument similar the one used in the proof of Lemma 7.1 guarantees that we may as well consider

(M∗
α,u − αNM)2

2M2
(g/f)(F−1(υαN :N )) +

1
M

M∗
α,u∑

i=kα,M

(
G(F−1(U∗

i:M )) − G(F−1(υαN :N ))
)
.

Our smoothness assumptions allow us to rewrite the latter quantity as

(g/f)(F−1(υαN :N ))
[
(M∗

α,u − αNM)2

2M2
+

1
M

M∗
α,u∑

i=kα,M

(U∗
i:M − υαN :N )

]
+ R∗

M,1, (7.23)

where

|R∗
M,1| ≤

Ca|M∗
α,u − kα,M |
M

max
(
|υ∗

αM :M − υαN :N |1+a, |U∗
M∗

α,u:M − υαN :N |1+a
)
, (7.24)

where Ca is a constant from the Hölder condition on the function (g/f)(F−1(u)) in a neighborhood
of α. We have proved earlier (cf. the proof of Lemma 7.1) that |M∗

α,u − kα,M | ≤ (ABM log M)1/2 and

|υ∗
αM :M −υαN :N | ≤ (A1 log M/M)1/2 with P ∗-probability 1−O(M−c) with P-probability 1−O(N−c)

for every c > 0, with some positive AB, A1 independent of M and N , as min(N,M) → ∞. It remains to
estimate |U∗

M∗
α,u:M − υαN :N |. Conditionally on M∗

α,u on the event

E∗ = {|M∗
α,u − αNM | ≤ (ABM log M)1/2}

we have

P ∗
(
υαN :N − U∗

M∗
α,u:M > (A2 log M/M)1/2 | M∗

α,u

)

= P ∗
W

(
W ∗

1:M∗
α,u

> U1:N + (A2 log M/M)1/2
)

=
(
1 − NUi

kα

)M∗
α,u

, (7.25)

where NUi = �{i : Ui ≤ U1:N + (A2 log M/M)1/2} ≥ N ′
Ui

= �{i : Ui ≤ (A2 log M/M)1/2}. As before

(cf. (7.19)), we find that |N ′
Ui

−N(A2 log M/M)1/2| ≤ B1N(log N/N)1/2(A2 log M/M)1/4, with prob-
ability 1 − O(N−c), where B1 is a positive constant independent of N and M . Condition (C.2′) directly

implies that the latter quantity can be bounded by B1C
1/2
0 A

1/4
2 N(log M/M)1/2, where as before (cf.

the proof of Lemma 7.1) C0 denotes a constant from condition (C.2′). So, with a proper choice of A2,

A2 > B1C
1/2
0 A

1/4
2 , we have N ′

Ui
≥ N(A3 log M/M)1/2 with some positive A3. This implies that

(
1 − NUi

kα

)M∗
α,u

≤
(

1 −
N ′

Ui

kα

)M∗
α,u

= o
(
exp(−M1/2)

)
.

This, together with (7.24) implies

P ∗(|R∗
M,1| > A(log M/M)1+a/2

)
= O(M−c), (7.26)

for every c > 0 and some constant A > 0 independent of M and N , with probability 1 − O(N−c).

Finally, consider the expression in square brackets in (7.23). Fix an arbitrary c > 0 and take c1 =
c + 1. Similarly to estimating R∗

M,4 in the proof of Lemma 7.1 fix M∗
α,u on the event E∗, where
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P ∗(E∗) = 1 − O(M−c1) with probability 1. If M∗
α,u ≥ kα,M , we can write

1
M

M∗
α,u∑

i=kα,M

(U∗
i:M − υαN :N ) =

1
M

M∗
α,u∑

i=kα,M

(
U∗

i:M − υαN :N +
M∗

α,u − i

M

)
− 1

M

M∗
α,u∑

i=kα,M

M∗
α,u − i

M

= −
(M∗

α,u − αNM)2

2M2
+ Op(M−3/2) + R∗

M,2, (7.27)

where Op(M−3/2) denotes a quantity of order O(M−3/2) with P ∗-probability 1 − O(M−c1), and

R∗
M,2 =

1
M

M∗
α,u∑

i=kα,M

(
U∗

i:M −
(

υαN :N −
M∗

α,u − i

M

))
. (7.28)

When M∗
α,u < kα,M , we write

1
M

M∗
α,u∑

i=kα,M

(U∗
i:M − υαN :N ) = − 1

M

kα,M∑
i=M∗

α,u

(U∗
i:M − υαN :N )

= −
(M∗

α,u − αNM)2

2M2
+ Op(M−3/2) + R∗

M,3 , (7.29)

where

R∗
M,3 = − 1

M

kα,M∑
i=M∗

α,u

(
U∗

i:M −
(

υαN :N +
i − M∗

α,u

M

))
.

