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Preface

Electric glow discharges (glows) can be found almost everywhere, from atmospheric
electricity to modern plasma technologies, and have long been the object of research.
They are described in a number of monographs written by the leading scientists.
Although those books have a well-deserved popularity, the fundamental founda-
tions are mainly described on the basis of a fluid (hydrodynamic) approximation. In
that approach the electron distribution function (EDF) depends on the local plasma
parameters at a given point of space in a given time. However, under conditions of a
gas-discharge plasma, the EDF is usually strongly non-equilibrium and the fluid
approximation often cannot describe some important phenomena and processes
even qualitatively.

The appropriate approach for describing such highly non-equilibrium systems
and phenomena is physical kinetics. In recent years, work in this area has progressed
rapidly and a self-consistent kinetic description of the simplest glow discharges has
become possible. The information about that approach is scattered across many
articles and reviews. The main purpose of this book is to provide simple illustrations
of the basic physical mechanisms and principles that determine the properties of
those categories of discharges and to enable readers to explore modern literature and
successfully participate in scientific and technical progress.
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Symbols and abbreviations

α the first Townsend coefficient
γ secondary electron yield
γa apparent secondary electron yield
γA secondary electron yield from atoms
γeff the effective secondary electron yield
δ double ratio of electron and atom masses
δ1 small perturbation of a certain value
ε total electron energy
ε0 ionization degradation energy
ε1 the first excitation potential of an atom
εc ionization efficiency
εf fast electron energy
εi the first ionization potential of an atom
εm energy of maximum F
εst Stoletov constant
η ionization energy parameter

Λln Coulomb logarithm
Λ diffusion length
Λf CF fast electrons range
λ electron mean-free path
λcs characteristic scale of decay of fast electrons
λi ion mean-free path
λε elastic electron energy relaxation path
λε

⁎ inelastic electron energy relaxation path
λE electron energy relaxation length in electric field
λ∼

E microwave wave length
λid ionization length
μ electron multiplication coefficient
ν electron collision frequency
ν* inelastic electron-atomic frequency
νi direct ionization

electron-atomic frequency
νia ion–atom collision frequency
σi ionization cross-section
τε energy relaxation characteristic time
τdf electron diffusion time
τe electron loss time
τi ion drift time to anode
τsn time for instability evolution in Townsend discharge
Φ electron energy differential flux
Φpl voltage drop across plasma
Φsh voltage drop over sheath
Φw voltage drop between plasma axis and wall
φ plasma space potential
φ0 anode potential
Ω solid angle
Ω1 frequency of perturbation

x



Ωd decrement of oscillations
Ωi increment of oscillations
ω electromagnetic field frequency
A electron oscillation amplitude
A B C D, , , constants from equations (2.4) and (2.5)
C capacitance of discharge-circuit system
be electron mobility
bi ion mobility
De electron free diffusion coefficient
Da electron ambipolar diffusion coefficient

εD electron energy diffusion coefficient
d cathode sheath thickness (also d d,1 2)
E electric field
Ex electric field along discharge axis
Er radial electric field
E electromotive force, EMF
Edc direct current (dc) electric field
E0 amplitude of ac electric field
Eeff effective electric field
Ecr critical electric field for runaway electrons
Em Stoletov constant corresponding electric field
e electron charge
F0(w) local EDF
F electron retarding force
f0 isotropic part of EDF
f1 directed part of EDF
fes =j j/ (0)e0 emit
F function connecting α p/ and E p/ (see equations (2.4) and (2.5))
Ir radiation intensity
i discharge current
I(x) ionization rate

+ −j j, electron current to and from cathode
je density of electron current
jns current density on the cathode
jn normal current density
jemit current emitted from cathode
jeo primary electron current density in the near-cathode region
ji density of ion current
jf density flux of fast electrons
j total current density, +j je i
L discharge gap length
LFDS length of FDS
LNG length of NG
LPC length of PC
L loss function
M electron multiplication coefficient in discharge gap
m electron mass
N density of atoms
n plasma density
ne density of electrons

xi



ni density of ions
p pressure
R circuit resistance
Rd discharge (tube) radius
Sc cathode area

*T temperature of EDF fast part
Te electron temperature
T0 gas temperature
t time
V electron speed
V average electron speed
ui ion drift speed
ue electron drift speed
U voltage between cathode and anode
Uc sheath voltage
Ucn potential drop across cathode
Ub breakdown voltage
Uns cathode potential drop
w kinetic electron energy
x axis along discharge
xm plasma density point of maximum
Z ion charge number
Zi ionization frequency averaged over EDF
ac alternative current
AF anode fall
CF cathode fall
dc direct current
DS dark space
EDF electron distribution function
FDS Faraday dark space
FR field reversal
NG negative glow
PC positive column
PNG plasma part of NG
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Chapter 1

Introduction

Electric discharges with a relatively low contribution of power and weak current are
usually referred to as glow discharges or glows. The glows have different forms, are
characterized by the frequency of the supply voltage, the size and the shape of the
electrodes and discharge volumes, and the composition and pressure of gas fillings.
The golden age of physics of gas discharges has been associated with the names of J J
Thomson, Townsend, Langmuir, von Engel, Steinbeck, Druyvesteyn and others and
has been marked by such fundamental achievements as discoveries of electrons and
x-rays, development of spectral analysis, etc. Those achievements have established
the foundation of modern physics. At present, in order to study the fundamental
laws of nature, other methods are used. But the applied importance of processes in
gas discharges has immeasurably increased. In this regard, there is an important
need to be able to create gas-discharge devices with predefined properties and
parameters. To do that, we need to have a deep understanding of the physical
processes in the discharges.

Up to now considerable progress has been made in understanding the kinetics of
discharges. It is now possible to obtain characteristics of the simplest types of
discharges from ‘first principles’. The most clearly kinetic phenomena have
manifested in weak-current discharges of low and medium pressure. In such
discharges, plasma is very far from thermodynamical equilibrium. The external
energy in the discharge mainly goes primarily to electrons. Transferring it from
electrons to heavy plasma particles is usually, for some reason, difficult and the
removal of energy from heavy particles, especially at low pressures, occurs relatively
quickly. As a result, in the discharges, the most non-equilibrium part is the electron
component, so for its description the kinetic analysis is really necessary. Logical
development of this area of physics inevitably leads to the fact that the description of
the discharges becomes the kinetic one.

To understand physics and technology at the modern level, it is necessary to be
well versed in this field. Recently, work in this direction has been developing
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intensively, and although, in our opinion, only the first steps have been taken, a self-
consistent kinetic description of the simplest glow discharges has became possible.
However, this information has been scattered across numerous articles and reviews.

The purpose of this book is to illustrate the basic physical mechanisms and
principles of the glows, enabling readers to study the modern literature and
successfully participate in scientific and technical progress. There are a number of
excellent textbooks and monographs on the physics and phenomenological descrip-
tion of gas discharges of various types. Among them are the book by Lieberman and
Lichtenberg [1], a series of books by Raizer and co-workers [2–4], Biberman’s book
[5], the books of Chen [6], Smirnov [7] and others. We can also mention a recent
review [8]. The nature of the present book (as well as books [9, 10], which are
published in Russian only) and its main difference from the above publications are,
first of all, in its deeper kinetic level of description of the glow discharges. That
allows us to describe glows in a single and much more precise manner of the basic
properties of the discharges. All of the the development of modern physics of
discharges contributes to the deepening and development of a more accurate
primarily kinetic description. This gives the possibility to adequately describe these
objects quantitatively, which is extremely important for numerous technical
applications. Reading this book assumes acquaintance with one of the above
monographs, as well as some knowledge of charge particle kinetics in gas-discharge
plasmas (for example, book [11] and reviews about non-local electron kinetics
[12–14]) and mathematics at the level of a standard university course.

This book is structured as follows. The second chapter of the book discusses
ionization in the electric fields. The electrons and ions may be generated in the gas
volume by ionization, whose intensity strongly depends on the field. In the weak field
there is no, or not enough, generation of charged particles to have self-sustained
discharge. Townsend established experimentally the ionization relationships and
introduced the key ionization characteristic (the first Townsend coefficient). The
chapter concludes with a brief discussion of the differences of ionization in low and
high electric fields, including the influence of runaway electrons. The ionization in
the strong field may be essentially non-local and the concept of the first Townsend
coefficient may not be applicable.

The third chapter is devoted to the description of the microwave breakdown,
which is a more simple case with respect to the dc breakdown. In this case diffusion
of electrons to the volume walls may be important. The breakdown behavior may
depend on the wave frequency ω. Application to the discharge gap of even a small dc
electric field may also change the breakdown properties.

In chapter 4 the description of the dc breakdown is provided, the second
Townsend coefficient is introduced and the Paschen curve is discussed. It is
demonstrated that the breakdown on the right-hand side of the Paschen curve is
in good agreement with the local theory. At the same time, the left-hand side of the
Paschen curve can occur due to essentially non-local processes, since in this case the
breakdown occurs in strong electric fields. This chapter discusses the relationship
and the difference between the breakdown of Townsend [15], formulated for the
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breakdown of a direct current, and the Brown’s criterion [16] for the breakdown in
microwave fields.

The general structure of a discharge between cold electrodes is described in
chapter 5. Most discharge laboratory experiments have been conducted in long
cylindrical tubes. In this section the IV-traces and axial structures are discussed. A
typical discharge has a number of areas like the Faraday dark space (FDS), negative
glow (NG), and positive column (PC). Some of them may be absent (like PC).

In chapter 6 we consider the Townsend discharge, in which the effect of the space
charge is negligible, and conditions for the applicability of the traditional hydro-
dynamic approximation are discussed. It turns out that for the discharge on the right
branch of the Paschen curve we apply a local approach in which ionization is
approximated using the first Townsend coefficient α, which depends on the local
value of the electric field, while the effective coefficient for ion–electron emission γeff
is substantially reduced due to kinetic effects. As the discharge current rises, the
electric field distortion by the space charge begins to play a role and the Townsend
discharge on the right branch of the Paschen curve becomes unstable. The develop-
ment of this instability leads to the establishment of a mode of normal current
density. In this mode, ionization becomes non-local. The situation on the left branch
of the Paschen curve is different, The field is rather high and at mean free path an
electron acquires considerable energy. As a result, the phenomenon of runaway
electrons begins to play a substantial role. For its description a sequential kinetic
analysis is required [17].

Chapter 7 is devoted to a description of a short (without positive column) dc
discharge. Since the positive column is not an obligatory discharge structure, this
allows us to consider only the most significant discharge phenomena (without which
the discharge cannot exist), that is, those phenomena that occur at the electrodes.
The cathode region of the discharge is essentially non-local. Attempts to describe it
in the hydrodynamic approximation are not allowed to simulate all phenomena
occurring in this region. Therefore, its description must be essentially kinetic. The
anode region still does not have a comprehensive and detailed explanation.

The positive column of a glow dc discharge is the most studied plasma object. Its
kinetic analysis is described in chapter 8. It turns out that the traditional hydro-
dynamic approach cannot adequately describe many important characteristics of
even this simplest object; only kinetic analysis allows us to explain these character-
istics consistently. At low and medium pressure, the EDF in the PC is non-local, i.e.
it does not factorize as a product of the electron density and a function of the
velocity, the form of which is determined by the local value of the axial electric field.
In the limiting case of low pressures there is a complete non-locality of the EDF and
it depends only on the total energy ε (the sum of the kinetic energy w and the
potential energy in the electric field −eφ).

Sections 4.3, 7.3, 7.4 and 7.5 have been written by VDemidov and AKudryavtsev.
The rest of the text has been written by AKudryavtsev and C Yuan. Some important
issues connected to glows have not been considered in this book. These are detailed
electron kinetics, striations, discharges with hollow cathodes and some others which
the authors intend to discuss in separate publications.
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Chapter 2

Ionization in the electric field and the first
Townsend coefficient

When a neutral gas is ionized by an electric field, it becomes conductive. The
breakdown in the gas may ignite a stationary self-sustained discharge operating
independently of the presence or strength of the external ionizer [1]. The electrons
(and ions) are generated in the gas by ionization, whose intensity strongly depends
on the field. Charged particles escape the discharge volume via diffusion and drift to
the boundaries and electrodes, as well as via recombination and attachment in its
bulk. These escape mechanisms, however, are not so much dependent on the field.
The breakdown occurs only in the electric field exceeding a certain threshold value
specific to the particular conditions. The criterion for a breakdown (see chapter 4)
was formulated by Townsend as the rate equality of electron multiplication
by impact ionization and their loss, which must hold true at any point of the
discharge volume [2]. Since a gas breakdown may occur in an electromagnetic
field of any frequency ω, the respective criterion is defined by the effective field
Eeff = (E0ν)/(ν

2 + ω2)1/2. At a given field Eeff, the breakdown is usually identified
by comparing three characteristic lengths: the gap length L, the electron free path
λ (or pressure p), and the electron oscillation amplitudeA ω ν ω= +eE m( )/[ ( ) ]0

2 2 1/2 .
A change in the relationship among these parameters may modify the breakdown
pattern radically [1, 3, 4]. Various scenarios of the breakdown behavior have been
discussed in [1, 3, 5].

A breakdown is a very complex physical phenomenon. Its most important
component is the initial electron avalanche developing in the gas due to the ionization
by seed electrons under the action of an electric field. It is of little importance to the
ionizationwhether electrons are generated during a regular avalanche drift in a dcfield
or they ‘tramp about’, oscillating at a high rate in an alternating field.

The key process in the production of charged particles is a direct ionization by
electron impact, whose rate is characterized by frequency ν σ= 〈 〉N Vi i [6], where 〈〉 is
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the averaging over EDF, N is the density of atoms, V is the electron speed and σi is
the electron impact ionization cross-section.

Townsend carried out experiments for determining the ionization characteristics
and their interpretation [2]. In a sufficiently high field, every seed electron initiates an
avalanche; this is illustrated schematically in figure 2.1 for a dc field. If the electrons
drift at an average speed ue = beE, their current density is je = eneue, and a convenient
characteristic to describe the ionization evolution along the coordinate is the first
Townsend coefficient, α ν ν= =u b E/ /( )i e i e , equal to the number of ionization events
per electron per unit path length in the field E. The stationary electron balance
equations can be written as

α α∂ ∂ = ∂ ∂ =j x j n x n, . (2.1)e e e e

The ionization in a dc field grows exponentially (in an avalanche-like manner)

α= = = = =j x j x n x n x x M x( )/ ( 0) ( )/ ( 0) exp( ) ( ), (2.2)e e e e

where M(x) is the electron multiplication coefficient in the gap.
In Townsend’s experiments, a chamber with plane-parallel electrodes with a

variable gap length L could be filled with different gases under controllable pressure
p. The current density j was uniform over the cross-section. A constant voltage U,
which could also be varied, was applied between the cathode and the anode. The
cathode was uniformly irradiated by ultraviolet light to knock out seed electrons
from its surface, which induced the primary electron current je0 in the near-cathode
region. When the voltage was raised gradually from a very small value, the circuit
current first rose and reached saturation when all emitted electrons hit the anode
(figure 2.2).

The fast current rise was due to the onset of avalanche multiplication of electrons.
A exponentially enhanced electron current was supplied to the anode, je(L) = je0 exp
(αL) = je0M withM =M(x = L). Since the ion current at the anode is zero, the same

Figure 2.1. Schematic development of electron avalanche in the discharge gap between a negative cathode and
positive anode: avalanche multiplication of electrons (a) and diffusive divergence of the avalanche from one
electron (b). Electrons and ions are marked by pluses (+) and minuses (−), respectively.
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current goes through the entire circuit under stationary conditions and is the sum of
the electron and ion currents. Every electron emitted by the cathode produces in the
gap the [exp(αL) − 1] number of positive ions which all reach the cathode. So the
total cathode current is

α α= + = + − = = =j j j j j L j L j M j(exp( ) 1) exp( ) (2.3)e i e0 e0 e0 e0

This current is not self-sustained: the discharge quenches when the external ionizer is
turned off ( je0 = 0). By measuring the current at different gap lengths L but at
constant U and p, one can find α as a function of E/p = U/(pL) from the slope of the
curve α=j j Lln / 0 . Up to the breakdown (pL)b value, the experimental relationships

i pLln ( ) at different E/p go along straight lines, as illustrated in figure 2.3. This fact
was interpreted by Townsend as a check of the ionization relationship (2.2).

A similar approach was employed to find the ionization coefficients for many gases
in variousE/p ranges. The typical dependences are presented in figures 2.4 and 2.5 [5].
Reliable ways have also been suggested for finding the electron drift velocity [1, 7, 8].
Therefore, dc field experiments allow the measurement of α and ue values, fromwhich
the ionization frequency νi= α ue can be found. These values can also be usedwhen the
ionization characteristics cannot be measured directly. For example, the α E p( / )eff

values for an effective fieldEeff= (E0ν)/(ν
2+ω2))1/2 can be used for an alternating field

of frequencyω.Note that theEDFdirectly defines the ionization frequency νi, which is
the primary characteristic of the ionization process.

Semi-empirical formulas are widely used for approximation of α/p, which is a
function of E/p, Fα =p E p/ ( / )

α = −p A Bp Eexp( ), (2.4)

α = −p C D p Eexp( ( ) ), (2.5)1 2

The constants A, B, C, and D for various gases are given in table 2.1.

Figure 2.2. IV-trace (i − u) of non-self-sustained discharge. ub is the breakdown voltage and isat is the
saturation current.
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By analogy with the spatial ionization parameter α = νi/beE, we can introduce the
energy parameter η(E/p) = α/E = νi/(beE

2) to describe the ionization efficiency in a
uniform field. It is equal to the ratio of the ionization frequency to the Joule power
per electron (ebeE

2) and gives the average number of ionization events performed by
an electron which has passed the potential difference of one volt in its drift motion.
From equation (2.2), we have M = exp(ηU). It is sometimes more convenient to
describe the ionization in a dc field by using η, not α. Traditionally, the coefficient α

Figure 2.3. Exponential behavior of current rise through the discharge gap. E/p (in V/(cmTorr)) is equal to
36 (magenta), 33 (green), 30 (blue) and 26 (red).

Figure 2.4. Ionization coefficient α/p in molecular gases.
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is considered to be preferable because it can be easily measured in a dc field. The α
value, however, is defined by the product of pressure and a function of E/p, so it
varies with p at the same E/p values. In contrast, the coefficient η, or the ionization
efficiency

ε η=E p e( ) , (2.6)c

varies only with the E/p ratio and that may be more convenient.

Figure 2.5. Ionization coefficient α/p in noble gases.

Table 2.1. The constants A, B, C, and D for various gases. From [1, 5].

Gas A, (cm Torr)−1 B, V (cm Torr)−1 E/p, V (cm Torr)−1

He 3 34 20–100
Ne 4 100 100–400
Ar 12 180 100–600
Kr 17 240 100–1000
Xe 26 350 200–800
Hg 20 370 200–600
H2 5 130 150–600
N2 8.8 375 27–200
Air 15 365 100–800
CO2 20 466 500–1000
H2O 13 290 150–1000

Gas C, (cm Torr)−1 D, V0.5 (cm Torr)−0.5 E/p, V (cm Torr)−1

He 4.4 14 < 100
Ne 8.2 17 < 250
Ar 29.2 26.6 < 700
Kr 35.7 28.2 < 900
Xe 65.3 36.1 < 1200
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It is clear from the above experimental data (figures 2.4 and 2.5) and from
approximations (2.4) and (2.5) that the dependence of α/p (or η) on E/p consists of
two very different segments. The dependence is very strong at small E/p values but
weak at large E/p. The ‘saturation’ point of this relationship may be taken to be the
maximum value η = ηmax. Roughly, this point separates two limiting cases: the
strong exponential dependence of α and η on the field and their approximately
constant values.

The qualitative difference in the behavior of an electron gas in high and low fields
can be explained as follows. If the energy of an electron injected into a low field is
less than the ionization potential, then, before inducing ionization, the average
electron must undergo many inelastic collisions and cover a distance much longer
than λE ∼ εi/eE, where it gains energy εi. Since the ionization probability is primarily
determined by the exponentially small probability for the electron to overcome the
energy range εi − ε1, the ionization efficiency εc = e/η is much greater than εi, and the
ionization coefficients νi and α appear to be exponential functions of the local field
E/p. The strong exponential dependence of α/p (see, equations (2.4) and (2.5)) on E/p
means that the electron repeatedly gains energy from the field and loses it in elastic
and inelastic collisions before performing the ionization, whereas the probability of
gaining the ionization energy εi without losing it for excitation is exponentially
small. The energies of the majority of electrons are either lower than the first
ionization potential or only slightly higher. The elastic scattering at such energies
dominates, and the EDF is close to isotropic.

In a smoothly non-uniform field (the typical characteristic scale of field non-
uniformity in dc discharges is α−1), the EDF is also local because the electron
repeatedly gains and loses energy along the path λ ε α∼ ≫ −eE/E i

1 and eventually
acquires equilibrium with the external field before it becomes available for multi-
plication, i.e. before gaining the energy εi along the path α−1. For this reason, the
ionization coefficients along the exponential section of the α p/ on E/p curve are
indeed the functions of the local field and can be calculated with a fairly good
accuracy. A large number of such calculations have been made using the electron
kinetic equation or direct Monte Carlo modeling. The ionization rate can be easily
computed within a local approximation, using, for example, the well-known
software packages Bolsig [9], Comsol Multiphysics [10] and others.

If the initial energy of an injected electron is much higher than ε1 and εi, it is
capable of starting the ionization immediately, irrespective of the local field
strength. Before the EDF relaxes to its local field value, the electron may go a
long distance and induce a noticeable non-local ionization, which will greatly
exceed the local ionization at a particular local E/p ratio. For this reason in this
case, one should not use the field-dependent parameters νi and α even for a low
field. This happens, for example, when many electrons in a high field quickly
acquire energies above εi. When going from a high field to a low field, they induce a
considerable non-local ionization, and its description with the coefficients νi and α
varying with the small local values of E/p would be incorrect. The EDF
calculations for high fields are unreliable. The accuracy of direct numerical
computations is often illusive because of the incomplete and often inaccurate
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cross-section data for elementary events, especially for their angular dependences;
besides, such computations are time-consuming and do not provide a clear
physical picture. In fact, this problem can be (although it has not been) solved
for atomic hydrogen (two-body problem), whose cross-sections in elementary
events are known fairly well.

A local description of the electron behavior in a high field is inapplicable because
of the runaway. As an electron gains energy from a high field, it has a non-zero
probability to go over to the runaway, when collisions have almost no effect on its
motion, making it practically free. A medium of even an infinite thickness would
then become transparent to such an electron. Note, that some electrons injected with
a low energy in a strong uniform dc field move practically freely and become
infinitely accelerated, experiencing no scattering or retardation. This reveals itself in
every gas having a specific critical field value E/p of order of 100 V (cm Torr)−1,
above which an electron continuously gains energy in spite of its loss in inelastic
collisions. This fact is known experimentally [13].

A very approximate description of the effect may be made as follows. This effect
happens because the inelastic energetic electron energy loss per unit path or the loss
function

L =w F w N( ) ( ) (2.7)

has a maximum due to the fact that the respective cross-sections are limited and
decrease with energy (see figure 2.6). This maximal value, Fm, normally lies in the
vicinity of the energy εm ∼ 100 eV (see table 2.2). It is assumed here that energetic
electrons are retarded with thermal electrons in inter-electron collisions [11]. That
may be described as an action of a retarding force F, which is

Figure 2.6. Energy-loss function L w( ) for the fast electrons in molecular hydrogen (1) and helium
(2). Calculation with Bethe–Bloch equation (2.9) for H2 (3). Approximations 1.5 × 10−15 eV for He and
3 × 10−15 eV for H2 (dashed lines). After [12].

Introduction to the Kinetics of Glow Discharges

2-7



π= ΛF w
n e
w

( )
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ln (2.8)e
4

for plasma [11] and similar

π=F w
NZe

w
w
I

( ) ln
4 (2.9)

4

for a neutral gas (Bethe–Bloch formula [13, 14]). For average ionization energy an
expression I = 10Z eV may be used [13, 14].

If eE is larger than Fm, from the equation for the energy variation along the
electron path it follows that E > Ecr = Fm/e and all electrons are runaways. The Ecr/p
values for some gases are presented in table 2.2.

The uniform field strength for the transition to the runaway mode can, generally,
be roughly estimated as the field, at which the dependence of α/p on E/p (see,
equations (2.4) and (2.5)), reaches saturation (taking into account that such a
description is less applicable with the field increasing). This saturation means that
the electron is gaining the ionization energy practically without inelastic collisions.
Since the ionization energy is the only characteristic atomic energy scale, at least in
light gases, the electron will continue to gain energy with a large probability. The
EDF and, hence, all local ionization parameters will be defined by the voltage the
electron has passed, rather than by the local field. Therefore, it is more convenient
here to use the energy parameter η, the more so as it tends to be constant at high
energies. Physically, it is clear that the η value must be small (with large εc) for
electrons with a low initial energy in a low field and become saturated at high fields.
This obscure fact that the approximations (2.4) and (2.5) give a peak in the η(E/p)
curve is additional evidence that the ionization characteristics are independent of the
local field in a high field, or in any field for high energy electrons. The approximation
of the α E p( / ) function (2.4) yields the η maximum

η = B A1 (2.72 ) , (2.10)max

Table 2.2. Critical electric field, Ecr/p (V (cm Torr)−1), for runaway electrons at some gases. After [1, 5].

Cathode material

Gas

Air Ar He H2 Hg Ne N2 O2 CO CO2

Al 280 130 162 216 318 150 233 – – –

Au 285 130 165 247 – 158 233 – – –

Bi 272 136 137 240 – – 210 – – –

C – – – 240 475 – – – 526 –

Hg – – 142 – 340 – 226 – – —

K 180 64 59 94 – 68 170 – 484 460
Na 200 – 80 185 – 75 178 – – –

W – – – – 305 125 – – – –

Zn 277 119 143 184 – – 216 354 480 410
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which is attained in the field

=E p B( ) . (2.11)m

This point corresponds to the (E/p)m values, at which the tangential to the
α p E p/ ( / ) curve goes through the origin [1]. The energy εst = e/ηmax, which has
the meaning of the minimum potential difference to be passed by an electron in the
field Em prior to the ionization, was termed the Stoletov constant by Townsend.
Since ν* ≫ νi, the Stoletov constant is as large as several ionization potentials:
εst = e/ηmax = (3 − 4)εi (see table 2.3).

One can see that the value 2.72B/A (equation (2.10)) fits the experimental data
well on εst. As the field rises further, there is only a slight εc increase (a slow fall of the
ionizability η). Note one more time, that η has no real physical meaning for high
fields.

Note that the εst value is close to, but not the same as, the energy of ionization
degradation, ε0, which a fast electron of energy εf spends for the creation of an
electron–ion pair in full retardation. The number of ionization events in this case is
M = εf /ε0. For energies εf > 1 KeV, the ε0 value practically does not change and is
about two ionization potentials (ε0 ≈ 2εi). The values for the ionization degradation,
ε0, are also given in table 2.3.

Thus, to find the ionization characteristics in a field lower than (E/p)m, one can
use the calculations or experimental measurements of the Townsend coefficient and
electron drift velocity in a dc field, which allow the ionization frequency to be found.
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Chapter 3

Microwave breakdown

The spatial distribution of ionization sources and the dominant mode of electron
removal (diffusion or directed drift in the field) vary with the field frequency range.
The limiting cases are microwave and dc breakdowns. We will consider in this
chapter the simpler case of microwave breakdown, when the field frequency is so
high that the electric field is reversed before the electron displacement due to the drift
becomes noticeable. Then the electron loss is due to diffusion and the emission by
the walls and electrodes is unimportant.

In microwave breakdown, the electrons and ions oscillate fast in the field without
touching the walls, so the interaction with a surface or emission by them are
normally of no importance. The electron avalanches are localized and develop at
each site independently. For example, at a typical microwave frequency of f = 3
GHz and field amplitude E0 = 500 V cm−1, the amplitude of free electron oscillations
is A ω= = × −eE m/( ) 2.5 100

2 3 cm, which is much smaller than the characteristic
gap length L (from 1 to 10 cm). Since the electron oscillation amplitude is small, the
electron loss in a collisional mode (λ ≪ L) is defined by the diffusion to the walls.
The electrons are deposited there and recombine with incoming ions [1].

3.1 Microwave breakdown due to diffusion
After averaging over the microwave field period, the condition for a breakdown has
the form suggested in [2, 3]

νΔ + =D n n 0 (3.1)e e i e

We will further consider the plane-parallel geometry (0, L). We can use zero
boundary conditions in the first approximation in λ/L. From equation (3.1), we get a
sinusoidal distribution of the electron density smoothly falling towards the walls

= Λn x n x( ) sin( ), (3.2)e e0
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and the breakdown condition is found as the eigenvalue of the boundary problem
(3.1) [2]

λ ν τ= Λ =, 1 (3.3)id i df

Here,

λ ν= D (3.4)id e i

is the ionization length, or the electron diffusion path for the time between two
ionizing collisions, and

τ = Λ D (3.5)df
2

e

is the characteristic time of free electron diffusion, where Λ is the characteristic
diffusion length in the discharge gap equal to L/π in the plane-parallel geometry and
to Rd/2.405 in the cylinder. This condition means that the ionization frequency νi
must compensate for the diffusion loss, i.e. an electron must perform, on average,
just one ionization event for its lifetime. In contrast to the condition for a stationary
plasma (see reference [1]), the expression (3.3) uses free electron diffusion instead of
ambipolar diffusion. For this reason, the breakdown fields are higher than the
plasma maintenance fields, and the microwave discharge typically develops for a
time of the order of the free electron diffusion time. For example, the coefficientDe is
≈ 2 × 106 cm2 s−1, and the time of the electron diffusion to the wall is τdf ≈ 5 × 10−7 s
in helium at p = 1 Torr and the diffusion length Λ = 1 cm.

When making microwave breakdown experiments, researchers plot the mean
square field =E E / 20 (E0 is the oscillation amplitude) as a function of pressure. A
typical dependence of thresholds of microwave breakdown on gas pressure is shown
in figure 3.1. In order to find νi, it is necessary to know the EDF, which can be

Figure 3.1. Typical dependence of measured thresholds of microwave breakdown (V cm−1) on gas pressure
(Torr).
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calculated with reasonable accuracy [4, 5]. The substitution of the kinetic results on
ionization frequency into the expression (3.3) gives an excellent agreement with
experiments made in different gases under different conditions [6]. A reasonable fit is
also achieved if one uses the results on ionization frequency obtained by the
recalculation of the dc discharge data. An acceptable accuracy of inelastic collision
and ionization frequencies in a microwave breakdown is possible within a ‘black
wall’ approximation, which yields relatively simple analytical expressions for
threshold fields [6].

Addition of readily ionizable seeds greatly decreases the breakdown field. This
effect is especially appreciable in Penning gas mixtures, in which the seed is ionized
both directly and by the excitation of long-living states of the buffer gas due to the
Penning effect. This is especially evident for the so-called Heg-gas, a mixture of
helium and a small amount of mercury, which served as a test object in microwave
breakdown experiments [2]. Since elastic electron scattering is determined by
buffer helium, the transport frequency ν can be taken to be energy independent.
The Penning ionization of mercury leads, in turn, to the production of a new
electron in each helium excitation event. There seem to be no inelastic energy losses
for the excitation, and the ionization frequency coincides with the excitation
frequency of the buffer gas (helium), which can be estimated in the black wall
approximation (see [6]).

The major scalings can be derived from the analysis of the EDF formation [1, 6].
Since the diffusion coefficient along the energy axis, Dε, in the kinetic equation for
the isotropic EDF contains the effective field ν ν ω= +E E( / 2 )[ /( )]eff 0

2 2 2 1/2, the
breakdown field varies only slightly with frequency at high pressures, when ν > ω
and =E E / 2eff 0 . The diffusion at high pressure is very slow, and a breakdown can
be provided even by a low ionization rate. The electron energy balance is defined by
elastic losses and electron temperature λ λ δ= ≃εT eE eE /e 0 0 [1]. Therefore, the
breakdown field at low frequencies, ω ≪ ν, must rise almost in proportion with
pressure, as is observed experimentally. Assuming for the Heg-gas the average
energy to be 1/3 of the Hg ionization potential, we estimate the breakdown field as
E = 2.4 p V (cm Torr)−1 [2]. At low pressures with ν ≪ ω and Eeff = Eν/ω, the
breakdown field is proportional to the frequency at a given pressure. One has to raise
the field strength in order to maintain the ionization rate and to compensate for the
increasing loss due to diffusion, De ∼ 1/p. So the breakdown field at low pressures
varies with the frequency and the diffusion length Λ. After the necessary energy has
been gained for the characteristic time τ ε∼ε εD/1

2 , the Heg-gas becomes excited and
ionized. For the elastic frequency ν = 2.4 × 109p (s−1), the estimation yields

λ= Λ ˜E p1300/( )E [2] (figure 3.1), where λẼ is the wavelength of the applied field.
Hence, we observe a minimum in the breakdown curves in the (E, p)-coordinates
(figure 3.1), whose position can be estimated from the expression ν ≈ ω separating
the above limiting cases [2, 6].

This is true for the higher frequency ranges. For example, when a gas breakdown
is produced by a high power laser [1], the relationship between the breakdown field
and the gas pressure is the same as in a microwave breakdown.
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In electronegative gases, the breakdown field rises considerably [2, 6] because of
the additional electron loss due to attachment. The details of these phenomena have
been described in [2, 6].

Thus, a microwave breakdown, for which the EDF calculations and the break-
down field measurements can be made with high accuracy, may serve as a
convenient object for testing theories and experimental data. As the frequency of
the electromagnetic field decreases, the electron oscillation amplitude becomes
larger, reaching the valueA νω= eE m/( )0 at ω < ν. Since the drift velocity is higher
than the diffusion rate at Aλ <ε , the electrons which are at a distance A∣ ∣ <x from
the boundaries drift almost immediately to the walls and escape. As long as the
conditionA < L holds, the electron lifetime is defined by their diffusion through the
discharge ( A−L ), and the breakdown criterion coincides with equations (3.3) with
L substituted by A πΛ = −L( )/rf . As ω decreases and A approaches L, a shorter
escape time will result in a higher breakdown field with a subsequent transition to a
dc breakdown at A > L.

3.2 Microwave breakdown in the presence of a low dc field
The next step towards a better understanding of the microwave breakdown physics
was made owing to the experiments by Brown [2, 3] with an additional low dc field
Edc. In this case, electrons acquire definite directions of motion: the drift and diffusion
fluxes travel in the same direction at the anode and in the opposite directions at the
cathode. The stationarity condition requires that the electron escape should be
compensated by ionization at each point in the discharge gap, so the cathode region
becomes a ‘weak point’: there is the escape but the compensation is very small because
the ionization (proportional to ne) is actually zero. With the drift component of the
velocity beEdcne in the dc field, the breakdown criterion (3.1) takes the form

ν∇ + ∇ + =D n b E n n 0. (3.6)e
2

e e dc e i e

By superimposing the zero boundary conditions on (3.6), we obtain the electron
density profile [2]

λ= Λεn x C x x( ) exp( 2 )sin( ), (3.7)e 1

where λε = Te/eEdc is the energy relaxation length of an electron in the dc field. One
can see in equation (3.7) a shift of the electron density profile towards the anode with
decreasing λε due to the additional drift escape of electrons. This leads to a faster
diffusion escape and, hence, to a higher ionization frequency, which is the eigenvalue
of the problem for a fixed discharge gap. Mathematically, this means a shorter
effective diffusion length λid under breakdown conditions (3.3)

λ ν λ= = Λ = Λ + εD1 1 1 1 4 . (3.8)id
2

i dc
2 2 2

In this equation, the dc field strength enters into both the escape (the term with λε
describing the enhanced escape) and the production (the expression for νi defined by
the squared total field in equation (3.4). If the dc field is low, Λ≪ λε, its effect on the
electron multiplication can be neglected and it is defined only by the microwave field
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Eac. The linearization of equation (3.8) and the substitution of νi(Eac) from equation
(2.4) yield a quadratic dependence of the relative breakdown field Eac rise on the
small additional field Edc. This dependence was experimentally observed in [2, 7].
Thus, in a low dc field, the microwave field amplitude must be increased to
compensate for the electron drift escape in addition to the diffusion escape. The
dc and microwave fields perform different functions here: the dc field stimulates an
additional electron escape due to their drift to the cathode, whereas the microwave
field provides the necessary ionization rate at any point in the discharge gap.

This breakdown mechanism does not involve ions and is entirely independent of
the surface processes. In principle, a limiting case of this breakdown is possible in a
high dc field, even with the microwave field turned off. When there is no electron
emission from the cathode, the bottleneck region at the cathode produced by the
drift escape to the anode can be compensated only by the diffusion back to
the cathode. The limiting transition to the dc breakdown in equation (3.8) yields
the relation λid = 2λε corresponding to

αλ η= =ε e T4 1 or (4 ). (3.9)e

Even theminimum value of 1/η (Stoletov constant) is as large as εst= e/ηmax= (3− 4)εi
(see table 2.3), the relation (3.9) requires a high electron temperature, above the
gas ionization potential Te > εi. In other words, in order to fulfill the condition (3.9),
the electron must perform an ionizing collision for a very short time of the order
of Te/(beE

2), along a short path of about λε, necessary for the drift velocity to
be established. This requires unrealistically high fields. Equation (2.4) yields E/p =
B/ ln(4TeAp/eE). This high field lies far above the Stoletov point, where this analysis
has no sense at all.

In reality, however, other mechanisms may come into play even at a lower dc
field. It is clear from the relation (3.7) and figure 3.1 that the electron density at the
cathode drops sharply when the dc field is increased. A retarding field cools
electrons, so the electrons moving against the field become cooler and there is no
ionization in this field. Then even a slight electron emission by the cathode may
appreciably change the value and direction of the electron flux, and the bottleneck at
the cathode will disappear due to the cathode emission. The electron flux will reverse
its sign and move away from the cathode such that the electrons will be heated by the
accelerating field and multiply effectively.
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Chapter 4

Breakdown and self-sustained discharge
ignition in a uniform dc field: the Paschen curves

As we discussed in chapter 3, the breakdown in microwave electric fields generally
does not depend on the processes at discharge volume boundaries. The situation is
different in the dc breakdown. In this case, the processes at the cathode are
extremely important. The dc breakdown has been investigated by Townsend and
is discussed below.

4.1 The secondary cathode emission effect on the current in a non-
self-sustained discharge: the second Townsend coefficient

In Townsend’s experiments discussed in chapter 2, the experimental points in the
curve for α=j j Lln / 0 against distance L at E = U/L = const for a low field follow a
straight line, whose slope can give the α(E/p) values. When the field and/or the gap
length are increased, the curve deviates from a linear function (see figure 4.1),
indicating that the current rises faster than in equation (2.1). In an attempt to
understand this discrepancy, Townsend introduced the second ionization coefficient
γ to account for the secondary effects on the cathode. For instance, when ions hit the
cathode, they can knock out electrons with the efficiency

γ = j j(0)/ (0). (4.1)emit i

When interpreting the experimental data, one should bear in mind the important
fact emphasized in [1, 2]. Equation (2.1), which only considers the drift of electrons,
becomes invalid for the cathode region even in a uniform dc field because some of
the electrons emitted by the cathode are backscattered without producing an
ionizing collision. If equation (2.1) is used to describe the spatial electron current
rise, the drift current entering the gap, je0 = ne0ue in equation (2.3), makes up only the
fraction
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=f j j/ (0) (4.2)es e0 emit

of the emission current je(0) from the cathode surface. Factor fes, which describes the
fractional escape of electrons emitted by the cathode into the gas in [1, 2], was
estimated on the assumption that the drift current je0 to the anode was the difference
between the emission current and the current back to the cathode. By equating the
latter to the random electron current along the last free path length, we have

λ= = −j n u j n V(0) ( ) /4. (4.3)e0 e0 e emit e

Assuming the electron density variation along the path to be small, ne0 ≈ ne(λ), the
factor fes was estimated from equation (4.1) in [1, 2] to be

= = +f j j V u/ (0) 1/(1 /4 ). (4.4)es e0 emit e

It is clear from equation (4.4) that fes ≪ 1, because we have ≪ ¯u Ve [4]. This means
that a large fraction of electrons must return to the cathode when the EDF is close to
isotropic. The expression (4.3) has a simple physical meaning. The drift flux neue is
produced at the cathode but what goes back to the cathode is the random flux ¯n V /4;e

as long as ≪ ¯u Ve , practically all the electrons go back to the cathode before they are
‘picked up’ and carried away by the field to the anode. The estimate from equation
(4.3) shows that the emission current je(0) must slightly exceed the random current to
the cathode for the resulting electron current to be directed away from the cathode.

Because the V̄ u/ e ratio varies with the field, the effective coefficient γeff in the
boundary condition for the cathode in Townsend’s model also varies with E/p. It is
no longer a surface characteristic and it differs from the true γ by a factor of fes

γ γ= f . (4.5)eff es

Figure 4.1. Typical influence of the secondary electron emission on increasing current in the discharge gap L.
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Therefore, the full electron flux picked up by the field and carried away from the
cathode is je0 = fesj0 + γeffji(0), where j0 is the seed photocurrent from an external
source. Using = −αj j e(0) ( 1)L

i e0 , we find that the electron current across the anode,
equal to the total current, is

γ= = − −α α α −j j e j f e e[1 ( 1)] . (4.6)L L L
e0 0 es eff

1

Its value is larger than that given by equation (2.3) due to the term between the
square brackets, which becomes appreciable at large αL values. This expression
agrees well with the experimental data at small γ. The respective dependences of the
stationary circuit current on L in a dc field are presented in figure 4.1 and can be used
to calculate both coefficients, α and γeff. Vast experimental information on the
dependence of ln j/j0 on L can be found in [1, 4–8]. Figure 4.2 shows the γeff values
for argon, obtained in this way by different researchers for cathodes made from
different materials [9].

In was later shown in numerous experiments that the coefficient γeff is defined not
only by ion–electron emission but also by other secondary processes. In addition to
the ion collisions with the surface, an essential contribution is made by metastable
and fast atoms in the ground state, photons, and other species. The observable j(L)
dependences do not allow the separation of this or that contribution, because it is
not always possible to identify which of the mechanisms is dominant in an actual
discharge. So one commonly uses the total emission coefficient γa, or the so called
‘apparent’ secondary electron emission yield, i.e. the yield per bombarding ion,
including all secondary effects. The apparent yield varies in a wide range with the

Figure 4.2. Values of γeff obtained for different pure surfaces. After [9].
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gas, electrode material, applied field, current, etc; usually γ ∼ 10−2. The available
data on the yield and the contributions of the various partial constituents to it are
incomplete and often controversial. The yield values used by the authors in their
calculations often differ considerably from the γ measured on pure surfaces in high
vacuum [9].

4.2 The Townsend condition for self-sustained dc discharge ignition
The expression (4.6) was derived on the assumptions that the yield γ was small and
that the electron multiplication coefficient μ γ α= −L(exp( ) 1)eff was smaller than
unity. The denominator in equation (4.6) is positive and less than unity; therefore,
the circuit current flows only if there is emission from the cathode. The discharge will
remain non-self-sustained (the circuit current will also be zero at je0 = 0). However, if
the denominator in equation (4.6) becomes zero, this formally means the uncertainty
0/0 at je0 = 0. Physically, the circuit current will be observed even in the absence of an
external electron source. The expression (4.6) was derived by Townsend in 1902 to
explain the condition for the ignition of a self-sustained discharge. According to
Townsend, it is an infinite current rise at μ → 1 that is the necessary condition for a
breakdown and ignition of such a discharge

μ γ α α γ= − = = +L L(exp( ) 1) 1, ln(1 1). (4.7)eff eff

This formula means that the discharge current may have a large value even without
an external ionizer initiating the cathode emission. One primary electron from the
cathode produces as many as −aL[exp( ) 1] ions which, in turn, generate
γ α − =L(exp( ) 1) 1eff secondary electron on the cathode. Therefore, the Townsend
criterion (4.7) defines the origin of a positive feedback when a primary electron
generates a secondary electron capable of continuing this process. The equality of
the cathode and anode currents

γ α= + = = =j j j j L j L j L(0) (0) ( ) ( ) (0)exp( ) (4.8)e e e e

immediately yields the breakdown condition (4.7).
The field in a non-plane-parallel geometry is non-uniform, so equation (4.7)

should be replaced by

∫ α=M E x dxexp ( ( )) . (4.9)
L

0

Equation (4.7) suggests that the ionization is described by the local coefficient
α(E/p), which is invalid at large E/p ratios, as was mentioned in chapter 2. The
breakdown condition (4.7) should generally be written with the electron multi-
plication coefficient in the discharge gap M (equation (2.3))

μ γ= − =M( 1) 1. (4.10)eff

The criterion (4.10) does not employ the assumption of the local dependence of
α E p( / ).
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The effective coefficients γeff(E/p) for various gases and cathode materials were
tabulated in [1, 4, 8], using the Townsend formula (4.7) and experimental data on
α(E/p) and the breakdown field. The representative values in figure 4.2 show that γeff
may strongly depend on E/p. A more detailed study of the apparent secondary
electron emission yield was made in [9] for argon, together with the data analysis of
pure surfaces and those subjected to oxidation and other contaminating procedures
(further, ‘dirty’ surfaces).

An analysis was made of the measurements of electron emission by ion and atom
beam bombardment of pure and dirty metallic surfaces. It was found that the
electron yield for a clean metallic surface in pure Ar was close to that for a clean
metal in high vacuum at Ar+ ion energy above 0.5 eV, which corresponds to
E/N > 250 Td. However, analysis of the available data has shown that the electron
yields for dirty metals differ greatly from those for clean metals and pure argon.
Figure 4.3 gives the experimental electron yields for Ar+ ions and Ar atoms incident
on various clean metals as a function of the particle energy. One can see that the
electron yield per ion is nearly independent of the ion energy below ∼500 eV for
most metals. At the ion energy of ∼1 keV, the electron yield per ion is ∼0.1 for most
metals. In contrast, the yield per fast atom varies with energy, with an effective
threshold at ∼500 eV.

Figure 4.3. Electron yields for Ar+ and Ar beams incident on various (W, Mo, Au, Cu, Pt and Ta) clean metal
surfaces versus particle energy. The solid symbols are for Ar+ and the open symbols are for Ar. After [9].
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At high energies, the yield per fast atom approaches that for Ar+ ions. Figure 4.4
presents the experimental electron yields γ for Ar+ ions and γA for Ar atoms incident
on metal surfaces with varying degrees of exposure to oxygen, water, ambient gas, or
to unspecified contamination. The authors of [9] refer to these surfaces as ‘dirty’ (the
terms ‘practical’ or ‘laboratory’ surfaces are also used in the literature). Above
∼500 eV, the differences in the yields among metals are small compared to those for
clean surfaces. The solid curves in figure 4.4 show the fits to the experimental beam
data used in [9] compared with the swarm data. The dashed curves are averages over
the data of figure 4.4 and show large changes in the yield that typically occur when a
clean surface becomes oxidized or otherwise contaminated. The measurements for
Ar+ (open circles) in figure 4.4 indicate that there is more than a two-order spread in
the yields at low energies (< 150 eV). Some of the low energy data show relatively
large yields, while other data show very small yields.

Many of the Ar+ data for energies below 100 eV suggest a relatively weak
dependence on the ion energy characteristic of the potential ion–electron ejection.
The measured electron yields per fast Ar atom, γA, indicated by solid circles in
figure 4.4 have much the same energy dependence as those for fast Ar atoms incident
on a clean metal but are shifted downward by about a factor of 10, such that the
yields at a given energy are much larger. The authors of [9] made a thorough analysis

Figure 4.4. Electron yields for Ar+ and Ar beams incident on various dirty metal surfaces versus particle
energy. The open symbols are for Ar+ and the solid symbols are for Ar. After [9].
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of the available measurements of effective yields per ion, γeff, in pre-breakdown,
breakdown and low current discharges. They made an attempt to separate the
contributions of the various electron yields: those due to ions, metastable and fast
atoms, and photoionization. An attempt was also made to identify the contribution
of the electron backscattering to the cathode. Unfortunately, this kind of procedure
for obtaining the electron yield from experimental data on each gas–metal pair is
very time-consuming.

4.3 The ignition potential and the Paschen curves
If the coefficients α/p and γeff are the functions of E/p, then the breakdown condition
equation (4.7) in a uniform field gives the functional dependence of the breakdown
voltage Ub on (pL), known as the Paschen law [4]. This law was established
experimentally by Paschen in 1889. The Ub(pL) curves still bear his name. They are
illustrated in figure 4.5 for various gases. When the state of the cathode surface
changes, say, because of contamination during the cathode cleaning or formation of
films, the ignition voltage may even become non-stationary. For this reason, the
data of earlier experiments made with poorly cleaned cathodes differ from those of
more recent studies using vacuum technologies. The condition (4.7) with known α
and γeff defines the breakdown voltage Ub as a function of the gap length L. It
follows from equation (4.7) for typical γeff values of ∼10−3–10−1 that an electron
must perform from 3 to 10 multiplications along the gap length. In order to find
explicit analytical dependences of the breakdown field on the gas, cathode material,
pressure, and gap length, researchers often use equation (2.4) for α(E/p). By
substituting it into equation (4.7), we get [4]

γ
=

+
=

+
=

+
U

B pL
pL C

E
p

B
pL C

C
A( )

ln( )
,

ln( )
, ln

ln(1 1)
. (4.11)b

b

eff

Figure 4.5. Paschen curves for various gases. After [10].
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The calculation of Ub from equations (4.11) with the experimental constants A
and B from table 2.1 gives a reasonable agreement with experiment. In practice,
there are minimum voltages, at which the gap breakdown occurs. According to
equation (4.11), we have at the minimum [4]

γ

γ

= +

=

= +

pL
A

E p B

U
B

A

( )
2.72

ln
1

1 ,

( ) ,

( )
2.72

ln
1

1 .

(4.12)

m
eff

b m

b m
eff

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Clearly, the lowest ignition potentials should be expected for gases and cathodes
with small B/A ratios and large γ values.

The general pattern of (Ub)m and (pL)m variations in different gases agrees with
equations (4.12). The physical processes dominant in the right and left branches
(relative to (pL)m) of the Paschen curves differ considerably. At large pL values (the
right branch), the breakdown voltage rises almost linearly with pL. This follows
from the fact that the right branch corresponds to the exponential dependence of the
ionization coefficient α/p on E/p, such that E/p remains nearly constant. Even a small
variation in E/p changes the electron multiplication in the gap considerably. At small
pL values (the left branch), however, the voltage Ub rises with a decrease in the
number of collisions. Therefore, there is a minimum ignition voltage and the
respective critical gap length (pL)m. This value lies at the Stoletov point equation
(2.10), at which the electron ionizability is largest, so the breakdown occurs most
readily.

In contrast to (Ub)m and pL( )m, the (E/p)m value given by equation (2.11) is
independent of the cathode material (or γeff), as is observed experimentally. The
saturation of the α p E p/ ( / ) curve at large E/p ratios manifests formally as an infinite
breakdown field rise with decreasing pL. The applicability of the concept of α E p( / )
is limited by the runaway at large E/p. The α value is proportional to the gas
pressure p, so the lower the pressure, the smaller the α value necessary for the
transition to a continuous electron acceleration. The field at the start of the left
branch is close to the runaway criterion eEm ∼ Fm (see chapter 2) [11], so formulas of
the type equations (4.11) and (4.12) do not have much physical meaning on the left
from the minimum.

Therefore, it would be more reasonable to describe the electron multiplication
using the concept of the energy for the electron–ion pair production, εc (equation
(2.6)). In this approximation, the multiplication coefficient can be estimated as
M = eUb/εst. At smaller pL, the electron ‘has no room’ for multiplication since its
ionization path is longer than the gap length, 1/α > L. In other words, the time of
flight of a fast electron through the gap is insufficient for ‘spending’ all of its energy.
Besides, some of the electrons may not only escape but also be reflected by the walls
to be re-involved in the multiplication process.
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For this reason, the calculation of the left branches of the Paschen curves require
a detailed analysis of the electron interaction with boundaries and depends on the
anode material. This may be associated with the fact that the gamma-electrons
reflected by the anode have a sufficiently high energy to cover a longer distance in a
retarding field and to ionize the gas additionally. Figure (4.6) shows the exper-
imental data for the left branch in helium for various anode materials [12]. One can
see that the curves are anomalous (non-monotonic). Similar behavior exhibits
Paschen curves for mercury [13]. This is usually attributed to the peak in the energy
dependence of the ionization cross sections or to the competition among various
factors, in particular, to the contribution of secondary electron emission by neutral
atoms. In the experiments [12], an automated system for measurement of Paschen
curves, shown in figure 4.7 (left), was used. A wineglass discharge tube is shown in
figure 4.7 (right). The discharge tube had two flat, disk-shaped electrodes facing each
other at a variable distance from 2 to 20 mm. Most experiments were conducted at
distance of 5 mm between the electrodes. The cathode was made from copper and
was 50 mm in diameter. The anode has the same diameter, but was made from
different materials. In this work, experiments were conducted with copper, alumi-
num, stainless steel, graphite, platinum-plated aluminum, and gold-plated alumi-
num anodes. The experiments were conducted in two regimes. In the first regime, for
a certain pL, the voltage between the cathode and anode was slowly increased from
zero to breakdown voltage. In the second regime, for a certain voltage between the
cathode and anode, gas pressure was slowly increased from a value without

Figure 4.6. Paschen curves (breakdown voltage in V) in helium with copper cathode and different anode
materials. From [12].
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breakdown up to breakdown value. The first regime was suitable for investigation of
single-valued parts of the Paschen curves, while the second regime allowed for
studies of the multivalued Paschen curves, and was most suitable for the research
conducted in this work. The Paschen curve for any particular anode material was
measured 10 times and all curves shown in figure 4.6 were each averaged over 10
curves.

As a result of non-monotonic curves, Penning found that breakdown may occur
at three different values of the voltage [14]. Figure 4.8 demonstrate experiments with
similar multi-value breakdown points in helium [12]. The pL value was first held at
1.6 Torr cm, while the voltage between the cathode and anode was slowly increased
from zero to about 400 V, where breakdown occurred. In a second experiment, for
pL of near 1 Torr cm, the voltage between the cathode and anode is increased from
zero to 1.5 kV. Then, the pL value was increased without breakdown from 1 Torr cm
to 1.6 Torr cm. Afterwards, decreasing the voltage eventually led to breakdown at
about 1.2 kV. This somewhat paradoxical behavior was a direct manifestation of the
multi-valued Paschen curve. It may also be important to the gas desorption due to
the electron heating, etc.

Thus, not only does the concept of α(E/p) lose its physical meaning here but the
breakdown at small pL seems to vary with many uncontrollable factors. In the
present state of the art, a more or less reliable calculation of breakdown voltages
appears to be quite problematic. On the other hand, the calculations for the right

Figure 4.7. An automated system for the production of reliable Paschen curves over an extended range of pL
(left). A wineglass discharge tube. Distance between the cathode and the anode is 2 mm (as shown) (right).
From [12].
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branch, in which the ionization can be described by the local coefficient α/p as a
function of E/p, can be made by using the dependence of γeff on E/p.

4.4 Cathode boundary conditions for discharge on the right-hand
branch of the Paschen curve [15]

The electron diffusion in the cathode region may be considerable, so let us derive
the breakdown criterion with its account. We will re-write the breakdown
condition equation (3.6), introducing λE = Te /eE (for estimations below assuming
that ε1 ≈ εi).

λ α λ− ′ + =″n n n 0. (4.13)e e E e E

The solution of equation (4.13) for non-zero electron density on the cathode,
ne(0) = ne0, (cf equation (3.2)) is

λ αλ λ

αλ λ

= − −

−

n x n x L x

L

( ) exp( 2 )sinh(( ) 1 4 2 )

sinh( 1 4 2 ).
(4.14)

e e0 E E E

E E

A local description of the ionization is applicable to the right branch of the Paschen
curve

αλ ≪ 1. (4.15)E

Figure 4.8. Plot of two experiments demonstrating multi-value breakdown points for a graphite anode
accessed by (1) increasing and (2) decreasing the applied voltage. From [12].
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The expansion of equation (4.14) over small parameter (4.15) yields the well-known
Townsend relationship (2.2)

α α λ α≈ − − ≈n x n x n L x L n x( ) exp( ) exp( )exp(( ) ) exp( ). (4.16)e e0 e0 E e0

It follows from equations (4.14) and (4.15) that the electron flux even at the cathode

αλ= − ′ + = − + ≈j D n u n u n u n u n (4.17)e0 e e e e0 e e0 E e e0 e e0

is defined by the drift. In other words, if condition (4.15) holds, the contribution of
electron diffusion is small and its account does not change the relationship (2.2) for
the electron current multiplication from the cathode. Therefore, the relationship
between the currents j, je(0) and the coefficients γ and γeff is expressed as equations
(4.4) and (4.5) within the fluid model. Since the fluid model (and the concept of ue) is
applicable only at a distance x > λE to the discharge boundary, a further
specification of the boundary conditions seems to be of little value in this
approximation [15]. With the assumption of λ = const and taking into account
that dne/dx ≈ αne0 from equation (4.14) we have

λα− ≈ − < ¯ ≈n n n n u V2 2 0, (4.18)e0 emit e0 e0 e

i.e. ne0 ≈ 2nemit. The density of emitted electrons nemit in equation (4.18) is related
to the current je(0) according to equation = ¯j n V(0)emit emit , where V̄ is the average
velocity of the emitted electrons. From equation (4.18), we have =je0

≈ ¯n u j u V2 (0) /e0 e emit e , i.e. γ γ≈ ¯u V2 /eff e .
To follow the details of the electron drift from the cathode, one should use a

kinetic analysis. As an example we discuss now deriving an expression for fes within
a one-dimensional model. The kinetic equation for the isotropic EDF component in
variable x and total energy ε = −mV eEx/22 for inelastic electron energy balance in
the field λ ε>eE m M2 /1 is written as

σ
ε

σ ε∂
∂

∂
∂

= *
x

w
N w

f x

x
Nw w f x

3 ( )

( , )
( ) ( , ), (4.19)0

0

⎛
⎝⎜

⎞
⎠⎟

where σ and σ* are the cross sections of elastic and inelastic scattering, varying with
the kinetic energy ε φ= = +w mV e x/2 ( )2 . The electron motion with the initial
energy ε is illustrated in figure 4.9. At ε ε< 1 and ε ε< −x eE( )/1 the kinetic energy
of the electrons is less than ε1 and they move with their total energy ε preserved.
Since σ* = 0, the differential flux

ε ε
σ

ε
Φ = = −

∂
∂

V
f x

V
N w

f x

x
( )

3
( , )

3 ( )

( , )
(4.20)

2

1

2
0

is also preserved. At x > (ε1 − ε)/eE an electron after an inelastic impact abruptly
loses the excitation energy ε1 (it goes down to the lower step ε ε−( )1 , as is shown in
figure 4.9). Only such electrons are further picked up by the field and cannot return
to the cathode. When the two-term expansion of the EDF is valid (when σ≫ σ*), the
characteristic spatial λ λλ* = *ε and energy T* = eEλε* scales of the EDF variation
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are small at ε > ε1, as compared with λE ≈ ε1/eE and ε1, respectively. Therefore,
the EDF varies abruptly above the threshold ε1 and can be calculated within
the black wall model with the zero boundary condition at the energy (ε1 + T*) at
a distance (x1(ε) + λε*) (see figure 4.9). The solution to equation (4.19) can be
expressed as

∫ ∫ε σ ε
ε

ε σ ε
ε

ε+
+

= +
+

= Φ
ε ε

f x
eEx dx
eEx

f
eEx dx
eEx

( , )
( )
( )

( , 0)
( )
( )

( ), (4.21)
x

x x

0

( )

0
0

( )1 1

with x1 (ε) = (ε1 + T* − ε)/eE = λE + λε* − ε/eE. As λE ≫ λε*, the contribution of fast
electrons with w > ε to the current and density is small, of the order of about
λε*/λE ≪ 1. Marshak’s relation [3] for the EDF

¯ = + ¯ = −+ −j V f f j V f f4 2, 4 2 (4.22)0 1 0 1

yields the boundary condition on the cathode

ε ε=+j j( , 0) ( , 0), (4.23)emit

Figure 4.9. Trajectory of an emitted electron in phase space ε, x. After [15].
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where jemit(ε, 0) is the flux of electrons emitted by the cathode. The substitution of
the EDF (4.21) into equation (4.23) gives the mono-energetic electron source on the
cathode

∫ε
γ ε

γ ε
ε σ

ε
= = +

ε

f
N w dx
w x

1
( )

( )
( )

1
2 4

( )
( , )

. (4.24)
x

es eff 0

( )1

As the ratio V3/ν = w/Nσ(w) ≈ const is approximately fulfilled in Ar, Kr and Xe, we
obtain from equation (4.23) that the EDF linear along the coordinate

ε ε ε ε= − + −*f x f eEx T( , ) ( , 0)(1 /( )). (4.25)0 0 1

The expression (4.24) for fes coincides with equation (4.4) with
λ λ¯ = ≫V u/(4 ) /(2 ) 1Ee . It is easy to derive a general expression for an arbitrary

source εf ( )emit at any σ w( ) dependence from equations (4.4) and (4.21)
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∫
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The emitted electron energy has a more or less uniform distribution in the range
from 0 to εe, with ε ε φ= − e2e i e for the potential emission by ions or ε ε φ= − ee 1 e
for the emission by metastable atoms. Here εi, ε1 and φe e are the ionization energy,
the gas excitation energy and the work function of the cathode material [16]. Then
we can assume εf ( , 0)0 in equation (4.26) to be independent of energy as far as

ε ε⩽ e, i.e. ε ε= =f n( , 0) 3 /2 const.0 e0 e
3/2 For example, with ν ≃V / const3 from

equation (4.26), we have equation (4.4) with

λ ε ε ε ε ε ε≈ + −eE( (6 )ln(( ) ( )).E e
2

1 1 e 1 e

In any case, the majority of emitted electrons will return back to the cathode at
λE ≫ λ, and the effective secondary emission yield will be small, in accordance
with equation (4.4).

Thus, the secondary emission yield from the cathode, γeff, in the conventional
relation equation (4.7) for the right branch of the Paschen curve, where the local
description holds, is not genuine surface characteristic γ. The value of γeff ≪ γ
changes with the field and initial energy of emitted electrons. In the left branch,
however, where the field is high and γeff approaches γ, the local coefficient α has no
sense and formulas of the type of equation (4.7) become invalid.

4.5 The time evolution of the breakdown
The criterion (4.7) was derived from the stationarity condition equation (4.6) and
describes only a simple electron multiplication, μ = 1. In order to make the minimum
‘seed’ current go up to a macroscopic value, it is necessary to have, at least, a small
‘over-voltage’ ΔU = U − Ub > 0, which will provide an increasing electron
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reproduction, μ > 1. If a single electron leaves the cathode at the initial moment of
time, it produces μ > 1 secondary electrons in the second cycle, whose duration is
determined by the multiplication time on the cathode; the number of electrons in the
third cycle will be μ2, and so on. The ionization and, hence, the current will
exponentially rise in time, as is usually observed in the breakdown. The time of the
breakdown evolution after the voltage is applied to the gap is also known as the
delay time. It has two components: (1) the time for a seed electron to appear, which is
the statistical delay time, and (2) the time between the appearance of the first
electron and the establishment of a stationary discharge. The statistical delay varies
with the intensity and geometry of the primary ionization, the state of the electrode
surfaces, etc. If necessary, it can be reduced by using a pre-ionization by an external
source. The time of the discharge establishment is defined by the dominant
mechanism of cathode emission. If the emission is due to positive ions, the time is
defined by the ion drift from the anode to the cathode, τi = L/ui; the electron flight to
the anode for the time L/ue ≪ τi can be neglected. Then the ion current density on the
cathode at the moment t is

∫ α= = −j x t x j x t x V dx( 0, ) ( ) ( , / ) . (4.27)
L

i
0

e i

In order to find the expression for the current rise not only at the breakdown voltage,
(μ ⩾ 1), but also at the pre-breakdown voltage, (μ < 1), the boundary condition on
the cathode

γ= +j t j j t(0, ) (0, ) (4.28)e 0 eff i

must preserve the initial cathode current induced by an external source, j0 = je(x = 0,
t = 0). Using the relation for the electron multiplication in the field

∫ α= =j x t j t x dx j t M x( , ) (0, )exp ( ) (0, ) ( ) (4.29)
x

e e
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⎝

⎞
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whereM is the multiplication coefficient in equation (2.3), we get an equation for the
ion current density across the cathode:

∫
∫

α γ
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At αL ≫ 1, the majority of ions are produced near the anode where the electron
current is highest, so we can take ji(x = 0, t − τi) from under the integral sign in
equation (4.30) to find the condition for the discharge maintenance

∫γ τ α
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where μ = γeff(M − 1) is the charge reproduction coefficient equation (4.7).
Expressions (4.28–4.31) for the cathode electron current yield [1, 18]

μ τ μ τ= + − ≈ + −j t j j t j j t
dj t

dt
(0, ) (0, ) (0, )

(0, )
. (4.32)ee 0 e i 0 e i

e
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The solution of equation (4.32) with the initial condition je(0,0) = je0 is written as
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Clearly, the current rise at μ < 1 is limited by the limiting value of
μ→ ∞ = −j t j(0, ) /(1 )e 0 . This agrees with Townsend’s first experiments (chapter 2).

At μ > 1, the current increases exponentially with time. It is clear from equation
(4.33) that the characteristic time of a breakdown is defined by the value τi /(μ − 1)
and decreases fast with the over-voltage ΔU = U − Ub due to the exponential
dependence of the coefficient a on U.