Relations (7.23), (7.27)–(7.29) imply that it remains to prove that

R∗
M,21{M∗

α,u≥kα,M} + R∗
M,31{M∗

α,u<kα,M}

is of order O
(
max[(log N/N)1/2, (log M/M)1/2](log M/M)3/4

)
on the event E∗. We estimate R∗

M,2, for
R∗

M,3 the treatment is similar. Consider the i-th term of the sum in (7.28). Similarly as in the proof of

Lemma 7.1 we find that U∗
i:M − (υαN :N − M∗

α,u−i

M ) can be replaced by

U∗
i:M −

(
Ukα:N −

Ukα:N (M∗
α,u − i)

M∗
α,u

)
= U∗

i:M − Ukα:N · i

M∗
α,u

.

Let, as before, v(N,M) = max
(
(log N/N)1/2, (log M/M)1/2

)
(log M/M)1/4. Then

P ∗
(∣∣∣∣U∗

i:M − Ukα:N · i
M∗

α,u

∣∣∣∣ > A4v(N,M) | M∗
α,u : kα,M ≤ M∗

α,u

)

= P ∗
W

(∣∣∣∣W ∗
i:M∗

α,u
− Ukα:N · i

M∗
α,u

∣∣∣∣ > A4v(N,M)
)

(7.30)

with W ∗
i:M∗

α,u
and P ∗

W as in (7.15). Now we can repeat the arguments which were used in the proof of

Lemma 7.1 (cf. (7.15)–(7.21)) to find that the r.h.s. of (7.30) is of order O(M−c1), uniformly in kα,M ≤
i ≤ M∗

α,u, with probability 1−O(N−c1), for some constant A4 independent of M and N (cf. [11]). Since

the remainder term (7.28) contains M∗
α,u − kα,M < (ABM log M)1/2 such summands, we obtain that

P ∗(|R∗
M,2| > A5(log M/M)3/4v(N,M)

)
= O(M−c),

where A5 is some positive constant independent of M and N (cf. the proof of Lemma 3.2 in [11]). This
together with the estimates for R∗

M,1 implies (7.22). The lemma is proved.
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8. APPENDIX

Let, as before, X1, . . . ,XN be i.i.d. r.v.’s with common df F , and Nα = �{i : Xi ≤ ξα}, 0 < α < 1.
Our proofs of Lemma 3.2 in [11] and Lemmas 4.2 and 4.3 in this paper use the following fact: condition-
ally on Nα the order statistics X1:N , . . . ,XNα:N are distributed as the order statistics corresponding to
a sample of Nα i.i.d. r.v.’s with distribution function F (x)/α, x ≤ ξα. Though this fact is well known
(cf. Theorem 12.4, [19], cf. also [11, 13]), we give a brief proof of it. The proof given here corrects an
error in the argument given on p. 68 of [11]. Let U1, . . . , UN be independent r.v.’s uniformly distributed
on (0, 1) and let U1,N , . . . , UN,N denote the corresponding order statistics. Put Nα,u = �{i : Ui ≤ α}.

Since Xi:N
d= F−1(Ui:N ) and Nα

d= Nα,u, it is enough to prove the assertion for the uniform distribution.

Lemma A. Conditionally given Nα,u, the order statistics U1,N , . . . , UNα,u,N are distributed as the
order statistics corresponding to a sample of Nα,u independent (0, α)-uniformly distributed r.v.’s.

Proof. (a) First consider the case Nα,u = N . Take arbitrary 0 < u1 ≤ · · · ≤ uN < α and write

P
(
U1:N ≤ u1, . . . , UNα,u:N ≤ uN | Nα,u = N

)

=
P (U1:N ≤ u1, . . . , UN :N ≤ uN )

αN
=

N !
αN

u1∫

0

u2∫

x1

. . .

uN∫

xN−1

dx1 dx2 . . . dxN ,

and the latter is the d.f. of the order statistics corresponding to the sample of N independent (0, α)-
uniformly distributed r.v.’s.

(b) Consider the case Nα,u = K < N . The lemma follows now from the Markov property of order
statistics and the validity of this fact for Nα,u = N . More precisely, let

FK,K+1(u, v) = P
(
UK:N ≤ u,UK+1:N ≤ v

)
, u, v ∈ (0, 1),

be the joint d.f. of UK:N and UK+1:N . Then for arbitrary 0 < u1 ≤ · · · ≤ uK < α we can write

P
(
U1:N ≤ u1, . . . , UNα,u:N ≤ uK | Nα,u = K

)
= [P (Nα,u = K)]−1

×
1∫

α

P
(
U1:N ≤ u1, . . . , UK:N ≤ uK | UK:N ≤ α, UK+1:N = v > α

)
dFK,K+1(α, v),

and since conditionally given UK+1:N = v the order statistics U1:N , . . . , UK:N are distributed as order
statistics corresponding to a sample of K independent (0, v)-uniformly distributed r.v.’s, the latter
expression is equal to

[P (Nα,u = K)]−1 K!
(α/v)K

1
vK

u1∫

0

u2∫

x1

. . .

uK∫

xK−1

dx1 dx2 . . . dxKP
(
UK,N ≤ α < UK+1:N

)

=
K!
αK

u1∫

0

u2∫

x1

. . .

uK∫

xK−1

dx1 dx2 . . . dxK ,

which corresponds to the (0, α)-uniform distribution. The lemma is proved.
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