4.6 Limitations of the avalanche breakdown mechanism
The Townsend breakdown discussed above is not accompanied by noticeable field
distortions due to the space charge and in the simplest case can be considered to be
uniform over the whole gap. In this, it differs from a streamer breakdown at high
pressures, when a thin spark arises between the electrodes, with the adjacent gap
regions, which are also in the field, remaining unionized. Then the space charge
induced during the evolution of a single avalanche, becomes essential. To conclude,
Townsend’s theory was considered for a long time to be universally valid for
breakdowns at low and high pressures because it provided approximately correct
breakdown voltages. The reason for this was a weak (doubly logarithmic) depend-
ence of the voltage equation (4.12) on γ. There are, for example, data indicating that
the γ value in the air breakdown varies from 10−2 at low pressure to 10−8 at
atmospheric pressure and large pL, whereas lnγ changes only by 30%, so it was hard
to see a deviation from the Paschen law in practice. It was found later, however, that
the avalanche theory encountered difficulties in gaps larger than 1 cm at pressures
about the atmospheric pressure.

The major difficulty was associated with the time of the breakdown evolution. An
avalanche moves at the electron drift velocity. In the avalanche theory, no break-
down may occur before the avalanche bridges the gap at least one time. In reality,
everything happens much faster at large L, especially at increasing over-voltage,
when the discrepancy between experiment and theory is as large as several orders of
magnitude. Under these conditions, a thin ionized streamer travels through the gas
between the electrodes, making its way along a positively charged channel; the
distortion of the applied field near the streamer is considerable. It has been found
that the breakdown criterion equation (4.7) applies only at low voltages and not very
large pL values, whereas the streamer mechanism comes into play at pL > 10 cm
Torr and high over-voltage. The latter case will not be discussed here. Figure 4.10
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illustrates the boundary between the Townsend and streamer breakdowns for
helium. One can see that the avalanche mechanism is operative up to high pressures
at a low over-voltage.
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Chapter 5

The general structure of a discharge
between cold electrodes

In this section the IV-traces and axial and structures are examined. Direct or ac
current flows in the axial direction and there is no net current to the boundaries.
Typically, discharges have a number of specific areas like Cathode fall, negative
glow, the Faraday dark space, positive column and anode fall.

5.1 The current–voltage characteristic
When the electrode voltage U exceeds the breakdown voltage, U = Ub, a self-
sustained discharge is ignited [1]. Formally, this is described by the condition μ > 1
(equation (4.7)), when an electron emitted by the cathode produces more than one
electron before drifting away to the anode. The discharge current rises abruptly, on
the characteristic time scale μτ μ −/( 1)i (see equation (4.33)). An actual circuit
always has a resistance R. As the current rises, the voltage drop at R becomes larger,
while the electrode voltage decreases. When U drops to Ub, the current stops rising,
and a stationary condition is established. It is related to the generator electromotive
force (EMF), E , in accordance with the load curve, = +U iRE . By changing R one
can change the discharge current in a wide range and observe various self-sustained
discharge modes. A typical dependence of the discharge voltage U on the current
density j and the parameter pL is presented in figure 5.1 for a stationary discharge in
a cylindrical tube between plane electrodes [1]. It is seen that the voltage U coincides
with the breakdown voltage at low currents and follows the Paschen curve with
changing pL. A low current discharge, in which the effect of the space charge field is
negligible, is referred to as a Townsend discharge mode. Let us increase the current
by reducing the load resistance R or by increasing the generator emf, E .

Figure 5.2 gives the current–voltage characteristics i(U) (IV-traces) of the
discharge with pL for the right branch of the Paschen curve, >pL pL( )m (see also
figure 5.1). The section BC is for the Townsend mode. The inter-electrode potential
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Figure 5.1. Varieties of glows: Townsend (1), undernormal (2), normal (3) and abnormal (4) discharges.
After [2].

Figure 5.2. IV-trace of a discharge between a cathode and anode in a wide range of currents. Non-sustained
(AB), dark Townsend (BC), normal glow (DE), anomalous glow (EF), transitional to arc (FG) and arc (GH)
discharges. After [2].
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remains constant as far as the point C, from which the operation voltage decreases
because of the external field distortion by space charges. The CD section is
transitional, and its lower part refers to a subnormal mode. Note that this
classification of discharge modes has not been generally accepted and the subnormal
mode is often combined with the Townsend mode.

As the current rises further, a normal glow is formed, whose voltage is
independent of current (like in the Townsend mode) in a wide range of values,
sometimes several orders of magnitude (the DE line). In contrast to the Townsend
discharge, however, the operation voltage is also practically independent of pL (see
figure 5.1). Here only part of the cathode is covered by the discharge, such that the
current density does not change with current. Most of the glow volume is occupied
by a quasi-neutral plasma. Table 5.1 shows some experimental parameters of a
normal glow in various conditions.

When the current becomes so high that all of the cathode area is covered by the
discharge, this mode is called an abnormal glow with a rising IV-trace (the EF line).
With still further current rise, the cathode heating and its thermal emission become

Table 5.1. Experimental parameters of normal glow discharge with different cathode materials. After [2].

Parameter Ar H2 He Ne Hg N2 O2 Air

(pd)n Al 0.29 0.72 1.32 0.64 0.33 0.31 0.24 0.25
Cu — 0.8 — — 0.60 — — 0.23
Fe 0.33 0.9 1.30 0.72 0.34 0.42 0.31 0.52

Torr cm Mg — 0.61 1.45 — — 0.35 0.25 –

Ni — 0.9 — — 0.4 — — —

Pb — 0.84 – – – – – –

Pt — 1.0 – – – – – –

Un Al 100 170 140 120 245 180 311 229
Cu 130 214 177 220 447 208 – 370
Fe 165 250 150 150 298 215 290 269

V Mg 119 153 125 94 – 188 310 224
Ni 131 211 158 140 275 197 – 226
Pb 124 233 177 172 340 210 – 207
Pt 131 276 165 152 305 216 364 277

jn/p2 Al – 90 – 4 – – – –

Cu – 64 – – 15 – – –

Fe 160 72 2.2 6 8 400 – –

μA/(Torr cm)2 Mg 20 – 3.0 5 – – – –

Ni 160 72 2.2 6 8 400 – –

Pb – – – – – – – –

Pt 150 90 5.0 18 – 380 550 –
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essential. The glow transforms to an arc (point G), and the cathode current shrinks
to a spot with an abrupt voltage drop (the FG line). In the left branch of the Paschen
curve (high voltage discharge or obstructed discharge), the Townsend-to-abnormal
mode transition usually occurs without a normal glow (figure (5.1)).

5.2 Basic characteristics and spatial structure of the glow
The structure of a glow discharge between two electrodes is quite complex and
typically looks like that in figure 5.3. A glow consists of alternating visible dark and
light regions [1]. Since all the processes in it are determined by collisions, its
characteristic scale is the path length, such that the similarity principle is usually
fulfilled: glows with the same value of pL = const differ only in the scale. So it is
easier to observe this at low pressures. A narrow Aston dark space (DS) is adjacent
to the cathode, followed by (a) thin cathode layer(s) (glow(s)). Then comes a cathode
dark space, also known as the Crooks dark space. The gas luminosity in those areas
is low while the electric field is higher than in the other discharge regions. Adjacent
to this region is a negative glow, which dies down towards the anode to eventually
form the Faraday dark space. The latter is followed by a bright positive column. In
long cylindrical tubes it is uniform or has a stratified structure which is immobile or

Figure 5.3. The structure of glow discharge (Aston dark space (1), cathode glow (CG), cathode dark space
(CDS), negative glow (NG), Faraday dark space (FDS), positive column (PC), anode dark space (ADS) and
anode glow (AG)) and distribution of its parameters: luminosity, electric field, electric potential.
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moving along the discharge axis striations. Normally, there is a narrow DS near the
anode with a thin bright film near the anode surface.

When the position of the electrodes is changed, in particular, when they are
brought closer to each other, the positive column becomes shorter, while the
potential profiles in the near-electrode regions and the column field Ec remain
unchanged. In contrast, the cathode and anode regions move together with the
respective electrodes without changing their structure. If the cathode is turned in the
tube, all of its parts turn together with it, leaving their positions unchanged relative
to the cathode surface.

When the positive column totally disappears, the Faraday space is the first to
become shorter, followed then by the negative glow region, although the position of
the region boundary on the cathode side does not change. The voltage across the
discharge increases, so this mode is called an obstructed, or high voltage discharge.
These conditions normally correspond to the left branch of the Paschen curve. When
there is no more room for this negative glow edge, the discharge dies.

Figure 5.3 gives the distributions of the basic discharge parameters along the
gap length L: the radiation intensity Ir, the potential φ and the field strength E.
The high electric field at the cathode falls towards the negative glow boundary.
This region is known as the cathode sheath. The field in the anode sheath is much
lower. The rest of the discharge volume is occupied by a quasi-neutral plasma,
whose field is still lower. The electric field in the positive column is uniform in the
absence of strata; its strength in the negative glow region is several orders of
magnitude lower than in the sheath and may even reverse its sign there. The field
sign in the anode sheath may also change relative to the adjacent plasma
(see section 7.6).

A classic device for the glow ignition and study is a discharge tube representing a
glass cylinder of radius = …R 0.5 5d cm and length = …L 10 100 cm with metallic
electrodes—a cathode and an anode. For the typical operating gas pressures

= …−p (10 10 )2 2 Torr, the characteristic voltages across the electrodes are
= …U (100 1000) V and currents = …−I (10 1)4 A. The positive column is not as

bright as the negative glow and usually has a different color. For example, the
cathode glow in neon is yellow, the negative glow is orange, and the positive
column is red. In nitrogen, they are pink, blue and red, respectively. These
characteristic spectra of gases are widely used in advertisement tubes. Of special
practical interest are the plasma regions: the positive column and the negative
glow. Designers of lighting technologies are especially interested in the long
positive column, which always occurs in long narrow tubes. To reduce the total
voltage drop, a hot cathode is used producing an arc instead of a glow. Other
things being equal, the positive column in a glow with cold electrodes and in an arc
are identical. Phenomena occurring in a positive column are not affected by the
electrode material or state; the column glow is generally invisible in wide tubes or
spheres. The size of the electrode sheath varies with the gas and its pressure, the
current density, etc. This type of discharge was called a glow because of the nature
of the negative region.
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Chapter 6

The Townsend and subnormal modes

In this chapter the Townsend discharge, in which the effect of the space charge is
negligible, will be considered [1–4]. The important parts of the consideration are the
conditions for the applicability of the traditional hydrodynamic approximation. For
the discharge on the right branch of the Paschen curve it is possible to use the first
Townsend coefficient α, which depends on the local value of the electric field and the
effective coefficient for ion–electron emission γeff is substantially reduced due to
kinetic effects. On the left branch of the Paschen curve, the situation is more
complex. The field here is rather high and the phenomenon of runaway electrons
begins to play a significant role. As a result, a kinetic analysis is required. As the
discharge current rises, the electric field distortion by the space charge begins to play
a role and the discharge becomes unstable. The development of this instability leads
to the establishment of a mode of normal current density. In this mode, ionization
becomes non-local [5].

6.1 The current–voltage characteristic
We have mentioned in the previous chapter, a Townsend discharge operates at a
voltage equal to the ignition voltage Ub. In a one-dimensional geometry, the total
current density is constant, j = je + ji = const. Hence, neglecting the diffusion, we
have

α α= − − = − − −j j L x j j L x/ exp( ( )), / 1 exp( ( )). (6.1)e i

The ion current greatly exceeds the electron current in most of the gap volume. To
illustrate, at γ = 0.01 and αL = 4.6, the je value reaches ji only at x = 0.85L. Since
the electron mobility is much higher than the ion mobility, the difference in the
charge densities is still greater. At be/bi = 100, the ratio ni/ne = (be/bi)( ji/je) is as
large as unity only at x = 0.998L. This indicates that the ion space charge is
dominant in most of the gap volume as shown in figure (6.1). This space charge
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may, in turn, distort the external field. Therefore, the condition for the discharge
self-maintenance is

∫μ γ α= − =E x p dxexp ( ( )/ ) 1 1. (6.2)
L

eff
0

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

Note that a similar expression is valid for a non-plane geometry (see equation (4.9)).
The integration in equation (6.2) is made over the gap length. An avalanche

traveling from the cathode to the anode must produce a definite number of electron
generations; this number is defined only by the secondary emission yield and is
independent of whether the field is uniform or not. Experimental data show that a
Townsend glow with U = Ub does take place in the right and left branches of the
Paschen curve in a wide range of low currents (see figure 6.1).

Consider the effect of a small (ion) space charge on the operating voltage
U = Ub + ΔU. A change in the field changes the coefficient α(E) in equation (6.2):

α α α α= + ′ Δ + ′′ ΔE E E E E( ) ( ) ( )( ) /2, (6.3)0 0 0
2

with E0 = Ub/L. For example, with assumption (2.4), we will have

α α α α′ = ′′ = ′ −Bp E Bp E E/ , ( / 2)/ . (6.4)2

An estimation from equation (6.1), giving α≈ − − −j j L x/ 1 exp( ( ))i , shows that
one can take the ion density to be constant anywhere except for a small anode region
of ∼ 1/α (figure 6.1) and the electron density to be low. So the Poisson equation,
which in this case has the form

πΔ =d E dx en( )/ 4 , (6.5)i

gives a field profile linearly falling away from the cathode:

πΔ = Δ − −E x U L en x L( ) / 4 ( /2). (6.6)i

The field rises relative to U/L in the cathode region but decreases in the anode
region. Its distortion becomes greater with rising current, which is transported

Figure 6.1. Distribution of densities of electron and ion currents (right) and charges (left), for the case when
external electric field do not disturbed by the space charge.
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mostly by ions in nearly the whole gap, j ≃ ebiEni. With equation (6.6), the number
of multiplications in equation (6.2) is

∫ α α α α π γ= + ′Δ + ′′ = +E dz L U L en L( ) 2 ( ) /3 ln(1 1/ ). (6.7)
L

0
0 i

2

Since the field perturbation ΔE is assumed to be finite but small, the second-order
terms in equation (6.7) were preserved. Because the condition for the breakdown and
self-maintenance mode at low currents equation (4.7) is α0L = ln(1 + 1/γ), equation
(6.7) gives the reduction of the operation voltage relative to the ignition voltage:

α π αΔ = ′′ ′U L en L2 ( ) /(3 ). (6.8)i
2

Therefore, we have a parabolic IV-trace:

π α αΔ = − = ′′ ′U U U j L2 /3 . (6.9)br
2 2 3

It is clear from equation (6.9) that the field distortion by the space charge can either
decrease (at α′′ > 0) or increase (at α′′ < 0) the discharge operation voltage. A critical
point is the inflection in the α(E/p) curve, which, according to the Townsend
breakdown condition (4.7), is also the inflection in the ignition Ub(pL) curve. For
approximation (2.4), the inflection parameters (6.3) and (4.12) are

= = =E Bp pL pL U U/2, ( ) 2.72( ) , 2.72 /2. (6.10)inf inf m inf m

To conclude, the field distortion by the space charge at pL < (pL)inf retards the
multiplication (μ < 1), leading to a higher operation voltage. The rising IV-trace is
stable to perturbations even in the absence of load resistance in the circuit. Since
(pL)inf ∼ (pL)m, this corresponds to the left branch of the Paschen curve indicating a
uniform operation at low gas pressures; this discharge mode is known as a high
voltage mode.

It should be stressed, however, that the left-side breakdown is characterized by the
electron runaway, for which the coefficient α(E/p) is meaningless, so the consid-
erations above have only a qualitative nature.

The right-hand branch corresponds to a falling IV-trace at pL > (pL)inf because

the multiplication ∫ αdz
L

0
(equation (6.7)) grows with current at given U, i.e. the

voltage must fall with increasing current. The reason for this is that the integral
values in equation (6.2) for a non-uniform field are determined practically only by
the high field regions because of the exponential field dependence of α. To satisfy the
condition of equation (6.2), the potential drop across the gap must be smaller than in
a uniform field in the absence of space charge. If the working point is far off in the
right-hand branch of the Paschen curve, the maximum fields are practically the same
at different working points.

6.2 Townsend discharge instability in the right branch of the Paschen
curve [5]

The IV-trace of a transversely uniform discharge is unstable, since α′′ > 0.
Experimental data show that this instability may lead to a constriction across the
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current and/or to fluctuations of the discharge current and voltage. The experimental
IV-trace (figure 5.2) has three sections corresponding to the three discharge modes.
The left side is for the Townsend mode, the right one is for the normal mode, and the
intermediate section is for the subnormal mode. If the IV-trace is measured during
the current rise and fall, the Townsend and normal sections coincide with a high
accuracy. The transition from the subnormal to the Townsend mode may have a
considerable hysteresis, and the constriction may be accompanied by intensive
fluctuations [6].

Let us analyse the relationship (6.7) for instability relative to small two-
dimensional perturbations

= + ˜ Ω +j t y j j x t iky( , ) ( ) exp( ), (6.11)i i
0

i 1

δ δ= Δ + ˜ Ω +E E E x t iky( ) exp( ), (6.12)1 0 1 1

where ΔE0 is defined by equation (6.6) and =n j eb E/( )i i
0

i 0 . For this, we will use
equation (4.31), omitting je0. Bearing in mind that the voltage variation δ1U is
independent of the transverse coordinate y, we find from equation (6.5), similarly to
equation (6.6),

δ π˜ = ˜ −E x ej x L x eb E( ) 4 ( )( /2 )/( ). (6.13)1 i i 0

The number of multiplications can be written as (cf with equation (6.7))

∫ ∫α α α α δ= + ′Δ + ′′ Δ + Δ ˜E dx L U E x E x E x dx( ) ( ( )/2 ( ) ( )) . (6.14)
L L

0
0

0
0
2

0 1

Because ΔE0 is small, we can use the expansion

∫ ∫α δ α δ′′ Δ ˜ ≈ + ′′ Δ ˜E Edx E Edzexp 1 , (6.15)
L L

0
0 1

0
0 1

⎛
⎝⎜

⎞
⎠⎟

and calculate the integral in the right-hand side of equation (6.15), using equations
(6.6) and (6.13):

∫ δ πΔ ˜ = ˜E Edx
L

b E
j j

12
(4 )

( )
. (6.16)

L

0
0 1

3 2

i 0
2 i

0
i

Finally, by substituting τ τ˜ + − ˜ ≈ ˜j t j t dj dt( ) ( ) ( / )i i i i i , we find from equation (4.31)

α
π

τ

˜
= ′′ ˜ = Ω ˜dj

dt
L ej

b E
j j

12

(4 )

( )
. (6.17)i

3
i
0 2

i i 0
2 i i i

It is clear from equation (6.17) that the characteristic time for the instability
evolution

τ
π α

τ
α π

= Ω =
′′

=
′′en L

b E
Lj

1/
12

(4 )
3

4 ( )
(6.18)sn i

i
2 3 i

i 0

i
0 2
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is defined by the ion drift time. Formula (6.18) can be re-written with the variables
pL, j/p2, and α/p. With the maintenance condition αL ≈ ln(1 + 1/γ) and substituting
from α α=″ Bp E( ) /2

0
4 for the right branch, we find the relation between the increment

and the discharge parameters as the scaling law:

τ
π α π γ

= ≈
+

b p E pB
p

E p
j p pL p

U pBL U pL
j p

b p
pL p

3( )
4

( / )
( / )

( / )
( / )

1
( )

3
4

( / )
ln(1/ 1)

( / )
( / )

( )
( )

. (6.19)sn
i
2

0
2

0
3

i
0 2 2 2 2

br
2

br
3

i
0 2 2

i

The development of this instability is hampered by the transverse spread of electron
avalanches. Since this process is associated with free electron diffusion, the
respective large decrement must, at first sight, strongly suppress the instability. It
turns out, however, that the effective decrement is not large. For the short time
L/(beE), the avalanche traveling from the cathode to the anode spreads out at a
distance Δ ≈y T L eE( )/( )e . This is repeated after the long time τi = L/Vi necessary
for the ions produced by the avalanche at the anode to drift back to the cathode.
Although the multiplication period is (τi + L/beE), the transverse spread occurs only
during the small (electronic) fraction of the period. Since the squared displacements
are summed up during random walks, the resulting spread for the time t ≫ τi is

τ≃ Δ =y y t b T t( ) /2 2
i i e . This corresponds to diffusion with the effective coefficient

Da = biTe, of the order of the ambipolar coefficient, in spite of the fact that there is,
as yet, no plasma in the gap. The respective decrement is Ωd = (Dak

2) [7]. As the
increment Ωi in equation (6.18) does not vary with the wave number, the most
undesirable perturbations are those with the minimum decrement (minimum k),
which are defined by the cathode radius Rc. The decrement for them is about
Ω ≈ D R( / )d

min
a

2 . When the increment Ωi is equal to the decrement Ωd
min , the current is

such that a transversely non-uniform discharge becomes unstable. A uniform
operation of a low current discharge in the right branch is provided only if the
breakdown voltage across the gap is turned on for a time shorter than τsn (equations
(6.18) and (6.19)). This normally occurs when the electrodes are made from a special
material and have a special design and when a pulsed (sinusoidal) voltage is applied.
It is also believed that dielectric electrodes charged by deposited electrons can
improve the operation characteristics and maintenance of a uniform high pressure
discharge (see, for example, [9]).

To conclude, even a relatively small field non-uniformity induced by the space
charge leads to a slowly falling IV-trace (equation (6.9)) and may initiate an
operation instability. The farther the working pL value is in the right branch of
the Paschen curve, the smaller is the field distortion by the space charge and the
lower is the discharge current, at which the instability is initiated. The details of the
instability development vary with the circuit parameters, the gap geometry, and the
cathode material. Because the instability is due to the exponential function α(E/p), its
development stops, roughly speaking, when the maximum field reaches the value
(6.10). The non-local ionization in the low field region appears to be essential, so one
cannot use the Townsend ionization coefficient α(E/p) defined by the local field. The
switching off of the exponential function α(E/p) leads to the establishment of a
normal current density jn, with the discharge occupying only part of the cathode
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surface. As a result, the glow with an average current density j < jn splits into regions
with the density close to jn (several orders of magnitude higher than j) and regions of
zero-current. In addition to the formation of a stationary discharge with the normal
current density, fluctuations of the total current and voltage may also develop. For
this to occur, at least one of the conditions is necessary: < Ω >R R R, 1/( )t dif i tC ,
where Rt and C are the resistance and capacitance of the discharge-circuit system
and Rdif is the differential resistance of the discharge [7]. Therefore, the lifetime of a
uniform subnormal discharge is limited by a transverse instability, which gives rise
to a sharply non-uniform potential distribution and, as a result, to the formation of
the cathode sheath and normal current density. Note, that it was shown in [10] that a
necessary condition for a steady streamer propagation is that the maximum field
front should also be of the order of values from equation (6.10). In other words, the
state of the streamer tip (leader) should meet the requirement for the transition to a
non-local ionization. This circumstance makes us believe that the above instability is
directly related to the condition for the avalanche transition to a streamer.
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Chapter 7

The ‘short’ (without positive column)
glow discharge

As was discussed in chapter 5, the self-organization of a glow discharge is primarily
associated with the potential redistribution along the gap length, so that the current
transported mainly by ions in the cathode region is later transformed to the electron
current. The necessary ionization is initiated by electrons accelerated by the field in
this region. To maintain the electron current in the plasma regions, primarily in the
positive column, a low field is sufficient for the ionization to compensate for the
slow-electron escape to the walls (together with the ions), recombination and
attachment. The discharge gap is split into the space charge sheaths and plasma
regions with sharp boundaries between them: the boundary width is small as
compared with the size of the plasma region or the sheath.

The main specificity of the electrode region is that the electron and ion fluxes in a
homogeneous plasma (e.g. in the positive column if the gap is long enough) must be
matched with the boundary conditions. Over 99% of the total current in the column
is transported by electrons. On the other hand, the electron-to-ion current ratio at
the cathode is small, γ= ≪j j/ 1e i . Since the enhancement of the partial (electron
and ion) flux in any region equals the net ionization in it, there must be a drastic
current transformation in the cathode vicinity. The electron-to-ion current trans-
formation requires intense ionization and very high electric fields, many processes
characteristic for dc glows occur in the cathode region; the voltage over the cathode
fall is quite high, about 100–1000 V, and the luminosity of the negative glow is
considerable. The discharge bears its name because of a bright glow.

There is no ion emission at the anode surface and ji(L) = 0. The ion current here
varies from zero to its positive column value, which is less than one percent of the
total current. So the net ionization rate in the anode region is two or three orders of
magnitude less than in the negative glow. As a result, the anode voltage φ0 is low
(< 30 eV), the anode region length is small, and its luminosity is less pronounced
than in the negative glow.
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In a short gap with no positive column in it, the whole discharge essentially
represents the cathode region. Since the principal characteristics of a glow discharge
are related to its longitudinal structure, we will consider in this chapter a simple case
of a short glow between plane-parallel electrodes containing no positive column1.
The last section of this chapter considers the anode region of the discharge.

The short discharge was chosen because the positive column is not an obligatory
part of the discharge: it arises only when the discharge gap is ‘long’. In essence, the
positive column is a bridge that closes the current when the electrode spacing exceeds
some length. It arises in the cold-electrode glow discharge and incandescent-cathode
arc discharge [1].

7.1 The fluid model of the cathode region in a normal glow
To predict its behavior in practice, one must have an opportunity to quickly estimate
its basic parameters with a simple yet consistent physical model. A simple and still
the most popular theory of the cathode voltage fall was developed by von Engel and
Steenbeck (see, e.g. [1, 2]). It is based on Townsend’s breakdown model with the only
difference being that the self-maintenance condition μ = 1 (equation (4.7) with the
local α E p( / ) dependence (equation (2.4)) does not hold for all of the discharge
volume but only for the cathode sheath. It is assumed that the sheath represents an
autonomous self-reproducible system, so the gap length L in equation (6.2) must be
replaced by the sheath thickness d and the electric field non-uniformity due to the ion
space charge must be taken into account. Thus, the condition for the multiplication
in the cathode sheath must be written as

⎛
⎝⎜

⎞
⎠⎟∫ α γ− = =M E x dx1 exp ( ( )) 1/ . (7.1)

d

0
eff

Like in a breakdown, a single electron emitted by the cathode induces ionization
in the sheath, generating −M( 1) ions. Having returned to the cathode, an ion
provides the emission of a new cathode electron. It is assumed that all ions generated
by ionization return to the cathode and all of them are utilized for electron
production. The dependence of the cathode voltage fall Uc(pd) corresponds to a
Paschen curve which has the point of minimum (4.12) and the inflection point (6.10).

We have mentioned in chapter 6 that the transition from a Townsend discharge to
a glow may occur in different ways. The field distortion by the space charge on the
left of the inflection point at <pL pL( )inf hampers the electron multiplication,
stimulates the IV-trace U( j) rise and stabilizes a high voltage discharge. However,
the fluid model for the description of the breakdown and discharge development in
the left branch poorly agrees with observations and is invalid because of the electron
runaway. On the right of the inflection point, at (pL) > (pL)inf, the current rise
produces an instability, because the electron multiplication is facilitated by the

1An important exception is the contribution of transversal effects to the establishment of the normal current
density in the right branch of the Paschen curve.
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potential redistribution, such that a transversely non-uniform discharge can operate
at a lower voltage. This promotes the normal discharge mode (see chapter 5).

The role of the potential redistribution associated with the plasma production is
clear from a qualitative model of the Rogowski glow (1932) [3]. Suppose there is a
voltage U higher than the breakdown voltageUb at a pL value corresponding to the
right branch of the Paschen curve. In the absence of the space charge, the potential
profile will be linear at first andU/EL. The gain in equation (4.7) is μ1 > 1, and the
respective value of α = α1 will be described by the exponential section of the α E/p( )
curve. The charges accumulated at the anode form a plasma region. Since the
plasma field is negligible, the field becomes strongly non-uniform: it increases at the
cathode and vanishes at the plasma boundary. Because the α values lie along
the exponential α E/ p( ) curve, the gain at constant voltage will be μ μ> > 12 1 and
the current will rise fast with time (faster than the exponent). As soon as the field
reaches a critical value, at which the exponential α(E/p) function is ‘turned off’, μ
begins to decrease. In other words, when the plasma boundary is at a certain
distance d to the cathode, μ becomes unity. This is the moment of establishing a
stationary discharge with a well-pronounced cathode sheath and plasma region.

In the right branch where the breakdown is due to the local ionization, the
discharge development and plasma formation lead to the potential accumulation
along a shorter distance (the cathode sheath of thickness d ≪ L), initiating the
transition to a non-local ionization with exponential α E p( / ) turned off. This stage is
characterized by a fixed normal current density jn, and the glow covers only part of
the cathode at i<j Sn c (Sc is the cathode area) in such a way that the current density is
equal to jn. This corresponds to the Ucn minimum in the Uc( j) curve for the sheath
and represents a normal glow with a two-dimensional (2D) current pattern across
the cathode. The cathode spot has such an area that the current density in it is

=j i S/n , and the potential drop across the cathode is Ucn. The discharge voltage
U for a partial cathode coverage is independent of the current, exceeding Ucn by the
value of the potential drop in the positive column. The current rise is accompanied
by the growth of the glow spot S at constant jn and Ucn.

Let us now derive a one-dimensional (1D) matching condition for the cathode
spot boundary within the local fluid model [4]. If we assume that the instability
produces a stationary pattern of the cathode spot with ≫S d , the particle balance
equation averaged over the sheath is

= −D
d n
dx

n Z b
U n

d
, (7.2)a

2
i

2 e i i
c i

where x is the coordinate tangential to the cathode surface, ni is the average ion
density in a thin 1D cathode sheath,Uc is the x-independent sheath voltage, and bi is
the ion mobility. Here we have approximated the ion out-flux from the sheath to the
cathode by the right-hand side of equation (7.2). The ambipolar diffusion coefficient
describes the transverse spread of the ion profile; the reason for this was discussed in
detail in the preceding section. With equation (2.4), the average ionization frequency
can be approximated as
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⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠α= = −Z b

U
d

Apb
U
d

Bpd Uexp ( / ).i e
c

e
c

c

As the electron and ion currents in the sheath averaged over d are comparable, we
will replace the product n be e in equation (7.2) by n b .i i Since the sheath thickness d
varies with the ion density as

π
=d

U
n e4

,c

i

the right-hand side of equation (7.2) can be interpreted as a position-dependent
‘force’

= − Ψ
f n

d
dn

( ) ,

with the ‘potential energy’,

∫Ψ = − −n dn n Z b( ) ( ).U
d

n
de i i

c e

So the problem is mathematically equivalent to the problem of heavy body motion
over a curved surface. The ‘potential’ Ψ n( ) is convex up at n = 0 due to the
exponential dependence (2.4) and convex down at a high ion density due to the
cancelling of this dependence. So it has two maxima. One is at n = 0 corresponding
to the zero-current region. In order to describe a smooth transition between two
semi-infinite domains, the equivalent heavy body must start its motion at one
potential maximum and finish it at the other with zero ‘velocity’ dn

dx
. Therefore, it is

necessary to have Ψ = = Ψn n( 0) ( )2 , with n2 being the density at the second
maximum. This condition yields

=n
B p
eU

1.3 ,2

2 2

c

and the respective field

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟= =E

p
U
pd

B. (7.3)
2

c

2

One can see that a stationary boundary in a 1D approximation can exist only
between a zero-current domain and a domain (cathode spot) with the normal current
density. It follows from this result that the instability can subdivide the discharge
into a zero-current region and a cathode spot with normal current density. The
electric field (7.3) corresponds to the saturation of the α p E p/ ( / ) curve. This mode
exhibits a considerable non-local ionization in the plasma region of the negative
glow, requiring a kinetic treatment.

The field profile in the sheath is described by the Poisson equation, in which the
field decreases monotonically from the maximum to zero, such that a simple
interpolation gives a linear E(x) profile used in the Engel–Steenbeck model of
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normal glow (see below, equation (7.12)). If the electron density in the sheath is
neglected, the Poisson equation yields approximately 4πeni = dE/dx ∼ Ec/d ∼ Uc/d

2.
Hence, the current density on the cathode j = eni biE ∼ biU2/(4πd3) is written as [1]

π
≃

j

p
b p U

pd

( )
4 ( )

. (7.4)ns
2

i ns
2

ns
3

In the Steenbeck model, the cathode potential dropUns and the sheath thickness dns

in a normal glow are taken to be equal to their values at the minimum in the Paschen
curve. From equation (4.12), we have [1]

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

γ

γ

= = +

= =

= = +

pd pL
A

E p E p B

U U
B

A

( ) ( )
2.72

ln
1

1 ;

( / ) ( / ) ;

( )
2.72

ln
1

1 .

(7.5)

ns m

ns b m

ns b m

Table 7.1 shows the calculated and measured values of U j p, /ns ns
2, and pd( )ns.

With the account of some uncertainty in choosing the γeff value, we get a reasonable
agreement betweenU U,n ns and j p j p/ , /n

2
ns

2. Since the values of pd( )ns and so on in
equations (7.5) are calculated from the same formulas as the position of the
minimum in the Paschen curve pL( )m (equation (4.12)), they appear to be close to
the experimental pL( )m values from table 7.1. In contrast, the experimental values of
(pd)n from table 7.1 turn out to be smaller than the (pL)m values. This is largely
because the Engel–Steenbek model neglects the non-local ionization in plasma and
the ion return to the sheath from the plasma (see below).

When the current is higher than jnsSc, there is a transition to an anomalous glow
accompanied by the voltage rise (figure 5.2). The sheath thickness here is <pd pd( )ns

and is described by the left branch of the Paschen curve, so the Engel–Steenbek
theory shows a poor fit with the experimental data.

Table 7.1. Measured and calculated parameters of normal discharge. From [15].

Gas
Uns, V j p/ ,ns

2 mkA(cm Torr)−2 pd( )ns, cm Torr

Calculated Measured Calculated Measured Calculated Measured

He 59–177 143 2–5 1.6 1.3–1.45 2.6
Ne 75–220 154 5–18 1.2 0.64–1.62 2.1
Ar 64–165 146 20–160 4.5 0.29–0.33 0.9
Kr 215 196 43 2.1 0.26 1.1
Xe 306 212 16 6.2 0.23 0.7
H2 94–276 195 64–110 23 0.16–1.0 1.5
N2 157–233 213 380–400 15 0.31–0.42 0.7
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In order to find the transition to a uniform positive column, equations (2.1) of the
local model should include the escape of charged particles. Their combined solution
with the Poisson equation shows that the field decreases monotonically with distance
from the cathode to the column value, whereas the electron density monotonically
increases.

7.2 A model of glow discharge with account of non-local ionization
Of all the models in which ionization is assumed to be dependent on the local field
the fact is typical that the cathode sheath inevitably transforms into a positive
column. In this case, ionization (and glow) concentrates in the cathode sheath, where
the field is high. The cathode sheath–plasma boundary coincides with the boundary
between the negative glow and positive column, and the Faraday dark space in such
models is absent. Such a discharge pattern is in obvious conflict with observations,
which attest that ionization in the cathode region is non-local (that is, it does not
depend on the local field strength at a given point of the space). Indeed, the electrons
emitted from the cathode and also those generated in the cathode sheath and
accelerated by the high field in it are responsible for non-local ionization in an
adjacent plasma region, where the field is low. Therefore, the negative glow consists
of two parts: one occupies part of the cathode sheath, while the other is in the plasma
(plasma negative glow, PNG) [5, 6]. The ions generated in the PNG also return to
the cathode, providing electron emission from it, and consequently play a major role
in sustaining the discharge. This role is especially significant in the case of the
abnormal glow discharge, when the cathode sheath is small and ionization in it is
weak, so that the overwhelming majority of ions bombarding the cathode originate
precisely in the PNG. Therefore, the pattern of the glow discharge is very
complicated; specifically, all near-cathode areas of the discharge (including the
cathode sheath and negative glow) are autonomous rather than the cathode sheath
alone, as it is supposed in the local models.

Thus, the major disadvantage of the available models of the glow discharge is that
they use the local field approximation to determine the ionization rate and, as a
consequence, assume that the cathode sheath is autonomous. To put it otherwise,
they neglect non-local ionization in the PNG. In this situation, the local models will
give both quantitatively and qualitatively incorrect results (as was noted in [7]).
Therefore, it seems appropriate to develop a more adequate model than the Engel–
Steenbeck model and still as illustrative as the former that makes it possible to
establish the main functional relationships between the parameters of the low
discharge with allowance for non-local ionization in the PNG.

Numerical data concerning the glow discharge (in particular, specific values of the
external parameters) are today routinely derived by computer simulation. Advanced
computational codes allow one to obtain a discharge parameter spatial distribution
that corresponds to a space charge layer in the plasma with direct and reverse electric
field. It was found that the distribution thus obtained agrees well with experimental
data (see, e.g. [8–11]). However, the whole solution of the self-consistent problem is
time-consuming and requires that ‘equally exact’ elements be used. The fact is that
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the reliability of a model is controlled by a bottleneck, which is the least accurately
known element. Therefore, even if methods applied to some blocks of the code are
the most advanced and reliable, if other elements are poorly or insufficiently known,
the accuracy of results cannot be improved. For example, the non-monotonic profile
of the potential and non-local ionization are frequently displayed with various
hybrid schemes in which slow electrons are described in terms of fluid dynamics but
their transport and kinetic coefficients are calculated as functions of electron
temperature Te rather than of the local electric field. The self-consistent electric
field is found by solving the Poisson equation in this case [8–11].

The profile Te(x) is found by solving an equation of thermal balance for electrons
that takes into account not only volume processes but also spatial transfer due to
heat conduction (see, e.g. [10]). Therefore, a shift in spatial coordinate arises between
the field and electron concentration and temperature; that is, the profile T x( )e and,
hence, the profile of the impact ionization rate, diffuse by length λε of electron energy
relaxation. The result of such a computer simulation is a cathode sheath with a high
electron concentration and high field followed by a low-field plasma region, where
Te is still high enough to result in noticeable non-local ionization. The reverse field
here arises in a natural way in order to suppress the diffusion of electrons toward the
anode. This plasma region is viewed as the PNG and Faraday dark space. In other
words, a non-local dependence of the discharge parameters appears on the electric
field such that a maximal concentration of the plasma falls into a range with low
electron temperatures. Unfortunately, despite a formal qualitative agreement with
experimental data, these seemingly plausible results cannot be considered as
adequately describing processes in the near-cathode region on a quantitative basis.
The fact is that, in such an approach, the electron ensemble is considered as a whole
and is characterized by averaged parameters, namely, averaged density ne, averaged
energy (temperature Te), and averaged directional drift velocity ue. However, the
electron distribution function in the near-cathode region is actually non-local; i.e.
different groups of electrons behave differently. Accordingly, they cannot be
described by averaged parameters and kinetic analysis is needed (for details, see
[5, 6]). While the simulation results qualitatively agree with experimental data in a
number of parameters, many critical issues are treated incorrectly in terms of such a
fluid-dynamic description. Specifically, current transport in the PNG region and the
Faraday dark space are related to the behavior of an ‘intermediate’ group of
electrons with a heavily non-Maxwellian distribution [5, 6]. The parameters of
intermediate drifting electrons, which transport the electron current, are almost
independent of the parameters of electrons from the basic group, which provide the
balance of plasma density ne and (average) electron temperature Te over the electron
ensemble. In turn, these thermal electrons (which have a near-Maxwellian distribu-
tion owing to their high concentration) cannot move in the longitudinal direction
and therefore do not participate in current transport and their temperature Te is
controlled by heating due to collisions with intermediate electrons. Self-consistent
kinetic analysis of electrons is therefore necessary. Detailed consideration of these
issues and related errors is beyond the scope of the present book and will be
published elsewhere.
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Here a simple model is demonstrated that, allowing for non-local ionization in the
PNG, makes it possible to calculate the distribution of the basic longitudinal
parameters of the plasma and derive an IV-trace of the short (without a positive
column) glow discharge. To apply this model, it will suffice to use well-known
tabulated data for secondary emission coefficient γ and Townsend ionization
coefficient α.

7.2.1 Basic concepts of the model [12]

As was noted above, the basic characteristics of the glow discharge can be described
using the example of the short discharge (the simplest case), when the positive
column is absent because of a small electrode distance. In this case, 1D analysis will
suffice2.

The definition of the short discharge to a certain extent remains uncertain. It
seems reasonable that discharges for which the electrode gap is shorter than that
corresponding to an inflection point in the Paschen curve ( <L Linf ) be referred to as
short. Using breakdown condition

∫ α γ= =M E x dxexp ( ( )) 1/ (7.6)
L

0

and approximating the ionization coefficient as equation (2.4), it is possible to get for
inflection point parameters [1]

⎛
⎝⎜

⎞
⎠⎟γ

= + = =pL
A

E p B U EL( )
2.72

ln
1

1 , ( / ) /2, ( ) ( )) . (7.7)inf

2

inf inf inf

The fact that length <L Linf is critical in the sense that it separates two
drastically different modes of evolution of the discharge after its initiation counts
in favor of our choice.

In fact, the IV-trace of the Townsend discharge under the action of the space
charge after breakdown (see, e.g. [1]) is given by

= − × −U U Bp E jconst ( /(2 ) 1) . (7.8)b b
2

It follows from equation (7.8) that, if breakdown takes place at the left of an
inflection point in the Paschen curve ( <L Linf ), the reduced electric field is

>E p B/ /2. Accordingly, the Townsend discharge has a rising IV-trace [1] and no
ballast resistance is required to sustain it. As the current increases, the Townsend
discharge steadily changes to the glow discharge, which is homogeneous over the
cross-section and usually occupies the cathode completely. This property of short
discharges is widely exploited in practice, specifically, in plasma display panels,
where a high stability of the discharge is necessary. Since a pixel of the plasma
display panel is essentially a high-pressure glow discharge ( = −p 500 1000 Torr) in

2Even if the discharge is long, a glowing positive column appears only in gas gaps confined in the transverse
direction. In ‘wide’ gaps, the transition region between the negative glow and anode is dark; that is, discharge
in this case is a variant of the corona discharge.
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Ne–Xe or He–Xe mixtures, its small size (L = 100–500 μm) gives a desired low value
of parameter pL < 5 cm Torr [13] (for helium and neon, ( = −pL( ) 7 8 cminf Torr).

At >L Linf <E p B( / /2), conversely, the IV-trace of the Townsend discharge
descends. Therefore, as the current grows, the discharge experiences instability
(subnormal discharge), causing a step transition to the normal form. Eventually a
spot with a normal current density arising on the cathode occupies it only partly.
With a further increase in the current, the discharge becomes abnormal with an
ascending IV-trace and totally occupies the cathode surface [1, 6].

It should be noted that the discharge is usually considered glow up to a clear-cut
minimum point in the Paschen curve. This point corresponds to length Lm which is
roughly three times smaller than Linf . It follows from equations (2.4) and (7.7) that

=pL pL( ) ( ) /2.72;m inf that is, = =E p E p B( / ) 2( / )m inf . However, point (pL)m is not a
point of discharge switchover. Therefore, the categorization of short (without a
positive column, <L Linf ) discharges adopted in this book (as the post-breakdown
current grows, the discharge remains stable) seems to be more appropriate.

The IV-trace of the discharge will be derived, as usual, from the Poisson equation
for the cathode sheath and discharge self-sustainment condition.

When the Poisson equation is applied to the cathode sheath, the electron density
is as a rule neglected and it is written as

π= −dE
dx

en4 . (7.9)i

Density ni of ions is expressed through their flux, = Γn u/i i i.
Solutions to equation (7.9) reported in the literature differ from each other. The
reason is that the drift velocity versus field strength dependence is approximated by a
linear ( =u b Ei i ) or square root function ( =u k Ei i ). Since the electric field is
sufficiently large in most of the cathode sheath, the root-square approximation
seems to be more appropriate. Using the relationship = Γn k E/( )i i i and standard
linear approximation of the field versus distance dependence [1, 5–7, 14, 15], and
current conservation equation we can obtain

⎛
⎝⎜

⎞
⎠⎟

γ
γ

α= − = −
+

j x j j x j x( ) ( ) 1
(1 )

exp( ) . (7.10)i e 0

Since the high-to-low field transition occurs at the sheath–plasma boundary, the
sheath field can be found from the boundary condition E(d ) = 0. With the account of
the field dependence of the ion mobility, =b k E/i i , the integration of equation
(7.9) [5] yields

π γ α γ= − − − +α αE x j d x e e k( ) 6 ( ( )/( (1 ))/ . (7.11)d x3/2
0 i

0 0

The field profile from equation (7.11) is

γ
α γ

α

γ
α γ

α
= −

−
+

−

−
+

−
E x
E

x x

d d

( )
(0)

1
(1 )

(exp( ) 1)

(1 )
(exp( ) 1)

. (7.12)
3/2
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0
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In the limiting case of an abnormal discharge with small values of d and
ionization rate in the sheath, α ⩽d 10 , equation (7.12) yields the cathode potential

=U E d2 /50 , and = −E E x d/ (0) (1 / )2/3. This distribution can be approximated by a
linear function only at ≪x d . The ion generation in the sheath decreases dE/dx in
the vicinity of the point x = d and brings the field profile closer to a linear function.
For this reason, the whole experimental field distribution in a normal and
moderately anomalous glow can be approximated fairly well by a linear function
with =U E d(0) /2. Figure 7.1 shows the experimental function E(x) and its
calculation with equation (7.12) [5]. From equation (7.11) with =U E d(0) /2 gives
the common relationship (7.4) (see also [1])

⎛
⎝⎜

⎞
⎠⎟π γ α

γ α
π

=
− −

+

≈j
p

k p U

pd
d

d

k p U

pd

( )

2 ( ) 1
(exp( ) 1)

(1 )

( )

2 ( )
.

(7.13)2

i c
3/2

5/2 0

0

i c
3/2

5/2

Since at γ ≪ 1 ion current ji in the cathode sheath is of the order of total current
j, j is substituted for ji in estimate (7.13). Comparison with self-consistent calcu-
lations [5] shows that the resulting error is small.

To find another relationship between parameters j, U and d in (7.13), we make use
of the discharge self-sustainment condition. It has been already noted that the
cathode sheath consisting of the space charge is not an independent system;
therefore, some of the ions come to the cathode from the PNG and relationship
(7.6) cannot be used as the discharge self-sustainment condition. A correct discharge
self-sustainment condition can be derived from the condition of current density
constancy over the discharge length,

Figure 7.1. Electric field profile in CS: experiment (dots) and calculations (lines). After [5].
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= + = + =j x j x j x j j( ) ( ) ( ) (0) (0) const. (7.14)e i e i

Using equation (7.14) and the boundary condition on the cold cathode,

γ=j j(0) , (7.15)e i

we obtain the discharge self-sustainment condition in the form

γ+ = +j d j j d j( )/ (0) ( )/ (0) 1 1/ , (7.16)e e i

which is an extension of Engel–Steenbeck condition (7.6).
If the first term alone is left on the left-hand side of (7.15), we arrive at local

condition (7.6). However, the second term on the left of (7.15) (the ratio of this term
to the first one is sometimes called the plasma efficiency factor [15, 16]) is almost
always large and therefore neglect of this term (which means that the cathode sheath
is autonomous) is incorrect in the given situation3.

Electron and ion fluxes appearing in condition (7.15) can be found from the
respective balance equations,

∇Γ = Z x (7.17)e, i i

where Zi is an ionization source.
To solve equation (7.16), one must know the ionization parameters in the near-

cathode region, where the electric field varies from very high values in the cathode
sheath to low values in the PNG. Fast electrons having been accelerated in a high
field of the cathode fall are injected into the PNG (where the field is almost absent)
with an initial energy far exceeding ionization energy εi. These electrons are able to
ionize at once irrespective of the local field strength, so that such an electron may
travel a large distance before the electron distribution function relaxes to the form
corresponding to the local field. In its path, the electron produces much non-local
ionization, which by several orders of magnitude exceeds the local ionization, when
field E/p in the plasma is weak. In a high electric field of the cathode fall, the
situation is aggravated by the effect of electron runaway, when electrons, gaining
more and more energy, acquire a non-zero probability of switching to the whistling
mode. In this mode, collisions have a minor influence on the motion; that is, the
motion becomes ballistic [17].

The aforesaid indicates that use of ionization coefficient (2.4), which depends on
local electric field E(x), in the near-cathode region is invalid. Unfortunately, we are
unaware of reliable experimental data for the cross-sections of the respective
elementary processes (especially for the angular dependences of these cross-sections);
therefore, related calculations are inaccurate (exact methods, such as the Monte
Carlo method or direct solution of the kinetic equation, are neglected because of
their laboriousness).

3Yet, the local theory gives the IV-trace close to the observed one in a wide range. This is because the terms on
the left of equation (7.15) are comparable to each other when the current is not too high. Since the first term is
strongly (exponentially) dependent on the field, even a small variation of the field in the cathode sheath makes
this term prevailing. Formally, this leads to agreement with simplified calculation by (7.6), when the second
term on the left of (7.15) is neglected.

Introduction to the Kinetics of Glow Discharges

7-11



To approximately describe ionization characteristics in the near-cathode region of
the discharge, we divide the discharge gap into a high-field cathode sheath and a
weak-field plasma region, which are separated by a sharp border at point x = d. The
thickness of the boundary (it is of the order of the Debye screening radius, i.e. much
smaller than the thickness of the cathode sheath) will be neglected.

Since ions generated in the cathode sheath under the action of a high field come
back to the cathode, it follows from equation (7.16) that the first term in equation
(7.15) can be expressed through electron multiplication coefficient M CF in the
cathode sheath as

∫− = =j d j M d Z x dx j( )/ (0) 1 ( ) ( ) / (0). (7.18)
d

e e
CF

0
i e

When findingM CF, one should bear in mind that ionization in the high field of the
cathode fall depends on the potential difference overcome by the electron rather
than by the local value of the electric field. Since ionization coefficient α is usually
tabulated as a function of E/p, the multiplication coefficient in the cathode sheath
will be determined by the simplified method [1]. To this end, we replace α by its value
in the mean field of the cathode fall, E = U/d; that is, it is assumed that
α α= U d( / )CF . In this approximation, the number of ionizations in the cathode
sheath is given by (see [1])

α= −M d d( ) exp( ) 1. (7.19)CF
CF

This approximation corresponds to a constant value of Townsend coefficient α,
i.e. to its value in ‘effective’ field E =U/d, which follows from equation (2.4), and is a
refinement of the approximation used in [5]. In that work, coefficient α was assumed
to be α α= = Ap/2.72CF 0 for any value of the cathode fall, which corresponds to
saturation of (2.4) in parameter E/p. Thus, the index of power in equation (7.19)
becomes dependent on discharge conditions and can be expressed through coef-
ficients A and B appearing in approximation (2.4),

α = −d Apd Bpd Uexp( / ). (7.20)CF

Since electrons generated by ionization in the cathode sheath are accelerated in
the electric field and also can take part in ionization, the fast electron flux in the
cathode sheath grows exponentially. Therefore, the ionization rate also rapidly
grows with distance from the cathode and reaches a maximum at the boundary
between the cathode sheath and PNG. Broadly speaking, the near-cathode region
consists of a cathode dark space, where the fast electron flux is still insignificant, and
a glowing region that is part of the cathode glow space4.

In the PNG, where the field is low, glow and ionization are due to only
fast electrons coming from the cathode dark space. Electrons generated here

4A finer partition of the near-cathode region into the Aston and Hittorf dark spaces, cathode glow space, etc is
related to a deeper insight into the dependence of the excitation cross-section on the electron energy; this issue
is beyond the scope of this work.
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cannot be multiplied and therefore the ionization rate and glow in the PNG can
only decrease with increasing distance from the boundary of the sheath. It follows
from the aforesaid that the boundary between the cathode sheath and PNG is close
to the position of the point where the intensity of source Z(x) is maximal. Since the
cross-sections of excitation and ionization behave in a similar way, the ionization
and excitation profiles are also close to each other and so a maximum of the
discharge is expected to be observed at the cathode sheath–plasma boundary
(figure 7.2(a)).

It should be noted that the position of the cathode sheath–plasma boundary
remains uncertain. There are many publications where the thickness of the cathode
dark space is estimated from visual observations of the discharge glow. Certainly,
glow in the immediate vicinity of the cathode is almost absent for two reasons.
First, electrons due to ion–electron emission (gamma electrons) are slow, so that
excitation and ionization take place at some distance from the cathode. Second,
the fast electron flux in the sheath exponentially grows with distance from the
cathode. Therefore, the ionization rate and glow intensity also grow in the cathode
sheath exponentially and the boundary between the dark and glowing spaces is
rather sharp. The thickness of the dark space is frequently identified with the
thickness of the cathode sheath. Actually, however, the situation is the reverse: it is
the brightest point of the discharge that corresponds to the sheath–plasma
boundary. When the fast electron flux responsible for ionization and emission
passes into the plasma, it fades out with distance as its slowest electrons decelerate
and ‘bow out of the game’. For example, in atomic gases, this happens when the
electron energy becomes lower than the excitation energy of the first upper level of
the atom. It is these ‘intermediate electrons’ that transport current in the Faraday
dark space [5]. Therefore, the negative glow determined visually consists of two
parts. This fact should be taken into account in comparing published data. Figure
7.2 shows the longitudinal profiles of the optical and electrical parameters of the
discharge.

As has been already noted, the strength of non-local ionization source Zi(x) in the
PNG decays starting from its maximal value at the boundary with the cathode
sheath (x = d). In the simplest case, it can be approximated, e.g. by an exponential
curve first used as early as in [18] and then in [19],

λ= − − ⩾Z x z x d x d( ) exp( ( )/ ), . (7.21)i m cs

In the adopted approximation, the strength of the source at the boundary of the
cathode sheath is (see equation (7.19))

α α= Γz d(0) exp( ). (7.22)m e CF CF

In (7.21), λcs is the characteristic scale of decay, which was tabulated in [19] based on
Monte Carlo simulation for argon, helium, nitrogen, and silane. In [20], the values of
λcs for argon are compared with those measured from the spectral line intensity
decline in the PNG. It turned out that the experimental values of λcs for argon exceed
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Figure 7.2. Longitudinal distribution of the basic parameters of the short glow discharge (of length L): CDS,
cathode dark space; CGS, cathode glow space; PNG, plasma part of the negative glow; NG, negative glow;
FDS, Faraday dark space; AS, anode sheath; and Zi, ionization source. n is the plasma electron density (xm is
the maximum point); Λf is the fast electron range; ϕ and E are the electric field potential and strength (dashed
line marks the uniform field accepted for the cathode sheath); and j, ji, and je are the densities of the current and
its components. From [12].
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those calculated in [29] roughly twofold (see [27], figure 8). Later [21, 22], practical
estimates for argon were made based on the measured drop of the spectral line
intensity rather than on calculated results from [19].

Since reliable data for the scale of λcs decay are absent, we, in order to be able to
rapidly estimate this parameter, relate it to such an important parameter of fast
electrons as their range. The range of electrons is defined as length Λf which a mono-
energetic beam of fast electrons with energy ε travels in a given medium until it
completely stops (i.e. until they turn into intermediate electrons).

More or less reliable data for Λf are available only for high energies (ε > 1 keV).
For the conditions we are interested in (i.e. when values of the cathode fall that
represent the upper boundary of the fast electron energy fall into the interval eU =
200–2000 eV), available data are sparse. Since even the fastest electrons having
gained energy eU stop at the point x = Λf, their range determines the negative glow
length in gas discharges [1, 5]. This fact can be used for finding Λf under specific
conditions.

To estimate Λ U( )f , we will make use of the circumstance that, in the energy
interval of primary interest for us (from several tens of electron-volts to 1 keV),
many dependences of the excitation and ionization cross-sections have a smooth
maximum. This maximum is observed in the vicinity of the Stoletov (saturation)
point in relationship (2.4) for α and is reached in field =E p B( / )m (such fields
provide conditions for electron runaway [17]). Therefore, Λf can be estimated by the
empirical formula 7.3

Λ ≈ =U U E U pB( ) / /( ). (7.23)f m

Note that quantity Λf , as any integral characteristic, is not sensitive to details of
elementary event characteristics; therefore, estimate (7.23) is in good agreement with
published data. For argon, the dependence of the range on the applied voltage,
which is shown in ([14], figure 5), correlates well with dependence (7.23) with
tabulated B = 180 V (cm Torr)−1. Figure 7.3 plots negative glow length LNG found
experimentally versus the cathode fall for various gases ([15], figure 7.6). Also shown
are respective dependences (7.23), which are seen to agree well with data from [15].

As was noted, difference Λ − df is the PNG length, so that the Faraday dark
space starts with > Λx f . As parameter pL decreases to a value meeting the position
of the minimum in the Paschen curve (when Λ > Lf m), the fastest electrons with an
energy equal to cathode fall eU reach the anode surface. Since their ionizing capacity
is utilized incompletely, the voltage should be raised to sustain the discharge. The
discharge in which the Faraday dark space is absent when <pL pL( )m is called the
obstructed discharge [1, 6, 7].

To estimate length λcs in simple terms, it was suggested that range λ U( )f be
identified with the value of difference (xd) at which ionization rate (7.21) becomes
low, e.g. falls by ≈e 102 times for the sake of definiteness [25]. Then, we get the
desired relationship in the form

λ ≈ Λ − ≈ −d U pB d( )/2 /(2 ) /2. (7.24)cs f
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The simple relationship (7.21) for the source of non-local ionization in the PNG
can also be derived by simplifying the model used in [5]. Namely, the field in the
cathode sheath is assumed to be uniform or, in other words, the profile of the
potential in the sheath is assumed to be linear: ϕ = ⩽x U x d x d( ) (1 / ), . Then, using
the approximation of fast electron energy continuous losses, we obtain for the
effective (allowing for a constant decelerating force) potential in the PNG [5]

ϕ = − Λ − >x U x d d x d( ) ( )/( ) . (7.25)f

Eventually, the model used in [5] yields expression (7.21) for source Z x( )i where
zm is defined by (7.22) and

λ α α= Λ − = −d d U Bpd pd( )/( ) ( )/( ). (7.26)cs f CF CF

Estimate (7.24) or (7.26) makes it possible to calculate the scale of λcs decay in
(7.21) given voltage U and thickness d of the cathode sheath5.

Figure 7.3. Negative glow length lg found experimentally versus the cathode voltage for (■) helium, (▲)
hydrogen, (◄) argon, and (▼) nitrogen [15], and fast electron range Λf (7.23) versus the cathode fall for (1)
helium, (2) hydrogen, (3) argon, and (4) nitrogen. Data points (●) refer to the fast electron range in argon [14].
From [12].

5 It should be noted that, if α ⩾d 2CF and thickness d of the sheath constitutes a tangible fraction of Λf , the
scale of λcs decay in (7.26) becomes sensitive to d and Λf . In this case, expression (7.26) for λcs is preferred. At
the same time, estimate (7.24) is preferred for the abnormal discharge, when the cathode sheath is thin.
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Thus, expression (7.21) combined with (7.24) or (7.26) can be used to find the
spatial distribution of the strength of source Z x( )i and, accordingly, the multi-
plication coefficient if the PNG,

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠
⎞
⎠⎟∫ α λ= Γ = + −α λ

−
M x Z x dx e e( ) ( ) / (0) 1 1 . (7.27)

d

x
d

x d
PNG

i e CF cs
CF cs

According to (7.27), the total number of multiplications (ionizations) in the PNG,

∫ α λ= Γ = +αM x Z x dx e( ) ( ) / (0) (1 ) (7.28)
d

x
dPNG

i e CF cs
CF

at α > 1CF exceeds that in the cathode sheath (see (7.19)).
When determining the fraction of ions coming back to the cathode (the second

term in discharge self-sustainment condition (7.16)), one should bear in mind the
following important circumstance. Unlike in the cathode sheath, where a strong field
sends ions back to the cathode, the field in the quasi-neutral plasma that corresponds
to ambipolar diffusion is low. Therefore, some of the ions generated in the PNGmay
move toward the cathode and side walls or recombine in the volume instead of
returning to the cathode. For an ordinary plasma with carrier concentration

= =n n ne i and a carrier mobility independent of the field and concentration,
equation of balance (7.17) takes the form (for details, see [1, 5–7])

β∇ ∇ + − =D n Z x n( ) 0, (7.29)a i
2

where = +D D Te T(1 / )a i 0 is the ambipolar diffusion coefficient and β is the volume
recombination coefficient.

Since the ion density in the layers is small compared with the ion concentration in
the PNG, we can impose the zero conditions at the boundary of the cathode sheath
and on the anode in (7.29): = =n d n L( ) ( ) 0. Then it follows from (7.29) that the
profile n(x) has a maximum nm at the point xm (see figure 7.1). Accordingly, the ions
generated at >x xm move toward the anode, while those generated at x < xm return
to the cathode. To put it differently, the field changes sign at the point of plasma
concentration maximum [1, 5–7, 23]. It suppresses the diffusion of electrons toward
the anode (figure 7.2), forms a potential well for electrons (the electrons confined in
the well do not contribute to the current at all), and provides the constancy of the
current over the gap. The electron current in the Faraday dark space is transported
only as the diffusion current of unconfined (intermediate in terms adopted in [5])
electrons. Therefore, a potential jump in the anode sheath is always negative for
short discharges ( <L Linf ); that is, it decreases the current of intermediate electrons
toward the anode. For the Maxwellian electron distribution function, potential
difference Ua between the anode and point of concentration maximum can be
roughly estimated by equating the chaotic electron current toward the anode to the
electron current (note that this problem demands a kinetic consideration, since the
distribution of intermediate electrons may differ strongly from the Maxwellian one),

π
= −

−
e

n T
m

e j eD
n

L x4
8

. (7.30)
eU
Tm e

a
m

m

a

e
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The proximity of the point of field reversal to the point of concentration
maximum was observed experimentally in [24] and predicted in [8–10]. In [5, 23, 25],
this condition was used to find point xm. At the point of field reversal (E = 0), both
the electron and ion currents have only diffusion components. Since ≫D De i,
the total current at point xm almost coincides with the electron current:

≈j x j x( ) ( )m e m [23]. If volume recombination plays a minor role and ions move
toward the side walls and anode, it follows from equation of balance (7.29) that
the second term in (7.16) is

=j d j M x( )/ (0) ( ). (7.31)i e
PNG

m

Ultimately, discharge self-sustainment condition (7.16) takes the form

γ+ =M M x( ) 1/ . (7.32)CF PNG
m

One can make use of expressions (7.19), (7.20), and (7.27) to find M CF and
M x( )PNG and solve ambipolar diffusion equation (7.29) to find xm. Being interested
in the longitudinal (along the x-axis) distribution of the parameters, we simplify
(7.29), representing the ion motion in the transverse direction through characteristic
time τr of ambipolar diffusion, τr = (R/2.4)2/Da. Then, upon substituting Z(x) in the
form of (7.21), equation (7.29) takes the form

λ τ β+ − − − − =d
dx

D
dn
dx

z x d n nexp( ( )/ ) / 0. (7.33)a m cs r
2

Since most electrons in the PNG are confined, the electric field does not warm
them. If it is taken into consideration that the rate of heat conduction by electrons,
which smooths out the electron temperature profile, is high, the ambipolar diffusion
coefficient in (7.29) and (7.33) can be regarded as constant. Eventually, equation
(7.33) will turn into an inhomogeneous non-linear equation with constant coef-
ficients. If volume recombination is insignificant, equation (7.33) becomes linear and
its solution can be expressed in quadratures. If, for example, ≫ −R L d , we have

⎜ ⎟⎛
⎝

⎞
⎠= − − −

−
−

λ
λ λ
− −n x

n
e

x d
L d

e
( )

1 1 . (7.34)
d x d Le

cs cs

In this case, point xm where the plasma concentration reaches a maximum is found
from the expression
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ln 1 exp , (7.35)m cs

cs

cs

where λ=λn z D/m cs
2

a. Since the profile of source Z(x) coincides with that used in [23],
expressions (7.34) and (7.35) are similar to the expressions derived in [23].

Since ∞ ∞n D T1/ 1/e a e in (7.34), an uncertainty in the electron temperature directly
influences the error in determining ne. Therefore, the electron temperature should be
known exactly to correctly find the plasma concentration. In [10], it was postulated
that =T 1eV;e in [11], Te was set equal to 0.1 eV. All other things being the same, the
respective values of ne will differ by one order of magnitude. It is remembered once
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again in this connection that the accuracy of calculation with any code is governed
by a bottleneck, the least accurately known element.

It follows from (7.35) that the position of point xm in the 1D geometry depends on
a single parameter, λ Ld/( )sc [23], and is independent of Te. Given d, L and Uc, xm is
easy to find from (7.35) using expression (7.24) or (7.26) for the scale of λcs.
Substituting (7.35) into (7.27) yields an expression for the effective multiplication
coefficient in the PNG, M x( )PNG

m , that does not require direct calculation of xm.
Then, from (7.34) and (7.35), we come to

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠
⎞
⎠⎟α λ λ= −

−
−α λ

−
M x e

L d
e( ) 1 1 . (7.36)

d L
PNG

m CF cs
csCF cs

Upon substituting (7.19) and (7.36) into (7.32), discharge self-sustainment
condition (7.16) takes a final form (see (7.6)),
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d L
CF cs

csCF cs

The second term in (7.37), which describes ions coming from the negative glow
space, is always large; that is, the local models, in which only the first term on the left
of (7.37) is present, fail in adequately describing the situation and result in
uncontrollable errors. Condition (7.37) combined with relationship (7.13) following
from the Poisson equation for the cathode sheath makes it possible to construct an
IV-trace of the glow discharge for given gap length L and pressure p.

Thus, the longitudinal distribution of the basic parameters of the short glow
discharge has the form depicted in figure 7.1. Figures 7.1(a) and (b) show the main
regions of the discharge that are observed visually (see, e.g. [1, 7]). Figure 7.1(c) shows
the layers into which the discharge was partitioned. In figures 7.1(b) and 7.1(d), the
continuous lines refer to the case when range Λf of fast electrons is shorter than the
electrode gap (Λ < Lf ) and the dashed lines refer to the case of the hindered discharge,
when Λ > Lf and some of fast electrons reach the anode, so that their ionizing capacity is
utilized incompletely.

7.2.2 Main results from the model [12]

The most complete body of experimental data on glow discharge parameters is that
gained for argon. The main results were summarized in review [14], and recent
experimental data and simulation results are given in works [20–22], upon which we
will rely.

First, it should be noted that, while for the ionization coefficient in argon many
experimental data and adequate approximations such as (2.4) are available (see, e.g.
[1, 7, 14, 15]), secondary emission coefficient γ remains somewhat uncertain. This is
because the electron emission from the cathode in the real situation is caused not
only by ions but also by metastable and fast atoms and also by radiation. In
addition, emission depends on uncontrollable factors, such as the cathode surface
condition, etc. Since these factors are impossible to discriminate in practice, the gas
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discharge is usually described with the effective coefficient of ion–electron emission
γ. This coefficient defined as a ratio of the electron flux entering into the discharge to
the ion flux bombarding the cathode is a complicated function of parameter E/p,
cathode surface condition, etc (for details, see, e.g. [26]). Today, finding γ from
experimental data for breakdown in gases (i.e. from relationship (7.6) withUb and
pL known) seems to be the most consistent and reliable approach. For argon, the
most comprehensive data obtained with such an approach were reported in [26],
where E/p dependences of γ were derived by processing a large array of experimental
data ([26]; figures 5, 11). These results seem to be the most reliable6.

Figure 7.4 plots γ from [26] versus parameter E/p and the respective approx-
imation in the E/p interval of interest.

Figures 7.5–7.8 compare experimental IV-trace curves from [20–22] (symbols)
with curves calculated by the model suggested in this work (continuous lines) and
Engel–Steenbeck model (dashed lines).

In all the cases, the voltage equals the breakdown value at low currents
(Townsend discharge). As the current grows, the experiment agrees only with the
calculation by our model and the local model yields heavily overestimated values of
the voltage.

Let us indicate characteristic points of the 1D short ≫ −R L d( ) glow discharge
by considering limit cases in greater detail.

For the obstructed discharge < >L L U BpL( , )m b , it follows from discharge self-
sustainment condition (7.37) that the voltage is a monotonic function of cathode
sheath thickness d and, hence, current. Accordingly, if the current density given by
(7.13) is such that d becomes smaller than electrode spacing L, the IV-trace starts
increasing monotonically with current. It has been already noted that range Λf

exceeds L in this case; that is, fast electrons with an energy equal to the cathode fall
reach the cathode and the Faraday dark space is absent. Under these conditions, we
almost invariably have λ > Ldcs (except for the case of high currents, when cathode
sheath thickness d is much smaller than L). Then, expanding the exponential in
(7.37) into a series, we get the self-sustainment condition in the form
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, (7.38)d dCF
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CFCF CF

which was derived in ([5], formula (52)).
Expression (7.34) then yields a near-parabolic plasma concentration profile,

6Note that later [27] data reported in [26] were subjected to much correction. The fact is that the glow
discharge model with γ taken from [26] gave underestimated results and predicted a drop of the voltage with
increasing current, which physically makes no sense. The use of γ as an adjustable parameter [27] radically
changed its value compared with that obtained in [26] (see also [11, 21, 22]). If we concede that the approach
adopted in [27] is valid, this means that the results obtained in [26] by processing a large data array from many
authors become worthless. In our opinion, the discrepancy between the results obtained in [26, 27] indicate the
inadequacy of the fluid-dynamic model used in [27] to describe the behavior of electrons to finding the basic
parameters of the glow discharge rather than the inapplicability of the data for γ gathered in [26]. Therefore, we
used the values of γ from [26] when comparing with experimental data.
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≈ − −n x
s
D

x d L x( )
2

( )( ), (7.39)e
m

a

in which point xm of concentration maximum (see (7.35)) is in the middle of the
plasma region of the discharge [5],

≈ −x L d( )/2. (7.40)m

Under such conditions, half the ions generated in the plasma return to the cathode
and the other half go toward the anode.

It is seen in figures 7.4–7.7 that, as parameter pL increases and most ions come
back from the plasma toward the cathode, switchover of the Townsend discharge to
the glow discharge is accompanied by a small dip in the IV-trace. This follows from
discharge self-sustainment conditions (7.37) and (7.38) for the situation with

< <L L Lm inf , when < <BpL U BpL/2 b . In this case, discharge self-sustainment
conditions (7.38) and (7.39) yield a non-monotonic dependence of voltageU on d (and
hence on the discharge current). At low currents, when the sheath is thick ( ≈d L) and
λ > Ldcs , formulas (7.38)–(7.40) are valid. However, as the current rises and d
decreases subject to >L Lm, a rapid transition to another limit case, λ < −L dcs ,
takes place. Now the asymptote of self-sustainment condition (7.37) is given by

Figure 7.4. Effective coefficient of ion–electron emission in argon. The continuous line, data reported in [26];
dashed line, approximation of the continuous line in the form γ = U pd0.000 22( /( ))0.6, where U is given in
volts and pd, in cm Torr. From [12].
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Figure 7.5. IV-trace in argon at pL = 45 Pa cm. Symbols, data points from [21]; the continuous line,
calculation by the model suggested; and the dashed line, calculation by the Engel–Steenbeck model. From [12].

Figure 7.6. The same as in figure 7.5 for pL = 75 Pa cm. From [12].
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Figure 7.8. The same as in figure 7.5 for pL = 133 Pa cm [20]. From [12].

Figure 7.7. The same as in figure 7.5 for pL = 150 Pa cm. From [12].
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In this case, most ions from the PNG return to the cathode, ≈M x M( )PNG
m

PNG

(see (7.27)). Accordingly, for the plasma concentration profile in the PNG we have
from (7.34)

= −
−

−
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e
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Then, the position of the maximum point (see (7.35)),

λ λ λ= −
−

≈ +x d
L d

dln , (7.43)m cs
cs

cs

is shifted from the boundary of the sheath by λcs, where λcs is the characteristic scale
of decay of the ionization source strength in the PNG.

In the highly abnormal mode, when α ≪d 1CF , self-sustainment condition (7.41)
in view of (7.24) transforms into

⎜ ⎟⎛
⎝

⎞
⎠α α

γ
Λ ≈ =U

pB
U
d2

1
. (7.44)CF f CF

Since >U pBd in this case, quantity αCF is close to saturation and varies weakly.
If coefficient γ remains constant, the discharge voltage is independent of the current,
as follows from (7.44). As far as we know, this phenomenon has not been
documented for plane-cathode discharges, while for hollow-cathode discharges, a
discharge self-sustainment condition in the form of (7.44), ε γ=U / 1/0 , was derived
by Kagan with colleagues [28] as early as in 1976 (ε α= E /0 is the ‘cost’ of generation
of an electron–ion pair). Note also that, according to (7.44), discharge voltage U
strongly depends on coefficient γ: it varies roughly in inverse proportion to γ. The
results of glow discharge simulation shown in ([11], figure 1), where voltage U varies
noticeably in response to a slight variation of γ ≪ 1 seem to be consistent with our
conclusion. Such a situation cannot be explained in terms of the local model, which
predicts only a slight γ dependence of γ∼ + ≈U U, (1 ) 1.

Thus, based on the above analysis, the following procedure for rapidly estimating
and predicting the basic properties of the short glow discharge can be suggested.

(1) The IV-trace of the discharge can be constructed by solving the Poisson
equation for the sheath (or using estimate (7.13)) and using self-sustainment
condition (7.37) (or its asymptote (7.38) or (7.41)). The multiplication coefficient
in the sheath is calculated by (7.19) and (7.20); in the PNG, by (7.27) with regard to
the scale of decay given by (7.24) or (7.26).

(2) The plasma concentration profile in the PNG is found by (7.34) or its
asymptote (7.39) or (7.42). Determination of the plasma absolute concentration in
the case of the short discharge is not a trivial task. The generally accepted estimates
from known current and field ( =j en u E( )e e ) carried out by analogy with the positive
column here are inapplicable and so related processes should be analysed in a way
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similar to that described above. Maximal plasma concentration nm can be estimated
from the ion current toward the cathode, the ion current being a sum of the ion
currents arising in the PNG and cathode fall,

⎛
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CF

It should also be remembered that, to find ambipolar diffusion coefficient Da and,
hence, the plasma absolute concentration, one must know the temperature of slow
electrons confined within the potential well. The absolute concentration of the
plasma can be found by solving the corresponding balance equation (see, e.g. [5]).

It has already been mentioned that the method suggested in this work requires
knowledge of only the coefficient of electron–ion emission γ and parameters A and B
used in the approximation of ionization coefficient α. For most gases, they are well
known. This greatly simplifies calculations and makes it possible to rapidly estimate
discharge parameters for many gases and their mixtures.

Our results are easy to extend for high-pressure discharges and discharges
confined in the transverse direction. Since ions subjected to a high field of the
cathode sheath return to the cathode, a solution for the cathode sheath in these
discharges is similar to (7.13). When analysing processes in the PNG, one should use
a solution to the ambipolar diffusion equation in the form of (7.29) or (7.33) with
allowance for diffusion toward walls and/or volume recombination losses, which is
not a particular problem.

As the discharge current and/or pressure increase, the charged particle escape
from the NG and FDS is determined by the bulk recombination. At

< −l R L x{ , ( )}r d m in equation (7.33), we have a parabolic density fall in the
Faraday space ( >x xm)

− = −n
n x

x x
l( )

1
( )

, (7.47)
m m

r

where lr is the characteristic recombination path.
The estimations show that as long as the gap length is

− < − −L x l b x d b{[2 ( )/ ] 1}, (7.48)m r
2/3

e m i
1/3

the discharge is short, exhibits a field reversal at =x xm and the existence of a
potential well for electrons. When the gap becomes longer than in equation (7.48)
and the inequality

>eDdn dx j/ (7.49)

becomes opposite, there is no field reversal or electron potential well. The Faraday
dark space then smoothly transforms to a positive column.
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Thus, the autonomous system in a glow discharge involves the whole near-
cathode region including the cathode sheath, the negative glow region and the
Faraday dark space, rather than the sheath only. For this reason, the discharge IV-
trace can be found only by a combined solution of the Poisson equation for the
sheath which takes into account the ions coming back to the cathode from the
negative glow plasma. Even in a normal discharge, the sheath thickness d is smaller
than both the negative plasma length, −x d( )m , and pL( )m at the Paschen curve
minimum, decreasing with the current rise in an abnormal discharge. In a short gap
with no positive column, the non-local ionization (the presence of fast electrons in
the negative glow plasma) leads to the field reversal, creating a potential well for the
electrons. The field reversal point corresponds to the maximum density of charged
particles and is at ≈x R xmin{ , }m d m

7.
The IV-trace of the long discharge ( > <L L U BpL, /2inf b ) has a deeper

minimum. Here, the characteristic descends even at the stage of the Townsend
discharge (see (7.8)), so that switchover to the glow discharge looks like a sort of
instability [6, 29] that eventually results in a normal density of the current [1, 7,
15]. In a long discharge confined in the transverse direction, a positive column
may arise. In this case, the field reverses at two points [5]. The first one is the
aforementioned point xm of plasma concentration maximum in the PNG, which
produces a potential wall for electrons. The second point of field reversal, xa, after
which the direct field recovers to the value in the column, is at the boundary
between the Faraday dark space and the region adjacent to the positive column.
In analysis of the longitudinal structure of the near-cathode region, the second
point of field reversal can be viewed as a limiting point of this region (virtual
anode). In other words, length xa should be used as an effective length of the
discharge instead of L in this case.

7.2.3 The second field reversal and the transition to a positive column

It follows from the above discussion that the formation of an autonomous positive
column, in which the ionization is balanced by the electron escape at every point x,
should be expected at < −R l L xmin{ , } ( )d r m .

When the wall escape is dominant, < −R l L x{ , ( )}d r m and < Λ −R d( )d f , the
problem of calculating the profiles from the ambipolar diffusion equation [1]
becomes 2D. The assumption that ≈I x( ) const for finding xm becomes invalid. It
is hard to derive a simple formula for the position of the field reversal point xm, so
one has to solve a 2D equation for a particular situation. One can see directly from
equation (7.33) that with the enhanced inequality ≪ ΛRd f , the position of this point
tends to a smaller scale, +d Rd, rather than to Λf like in equation (7.33). With
distance from the cathode, < < Λx xm f , the plasma density profile in the negative

7The plasma region in a normal discharge at ≫L S is essentially 2D, expanding towards the anode. Its
shape and the electron current distribution across the anode, which are both related to this region, can be
found from equation (7.33).
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glow follows the ionization source profile, τ≈ ⊥n x I x( ) ( ) d
8. At > Λx f , equation

(7.33) yields an exponential density fall towards the anode in the negative glow and
Faraday dark space

≅ − −n x n x x R( ) exp[ 2.4( )/ ]. (7.50)m m d

The fall has a scale of order of R /2.4d . As a result, the electron diffusive flux sharply
reduces with x. So the condition (7.49) cannot be satisfied over the whole discharge
length down to the anode, in contrast to the short 1D discharge discussed above. The
maintenance of a current-carrying plasma must also involve ionization, and the field
must again be directed to the anode. It corresponds to the transition to a positive
column. So there are two field reversal points. One point is at the density maximum
xm and is responsible for the formation of a potential well for electrons. The Faraday
space length can be easily estimated as a point, at which the plasma density (7.50)
decreases to ∼npc (figure 7.9). This gives an estimate for the Faraday space length at

< −R l L x{ , ( )}d r m

≈L
R n

n2.4
ln (7.51)F

d m

pc

Figure 7.9. Near-cathode axial plasma potential profiles at low pressure [5]: area I corresponds to fast
electrons, area II corresponds to fast electrons and area III corresponds to imprisoned electrons. From [5].

8 Therefore, the basic assumption of the Engel–Steenbeck model that only the cathode sheath is autonomous
becomes valid for narrow tubes at low currents and ≪R dd . A quantitative treatment requires the
consideration of 2D effects.
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which is about the tube radius. The other field reversal point is at = ˜x x, followed by
the reconstruction of the dc field in the column. By substituting the distribution
(7.50) into equation (7.49) with the discharge current in the column, =j en b Epc e pc,
we get an estimate for ̃x
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When the electron energy relaxation path is λ >ε Rd, the transition to a positive
column requires a kinetic treatment.

The current transported through the sheath by fast electrons can be described
using only the parameters of these electrons. The description of the plasma regions
(the plasma part of the negative glow and the Faraday dark space) requires the
knowledge of the EDF of slow (plasma) electrons with energy ε ε< i. At a distance

< <d x xm in the negative glow plasma, the current of fast electrons is transformed
to that of slow intermediate electrons (figure 7.9), whose density is much higher.
Their energy relaxation occurs only by quasi-elastic impact, so their relaxation path,
λε is large, λ δ ∼/ 100 λ, and often exceeds the Faraday space length. In this case, the
distribution function of the plasma electrons is non-local and varies with the full
energy ε φ= +w e x( ). Because the behavior of electrons with a given value of ε is
unaffected by the other electrons in the absence of electron–electron collisions, it is
convenient to subdivide the EDFs of plasma electrons with ε ε ε< ,1 i into two
subgroups: = +f f fb s0 0 0 . The intermediate electrons with f s0 have energies in the
range φ ε ε˜ < <e x( ) 1. They can overcome the potential barrier at the point of the
second field reversal. The most numerous are trapped electrons with ε φ< ̃e x( ),
which do not transport current and do not exhibit the Joule heating. So they have a
maxwellian distribution with the temperature Te due to a strong electron–electron
interaction. They are trapped in the potential well and can move only within its
limits. Their density obeys the Boltzmann law:

φ=n x n e x T( ) exp( ( )/ ) (7.53)b m e

and equals zero at > ˜x x. The escape of slow electrons is associated with the slow
processes of ambipolar diffusion or volume recombination (equation (7.33)).
Therefore, the plasma electron densities in the plasma part of the negative glow
and Faraday space are largely due to the Maxwell–Boltzmann trapped electrons,
which provide the plasma quasi-neutrality in the negative glow. Their temperatureTe

is spatially uniform and low, slightly higher than room temperature. It is defined by
the integral energy balance of the trapped electrons: the heating in collisions with
intermediates having the characteristic average energy ε∼ 1 and the cooling in
collisions with neutrals. To calculate the temperature of trapped electrons, one
must know the distribution functions of fast electrons with ε ε ε≫w, , ,1 i producing
excitation and ionization, and of the intermediate electrons fos. Therefore, this is a
kinetic problem. The Te values are necessary for the calculation of the potential
profile and the rates of ambipolar diffusion, recombination and stepwise excitation,
as well as some other parameters.
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In a 1D approximation, ≫L Rd, all intermediate electrons diffuse towards the
anode with the conservation of the total energy ε; their EDF is described as

∫ ∫ε
ε

ε∼ ′
′

″ ″
ε ′

f x
dx

D x
I x dx( , )

( , )
( , ) (7.54)s

x

x

d

x

0

( )

e

1

with λ=D V /3;e
2 the upper limit of the integration of εx ( )2 in the black wall

approximation can be derived from the expression φ ε ε ε= −e x( ( ))2 1 . Since nearly
all the electrons produced in the negative glow plasma belong to this group, the
density of intermediate electrons, ns, and their current js can be estimated from
equation (7.54) as

τ ε∼ ∼n I x j D dn dx( ) , ( ) / , (7.55)s s s e s s

where τs ≈ L D/F
2

e is the time of the free longitudinal diffusion. Within the
approximation

α=dj dx j/ , (7.56)e 0 f

we have

∫α≈ ′ ′ + −j x j x dx j d j x x( ) ( ) [ ( ) ( ( ))]. (7.57)
x

s 0
0

f f f 0

At > Λx f , the intermediate electron current is constant

∫α∼ ′ ′ +j j x dx j d( ) ( ).
L

s
0

0
0

f f

f

It is clear that the EDFs of the three groups of electrons are associated with
different physical mechanisms, so the T x( )e profiles calculated in terms of the fluid
model from the integral energy balance of all electrons (fast, trapped and
intermediate) may yield exotic values of the ionization rates, potential profiles,
particle densities and fluxes, which would have nothing in common with the actual
reality. For the same reason, it seems inconvenient to subdivide the electron current
into drift and diffusive currents, as is normally done within the fluid model. The
potential difference φt between the field reversal points xm and x̃ is about severalTe

values. SinceTe for trapped electrons is rather low, φt is small as compared with the
first excitation potential, although the density difference may be large (see equation
(7.50)). Besides, the reverse field between the points xm and x̃ is so low that even its
mere existence has been questioned until recently. Because the electron current is
transported through the Faraday space by intermediate electrons only, it cannot, in
principle, be expressed via the total electron density and its derivative. All attempts
to introduce thermal diffusion and non-uniform electron temperature (average
energy) do not seem to have much perspective either. The ionization by fast
electrons is valid as far as the point = Λx f , whereas the ionization by intermediate
electrons come into play only at > ¯x x (figure 7.9), at the positive column boundary.

The potential profile in the region between the Faraday space and the negative
glow can be estimated from the equations for ions (7.33), omitting the ion diffusion
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( ) . (7.58)i
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At < ˜x x, the relation between the plasma density and the potential has the form:

φ φ= + − − −n x n x n e x T T( ) ( ) [exp( ( )/ ) exp( / )]. (7.59)s tm e e

The density of trapped electrons is zero at > ˜x x, so the plasma density in equation
(7.58) in this region is determined by the intermediate electrons, n x( )s , and must be
found with the EDF (7.54). There is no ionization by fast electrons in the transition
region, and the source l x( ) in equation (7.58) is provided only by intermediate
electrons. It is clear from figure 7.9 that ionization is involved only at > ¯x x >x̃.
Therefore, a more precise Faraday space length than (7.51) is ( ¯ −x xm). Equation
(7.58) yields a parabolic potential profile near the point ̃x:

φ φ
τ

= − − ̃
⊥

e x e
e x x

b
( )

( )
2

, (7.60)t

2

i d

where the characteristic time of the side wall escape, τ =⊥ R D/[(2.4) ]d d
2 2

a , includes
the ambipolar diffusion coefficient defined by the average energy of intermediate
electrons. It is ε∼ /21 , and the time τ ⊥d is much shorter (by a factor of ε∼ ≪T/ 11 e )
than the respective time in the major Faraday space volume defined byTe. Therefore,
the length of the transition region, ˜ ¯x x[ , ], is smaller than that of the Faraday space.

The precise pattern of the transition between the Faraday space and the positive
column varies with the specific ionization and recombination processes. In the
ionization model, a simple mechanism of standing striation becomes possible when
the generation of charged particles correlates with the excitation rate, like in stepwise
ionization or when the ionization threshold is close to the excitation threshold. If the
Faraday space length LF is comparable with the energy relaxation path λ λ δ=ε / of
intermediate electrons, their energies in the vicinity of the field reversal point x̃ are
much less than ε .1 The ionization begins at a certain point ¯ > ¯x x, ends at =x x0

(figure 7.9) and is periodic in φe with a period equal to ε1 [5]. Such spatially periodic
plasma sources are responsible for a periodic field profile in the positive column that
maintains the EDF periodicity in ε owing to the mechanism of the EDF bunching
[30]. As a result, the periodic field profile and the EDF periodic in ε maintain each
other, producing a stable periodic solution. A similar effect may arise at λ≪ εLF ,
because the intermediate electron sources may greatly differ in their energies.

Another scenario of the reconstruction of the dc field and the formation of a
positive column will occur at elevated pressures, when the particle loss in the
Faraday space is due to the bulk recombination and the discharge gap is longer than
that given by equation (7.48). The second field reversal and the transition to the
column should be expected at >x Λf + lr. This length is small; so the cathode region
is likely to be short, ∼ −− −(10 10 )1 2 cm. However, discharge experiments in pumped
nitrogen [31] show that an abnormally long, from about 1 to 3 cm, Faraday space
may arise here. This paradox can be interpreted as follows. When the collision
frequency is energy-dependent, charged particles are transported via the ambipolar
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drift [32] because of the temperature (field) dependence of the electron mobility. The
drift velocity of electrons is about that of ions and is directed to the anode if the
electron mobility decreases with the field rise, as is the case in nitrogen; otherwise it is
directed to the cathode. This is why the plasma density profile in the Faraday space
at > ¯x x has a large scale, τ∼ ≫l b E lE i r r. There are no trapped electrons in most of
the Faraday space, so the fluid model holds true. From equation (7.33), we have

ν τ− + ′ + − =
=

″D n b En Un E n n
eEb E n j

( ) ( ) / 0,
( ) .

(7.61)a i i

e

The right-hand side of the upper equation (7.61) has an additional term to account
for the neutral gas pumping velocity U relative to the cathode. By substituting the
function E n( ) from the other equation and ignoring the diffusion, we obtain

ν τ+ ′ = −V E n n U n n E n( ( ( ) ) ) ( ( ( ) 1/ ), (7.62)i

where the ambipolar drift velocity is =V b En( )d
dn i . Equation (7.62) describes a

monotonic fall of the plasma density to the value nc for the positive column:

ν τ− =E n( ( )) 1/ 0.i

It is worth noting that the Faraday space shape at high and moderate pressures
follows closely the ν v( ) dependence, so one should expect a short Faraday space
length in gases with a rapidly falling curve ν v( ).

A glow discharge in a gas flow [33] is used to produce a uniform non-equilibrium
medium at elevated pressures. Because most of the Joule heat is transferred from the
electrons to the neutral gas and the heat removal to the walls is hampered at higher
pressures, the difference between the gas temperature and the electron energy
decreases, making the plasma closer to equilibrium. The pumping carries out the
hot neutral gas, increasing the plasma non-equilibrium. Although a gas flow
dischargehas some specificity in suppressing instabilities and relatednon-uniformities,
it does not, in principle, differ from the discharges discussed above. There is, however,
one thing that is worth noting. If the ambipolar drift velocity is directed from the
cathode to the anode, the flow in the same direction increases the path, along which
the perturbations are attenuated according to equation (7.62). A reverse flow may
lead to a nearly complete disappearance of the Faraday dark space [32, 33].

In discharges with heated (thermal emission) cathodes, the potential fall is of the
order of the gas ionization potential. This major feature makes one attribute them to
arcs [1]. However, the distributions of luminosity, field and potential in them are
quite similar to those shown in figure 5.3. The thin cathode sheath is collisionless,
and the outgoing electron flux creates a negative glow region (less intense than with a
cold cathode) and a Faraday space with the reverse field.

In closing, we derived similarity relations allowing one to rapidly estimate basic
parameters of the short glow discharge and predict them under particular conditions
with regard to non-local ionization in the PNG. The effect of such an ionization is
shown to be insignificant: more than half the ions from the PNG return to the
cathode and contribute to the electron emission. The expressions derived here are
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not much more complicated than those following from the Engel–Steenbeck
classical local model and require knowledge of the same parameters (coefficients α
and γ). Relationships to calculate the IV characteristic, as well as the distributions of
the charged particle concentration along the discharge gap, potential, and electric
field (including location of the point of electric field reversal), are presented. It is
shown that, for argon, our model gives a much better fit to experimental data than
the local models for the near-cathode region of the glow discharge.

7.3 Influence of side walls on near-cathode plasma properties [36]
As noted above, the presence of the side walls plays an important role in the course
of various processes and formation of the discharge properties. To a large extent this
is due to the non-local nature of the EDF. One of the important effects can be the
charging of the side walls to the potentials of much larger than the average electron
energy in the bulk plasma as a result of the action of electrons accelerated at the
near-cathode jump of potentials (see, reference [34] and references therein). This
effect is analogous to charging the walls in the afterglow plasma with a non-local
group of energetic electrons produced in some plasma-chemical processes [35].
Below we discuss the influence of the wall on the dimensions of CF, NG and FDS.

In reference [36] to study the influence of the discharge tube radius on the near-
cathode plasma properties and discharge structure dimensions, a full-scale 2D
modeling of a short discharge in argon has been performed. The simulations were
conducted for gas pressure p = 3 Torr and the discharge length L = 1 cm, but with
different tube radii. Besides Rd = 15 mm, tube radii of Rd = 5 mm and Rd = 2 mm
were studied. Corresponding IV-traces are shown in figure 7.10. For convenience,
the x-axis shows current densities, averaged over the tube cross-section, 〈 〉j r, rather
than the discharge current since the tube cross-section area changes with radius. The
calculated numerical values of the voltages, currents, current densities, cathode

Figure 7.10. IV-trace of argon dc discharges for L = 1 cm and Rd = 2, 5 and 15 mm. From [36].
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sheath thicknesses and coefficients of ion utilization (essentially a plasma effective-
ness ratio which determines the fraction of the total number of ions generated in the
plasma which return to the cathode) for the different tube radii of the IV-traces in
figure 7.10 are also given in table 7.2.

Table 7.2. Tube radius, calculated voltage, discharge current, average current density, cathode sheath
thicknesses and a coefficient of ion utilization (δi). From [36].

Rd, mm U, V I, mA 〈 〉j r,
−mAcm 2 d1, mm, equation (7.63) d2, mm, equation (7.64) δi

15 220 10.05 1.42 0.88 0.96 0.98
15 230 64.16 9.08 0.75 0.84 0.95
15 240 100.7 14.24 0.68 0.75 0.94
15 249 124.4 17.59 0.63 0.7 0.94
15 260 174.4 24.67 0.59 0.65 0.94
15 270 231.5 32.75 0.55 0.6 0.94
15 275 263.9 37.34 0.53 0.58 0.94
15 280 298.4 42.22 0.51 0.56 0.94
15 185 336 47.53 0.5 0.54 0.94
15 290 376.8 53.31 0.48 0.52 0.94
15 293 406.8 57.55 0.47 0.51 0.94
15 295 421.1 59.57 0.47 0.51 0.94
15 300 468.8 66.31 0.46 0.49 0.94
15 305 642.2 90.86 0.37 0.38 0.96
15 310 859.8 121.6 0.35 0.36 0.96
15 320 1373 194.3 0.32 0.32 0.96
15 330 1649 233.3 0.3 0.31 0.96
5 230 1.28 1.62 0.85 0.89 0.8
5 240 3.06 3.9 0.76 0.86 0.8
5 250 6.88 8.77 0.69 0.8 0.79
5 260 11.36 14.46 0.63 0.73 0.79
5 275 19.47 24.79 0.56 0.65 0.79
5 290 29.26 37.26 0.51 0.58 0.8
5 300 37.05 47.18 0.48 0.55 0.8
5 310 45.62 58.09 0.46 0.52 0.8
5 325 60.33 76.82 0.43 0.48 0.81
5 340 78.12 99.46 0.41 0.45 0.81
5 350 89.59 114.1 0.4 0.43 0.81
5 360 96.93 123.4 0.4 0.41 0.81
2 300 1.51 12 0.62 0.73 0.47
2 310 2.5 19.93 0.55 0.66 0.5
2 320 3.59 28.53 0.51 0.62 0.52
2 330 4.81 38.27 0.49 0.57 0.53
2 340 6.25 49.72 0.46 0.54 0.54
2 350 7.93 63.09 0.44 0.51 0.55
2 360 9.85 78.42 0.42 0.48 0.56
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It can be seen that the IV-traces are displaced to higher voltages with decreasing
tube radius. The discharge voltage increases with decreasing tube radius, for a
constant current density, 〈 〉j r, while the current density increases with tube radius at a
constant discharge voltage. The decrease in tube radius leads to an increase in wall
losses of charged particles requiring an increase in the discharge voltage to maintain
the same current density.

The 2D ion density distributions at a constant voltage of U = 300 V for Rd = 15
mm (a), =R 5 mmd (b) and =R 2 mmd (c) are shown in figure 7.11. Due to the
symmetry, only half of the tube radial dimension is shown in the figure. Axial
electron and ion density distributions, ne (red) and ni (blue), respectively, on the axis
of the discharge with 〈 〉j r = 48 mA cm −2 and different tube radii are shown in figures
7.12(a)–(c).

The axial profiles in figure 7.12 are typical for abnormal discharges. The cathode
of the abnormal discharge is completely filled with the cathode sheath near the
cathode at distance d. The distance d (denoted as d1) was found from the condition
where

=n d n d( ) 0.5 ( ). (7.63)e 1 i 1

Almost the entire applied potential drop U is in the cathode sheath. With the
cathode sheath so close to the cathode, the ions transverse displacement (Δr) for
their drift time to the cathode, in the strong electric field of the cathode sheath,

λΔ ≈ ≪r
d d

1,i

is negligible. Here, λi is the mean free path of an ion. Thus, all the ions move in the
cathode sheath toward the cathode along horizontal flow lines, even in tubes of small
radius and all ions, from the cathode sheath to the cathode, return to the cathode
with negligible wall loss. Therefore, a 1D solution of the Poisson equation is
sufficient to estimate the cathode sheath parameters. Since the cathode sheath
electric field is strong, the square root dependence of the ion drift velocity
( =v k Ei i ) is more appropriate, and the current density can be expressed as

π
= −j

p
k p U
pd

2
3

( )
( )

A (cm Torr) .
2

i
1.5

2.5
2

For an Ar discharge at the pressure p = 3 Torr, the average current density is

〈 〉 ≈ −j U d2330 / mA cm , (7.64)1.5
2

2.5 2

where d2 is the cathode sheath thickness in centimeters. The cathode sheath thickness
d2 from equation (7.64) is given in table 7.2 and is seen to be in good agreement with
the numerical simulations. The above analysis shows that even in a 2D model, the
processes in the cathode sheath are determined principally by their longitudinal
coordinate and thus a 1D model is sufficient to determine the cathode sheath
parameters.
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Figure 7.11. 2D profiles of positive ion density of at U = 300 V for Rd = 15 mm (a), 5 mm (b) and 2 mm (c).
The isolines from 1 to 10 on plots (a), (b) and (c) correspond to increasing the plasma density from 2.5 ×1010

(1) to ×2.5 1011 (10) cm −3 with increments of ×2.5 1010 cm −3. From [36].
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Figure 7.12. Axial of profiles of ne (red) and ni (blue) densities of with discharge current j = 48 mA cm −2 for
Rd = (a) 15 mm, (b) 5 mm and (c) 2 mm. Also, the axial profiles of excitation rate Rexc are shown in arbitrary
units. Vertical dashed lines show the borders of discharge regions from left to right: CF, NG, FDS, and AF for
(a) and (b) or PC for (c). From [36].
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The different situation with other regions of the discharge. From figures 7.11 and
7.12, it can be seen that the density of charged particles, on the central axis, peaks
near the cathode sheath then decreases smoothly toward the anode. The ion density
profile in the quasi-neutral discharge region of a single-component plasma can be
found from an ambipolar diffusion equation.

Analysis of reference [36] shows that for π>R L2.4 /d (or >R L/ 0.76d ) the radial
loss on the plasma density balance is small. The plasma density is almost
independent of the transverse dimension which results in a radial distribution that
is nearly constant in the central region and decreases only near the wall. That is seen
for the =R 15 mmd radial profile in figure 7.13, which shows the charged particle
radial density distribution with 〈 〉j r = 48 mA cm −2 for =R 15 mmd (a), =R 5 mmd
(b) and =R 2 mmd (c) at the axial position of maximum plasma density for each
tube radius.

Therefore, for cases when π>R L2.4 /d , a 1D model should give an adequate
description of the dc discharge. However, as the tube radius decreases, radial losses
begin to play a notable role. The radial and longitudinal spatial distributions of the
charged particle densities for a tube of radius of 5 mm (figures 7.12(b) and 7.13(b))
change if the spatial distribution is larger than for 15 mm tube (figures 7.13(a) and
7.12(a)). The higher charged particle losses, that accompany the tube radius
decrease, decreases the longitudinal dimensions of the negative glow and Faraday
dark space regions. To sustain the discharge, the positive column arises as the
negative glow and Faraday dark space dimensions decrease in figure 7.12(c).

The radial distributions similarly change with decreasing radius. Figures 7.13(b)
and 7.13(c) show the radial distribution for =R 5d and =R 2 mmd , respectively.
The distributions decrease more gradually with radial position than the 15 mm tube,
i.e. the density roll-off is more gradual resulting in a more peaked distribution
becoming approximately Bessel-like at =R 2 mmd . Similar changes in the charged
particle density distributions are observed for fixed voltage in figure 7.11. Thus, for
the tube with radius comparable to the length wall effects start to impact charged
particle density distributions.

For discharges with radius <R L0.76d wall effects cause deformation of the
longitudinal and radial spatial density distributions and charged particle flows in the
plasma. This can lead to a number of unexpected phenomena in such a self-
consistent system as a gas discharge. Since the charged particle density distribution
depends on radial position, the cathode sheath thickness, obtained from the
condition =n d n d( ) 0.5 ( )e i , will depend on radial position. This sufficiently para-
doxical fact is illustrated in figure 7.14, which shows the cathode sheath thickness for

=R 15 mmd (a), =R 5 mmd (b) and =R 2 mmd (c) tube radius, at constant average
current density, j = 48 mA cm−2.

Thus, the cathode sheath thickness, d, in the glow discharge does not have a
constant value over the cross-section, but depends on the radius. Furthermore,
though the lines of ion current in the cathode sheath are horizontal, it does not mean
that the radial density distribution and ion current in the cathode sheath and on the
cathode surface are transversely uniform (as is assumed in usual 1D models). The
absolute value of current lines in the cathode sheath, as in the plasma, decreases
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Figure 7.13. Radial profiles of electron and positive ion densities at axial coordinates of maximum charged
particle density with < >j = 48 mA cm−2 for Rd = 15 mm (a), 5 mm (b) and 2 mm (c). From [36].
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Figure 7.14. Cathode sheath thickness radial profile for Rd = 15 mm (a), 5 mm (b) and 2 mm (c) with< >j = 48
mA cm−2. The dashed vertical line shows the tube position. From [36].
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from the center axis of the discharge to the periphery. In turn, this must lead to
transverse inhomogeneity of the ion current density on the cathode surface which is
shown in figure 7.15 for constant voltage, U = 300 V.

Thus, the results of simulations [36] and the above analysis show that the 2D
profiles of the parameters of the region near the cathode of an abnormal dc glow
discharge depend on the relationship between the cathode sheath thickness, d, the
length of the discharge volume, L, the tube radius, Rd, and the characteristic length
of ionization decrease in the negative glow plasma, λi. Three cases have been found
(assuming that coefficient 0.76 above may be replaced by unity).

(1) For >R Ld , the results of simulations with a 1D model give satisfactory
accuracy. An analytical 1D model [37], which takes into account non-local
ionization in the plasmaof the negative glow is adequate to determine the fundamental
characteristics of an abnormal dc glowdischarge.However, the cathode sheath cannot
be assumed to be self-contained and independent of the plasma and a condition for the
self-maintenance of the discharge on the basis of local models is not applicable.

(2) For the tube radius comparable to or just smaller than the discharge gap,
⩽R Ld , the loss of charged particles to the walls significantly affects not only the

fundamental characteristics of the plasma near the cathode, but also the cathode
sheath. If λ < Ri d, practically all the ions produced in the negative glow plasma due
to non-local ionization, return to the cathode and coefficient of ion utilization δ < 1i .

(3) For long narrow discharges <R Ld on the right side of the Paschen curve, the
ion utilization coefficient, δ < 1i , will be small when λ<Rd i. It should be noted that
in this case, the cathode sheath can be considered nearly self-contained and the local
condition of self-maintenance in the form of von Engel–Steenbeck is acceptable.

7.4 Active control of plasma properties with application of external
voltage to the side wall [38, 39]

This section demonstrates the application of external potential to the side wall
(active boundary) for controlling plasma properties. To demonstrate those effects in
plasma of short dc discharge with cold cathode, modeling the discharge with
application of different voltages to the discharge wall has been performed in [38].
The modeling has been performed in argon gas discharge with 1 Torr pressure. The
length of the gas chamber was taken as 12 mm and radius was 12.5 mm. The wall
was divided into three parts. The central part was metallic from 0.5 to 11.5 mm with
a constant potentialVw. The side fragments (near the cathode and anode) were taken
as dielectric ones with dimensions of 0.5 mm. Their potential can be different in
different points of the surfaces. This model corresponds to the experimental device
shown in figure 7.16.

Three regimes have been modeled. In all three regimes, the anode potential is
equal to 0 V and the cathode potential is −180 V. In regime ‘A’ the wall potential is
also equal to 0 V and therefore coincides with the anode potential. In regime ‘B’ the
wall potential is −25 V. In the last regime the ‘C’ wall potential is −50 V. As an
example of calculations, a typical result of 2D modeling of argon metastable density
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Figure 7.15. Current density radial profile on the cathode for U = 300 V. Rd = 15 mm (a), 5 mm (b) and 2 mm
(c). The dashed vertical line shows the tube position. From [36].
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is shown in figures 7.17. In those figures, the top plot corresponds to regime ‘A’, the
middle plot corresponds to regime ‘B’, and the bottom plot corresponds to regime
‘C’. To make the modification of plasma properties more visible, figures 7.18, 7.19
and 7.20 show the comparison of axial plasma properties for the different regimes.

It is possible to see from figures 7.2 and 7.18 that applying more negative voltage
to the wall does not significantly change argon metastable-atom density. In contrast,
figure 7.4 shows that slow, thermal electron density (the same for ions) is
significantly reduced by applying increasingly more negative potential to the walls.
Figure 7.5 shows considerable increasing electron temperature in the plasma volume
with more negative wall voltage. Interpreted together, the ratio between slow,
thermal electron (ion) density and metastable-atom density decreases with increasing
negative wall voltage and increasing slow-electron temperature.

An explanation of the observed phenomenon is as follows. Energetic electrons
leave the cathode sheath with the energy of about 180 eV and diffuse in the direction
of the anode and walls while simultaneously ionizing and exciting metastable states
of neutral atoms in the volume. During this process, they reduce their energy and
create a continuous electron spectrum of energetic electrons at EDF. Only the
energetic electrons with energies ε > eVw can reach the walls. Less energetic
electrons can go to the anode only. Therefore, as the wall potential is essentially

Figure 7.16. Schematic diagram of an experimental device consisting of cathode C, anode A, and cylindrical
wall W. Typical structures of the discharge plasma include the negative glow NG and anode glow AG,
respectively, and Faraday dark space FDS. The cathode sheath boundary, located in the NG, is indicated by
the dashed line. From [38].
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Figure 7.17. 2D distribution of the metastable-atom density (in the units of 1011 cm−3). Wall potential is 0 V
(top, regime A), 25 V (middle, regime B) and 50 V (bottom, regime C). From [38].
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less than the energy of the most energetic electrons, the negative voltageV ,w applied
to the conducting (active) walls, can modify significantly the trapping of the low-
energy part of energetic electrons (the minority of the energetic electrons), while not

Figure 7.18. Axial distributions of metastable density. [38].

Figure 7.19. Axial distributions of electron density. From [38].
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essentially changing the high-energy (majority) part of those electrons. As a result,
the excitation and ionization production depends only weakly on the applied
potential to the wall. Metastable atoms disappear at the walls and during binary
collisions (Penning ionization), independent of the wall potential. Therefore, the
density of metastable atoms should not depend on negative wall potential, as
confirmed in figures 7.2 and 7.18.

Similarly, the production of ions (slow, thermal electrons) depends weakly on
the negative voltage applied to the walls. However, the heating of slow electrons is
mostly due to the low-energy part of energetic electrons, as their collision
frequency with slow electrons is nearly inversely proportional to ε1.5. At the
same time, varying the negative wall potential modifies particularly the low-
energy part of the energetic electrons and changes the heating of the slow, thermal
plasma electrons by the energetic electrons (as the heating is mostly due to the
low-energy part of those electrons), which consequently changes the electron
temperature and their diffusion rate to the anode. Therefore, due to the additional
heating of the slow electrons (see figure 7.5), their diffusion to the anode will be
faster and their density goes down with increasing negative voltage applied to the
walls. As a result, while the density of metastable atoms depends weakly on wall
voltage, the density of slow electrons (ions) depends strongly on wall voltage,
significantly reducing with increasing negative wall voltage. Figure 7.21 shows
both behaviors more clearly.

Reference [39] provides some confirmation to the above modeling. A typical
result of the experiments measuring the electron temperature Te as a function of
applied wall potential with respect to the wall voltage (using argon gas, a discharge
current of 5 mA and gas pressure of 2.2 Torr) is provided in figure 7.22. The
application of additional negative wall voltage leads to an increase in the electron

Figure 7.20. Axial distributions of electron temperature. From [38].
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temperatures caused by the partial trapping of the energetic electrons (increasing the
lifetime of the energetic electrons in the plasma volume) and energy transferring
collisions being heated by slower electrons. Consequently, it is possible to increase
the electron temperature by increasing the absolute value of the applied negative

Figure 7.21. Axial distributions of densities of slow electrons, ions, and metastable atoms for regimes A (top)
and C (bottom). From [38].
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potential. Because this process depends primarily on the applied voltage, it is
possible to have a regulation of the electron temperature.

Thus, the application of negative voltage to the discharge walls could change the
trapping of the low-energy part of the energetic electrons that are emitted from the
cathode sheath and that arise from the atomic and molecular processes in the plasma
within the device volume. The low-energy part of the energetic electrons is
responsible for heating the slow, thermal electrons. At the same time, the production
of slow electrons and metastable atoms is mostly due to energetic electrons with
higher energies. The variation of electron temperature results in a changing decay
rate of slow, thermal electrons, while the decay rate of metastable atoms and
production rates of slow electrons and metastable atoms are practically unchanged.
The ability to control the electron/metastable density ratio and the electron
temperature represents an important capability and is the main result here.

7.5 Is negative glow plasma of a direct current glow discharge
negatively charged? [40]

It is well-known, that in any bounded plasmas, when electrons and positive ions are
lost at the boundaries, the diffusive fluxes of the charged particles are directed from
the plasma center toward the walls. In this situation, the ambipolar electric field has
to decelerate the electrons, aligning their flux with the positive ion flux. To create
such an electric field, the charge density of the plasma must be positive. At the same
time, almost all textbooks on gas discharge physics indicate that the negative glow
and/or Faraday dark space plasmas of a dc glow discharge are negatively charged.
Furthermore, the charge separation there is even stronger than in the positive
column (see, e.g. figure 14.1 in [41]). This statement is in contradiction with the
above consideration that in simple plasma charge must be positive. Furthermore,
because the density of charged particles in the NG plasma exceeds the corresponding
density in the PC region, it is difficult to expect greater deviation from the quasi-
neutrality anywhere in the NG than in a PC region.

Figure 7.22. Dependence of electron temperature on wall voltage in argon discharge with current of 5 mA and
gas pressure of 2.2 Torr. From [39].

Introduction to the Kinetics of Glow Discharges

7-47



This issue was studied in detail in [40]. To do that the distributions of the potential
(φ) and the electric fields (Ex) along the discharge gap (x) should be considered as the
magnitude and sign of the space charge (ρ) is determined by the Poisson equation.
Then, the 1D model of the discharge predicts a negative space charge in the NG [41].
However, in this situation, it is unclear what physical mechanisms may provide the
plasma quasi-neutrality. To resolve this situation it was shown in [40], that an
adequate description of diffusive glow discharges is possible only in 2D/3D models
(the 1D model gives the solution only in the presence of volume recombination).

To demonstrate the above considerations, the 2D numerical simulation of the dc
glow discharge in helium in a cylindrical tube has been performed. The results of the
simulation that demonstrates the positive charge density in the NG region are shown
in figure 7.23. At the gas pressure of p = 1 Torr and =U 1 kV0 , an abnormal glow
discharge with the current I = 982 μA was obtained. As observed from figure 7.23,
the gap is long enough and contained all of the main parts of a dc glow discharge:
CF, NG, FDS, PC and AF. The PC in this case is quite short, but pronounced.
The vertical dashed lines at figure 7.23 (as well as figures 7.24 and 7.25) indicate the
boundaries of the main discharge areas. The NG and FDS regions are joined in the
figures. The radial profiles of the electron density are similar to the Bessel profiles
both in the PC and NG regions. The n ni e profile, which is proportional to ρ, is
presented in figure 7.23. It can be observed that ρ x( , 0) is positive for all x, as
expected.

Figure 7.24 shows axial profiles of electric potential and axial component of
electric field. It can be observed that φ x( , 0) had an inflection point, and E x( , 0)x

had one decreasing interval and two increasing intervals. These profiles were very

Figure 7.23. Axial profiles of the electron density ne, ion density ni, and their difference n ni e. In this and
subsequent figures, the vertical dashed lines mark the main discharge regions. From [40].
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similar to those that are often cited in the literature on the classical dc glow discharge
in a tube. Figure 7.25 shows the axial profiles of the terms ∂ ∂E x/x , ∂r rE r(1/ ) ( )/r and
ρ ε/ 0 in the Poisson equation

ρ ε ε∂ ∂ + ∂ =E x r rE r/ (1/ ) ( )/ / /x r 0 0

Figure 7.24. Axial profiles of electric potential (left scale) and axial component of electric field E x( , 0)x (right
scale). From [40].

Figure 7.25. Axial profiles of the terms in the Poisson equation (2): ∂ ∂E x/x (1), ∂ ∂r rE r(1/ ) ( )/r (2), and charge
density ρ ε/ 0 (3). From [40].
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in the plasma (NG, FDS, and PC regions). It can be observed that ∂ >r rE r(1/ ) ( )/ 0r

at all x, ∂ ∂E /x changes sign, and ∣ ∂ ∣ > ∣∂ ∂ ∣r rE r E x(1/ ) ( )/ /r x at points, where
∂ ∂ <E x/ 0x . Thus, ρ >x( , 0) 0 at all x, whereas the 1D model of discharge predicts
that ρ < 0, where ∂ ∂ <E x/ 0x . The calculations showed that ρ > 0 not only on the
discharge axis but also in the whole plasma region. This result is due to a monotonic
increase of ∂r rE r(1/ ) ( )/r with respect to r at fixed x.

Thus, in the investigated conditions, the discharge plasma had a positive charge,
including the NG plasma, whereas the axial dependence of the axial electric field is
non-monotonic. The traditional interpretation that states a negative charge of the
NG plasma is based on analogies with a simple 1D model of glow discharge,
whereas the actual discharges are always 2D. The radial term in divergence with the
electric field can provide a positive charge density. It is demonstrated that the fact
that space charge is negative in such classical objects as the NG plasma has no
convincing evidence.

7.6 The anode region
In contrast to the cathode, there is no ion emission at the anode, =j 0i . The ion
current in the anode region varies from zero to the value in the positive column,
which is less than one percent of the total current. The net ionization rate in the
anode region is two or three orders of magnitude lower than in the negative glow. As
a result, the voltage in the anode region is low, less than 10 eV and the luminosity in
it is essentially less pronounced than in the PC. Nevertheless, phenomena occurring
in the anode vicinity are as important for the discharge maintenance and stability as
those in the cathode region. The experimental work on them, however, has not been
as intensive, so our current understanding of the physical processes in it is far from
satisfactory. Even the physical reasons, which determine the sign of the anode
potential fall, still remain unclear.

There are two main scenarios for the events on the anode. One dates back to
Langmuir [42]. It states the following: since the electron current, je, in the plasma
remains practically constant in the anode region, it is much lower than the thermal
(random) current. It would be quite natural to expect that the electric field in the
anode sheath hinders the electron motion, and the negative anode potential fall,
φ < 00 , is a few times larger than T e/e . The random current of thermal Maxwellian
electrons is described as

⎛
⎝⎜
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⎠⎟π

=j en
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and the value of φ < 00 is determined by

φ=j j e Texp ( / ).e
(th)

0 e

The Langmuir model implies the presence of the ion space charge in the anode
sheath. It leads to the field reversal and the formation of a potential well for
electrons. The ion flux at the anode is directed to the anode. A population of cold
trapped electrons similar to that in the negative glow arises in the anode vicinity. To
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the best of our knowledge, there has been no consistent calculation of the plasma
parameters in this model.

The other model is based on the fact that the escape of fast electrons to the anode
would distort the Maxwellian EDF, making the problem essentially kinetic even at
relatively high plasma densities. Von Engel believed that the solution to this problem
couldbe foundwith amonotonic potential profile [43]. In that case, the ionfluxwill rise
monotonically with distance to the zero value at the anode surface. The plasma is,
therefore, created due to the ions generated in a thin space charge sheath of the anode.
The ionization here must be far more intense than the average ionization in the
column. The anode fallφ0 is positive and its value is determined by a sufficient number
of ions produced in the sheath in order to generate the ion fluxΓi necessary for bringing
a quasi-neutral plasma to life. To produce the necessary ion flux in the close vicinity of
the anode, the potential fall must be of the order of the ionization potential ε .i The
space charge will then be created by electrons, in contrast to the cathode fall.

This problem was investigated experimentally by Klarfeld [44]. Negative φ0
values and a smooth profile of the plasma glow were observed at high currents (see
also [42]), whereas at low currents φ0 was positive. A thin bright layer could be seen
immediately at the anode surface, which was interpreted as being due to a more
intense ionization in the sheath. These results are illustrated in figure 7.26. A lower
pressure and a smaller anode area were also found to stimulate the transition from
positive to negative φ0 [44]. The physical mechanism of these phenomena still
remains obscure. Unclear is also the mechanism responsible for a normal current
density across the anode [45]. What is quite clear, however, is that the structure and
even the sign of the anode fall are determined by the subtle characteristics of the
ionization kinetics.

An attempt to construct a kinetic sheath model of the positive anode potential fall
in the collisionless case was made in [46]. The anode sheath in this case is thin with

Figure 7.26. Anode fall in Hg discharge. Tube radius is 1.5 cm. Current is 10 A (1), 3 A (2), 0.3 A (3), 1 A (4),
0.1 A (5) and 0.05 A (6). From [15].
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respect to the electron and ion mean free paths, and the non-local EDF in the
positive column is

∫ ν
= × ′

′ ′

ε
f w

dW
V w w

( ) const
( )/ ( )

(7.65)
w

0 3

1

without elastic losses. This situation is similar to the experimental conditions
described in [44]. The key contradiction is that the collisionless ion flux generated
in the anode vicinity has a density, which falls off towards the plasma. On the other
hand, the electron flux with the EDF (equation (7.65)) without elastic losses gives an
electron density falling off towards the anode. So the space charge density which was
negative right at the anode rises towards the plasma, and a smooth plasma–sheath
matching becomes impossible.

In [48], it is concluded that the phenomenon of the opposite field and the sign of
the anode fall in short discharges are interrelated. In this case, two main scenarios
may be expected:

(1) At low pressures, when there is one point of the inversion of the sign of the
electric field (FR) in the near-cathode plasma of NG and FDS at the maximum of
the plasma density, the anode fall is negative and the magnitude of the AF is small,
there is no ionization and the anode area is dark.

(2) At increasing pressure, two FR points, a positive AF sign, and the potential
fall comparable to the ionization potential of the gas should be expected. Intensive
ionization takes place directly at the anode and glows brightly.

In [48], relatively simple probe measurements of the floating potential and optical
observations of the anodic glow were proposed and implemented. These measure-
ments enable a quick determination of which of the above scenarios can be
implemented in practice. In determining the spatial distribution of the plasma
potential, the second derivative of the probe current, the zero of which is identified
with the space potential at a given point, is usually measured. However, measuring
the second derivative of the probe current is a rather complex experimental task,
especially in the cathode region of a discharge.

The measurements in [48] were carried out in a cylindrical glass discharge tube
with radius Rd = 37 mm with a movable flat molybdenum cathode with a diameter
of 56 mm and a flat molybdenum anode with a diameter of 60 mm. A movable
cylindrical probe with a length of 3 mm and a diameter of 0.2 mm, which emerges
from the center of the anode and allows one to carry out measurements along the
axis of the discharge, was located in the tube. The maximum distance between the
anode and cathode was 165 mm.

In figure 7.27, the distributions of the space potential along the length of the
discharge gap at two typical investigated pressures of nitrogen (20 and 35 Pa,
respectively) are shown. Simultaneously with the measurement of the second
derivatives, the floating potential of the probe relative to the anode was determined.
Figure 7.27 shows that, at a lower gas pressure, the measured potentials are small in
absolute value and differ from the anode potential in the range from 1 to 2 V.
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The observed pattern corresponds to scenario 1, i.e., a single point of field
inversion and a negative anode fall. At the same time, it can be seen that, when the
pressure increases, there is a significant rise in the measured potentials to their
absolute values relative to the anode, which corresponds to the ionization potential
of the gas. This corresponds to scenario 2, i.e. the formation of the second point of

Figure 7.27. Potential distribution of the space (1, 3) and floating potential (2, 4) along the length of the
discharge gap (nitrogen, the pressures are 0.2 (1, 2) and 0.35 Pa (3, 4), discharge current is 10 mA), x is the
distance from the cathode. (1) Potential of the space, pressure is 20 Pa; (2) floating potential, pressure is 20 Pa;
(3) space potential, pressure is 35 Pa; (4) floating potential, pressure is 35 Pa. From [48].

Figure 7.28. Dependence of the floating potential on pressure (nitrogen, discharge current is 10 mA, x = 10 cm
to the cathode). After [48].
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the field inversion in the plasma and further again in the direct field toward the
anode and a positive anode fall. In both cases, the spatial distributions of potential in
plasma itself behave similarly, changing little in magnitude and forming weak
potential wells for electrons with a depth from 1 to 2 eV. Since the electron
temperature Te in the near-cathode plasma of NG and FDS is low (<1 eV), the
difference of potentials, which corresponds to several T e/e , also has a small value.

A sharp change in the absolute value of the plasma potential relative to the anode
in the transition from scenario 1 above to scenario 2 can be seen from the results of
measurements of the dependence of the floating potential on the gas pressure for one
point inside the gas discharge tube (figure 7.28). It can be seen that, at low nitrogen
pressures (from 10 to 29 Pa in this study), the floating potential changes little and
remains small (less than 2 V). At the same time, with a pressure increase from 29 to
55 Pa, a sharp increase to 20 V is observed, followed by a more gradual one with gas
pressure in absolute value up to 70–80 V. Apparently, this growth is associated with
an increase in the length of the direct field area and the potential drop arising there.
Figure 7.29 shows the glow discharge for the conditions of figure 7.27. It can be seen
that, at low pressures, when ⩽ ΛL f (Λf is the characteristic scale of the decay of
plasma density in FDS) the anode area is dark and the area of negative glow extends
up to the anode. At the same time, when the pressure rises > ΛL f , the dark area of
the Faraday dark space and glowing film are observed directly near the anode.

Thus, the formation of the potential well for slow electrons on the spatial
distribution of the space potential in the near-cathode plasma of NG and FDS
can be predicted by the nature of the behavior of the floating potential depending on
the experimental conditions. When the floating potential is low in absolute value (in
our case, less than 2 V), the anode fall is negative (repulsive electrons). When the
floating potential relative to the anode reaches tens of volts in absolute value, it can
be stated that the anode fall is positive. In turn, as a result of simple visual
observations of the nature of the anode glow, the following conclusions can be
drawn.

In the case when the anode is dark, the potential well for electrons up to the anode
and a negative anode fall that is small (less than a few volts), the absolute value

Figure 7.29. Photograph of discharge for conditions of figure 7.27. From [48].
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should be expected. At a bright anode glow, a positive anode fall should be expected,
the value of which is of the order of or higher than the gas excitation potential.
However, in this case, it is technically possible that the direct electrical field along the
entire discharge gap exists (from the cathode to anode) when the potential of the
plasma changes monotonically and the presence of the potential well is the most
probable.
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Chapter 8

Positive column of dc glow

Among the numerous glow discharge manifestations the dc positive column (PC)
was, maybe, the most familiar, and what is more important, the most thoroughly
investigated plasma object. For more than a century of PC research, immense
amounts of information were stored. The simplicity of its realization, simple one-
dimensional geometry, its stationarity, the relative cheapness of its experimental
investigation and diagnostics have made the PC a traditional benchmark and testing
field for many novel ideas and diagnostics in plasma physics.

8.1 Main properties of dc glow positive column
The PC connects the cathode and the anode regions of the discharge; it represents the
conducting media, which transports current between the cathode and the anode [1]. If a
discharge tube is long enough, the PC occupies its main part; only the PC length LPC

goes up, when the discharge gap L becomes longer. The potential profile in the
electrode regions doesn’t depend on LPC; the discharge voltage varies only due to the
LPC variation. Only when the gap L is so short that there is no place left for the PC and
it disappears, do the electrode regions start to overlap and essential discharge
rearrangement occur (see chapter 7). It is said that in spite of the fact that the PC
often represents the longest discharge part, generally, it is unnecessary for discharge
maintenance. In other words, the PC represents an autonomous self-replicating system.

The PC properties are practically independent of the electrode characteristics (for
example, material, size, form and temperature) and on the discharge volume form
(twisted or straight). The classic PC, which has been investigated for more than a
century, operates in cylindric dielectric tubes (typically made from glass or quartz) and
its radius usually ranges from less than one millimeter (capillary discharge) up to several
centimeters. The tubes are filled with various gases, metal vapor or their mixtures and
typical pressure values are from mTorrs up to atmospheric pressure and higher.
Discharge current may be in a large current range from micro-amperes up to tens of
amperes.
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The PC is widely used in the lighting industry, as an active media of gas and
plasma lasers, in plasma-chemistry, and in spectral analysis. It is also widely used in
various branches of modern technology, such as surface treatment and coating,
sputtering, thin film formation, etc.

The electric potential profile in a stationary longitudinally-uniform PC is equal to

φΦ = − +r x E x r( , ) ( ). (8.1)x

The longitudinal field Ex maintains maintains the plasma generation to balance the
charged particle loss. The Joule electron heating in this field forms the EDF and the
longitudinal (mainly electron) current. The radial ambipolar field E(r) = − ∇φ(r) is
responsible for maintenance of plasma quasi-neutrality, by forming equal electron
and ion radial fluxes and accumulating the surface charge. At low current and/or
pressure, the charged particle removal is controlled by the radial ambipolar diffusion
with subsequent recombination on the tube wall. As current/pressure rises, the
contribution of the volumetric recombination to the removal of charge particles
increases. The observed dependences of the reduced electric field Ex/p (which is
proportional to the electron energy gained on the mean free path) on pRd, which
represents the R/λ ratio, for the PC in several noble and molecular gases are shown in
figure 8.1 [1]. The plasma density, aswell as the current density j and plasma luminosity,
are usually maximal at the tube axis and go down towards the tube wall. The radial
field equals zero at the axis and goes up towards the wall, reaching its maximal values
in the wall-adjacent space-charge sheath. The voltage between the tube axis and wall
Φ w = Φ pl + Φ sh, where Φ pl is the voltage over the quasi-neutral plasma and Φ sh is
the voltage over the sheath. It suppresses the radial electron diffusion. Here, the value
of Φw is of the order of Te/e. As examples, in figure 8.2 [1, 2] the radial profiles of
plasma potential in PC of mercury are shown, which are typical for the low and
medium-pressure discharges.

The first PC theories were proposed by Langmuir and Tonks [3] for the free-flight
or free-fall (Rd ≪ λi) regime and by Schottky [4] for the diffusive case, when the

Figure 8.1. The observed electric field Ex/p in noble (a) and molecular (b) gases in PC dependent on pRd. In (a)
gases: He (1), Ar (2), Ne (3) and Xe (4); the numbers near the curves are the current values in mA. After [2].
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radial ion motion is controlled by diffusion (Rd ≫ λi). In both cases the stationary
condition of the PC maintenance reduces to

ν τ = 1. (8.2)i s

In the free-flight regime the quasi-neutral equation for a cylindrical PC is [2, 5]

⎛
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e 0

i
e

Its solution [3] has the electric field singularity, which coincides with the plasma–
sheath interface [5]. The corresponding voltage at the plasma boundary is

Φ = T
e

1.155
. (8.4)pl

e

Neglecting the sheath thickness with respect to Rd, if follows from equation (8.3)
that (8.2) will be

ν =
R

0.772
. (8.5)

T
M
2

i

e

d

So the average ion velocity at the plasma–sheath interface is =u T M1.14 /i e , which
practically coincides with the Bohm criterion. The average plasma lifetime is
τ = R T M/ 1.19 /s d e .

In the diffusive case the solution is given by [4]
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The plasma voltage in the diffusion-dominated case is
⎛
⎝⎜
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⎠⎟λ

Φ = T
e
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ln . (8.7)pl

e d

i

Figure 8.2. The potential profile in the PC of mercury vapor for the free-fall case pRd =3 × 10−4 Torr cm (a)
and for the diffusion-dominated ion motion pRd =3 × 10−2 Torr cm (b). Solid lines are calculations with
Langmuir–Tonks theory (a) and Schottky theory (b). Points are experiment. After [2].
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The potential profiles corresponding to equations (8.3) and (8.6) are shown by the
full lines in figure 8.2. The sheath voltage in the case of the collisionless sheath is

Φ ≈ kT
e

M
m

ln . (8.8)sh
e

Thus, in equation (8.2) the average plasma lifetime in the Langmuir-Tonks
theory is expressed via the Bohm speed (8.5) and in the Schottky theory is
expressed via time of the ambipolar diffusion (8.6). There are interpolation
formulas combining both theory. For estimation, the following formula can be used,

= +
τ ( )D / ).a

R

R
1

2.405s

d

Te
M

d
2

1.19

A more accurate approximation for τs was given in [6]

⎛
⎝⎜

⎞
⎠⎟τ

= D
R1

/
2.405

, (8.9)
s

s
d

2

where for the effective coefficient Ds one can use an interpolation
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with Da = Di(1 + Te/T0) being the ambipolar diffusion coefficient and νia the ion-
neutral collision frequency. Relationship (8.2) defines the ionization frequency νia in
terms of the PC external parameter pRd. For the Maxwellian EDF the frequency νi
depends on the electron temperature Te. If the energy dependence of the ionization
cross-section is linear, σi(w) = σi0(w/εi − 1), we have
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So equation (8.2) is of the form of the transcendent equation for T ,e which is of the
order of several eV. Thus equations (8.2), (8.7) and (8.11), complemented by the
equation for the (electron) current

≈ =j en u en b E, (8.12)e e e e

allow the calculation of all plasma parameters if the cross-section set is given.
In the electron energy balance, the energy is supplied by the Joule heating in the

field Ex. At low pressure the energy loss is controlled by the inelastic electron-neutral
collisions, which result in excitation of the neutrals. As usual this energy is quickly
emitted by radiation and the temperature T0 of the neutrals remains low. The
temperature T0 is controlled by the thermal conductivity to the tube wall and is
maintained close to room temperature. On the other hand, as the plasma is
generated by the electron impact ionization, the electron energies are to be of the
order of ε ,i i.e., the EDF energy scale is to be of the order of a few eV. So the electron
energies in the PC are one or two orders of magnitude higher than T .0

In figure 8.3 the neutral gas temperature at the PC axis in noble gases is presented
dependent on the discharge current. As in molecular gases a considerable fraction of
the energy, transferred from electrons to excitation of the rotational and vibrational

Introduction to the Kinetics of Glow Discharges

8-4



Figure 8.3. The current dependence of the gas temperature T0 (K) at the tube axis for pRd = 24 Torr cm in
noble gases: argon (red), helium (green) and neon (blue). From [2].

Figure 8.4. The current dependence of the gas temperature T0 (K) at tube axis for various p and Rd = 1 cm at
the tube axis in nitrogen. From [2].
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molecular energy levels, is transformed afterwards into kinetic energy of molecules.
So the neutral gas temperature in nitrogen, shown in figure 8.4, is considerably
higher, than in atomic gases. The gas temperature radial profiles in the noble gases
PC are presented in figure 8.5.

The weak point of the standard traditional PC theories consisted of the arbitrary
assumption of the Maxwellian EDF. It allowed the closing of the equation set and
all the discharge characteristics to be expressed in terms of the external parameters.
However, for that assumption there is no physical reason. The EDFs in the PC can
strongly deviate from the Maxwellian ones. For the EDF Maxwellization due to
electron–electron collisions, an extremely high ionization degree (exceeding 10−2) is
necessary, which can hardly be reached in the low-pressure glows of interest.

The pressure and current rise leads to the energy fraction increasing, transferring
from electrons to neutrals in elastic collisions and to decreasing the neutral thermal
conductivity to the tube wall. As a result, the electron and the neutral energies converge
and plasma could approach the local thermodynamic equilibrium (LTE). Such a
situation prevails, for example, in a PC of a high-pressure arc. As was already
mentioned in the introduction the great distinction of the characteristic energy scales

Figure 8.5. The radial profiles of the gas temperature in noble gases at pRd = 24 Torr cm. The values of T0 are
from figure 8.4. From [2].
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between electrons and the neutral particles, which is typical not only for PC, but for
low- and medium-pressure glows, is the main factor which makes these phenomena
extremely far from local thermodynamic equilibrium (LTE) and demanding of far
more detailed (and complicated) kinetic treatment. This non-equilibrium manifests
itself not only in the necessity of kinetic analysis of the electron component, but also in
the fact that practically every process is not balanced by the inverse. For example,
charged particle generation in collisions in the plasma bulk is balanced by their
recombination on the cold surface of the tube wall. Even if the recombination in the
plasma volume dominates, its channels (dissociative or collisional-radiative) are
different from the inverse to the usually dominating ionization by electron impact.
Accordingly, the ionization degree is several orders of magnitude higher, than given by
the Saha formula with the neutral temperature T0, and by several orders lower, than
one given by the Saha expression with the electron temperature Te. As the typical
plasmas in glows is optically thin (with the exception sometimes of central parts of the
resonant lines), free escape of the radiation is possible. So the electron impact excitation
processes are balanced not by the super-elastic collisions, but mainly by the radiation
escape. So the population of the excitation levels has nothing in common with the
Boltzmann distribution, and the radiation density does not obey the Planck formula.

8.2 Positive column in atomic gases
For full self-consistent PC description it is necessary to express its internal
characteristics, such as EDF, both radial and longitudinal electric fields, radial
profiles of the plasma components densities and of the densities of the excited
particles and of the ionization rate, in terms of the external parameters: current
density, gas pressure, tube radius and collision cross-sections.

There exist considerable differences between discharges at low and high pressures
in respect of the electron kinetics. One of the most characteristic properties of low-
pressure discharges is that they are surprisingly quiet and homogeneous. In this case
the EDF relaxation length exceeds the tube radius, the radial diffusive motion of
electrons produces the dominant effect on EDF, the EDF factorization is impos-
sible, and here its form is determined by the whole radial potential profile (the non-
local EDF). In the atomic gases the EDF relaxation length is usually of the order of
the energy relaxation length in elastic collisions λ λ λ∼ ∼ε M m/ 102 . So the
criterion λ∼ εRd corresponds, roughly speaking, to pRd ∼ 10 Torr cm. As in
the molecular gases the energy loss in the quasi-elastic collisions (excitation of the
rotational and vibrational levels) is significant, the transition from the local and non-
local EDF formation regimes lies considerably lower, at pRd ∼ 1 Torr cm.

It is to be noted that from the non-locality criterion λ< =εR T eE/( )zd e it follows

∼ >E T R E ,r e d x

i.e., in the non-local case the radial ambipolar electric field always exceeds the
heating longitudinal field.

Contrary to low pressure, discharges at high pressures are subjected to various
pinching (pinching is the major factor complicating numerous practical
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applications). The reason is that in the local approximation, which is valid at high
pressures, the EDF tail and, consequently, the ionization rate are rigidly bound to a
local electric field which heats up the electrons. This being so, any process
strengthening the field in plasma contractions and thereby the ionization rate in
them leads to ionization instability. As a result of its development, sharply non-
uniform plasma density profiles are formed. The non-uniform Joule heating of
neutral gas and Maxwellization of the EDF tail caused by inter-electron collisions
are indicated as the main instability mechanisms.

At high pressures, when the EDF relaxation length λε is shorter than the tube
radius, the electrons are accelerated in the longitudinal electric field without
noticeable diffusive displacement in radial direction. This permits the radial EDF
gradient in the kinetic equation (local approximation for EDF) to be neglected. The
local EDF f0(r,z,t,w) can be factorized into the product of the density n(r,z,t) by the
function F0(w), which parametrically depends on the field E/p. The exception
represents the region near the tube walls, the length of which is about the EDF
relaxation length λε.

Historically, the local approach for the definition of EDF is often used as the
description of a positive column and the analysis of physical processes even when it
is obviously inapplicable. So it is interesting to compare the predictions of the local
approximation and more general (non-local) theory to the correct simulations and
calculations. The majority of such comparisons have been used for noble gases using
the same cross-section set, for example, in [8–11]. Further, we will consider the basic
results presented in [10, 11]. Here, we only briefly recall the features of the model
important for the PC [11]. The model is based on a fluid description of ions and
neutral species (ground state or excited) using a drift–diffusion approximation for
the particle flux. The continuity equations are solved for the mass density of each ion
and neutral components of the plasma. The transport coefficients (mobility μe and
diffusion De) and rates of electron-induced chemical reactions Se are calculated
using the electron energy distribution function (EDF) f0 obtained as a solution of the
electron Boltzmann equation. We recall that the EDF in the calculation of which
terms with spatial gradients in the kinetic equation play an important role is here
referred to as non-local. In the non-local case for the PC analysis it is more
convenient to define the total energy ε as the sum of the kinetic w, and of the
potential energy in the radial field φe r( ), including the uniform field Ez into the
diffusion coefficient along energy Dε.

For comparison, the kinetic equation in the conventional local approximation
could also have been solved, in which the radial electric field and the radial gradients
in the kinetic equation were ignored. The traditional fluid model could be also used,
when the parameters of the electron gas are found using the fluid equations for the
balance of the electron density and energy [14]. The self-consistent electric field is
found from Poisson’s equation.

In [10, 11] self-consistent simulations of a PC in atomic gases in a tube of radius
Rd = 1 cm at p = 0.1–10 Torr were performed. The most frequently employed and
accepted three-level model of an argon atom with one metastable state (indexm) was
used, taking into account the eight main reactions listed in table 8.1.
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The constants of the processes with the participation of electrons were calculated
by convoluting the corresponding cross-sections with the calculated EDF. It can be
seen from figure 8.6 (right) that, even at a relatively high pressure, the EDF f 0(w,r) is
not factorized in the form

= ×f w r n r F w( , ) ( ) ( ) (8.13)0 e 0

the normalized EDF plotted as a function of the kinetic energy is different at
different radii r; i.e., it is non-local.

At the same time, the EDFs f0(ϵ,r) plotted as functions of total energy (figure 8.6
(left)) at different radii coincide at ϵ < ϵ* (where ϵ* is the threshold energy for
inelastic processes), without any shift related to normalization and the spatial
dependence of the potential; however, they differ in the inelastic energy range ϵ > ϵ*
(figure 8.7). It is well known that, in practice, the fact that the EDF f0(ϵ,r) of trapped
electrons with ϵ ⩽ eΦ w (where Φw is the wall potential) does not depend on the
radius clearly indicates the non-local character of the EDF (in contrast, the EDF of
transit electrons with ϵ > eΦw depends on the radius). At first glance, it would seem
that, in this situation, the EDF consists of a non-local component at ε < ε* and a
local component at ε > ε* (a small local ‘tail’ is attached to the non-local ‘body’).
However, this is not the case because the fast component at ε > ε* is not factorized in
form of equation (8.13). As was noted above, the use of the local approximation for
determining the EDF is restricted to the case where this function is factorized in the
form of equation (8.13). When the terms with spatial gradients in the kinetic

Table 8.1. The set of reactions used for the three-level scheme of terms of an argon atom. From [10].

No. Reaction Δε, eV Constant Commentary

1 + ⟶ +e Ar e Ar – Cross-section Elastic scattering
(momentum transfer)

2 + ⟶ + *e Ar e Arm 11.55 Cross-section Excitation and de-excitation
of the metastable level

3 + ⟶ + +e Ar 2e Ar 15.9 Cross-section Direct-ionization from
the ground state

4 + ⟶ +* +e Ar 2e Arm 4.35 Cross-section Stepwise ionization from
the metastable level

5 + ⟶ +* *e Ar e Arm r 0.07 kq = 2 × 10−13 m3 s−1 Quenching of the metastable
level via the transition to
the resonance level (11.67 eV)

6 + ⟶ +e Ar e Ar 11.5 Cross-section Total excitation by
electron impact

7 ν⟶ + ℏ*Ar Arr – AR = 106 s−1 Resonance emission with
allowance for self-absorption
(λ = 106.4 nm)

8 ⟶ + +
+ +

*
+

+Ar {
e Ar Ar
e Ar Arm

2

–
kp = 6.2 × 10+16 m3 s−1 Penning ionization
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Figure 8.6. Normalized EDFs for pRd = 5.4 cm Torr as functions of kinetic energy: r = (1) 0, (2) 0.2Rd, (3)
0.4Rd, (4) 0:6Rd, and (5) 0:8Rd. From [11].

Figure 8.7. EDFs over the total energy for pRd = 5.4 cm Torr. Curves 1–5 correspond to the same radii as in
figure 8.6. From [11].
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equation cannot be omitted, the EDF is considered as non-local. Depending on the
total energy w, the components of this non-local EDF may be either dependent on or
independent of the radius.

It follows from table 8.2, which presents the parameter values at the discharge
axis at p = 6 Torr and Rd = 1 cm, and from figures 8.8–8.11, which show the
corresponding radial profiles, that the parameters calculated in the local and non-
local models differ significantly at medium pressures. The profiles of the radial
field in figure 8.9 show that this field exceeds the axial field in most of the PC. This
fact indicates that the local approximation is inapplicable for calculating the EDF
[15]. This is also confirmed by a decrease in the mean electron energy with radius
(figure 8.10). We also note that the electron density profiles can be narrower or
broader than the conventional (Bessel) profiles calculated in the fluid model. The
reason is a competition between the two effects [11]. First, the ionization is non-
uniform over the cross-section, and the density is maximum at the tube axis (see
figure 8.13). Second, the average electron density decreases toward the periphery
(figure 8.10), which results in a lower coefficient of ambipolar diffusion there. At
low pressures, the first effect is dominant and the electron density profiles decrease
almost linearly with radius [11]. In the case under consideration, the second
mechanism turns out to be more efficient, which results in the opposite effect—the
broadening of the profiles in comparison with the local model (figure 8.11).
Calculations [10] have shown that the peak of the excitation rate profile shifts
from the axis of a discharge toward the periphery due to the non-local character of
the EDF when the pressure is increased from low ( <pR 1 cmd Torr) to medium
(1 < pRd < 10 cm Torr) values.

Simulations [10, 11] revealed an interesting (but little known) effect consisting of
the replication of the shape of the body of the EDF in its fast component due to
impacts of the second kind (super-elastic collisions) of slow electrons with meta-
stable atoms in the reaction *+ → + →Ar e Ar e . These processes substantially
influence the calculated values of the constants for the excitation reactions with
high threshold energies and, accordingly, the densities of highly excited states.
Figure 8.12 shows the EDFs calculated for p = 1 Torr, Rd = 1 cm, and I = 10 mA
with (curve 1) and without (curve 2) allowance for impacts of the second kind. One
can see that a gently sloping pedestal f0h, replicating the shape of the slow

Table 8.2. Comparison of the results of simulations of the plasma parameters at the discharge axis with
calculations in the local model for p = 6 Torr, Rd = 1 cm, and I = 3 mA. From [10].

Local approximation Full simulation

ne, cm
−3 2.9 × 1010 1.5 × 1010

2 ε〈 〉/3, eV 3.3 3.5
ΦW,V 68.5 18.5
nm, cm

−3 1.7 × 1011 5.4 × 1010

νm, s
−1 4.4 × 104 1.2 × 104

νex, s
−1 1.4 × 105 3.1 × 105
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Figure 8.8. Radial profile of the electric potential for p = 6 Torr and I = 3 mA. The dotted line corresponds to
the local approximation. From [12].

Figure 8.9. Radial profile of the electric field for p = 6 Torr and I = 3 mA. The dotted lines correspond to the
local approximation. The horizontal lines show the corresponding values of the longitudinal electric field E.
From [12].
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Figure 8.10. Radial profile of the mean electron energy for p = 6 Torr and I = 3 mA. The dotted line
corresponds to the local approximation. From [12].

Figure 8.11. Radial electron-density profile for p = 6 Torr and 3 mA. The dotted line corresponds to the local
approximation. From [12].
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Figure 8.13. Radial profiles of the direct and step-ionization rates (the corresponding curves coincide). The
dotted curve shows the density profile of high-energy ( ⩾w 16eV) electrons, and the dashed line shows the nm(r)
ne(r) profile (in arbitrary units). The step-ionization rate is plotted in absolute units, whereas the direct
ionization rate is multiplied by 780 to bring the plots into coincidence. From [12].

Figure 8.12. EDFs at the axis of a discharge (r = 0), calculated (1) with and (2) without allowance for impacts
of the second kind for p = 1 Torr, Rd = 1 cm, and I = 10 mA. From [11].
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component (the body) of the EDF is added to the usual EDF f0t, which is sharply
decreasing above the threshold excitation energy (ε ≃* eV11.55 for argon). As a
result, the fast component of the EDF can be represented as the sum f0 = f0t + f0h.
This shape of the EDF can be explained by the fact that the kinetic equation includes
the source of fast electrons that is associated with impacts of the second kind and is
proportional to the low-energy component (body) of the EDF, f(w − ε*) (dotted
curve on figure 8.12)

ε ε ε≃ − *f
n g

N gm
f( ) ( ). (8.14)0h

m a

0
0

Roughly speaking, a partial solution taking into account inhomogeneity f0h is
added to the rapidly decaying solution of the homogeneous kinetic equation for f0t
derived without allowance for this source. Although the amplitude (absolute value)
of the additional fast component is lower by a factor of ∼nm/N0 than the low-energy
component of the EDF at ε < ε*, it exceeds f0h at energies of several eV above the
threshold energy ε*. This is because the value of Tet is small and f0t sharply decreases
with increasing energy. Since f0(ε − ε*) near the threshold energy ε* varies slightly
the high-energy component of the EDF increases substantially as a result of the
replication of the body of the EDF into this energy range. In turn, this results in a
change in the constants for direct ionization and the excitation for high-lying levels.
As an illustration, table 8.3 show the relative change in the constants for direct
ionization and the excitation of high-lying excited states when the EDF is calculated
with and without allowance for impacts of the second kind of slow electrons with
metastable atoms forN0 = 1017 cm−3, Rd = 1 cm, and I = 10 mA. It can be seen from
the table that the results differ markedly; hence, this effect should be taken into
account in calculating high-lying excited states in gases that have long-lived
metastable states. Since f0h is proportional to nm/N0 and its energy dependence is
close to that of the EDF of slow electrons (ϵ < ϵ*), the spatial profiles of the
frequencies and rates of the processes that are determined by these parts of the EDF

Table 8.3. Ratios of the excitation and direct-ionization constants calculated with an EDF calculated with and
without allowance for impacts of the second kind for N0 = 1017 cm−3, Rd = 1 cm, I = 10 mA. From [11].

No. Level ε, eV Ratio of the excitation constants

1 d3 2
7/2 14.01 1.5

2 d s3 , 52
5/2

2
3/2 14.06 1.7

3 d s3 , 53
5/2

1
3/2 14.09 1.9

4 d3 1
3/2 14.15 2.1

5 ′d5 2
5/2 14.21 2.3

6 ′ ′ ′ ′d d s s3 , 3 , 5 , 32
5/2

2
5/2

0
1/2

1
5/2 14.23 2.4

7 ′d3 1
3/2 14.30 2.7

8 d3 1
1/2 14.71 19

9 ′ ′ ′p p p6 , 6 , 61
1/2

1
3/2

2
3/2 15.20 109

10 Ar+ 15.76 2670
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can also be close to one another. This is illustrated by figure 8.13. It can be seen that
the spatial profile of the direct-ionization frequency almost coincides with the profile
of the step-ionization rate in spite of the large difference in the thresholds (ϵi = 15.76
eV and ϵst = 4.35 eV, respectively). We emphasize that this result is a consequence of
the self-consistent simulation of a discharge. In this case, the frequency of direct
ionization + → + ++(Ar e Ar e e) is governed by EDF (8.14), which is formed by
impacts of the second kind. For this reason, the νidir(r) profile is similar to the nm(r)
νst(r) profile, although the step-ionization and direct-ionization processes themselves
are unrelated.

The data presented above show that the local approximation is inapplicable to
calculating the EDF even at relatively high pressures (pRd = 6 cm Torr); i.e., it is
almost always inapplicable under real conditions of a diffuse PC.

Experimental data are well coordinated with kinetic model PC. So for example,
results of probe measurements of radial potential and EDF in low-pressure
discharges have convincingly shown that the total energy really is an argument of
EDF [15]. Measurements of a wall potential also show that results of the kinetic
theory are in the good agreement with the experiment data. Thus, characteristics
homogeneous in longitudinal direction PC are known reliably enough and can be
calculated with the necessary accuracy.

8.3 The Langmuir paradox
To date, there still exists one of the most puzzling problems of the so-called
Langmuir paradox, i.e., the reason why in low-pressure PCs (free-flight, λ ≫ Rd)
EDFs close to Maxwellian ones are observed. In the diffusion regime, when the
electron mean free path λ ≪ Rd, the collision processes, and the loss of electrons to
the walls cause an approximately exponentially rapid fall-off of the EDF with
different slopes in the corresponding energy intervals, which has been confirmed in
numerous experiments and calculations. On the other hand, since the pioneering
work of Langmuir in the 1920s [3], the physics of gas discharge plasmas was
considered one of the most mystifying phenomena of the Maxwellian-like EDFs at
low pressure (below 0.01–0.1 Torr cm). The linearity of probe current–voltage
characteristics in semi-log plots indicated that the electron energy distribution
function was close to Maxwellian. The radial gradient of the potential φ(r), which
exists in a plasma, traps electrons with energies below eΦw. Contrary to expect-
ations, however, as the energy increases at ε > eΦw, the EDF does not fall off faster,
even though the corresponding electrons can freely overcome the radial potential
difference and, in a short free-flight time of the order εR m/ 2 /d , escape to the walls
and recombine there. In 1925, Langmuir wrote, ‘From the complete absence of a
kink in the semilogarithmic plot at the wall potential we must conclude that the time
of relaxation corresponding to the mechanism by which the electrons acquire their
Maxwellian distribution is small compared to the time taken for the electrons to
traverse the tube...’ [3]. In the concluding 1930 review [16], he repeated, ‘The
mechanism by which these Maxwellian distributions are so quickly established in
an ionized gas is not understood... in an ionized gas some additional and more
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effective agents must be chiefly responsible for the scattering of velocities.’
Langmuir returned repeatedly to this paradoxical discrepancy between experiment
and an estimate that seemed based on physically obvious considerations. In this
regard, D Gabor wrote [17] of the ‘worst discrepancy known to science.’ The term
‘Langmuir paradox,’ itself, belongs to Gabor and has entered the scientific
vocabulary.

A Maxwellian distribution usually develops in the course of random interactions
(collisions) of particles among themselves or with a thermostat. Since inter-electronic
collisions are rare under ‘Langmuir paradox’ conditions, various mechanisms for
Maxwellization of the electrons have been discussed widely in the literature:
references [17, 18, 19–29]. Right up to the present time, primary attention has
been directed at searches for a universal mechanism for EDF Maxwellization,
although these attempts have been, as yet, unsuccessful. Langmuir, himself,
advanced the hypothesis that collective interactions of the electrons with turbulent
electric fields that develop during plasma (Langmuir) oscillations may play a role.
Gabor et al [17] observed some oscillations in the near-wall region and suggested
that these oscillations are responsible for Maxwellization of the EDF. However, to
date the presence of such oscillations (or at least their universal presence in low-
pressure discharges) remains doubtful. Really, turbulent oscillations are not in
thermodynamic equilibrium and cannot, in general, serve as a thermostat. Thus,
interactions of the electrons with these oscillations, even if they occur, do not
necessarily produce a Maxwellian electron distribution function. Other mechanisms
for Maxwellization of the electron distribution function have been discussed, but no
satisfactory explanation of the observed effects has yet been obtained. In addition,
the influence of the oscillations on the EDF is caused by sufficiently complex
processes, so it is absolutely not obvious that they precisely lead to the formation of
the Maxwellian EDF. For example, electrons locked in the ambipolar potential well
cannot reach the plasma periphery and interact with oscillations if the latter are
present there. On the other hand, Langmuir’s assumption that fast electrons moving
away to the wall should lead to a kink in the EDF at ε = Φe w looks too rough in
today’s context. The point is that the characteristic time of their loss on the wall
under condition λ ≫ Rd is not the transit time ε=t R m/ 2 /f d but a much longer
time in which the fast electron in elastic scattering gets to the small exit loss cone.
This time, which exceeds even the time 1/ν between collisions, tends to infinity at ε =
eΦ w, smoothly decreasing with ε. Thus, the kink in the EDF at eΦw, corresponding
to the boundary between the locked and transit electrons, is smeared out and its
experimental examination presents a difficult problem.

The Langmuir paradox itself was essentially proclaimed, since no analysis has
been made of the EDF formation taking all the major factors into account. In [7] the
hypothesis was formulated, that the Langmuir paradox is not related to some
unknown mechanism for Maxwellization, but a combination of already known
mechanisms may produce an electron energy distribution function that is close to an
exponential with a constant slope (but to the physical features of the formation of
the electron distribution function under these conditions). Specifically at low
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pressures, when electron mean energy is high, the account of the escape of the fast
electrons to the tube walls would result to the exponential EDFs, close to the
observed ones.

Because of the large difference between the momentum and energy relaxation
times of the electrons, the electron distribution function now, as in the case λ < Rd,
can be represented as the sum of isotropic f0(r, v) and of the small anisotropic f1(r, v,
θ) components. Since the anisotropy of the electron distribution function is caused
by two independent factors, drift in the axial field Ez and radial escape of fast

electrons to the vessel wall, the anisotropic EDF part
⎯→⎯
f1 itself has two components.

If the anisotropy is small, then they can be treated independently. For the first
component, this is ensured by the smallness of the energy acquired along the mean
free path in the field Ez compared to the total energy of the electron. Smallness of the
second component, on the other hand, is associated with smallness of the loss cone
within which the velocity of an electron leaving the plasma falls [30]. This condition
is usually satisfied for most of the electrons of interest, whose energies moderately
exceed the wall potential. Electrons with energies ε < eΦw, the potential difference
between the axis and wall of the vessel, are trapped in the volume by the ambipolar
potential fall eΦa and the wall potential jump eΦs, so that Φw = Φa + Φs. Thus, the
main part of the distribution function for the trapped electrons, f0, depends only on
the total energy ε = w(r) + eϕ (r) (the kinetic w =mv2/2 plus potential eϕ (r) energies).
Electrons with energies ε > Φe w can escape to the wall. It is equivalent to loss of
electrons at a rate

ν ν δ π= Ω2 ( 4 ). (8.15)w

Coefficient 2 shows up because of the symmetry of scattering at angles α and π–α.
As can be seen from equation (8.15), the electrons are lost much more slowly than
through free-flight to the walls, which takes a time εR m/ 2 /d . In a cylindrical
geometry, electrons with total energy ε > eΦw can escape to the wall if their
perpendicular energy εp exceeds the sum of the potential and centrifugal energies at
the wall, i.e. [7, 30, 31],

ε μ ϕ μ= + + ⩾ Φ +mv mr e r e mR2 2 ( ) (2 ), (8.16)p r
2 2 2

w
2

d
2

where

ε φ α= −mv e r2 ( ( ))cos .r
2 2

As long as the loss cone is small (δΩ ≪ 4π), for isotropic elastic scattering of the
electrons, their distribution function outside this cone, f0, can also be regarded as
isotropic and dependent only on ε. The character of the EDF anisotropy varies
substantially, depending on whether it is associated with an axial field or with loss to
the wall for isotropic scattering. In the first case, the EDF differs little from isotropic
at all angles. Mathematically, this is reflected in the fact that the coefficients in the
ordinary EDF expansion in terms of Legendre polynomials fall off rapidly with the
harmonic number. In the second case, however, the EDF is almost isotropic outside
a small anti-loss cone and practically zero inside it. In other words, the EDF has a
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discontinuity at its boundary. Outside this small cone, it is almost identical to the
isotropic EDF part, f0. Within the anti-loss cone, the distribution is also independent
of angle. Therefore, all the coefficients in the expansion of the anisotropic EDF part
in terms of spherical harmonics are also small (proportional δ Ω), but fall off with
the harmonic number slowly. Thus, it is inappropriate to use this expansion and it is
more convenient to consider f0(ε) and the electron distribution function inside the
yield cone, F(ε,r,δΩ), separately.

After averaging over the volume, the kinetic equation for f0(ε) can be written in
the form

ε
ε

ε
ν ε ε ν ε ε ε ε

ν ε ε ν ε ε ε ε ν ε

∂
∂

¯ ∂
∂

= ¯ − ¯ + +

+ ¯ − ¯ + + + ¯

D
f

f f

f f f

( )
( ) ( ) ( ) ( )

( ) ( ) 2 (2 ) (2 ) ( )
(8.17)E

0
ex 0 ex ex 0 ex

i 0 i i 0 i w 0

where the coefficients of equation (8.17), obtained by averaging over the radius.
For simplicity, it is assumed that there is only one excitation process with a

threshold εex and only direct ionization from the ground state. The collision integral
for ionization is written assuming that the kinetic energy is divided evenly between
the incident and product electrons [31]. The anti-loss cone δ1Ω is essentially empty,
since the corresponding electrons escape instantaneously to the wall (over a time

εR m/ 2 /d ) and, neglecting the effect of the radial electric field in the plasma on the
fast electrons, the kinetic equation for the EDF F(ε,r,Ω) inside this cone can be
written in the form

ε ε λ= − −F x f x( , ) ( ) (1 exp( / )) (8.18)0

Evidently, ≪F f0.
In order to verify the accuracy of the approximate kinetic equation (8.17), it was

compared in [7] with the results of an independent Monte Carlo method. For the
conditions of interest to us, the most detailed work in this respect is [31], in which the
EDF in the positive column of a glow discharge for an argon-like gas was modeled
over a wide range of pressures 3 mTorr to 3 Torr. The authors were mainly guided
by the collisional case (λ > Rd), for which they observed a change in the EDF slope
for ε > εex owing to inelastic processes and the loss of electrons to the wall. A
comparative analysis of these data [31] shows that when the pressure is lowered
(p < 10 mTorr), the relative contribution of wall losses increases and there is a clear
tendency for the EDF to flatten out to an exponential with a single slope throughout
the entire energy range. In the following comparisons the cross-sections for argon, as
in [31], are used.

The model calculations in reference [31] showed that the simple expression

⎛
⎝⎜

⎞
⎠⎟δ ε π ϕ

ε ϕ
Ω ≈ − Φ −

−
x

x
e x

( , ) 2 1
( )
( )

(8.19)1
w

in the case of a plane geometry is a good approximation for a cylinder, as well. As a
comparison, figure 8.14 shows f0 calculated according to equation (8.17) for the
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conditions of [31] (neutral gas density N = 1014 cm−3 and cylinder radius Rd = 1 cm).
The self-consistent values of the wall potential Φw = 28.5 V and longitudinal field
Ez = 1 V cm−1 turned out to be close to those calculated in [31] (30 eV and 1.02 V cm−1,
respectively). A semi-log plot of the EDF is clearly close to linear with an effective
electron temperature Te = 9.3 eV. Significant deviations from a Maxwellian EDF
are observed only at low energies. These calculations also confirm the well known
fact, that Te in low-pressure discharges is of the order of the threshold εex for
inelastic processes. Physically, such high temperatures are necessary in order for an
electron to complete an ionization event during the short ion mean free time τi to
reach the wall. If we use the EDF, figure 8.14, to construct a plot of the probe
current

∫ ε ε ε= −
∞

I eV eV f d( ) ( ) ( ) (8.20)
eV

0

from which the Langmuir paradox was first observed in the literature, then we
obtain an almost straight line which is essentially identical to an exponential (figure
8.15). This is because an integral dependence of the type of equation (8.20) has a
weaker dependence on the details of the EDF behavior. It is known that the finite
magnitude of the differentiated signal at the probe means that the measured EDF is
significantly distorted at energies near the plasma potential for small potentials,
which are around (0.3 − 1)Te in the experiment [7]. The calculations [7] also show
that curves analogous to those of figures 8.14 and 8.15 are obtained for pure gases
when λ > Rd under all these conditions.

Figure 8.14. f0(ε) calculated according to equation (8.16). N = 1014 cm−3, the vessel radius Rd = 1 cm, ϕw =
28.5 V, and Ez = 1 V cm−1. From [7].
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In order to understand the reasons for such surprising behavior of f0, in [7] the
analyses of the terms in the kinetic equation (8.17) for the considered conditions was
performed. Obviously, for ε > eΦw the rate of loss to the wall significantly exceeds
the inelastic collision rates, while the energy dependences of εD̄ ( )E and ν ε¯ ( )w are
similar. Here the kinetic equation (8.17) for the fast part of the electron energy
distribution function with ε > eΦw reduces to

ε
ε

ε
ν ε∂

∂
¯ ∂

∂
= ¯D

f
f

( )
( ) (8.21)E

0
w 0

and, roughly speaking, the electron ‘temperature’ for the fast part of the electron
energy distribution function,

ν= ¯ ¯T D , (8.22)w E w

is practically constant and independent of the energy. The reason for this is the
weak, decreasing energy dependence of the elastic cross-section at high energies.
This leads to a small energy dependence for ν(w) and, therefore, for Tw in equation
(8.21). It is well known that at high energies ε ε⩾ i the elastic scattering cross-
sections fall off slowly with increasing energy and behave this way for almost all
elements. Thus, this sort of dependence is quite universal. At high energies,
therefore, Tw (equation (8.21)), is nearly constant for essentially any pure gas and
the EDF for ε > Φe w should be close to Maxwellian,

ε ε≈ −f T( ) exp( ). (8.23)0 w

Figure 8.15. The probe current I as a function of the potential V. The conditions are the same as in figure 8.14.
From [7].
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We now consider some possible reasons why the EDF may have the same slope in
the elastic energy range, ε < εex, as well. At first glance, this seems paradoxical, since
it is well known that the actual energy dependences of ν(w) are different in this
region for different gases. Let us write down a model solution of the kinetic equation
(8.17) for ε < εex with the fast part of the EDF in the form (8.23)

ε ε
ε ε ε ε ε

= Φ − Φ = −
+ − + − − − +

f T

T T T

( ) (exp( )

exp( 2 ))(1 ( ) ) exp( ( ) )
(8.24)0m 1 2 ex w

ex w ex w ex w

which represents the difference between the linear Φ1 and exponential Φ2 functions.
In the elastic energy range, the model EDF (8.24) is evidently never Maxwellian,
even for a Maxwellian fast part (8.23). The functions (8.23) and (8.24) are close to
one another for ε ∼ εex and diverge with decreasing energy. Since their differences
are greatest at low energies, for ε/Te ≪1, on expanding the exponent in Φ2 in a
Taylor series, near zero we obtain

ε ε ε≈ ≈ −f T T( 0) ( )exp( ). (8.25)0 ex w ex w

The expression on the right of equation (8.25) is close to unity (i.e., to the
corresponding values of equation (8.23) only for ε ≈ Tex w and falls off sharply with
decreasing Tw. Thus, the closeness of the approximate EDF in the elastic energy
range to an exponential with the temperature of the fast portion of the electron
distribution is determined by the parameter εex/Tw. This sort of approximation is
possible only for high Tw ≈ εex. This is illustrated in figure 8.16, which shows the
model EDFs for εex/Te = 0.5,1, and 5. Evidently, the complete EDF should never be

Figure 8.16. Model electron energy distribution functions (8.24) for εex/Te = 5 (2), 1 (3), and 0.5 (4) and the
electron energy distribution function of equation (8.23) (1). From [7].
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strictly Maxwellian. In [7] it was shown that it can be approximated by an
exponential with a single slope only when the electron temperature is high and
close to the inelastic threshold. Therefore, in order for the entire EDF in low-
pressure discharges to be approximated by a Maxwellian distribution, two major
conditions must be satisfied: the elastic cross-section must fall off slowly at high
energies (beyond the ionization potential of the working gas) and the electron
temperature must be high (of the order of the inelastic threshold). Failure of either of
these conditions will cause the EDF to deviate significantly from an exponential with
a single slope, i.e., the Langmuir paradox would be absent.

Recent work [32] has provided some EDF measurements under Langmuir
paradox conditions. The non-Maxwellian EEDFs in argon gas found in those
experiments cast doubts on the existence of the Langmuir paradox (in any case, on
its universality), and call for further experiments. Thus, the Langmuir paradox
remains a topical and fundamental problem in the physics of gas discharges, which
must be solved in order to understand the properties of low-temperature plasmas
and to justify the validity of the probe diagnostics used on them.

8.4 PC in electronegative gases
In the presence of negative ions, the processes of spatial transport, which determine
the density profiles and other plasma parameters, possess a number of specific
features (see [14] for details). Early attempts to reduce the problem to a set of
ambipolar diffusion coefficients by using simplified models were contradictory and
there were no criteria for their applicability. In [33–36], it was shown that a specific
feature of an electronegative-gas plasma with Te ≫Ti is that it stratifies into regions
with different ion compositions separated by a sharp boundary. In the external
region (shell) of such a plasma, negative ions are practically absent (figures 8.17–
8.19), because they are drawn by the ambipolar electric field into the plasma interior.
The presence of this shell is of fundamental importance because it confines the
negative ions inside the plasma volume. As a result, the flux of negative ions to the
wall is practically absent (in contrast to those of electrons and positive ions). In such
a situation, the only means to extract negative ions from the discharge is to apply an
accelerating voltage U to the wall (or an extracting electrode). The magnitude of this
voltage should be large enough for the space charge layer produced at the plasma
boundary to extend to the inner region containing negative ions. The thicker the
shell, the higher the voltage ∼U L( )sh

2/3 that must be applied to enable the flux of
negative ions to the wall.

For the sake of qualitative analysis, we would consider a plasma consisting of
only electrons, positive ions, and negative ions (subscripts e, p and n, respectively).
To explain the dependences observed and predict how they are affected by the
external conditions, we consider, as in [33–36], the conventional set of the fluid drift–
diffusion equations

ν− ∇ ∇ + ∇ = −D n kn n n n K n n( ) , (8.26)ip p p e e e r n p
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Figure 8.17. Profiles of the charged particle densities for p = 1 Torr and I = 50 mA: (1) ne, (2) nn, (3) np, and (4)
n[O+]. From [10].

Figure 8.18. The same as in figure 8.17 for p = 0.15 Torr without allowance for ion heating: (1) ne, (2) nn, (3)
np, and (4) n[O+]. The dashed curve shows parabolic distribution (8.49). From [10].
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ν ν− ∇ ∇ − ∇ = − −D n kn n n n n K n n( ) , (8.27)n n n e e a e d n r n p

= +n n n (8.28)p n e

with a Boltzmann distribution for the electrons: E = −Te∇ne/ne. Here, νi, νa, and νd
are the ionization, attachment, and detachment frequencies, respectively; Kr is the
rate constant for ion–ion recombination; and k = Te/Ti is the electron-to-ion
temperature ratio.

The boundary conditions for the set of equations (8.26) and (8.27) are [14, 37]

∇ = ∇ = = = = ∇ = =n n r n n n r R0 at 0, 0 at . (8.29)n p n p n d

We illustrate these considerations on full-scale kinetic simulations of PC plasma
in [10, 38] in which we compared the results of kinetic and fluid simulations of the
positive column plasma of a dc oxygen discharge in a 12 mm diameter glass tube at
pressures of 0.05–3 Torr and discharge currents of 5–200 mA. The density and mean
energy of the electron component can be obtained by solving either fluid balance
equations or the kinetic equation for the electron distribution function (EDF). The
self-consistent electric field is found from Poisson’s equation. Heavy particles are
described in the fluid model.

The accounted volume plasma-chemical processes with the participation of
various atomic and molecular oxygen states are listed in table 8.4. In the fluid
model, the rate constants of the processes with the participation of electrons were
obtained by convoluting the corresponding cross-sections with a Maxwellian EDF,

Figure 8.19. The same as in figure 8.18, but with allowance for ion heating. From [10].
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Table 8.4. Volume plasma-chemical processes involved in simulations. From [38].

No. Reaction Δε, eV Rate constant

Elastic electron scattering
1 + ⟶ +e eO O2 2 0 Cross-section
2 + Δ ⟶ + Δe a e aO ( ) O ( )2

1
2

1 0 Cross-section
3 + Σ ⟶ + Σe b e bO ( ) O ( )2

1
2

1 0 Cross-section
4 + ⟶ +e v e vO ( ) O ( )2 1 2 1 0 Cross-section
5 + ⟶ +e Ry e RyO ( ) O ( )2 2 0 Cross-section
6 + ⟶ +e eO O 0 Cross-section
7 + ⟶ +e D e DO( ) O( )1 1 0 Cross-section
8 + ⟶ +e S e SO( ) O( )1 1 0 Cross-section
9 + ⟶ +e eO O3 3 0 Cross-section

Inelastic processes with the participation of
electrons

10 + ⟶ +−e O O O2 3.637 Cross-section
11 + ⟶ +e e vO O ( )2 2 1 0.19 Cross-section
12 + ⟶ +e v eO ( ) O2 1 2 −0.19 Cross-section
13 + ⟶ +e e vO O ( )2 2 2 0.38 Cross-section
14 + ⟶ +e e vO O ( )2 2 3 0.57 Cross-section
15 + ⟶ +e e vO O ( )2 2 4 0.75 Cross-section
16 + ⟶ + Δe e aO O ( )2 2

1 0.97 Cross-section
17 + Δ ⟶ +e a eO ( ) O2

1
2 −0.97 Obtained from a detailed balance with c 16

18 + ⟶ + Σe e bO O ( )2 2
1 1.63 Cross-section

19 + Σ ⟶ +e b eO ( ) O2
1

2 −1.63 Obtained from a detailed balance with c 18
20 + ⟶ +e eO 2O2 5.12 Cross-section
21 + ⟶ + +e e DO O O( )2

1 7.1 Cross-section
22 + ⟶ + +e eO 2 O2 2 12.6 Cross-section
23 + ⟶ + + +e eO 2 O O2 18.8 Cross-section
24 + ⟶ + −e 2O O O2 2 2 −5.03 = − − −k E T3.6 43 m s24 e

0.5 6 1

25 + ⟶+e O 2O2 −6.96 Cross-section
26 + ⟶ ++e DO O O( )2

1 −5.0 Cross-section
27 + Δ ⟶ + +e a eO ( ) 2 O2

1
2 −11.63 Cross-section

28 + Σ ⟶ + +e b eO ( ) 2 O2
1

2 −10.97 = − −− −k E T T1.3 15 exp( 10.43/ ) m s28 e
1.1

e
3 1

29 + ⟶ +−e O O O3 2 −0.42 Cross-section
30 + ⟶ + −e O O O3 2 0.60 Cross-section
31 + ⟶ +e e DO O( )1 1.97 Cross-section
32 + ⟶ +e e SO O( )1 4.24 Cross-section
33 + ⟶ +e S eO( ) O1 −4.24 Obtained from a detailed balance with c 32
34 + ⟶ + +e eO 2 O 13.67 Cross-section
35 + ⟶ +e D eO( ) O1 −1.97 Cross-section
36 + ⟶ + +e D eO( ) 2 O1 11.7 Cross-section
37 + ⟶ + +e S eO( ) 2 O1 9.43 = − − −k E T T6.6 15 exp( 9.43/ ) m s37 e

0.6
e

3 1

38 + ⟶ +−e eO 2 O 1.53 = − − −k E T T1.95 18 exp( 3.4/ ) m s38 e
0.5

e
3 1
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39 + ⟶+e DO O( )1 −11.7 = − − −k E T5.3 19 m s39 e
0.5 3 1

40 + ⟶ ++e e D2 O 2 O( )1 −11.7 = − − −k E T5.12 36 m s40 e
4.5 6 1

41 + ⟶ +e e s SO O(3 )5
0 9.15 Cross-section

42 + ⟶ +e e s SO O(3 )3
0 9.51 Cross-section

43 + ⟶ +e e p PO O(3 )5
0 10.73 Cross-section

44 + ⟶ +e e p PO O(3 )3
0 10.98 Cross-section

45 + ⟶ +e e RotO O ( )2 2 0.02 Cross-section
46 + ⟶ +e e vO O ( )2 2 5 0.19 Cross-section
47 + ⟶ +e e vO O ( )2 2 6 0.38 Cross-section
48 + ⟶ + Πe eO O ( )g2 2

1 8.4 Cross-section

49 + ⟶ + Σ+e e aO O ( )u2 2
1 10.0 Cross-section

50 ν+ ⟶ + +e e hO O (130 nm)2 2 9.547 Cross-section
51 + Δ ⟶ + Σe a e bO ( ) O ( )2

1
2

1 0.65 Cross-section
52 + Σ ⟶ + Δe b e aO ( ) O ( )2

1
2

1 −0.65 Cross-section
53 + ⟶ +e e RyO O ( )2 2 4.47 Cross-section
54 + ⟶ +e Ry eO ( ) O2 2 −4.47 Cross-section
55 + Δ ⟶ +e a e RyO ( ) O ( )2

1
2 3.45 Cross-section

56 + ⟶ + +e e SO O O( )2
1 9.36 Cross-section

57 + Δ ⟶ + −e aO ( ) O O2
1 2.57 Cross-section

58 + ⟶+e RyO O ( )2 2 −7.66 Cross-section
59 + + ⟶ + −e O O O O2 3 2 3 −0.679 − −E4.6 40 m s3 1

60 + ⟶ ++e SO O O( )2
1 −2.73 − − −E T2.42 13 m se

0.55 3 1

61 + ⟶+e O 2O4 2 −0.8 − − −E T2.42 11 m se
0.5 3 1

62 + ⟶ ++e RyO O O ( )4 2 2 3.68 − − −E T2.425 12 m se
0.5 3 1

Reactions between heavy species
63 + ⟶ ++e O O O2 2 = − − −k E T5.69 11 m s63 g

1 3 1

64 + ⟶− +O O 3O2 = − −k E1 13 m s64
3 1

65 + ⟶− +O O 2O = − − −k E T5.96 11 m s65 g
1 3 1

66 + ⟶− +O O 2O2 2 2 = − − −k E T5.96 11 m s66 g
1 3 1

67 + ⟶ +− +O O O 2O2 2 2 = − −k E1 13 m s67
3 1

68 + ⟶ ++ −O O O O2 2 = − − −k E T5.96 11 m s68 g
1 3 1

69 + ⟶ ++ −O O O O2 3 2 3 = − − −k E T5.96 11 m s69 g
1 3 1

70 + ⟶ ++ −O O 2O O2 3 3 k70 = 1E − 13 m3 s−1

71 + ⟶ ++ −O O O O3 3 = − − −k E T5.96 11 m s71 g
1 3 1

72 + + ⟶ +− +O O O O 2O2 2 2 = − − −k E T3.066 31 m s72 g
2.5 3 1

73 + + ⟶ +− +O O O 2O O2 2 = − − −k E T3.066 31 m s73 g
2.5 3 1

74 + ⟶ +− eO O O2 = − −k E T1.159 17 m s74 g
0.5 3 1

75 + Δ ⟶ +− a eO O ( ) O2
1

3 = − −k E T1.738 17 m s75 g
0.5 3 1

76 + Σ ⟶ + +− b eO O ( ) O O2
1

2 = − −k E T4 17 m s76 g
0.5 3 1

77 + ⟶ +− eO O O2 3 = − −k E T2.896 22 m s77 g
0.5 3 1

78

(Continued)
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Table 8.4. (Continued )

No. Reaction Δε, eV Rate constant

+ ⟶ +− eO O 2O3 2 = − −k E T1.744 17 m s78 g
0.5 3 1

79 + ⟶ +− −O O O O3 3 = − −k E T1.153 17 m s79 g
0.5 3 1

80 + ⟶ +− −O O O O3 2 2 = − −k E T5.509 19 m s80 g
0.5 3 1

81 + ⟶ +− −O O O O2 2 = − −k E T8.69 18 m s81 g
0.5 3 1

82 + ⟶ +− eO O O2 3 = − −k E T8.69 18 m s82 g
0.5 3 1

83 Δ + ⟶ +−a eO ( ) O 2O2
1

2 2 = − −k E T1.159 17 m s83 g
0.5 3 1

84 + ⟶ +− −O O O O2 3 2 3 = − −k E T3.746 17 m s84 g
0.5 3 1

85 + ⟶ +− −O O O O3 2 2 = − −k E T1.448 17 m s85 g
0.5 3 1

86 + + ⟶ ++ +O O O O O2 2 2 = − −k E T5.793 43 m s86 g
0.5 3 1

87 + ⟶ ++ +O O O O2 2 = − −k E T1.953 16 m s87 g
0.4 3 1

88 + ⟶ ++ +O O O O3 2 2 = − −k E1 16 m s88
3 1

89 + ⟶DO( ) O 2O1
2 = − −k E1 18 m s89

3 1

90 + ⟶ + ΣD bO( ) O O O ( )1
2 2

1 k90 = 2.56E− 17exp(+ 67/Tg) m
3 s−1

91 + ⟶ + ΔD aO( ) O O O ( )1
2 2

1 k91 = 1.6E − 18exp(+ 67/Tg) m
3 s−1

92 + ⟶ +DO( ) O O O1
2 2 k92 = 4.8E − 18exp(+ 67/Tg) m

3 s−1

93 + ⟶ +DO( ) O 2O O1
3 2 k93 = 1.2E − 16 m3 s−1

94 + ⟶DO( ) O 2O1
3 2 k94 = 1.2E − 16 m3 s−1

95 + ⟶ +S DO( ) O O( ) O1
2

1
2 k95 = 3.2E − 16exp(− 850/Tg) m

3 s−1

96 + ⟶ +SO( ) O O O1
2 2 k96 = 1.6E − 18exp(− 850/Tg) m

3 s−1

97 + Δ ⟶ +S aO( ) O ( ) O O1
2

1
2 k97 = 1.1E − 16 m3 s−1

98 + Δ ⟶ + ΣS a D bO( ) O ( ) O( ) O ( )1
2

1 1
2

1 k98 = 2.9E − 17 m3 s−1

99 + Δ ⟶S aO( ) O ( ) 3O1
2

1 k99 = 3.2E − 17 m3 s−1

100 + ⟶ +S DO( ) O O( ) O1 1 k100 = 1.67E − 17exp(− 300/Tg) m
3 s−1

101 + ⟶SO( ) O 2O1 k101 = 3.33E − 17exp(− 300/Tg) m
3 s−1

102 + ⟶SO( ) O 2O1
3 k102 = 5.8E − 16 m3 s−1

103 Δ + ⟶ +aO ( ) O O O2
1

2 k103 = 2E − 22 m3 s−1

104 Δ + ⟶aO ( ) O 2O2
1

2 2 k104 = 3E − 24exp(− 200/Tg) m
3 s−1

105 Δ ⟶a2O ( ) O2
1

2 k105 = 9E − 23exp(− 560/Tg) m
3 s−1

106 Δ ⟶ + Σa b2O ( ) O O ( )2
1

2 2
1 k106 = 9E − 23exp(− 560/Tg) m

3 s−1

107 Δ + ⟶a2O ( ) O 2O2
1

2 3 k107 = 1E − 43exp(− 560/Tg) m
3 s−1

108 Δ + ⟶a2O ( ) O 2O2
1

2 3 k108 = 1.709E − 28Tg m
3 s−1

109 Δ + ⟶ +aO ( ) O 2O O2
1

3 2 k109 = 5.2E − 17exp(− 2840/Tg) m
3 s−1

110 Σ ⟶ Δ +b a2O ( ) O ( ) O2
1

2
1

2 = − −k E T2.085 24 m s110 g
0.5 3 1

111 Σ + ⟶ Δ +b aO ( ) O O ( ) O2
1

2 2
1

2 = − −k E T2.085 25 m s111 g
0.5 3 1

112 Σ + ⟶bO ( ) O 2O2
1

2 2 = − −k E T2.317 28 m s112 g
0.5 3 1

113 Σ + ⟶ Δ +b aO ( ) O O ( ) O2
1

2
1 = − −k E T4.171 21 m s113 g

0.5 3 1

114 Σ + ⟶ +bO ( ) O O O2
1

2 = − −k E T4.634 22 m s114 g
0.5 3 1

115 Σ + ⟶ +bO ( ) O 2O O2
1

3 2 = − −k E T4.246 19 m s115 g
0.5 3 1

116 Σ + ⟶ Δ +b aO ( ) O O ( ) O2
1

3 2
1

3 = − −k E T4.246 19 m s116 g
0.5 3 1

117 Σ + ⟶ +bO ( ) O O O2
1

3 2 3 = − −k E T4.246 19 m s117 g
0.5 3 1
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118 + ⟶ +vO ( ) O O O2 1 2 = − −k E T5.793 22 m s118 g
0.5 3 1

119 + ⟶vO ( ) O 2O2 1 2 2 = − −k E T5.793 22 m s119 g
0.5 3 1

120 + ⟶2O O 2O2 2 = − − −k E T9.268 45 m s120 g
0.63 6 1

121 ⟶ +3O O O2 = − − −k E T3.334 44 m s121 g
0.63 6 1

122 + ⟶ Δ +a2O O O ( ) O2 2
1

2 = − − −k E T6.987 46 m s122 g
0.63 6 1

123 ⟶ Δ +a3O O ( ) O2
1 = − − −k E T2.509 45 m s123 g

0.63 6 1

124 + ⟶ +O 2O O O2 3 2 = − − −k E T5.081 39 m s124 g
0.28 6 1

125 + ⟶ +2O O O O2 3 = − − −k E T3.166 43 m s125 g
1.2 6 1

126 + ⟶O O 2O3 2 k126 = 8E − 18exp(− 2060/Tg) m
3 s−1

127 + ⟶ +O O O 2O2 3 2 k127 = 1.56E − 15exp(− 11 900/Tg) m
3 s−1

128 ⟶RyO ( ) O2 2 k128 = 0.015 s−1

129 + ⟶ + ΔRy aO O ( ) O O ( )2 2 2 2
1 k129 = 1.86E − 19 m3 s−1

130 + ⟶ + ΣRy bO O ( ) O O ( )2 2 2 2
1 k130 = 1.86E − 19 m3 s−1

131 + Δ ⟶ +D aO( ) O ( ) O O1
2

1
2 k131 = 1E − 17 m3 s−1

132 + ⟶ + ΔS aO( ) O O O ( )1
2 2

1 k132 = 1.5E − 18exp(− 850/Tg) m
3 s−1

133 + ⟶ + ΣS bO( ) O O O ( )1
2 2

1 k133 = 7.3E − 19exp(− 850/Tg) m
3 s−1

134 + ⟶ +S RyO( ) O O O ( )1
2 2 k134 = 7.3E − 19exp(− 850/Tg) m

3 s−1

135 + Δ ⟶ +S a RyO( ) O ( ) O O ( )1
2

1
2 k135 = 1.3E − 16 m3 s−1

136 Σ + ⟶ Δ +b aO ( ) O O ( ) O2
1

3 2
1

3 k136 = 7.1E − 17 m3 s−1

137 + + Δ ⟶ Σ +a bO O O ( ) O ( ) O2 2
1

2
1

3 = − − −k E T1.56 40 m s137 g
1.5 6 1

138 + + Δ ⟶ +aO O O ( ) O 2O2 2
1

2 k138 = 3E − 44 m6 s−1

139 + ⟶ + ΔaO O O O ( )3 2 2
1 = − − −k E T2.4 19 exp( 2060/ ) m s139 g

3 1

140 + ⟶ + ΣbO O O O ( )3 2 2
1 k140 = 8E − 20exp(− 2060/Tg) m

3 s−1

141 ⟶ + +2O O O O3 2 3 k141 = 1.65E − 15exp(− 11 435/Tg) m
3 s−1

142 + ⟶ + Ry2O O O O ( )2 2 2 k142 = 1.2E − 46 m6 s−1

143 + ⟶ + Σb2O O O O ( )2 2 2
1 k143 = 7.6E − 44Tg

−1exp(− 170/Tg) m
6 s−1

144 + + ⟶O O O 2O2 3 3 = − − −k E T1.3 41 m sg144
2 6 1

145 + ⟶ ++ +2O O O O2 2 2 4 = − − −k E T1.25 38 m sg145
1.5 6 1

146 Δ + ⟶ ++ +aO ( ) O 2O O2
1

4 2 2 k146 = 1E − 16 m3 s−1

147 Σ + ⟶ ++ +bO ( ) O 2O O2
1

4 2 2 k147 = 1E − 16 m3 s−1

148 + ⟶ ++ +O O O O4 2 3 k148 = 3E − 16 m3 s−1

149 + ⟶ ++ +O O 2O O2 4 2 2 k149 = 0.02673 exp(− 5030/Tg) m
3 s−1

150 + Δ ⟶ +− aO O ( ) O O2
1

2 k150 = 3.3E − 17 m3 s−1

151 + ⟶ +− −O O O O2 2 k151 = 1E − 20 m3 s−1

152 + Δ ⟶ + +− a eO O ( ) O O2
1

2 k152= 2E − 16exp(− 15 000/Tg) m
3 s−1

153 + ⟶ +− −O 2O O O2 2 3 = − − −k E T3.3 40 m sg153
1 6 1

154 + ⟶ +− eO O 2O2 2 2 k154 = 2E − 16exp(− 5338/Tg) m
3 s−1

155 + ⟶− +O O O2 k155 = 2.7E − 13 m3 s−1

156 + ⟶ +− +O O O O4 2 3 = − − −k E T6.9 12 m sg156
0.5 6 1

157 + + ⟶ +− +O O O O O2 2 2 3 k157 = 2E − 37 m6 s−1

(Continued)
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whereas in the kinetic model, they were obtained by convoluting these cross-sections
with a calculated EDF.

It can be seen from figures 8.17, 8.18 and 8.19 that the spatial distribution of the
charged particle densities is highly non-uniform over the discharge cross-section.
Almost all of the negative ions reside in the inner ion–ion plasma region. The radius
of this region is r = r0. The external electron–ion plasma region (r0 < r < Rd) consists
of electrons and positive ions, whereas the negative ions are practically absent there.

Since the flux of negative ions to the wall is zero, we find from equation (8.27) that
the densities averaged over the cross-section satisfy the relationship [14, 37]

ν ν¯ = ¯ + ¯ ¯n n K n n . (8.30)a e d n r n p

Dividing equations (8.26) and (8.27) by the corresponding diffusion coefficients
and summing them we arrive at the equation [14, 36, 38]

− Δ − Δ = −n k n n l n kl2 2 , (8.31)n e e e
2

n n
2

which is of fundamental importance for analysing the set of equations (8.26) and
(8.27).

Equation (8.31) contains two characteristic space scales, le and ln, which are
defined by

ν ν τ ν τ ν= + = + = Λ + Λl l l D D1 1 1 , (8.32)e
2

ion
2

a
2

i ap a an ap i
2

an a
2

ν τ ν τ= + = + = Λ + Λl l l D n K D n K1 1 1 2 (8.33)n
2

nd
2

nr
2

a n p r np n d
2

np p r
2

where, Dan,ap = Dn, p(k + 1) and Dnp = 2DnDp/(Dn + Dp) are the coefficients of
electron–ion and ion–ion ambipolar diffusion, respectively; τj = Λ2/Dj are the
corresponding characteristic times; and Λ is the diffusion length, which, in the
case of cylindrical geometry, is equal to Λ = Rd/2.4.

Table 8.4. (Continued )

No. Reaction Δε, eV Rate constant

158 + + ⟶− +O O O 3O2 2 2 2 k158 = 2E − 37 m6 s−1

159 + ⟶− +O O 3O2 4 2 k159 = 1E − 13 m3 s−1

160 + ⟶ +− eO O 2O3 2 k160 = 3E − 16 m3 s−1

161 + ⟶ +− −O O 2O O2 3 2 = − −− −k E T T1.62 6 exp( 18 260/ ) m sg161
2

g
6 1

162 + ⟶ +− +O O 3O O3 4 2 k162 = 1E − 13 m3 s−1

163 + + ⟶− +O O O 2O2 2 4 2 k163 = 4E − 38 m6 s−1

164 + + ⟶ +− +O O O 2O O2 3 4 2 k164 = 4E − 38 m6 s−1
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Since the ambipolar electric field draws negative ions into the plasma, their
density in the external region (r0 ⩽ r ⩽ Rd) is low, nn(r) ≈ 0; hence, we have ne(r) ≈
np(r) in this region. At k≫1, we can write equation (8.31) in the form

Δ =n n l . (8.34)e e e
2

Taking into account the spread caused by ion diffusion, we find that the thickness
of the external region satisfies the condition Rd −r0 ⩽ le; i.e., le determines the
maximum thickness of the shell. We would start with the case when this thickness is
small compared with the tube radius Rd (and, hence, with the characteristic diffusion
length Λ = R /2.4d ). Therefore, the external region can be treated in plane geometry.
Then, for the plasma density profile in the region r0 ⩽ r ⩽ Rd, we can use the solution

π π= − −n r n r R r l sin R r l( ) ( )sin( ( ) 2 ) ( ( ) 2 ). (8.35)e e d e d 0 e0

The density profiles in the inner region depend substantially on the ratio between
Rd and ln (see equation (8.33)), i.e., between the radius and the distance a negative ion
covers due to diffusion during its lifetime with respect to volume processes [14, 38].

At τanνa > 1, length le (8.32) is small ( < Λle ), and, under typical discharge
conditions ( ¯ ¯ < ≈n n k/ 100n e ), the length ln turns out to be even smaller (ln < le);
hence, ion diffusion can be ignored [34–36]. When the opposite inequality is satisfied
(τanνa < 1), the electron–ion plasma occupies almost the entire cross-section of the
tube, whereas the length ln can be either longer or shorter than the radius of the inner
ion–ion region. Hence, to obtain functional dependences in the inner region, it is
reasonable to consider two limiting regimes with large and small values of the
parameter τanνa which is quadratic in pressure.

For oxygen, the boundary value τanνa = 1 corresponds to Λ ≈p 0.07cm Torr, so
that τanνa > 1 at pΛ > 0.07 cm Torr and vice versa. Consequently, length le (equation
(8.32)) has two asymptotes: le ≈ Λ at low pressures, pΛ < 0.07 cm Torr, and le ≈ ln in
the opposite case.

At high attachment frequencies (τanνa > 1), characteristic lengths, equations (8.32)
and (8.33), as was mentioned above, are both small ( < < Λl ln e ). Since ln < le, we
can neglect ion diffusion in equations (8.26) and (8.27) (as was done in [34–36]) and
assume that the shell thickness is − ≈R r ld 0 e (i.e., the denominator in equation
(8.34) is equal to unity). In the case in hand, in balance equation (8.26) for negative
ions, their transport is insignificant as compared to volume processes (see figure
8.20), so that the negative ion flux is almost completely determined by the drift
component. Hence, at ≈ >n n np n e, the fluxes of positive and negative ions in the
inner region are almost the same in magnitude, but opposite in sign; i.e., we have [14,
36]

Γ ≈ ∇ ≈ ∇ ≈ −Γb kn n n kn n n b . (8.36)n n p e e n e e p p

For this reason, in equation (8.31), in which these fluxes are summed, they almost
completely cancel each other in the inner ion–ion region. In other words, at r < r0,
the terms on the left-hand side of equation (8.31) (which are responsible for spatial
transport) are small compared to the terms on the right-hand side (which are
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responsible for volume processes). Hence, the local balance of the volume plasma-
chemical processes resulting in the production and loss of ions, =n l n kl/ 2 /e e

2
n n

2,
holds with a high accuracy. At τ ν > 1an a , the important relation can be deduced from
this equality [10, 14, 36]

ν ν ν+ = + + +D D n n D K n n n D D( ) ( ) (1 1 ), (8.37)i p a n e d n n r n n e p n

which allows one to obtain the relationships between the plasma parameters in the
central region r < r0.

The relationships between the densities of charged particles depend on the
mechanism responsible for the loss of negative ions, i.e., on the relationship between
the terms on the right-hand side of equation (8.37). At τanνa > 1, the loss of negative
ions in an oxygen plasma is governed by detachment processes (the detachment
regime with νd > npKr). Then, it follows from equation (8.37) that the profiles of the
electron and negative ion densities are similar

∇ = ∇ =n n n n n x n x/ / , ( )/ ( ) const. (8.38)e e n n e n

This condition was first proposed in [39] and then was justified in [34–36],
assuming that ion diffusion can be neglected as compared to ion drift. It follows
from the above analysis that equation (8.37) is valid only at τ ν > 1an a ; it is impossible
to extrapolate it to the low pressure.

Figure 8.20. Contributions of spatial transport and volume processes to the negative ion balance for p = 1 Torr
and I = 50 mA. Curve 1 shows the flux of negative ions (with a minus sign), curve 2 shows the total production
of ions, and curve 3 shows the ion loss. From [10].
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The validity of equation (8.38) for oxygen is illustrated in figure 8.21, which shows
the density profiles from figure 8.18 (p = 1 Torr) normalized to the central electron
density. Substituting equation (8.38) into equation (8.26) or (8.27), we find that, at a
significant degree of electronegativity ( >n nn e), the densities in the inner region are

∼ ∼ ∼n r n r n r J r l( ) ( ) ( ) ( ). (8.39)p n e 0 0

For plane geometry, the Bessel function should be replaced with x lcos( / )0 . In
equation (8.39), the characteristic length [14, 38]

ν ν ν ν ν τ= + ≈ Λ > Λl D D n n2 ( ) ( ) (8.40)0
2

an d a ap i d
2

n i ap e
2

also determines the ambipolar electric field = − ∇E r T n n( ( ) / )e e e in the central region
(r < r0):

≈ − ∼ −E r T J r l l T r l( ) ( ) . (8.41)c e 1 0 0 e 0
2

At l0 > Λ > le the density profiles (8.39) in the inner region are flatter than in the
external region and, being extended up to the wall, they do not turn to zero (see
equation (8.29)). Consequently, the field (8.41) is weaker than the electric field in the
shell (r0 < r < Rd), for which we have from equation (8.35) the following estimate

π π π≈ − − ∼ − −E r T l R r l T l r r( ) ( 2 )cot( ( ) 2 ) ( 2 )( ). (8.42)s e e d e
2

e e
2

0

Figure 8.21. Normalized density profiles for p = 1 Torr and I = 50 mA: (1) ne(r)/ne0, (2) nn(r)/ne0. Curves 3 and
4 show the results calculated by equation (7.20), and curve 5 shows profile (7.17) in the outer region. From [10].
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To illustrate the limiting cases, we use equations (8.26) and (8.27) to rewrite
relationship (8.36) in the form [14, 36]

∫ ∫ν νΓ = = −Γ =n r rrdr D D n r rrdr( ) ( ) (8.43)
r

R r

n a e p i
0

e
0

d 0

where D = (Dn/Dp) ∼ 1. This relationship means that the attachment rate in the
external region is equal to the number of ions produced in the central region due to
ionization. In the thin shell, a comparatively small flux of negative ions Γn is
produced due to attachment; hence, a fairly weak electric field (8.41) is sufficient to
transport these ions into the inner region, in which they disappear due to detach-
ment. Since, at τanνa > 1, the electrons in the inner region disappear mainly due to
attachment, it is necessary to enable just a minor flux of positive ions toward the
external region. In other words, relationship (8.43) means that, if the local plasma-
chemical balance of ions dominates over their spatial transport, the latter should
only compensate for a relatively small difference between the attachment and
detachment of negative ions.

Using expression (8.35) for ne(r) and equations (8.41) and (8.42), we can obtain
from equation (8.43) the ionization frequency Zi, which represents the eigenvalue of
the boundary value problem described by equations (8.26) and (8.27) [14]. The
simple estimate νΓ ≈ ≈ Γ ≈ Λn l Z nn a e e p i e gives ν ν τ≈ Λ ≈Z l / /i a e a an [14, 36].

In the case at hand, we have ν τ ν τ≈ > 1i an a an ; hence, we obtain τanZi > 1. This
means that the ionization frequency exceeds the value given by the Schottky formula
for a simple plasma (τanZi = 1) [14, 36].

The small density of the negative ions that are produced in the shell due to
attachment can be deduced from their flux Γn (8.43)

π π π≈ Γ ≈ − −n b E l n r D R r l R r l8 ( ) ( )sin ( ( ) 2 )tan( ( ) 2 ) (8.44)n n n s e
2

e 0
2

an
2

d e d e

π ν≈ − < ⩽n r R r D l r r R( ) ( ) (4 ) ( ). (8.45)a ane 0 d
3

e 0 d

At the point r = r0 ≈ Rd−le, the field Es is close to zero, whereas the flux Γn (8.42)
caused by attachment in the external region, is finite. Therefore, when approaching
the point =r r0, negative ion density (equation (8.45)) sharply increases

ν π≈ − ⩾ = −n l n r D r r r r R l8 2 ( ) ( ( )) ( ) (8.46)n e
3

e 0 a
3

an 0 0 d e

to its value in the inner region, which is determined by equation (8.37).The transition
zone separating regions with different ion composition is narrow (∼ln < le). For this
reason, it was treated in [14, 36], as a diffusive jump in which ion densities undergo a
jump, whereas the ion fluxes and the electron density are continuous. The validity of
relationship (8.37) in the region r < r0 in an oxygen discharge is illustrated in figure
8.21, which shows the normalized density profiles from figure 8.17 at a pressure of
p = 1 Torr. The dashed curves in figure 8.21 show the profiles calculated by formula
(8.39) for the inner region and by formula (8.35) for the shell with the thickness
Rd −r0 ≈ le. When deducing formula (8.35) for the external region, the shell thickness
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δsh was taken into account; i.e., it was assumed that the electron density vanished at
r = Rd − δsh, rather than at the tube wall. It can be seen that the results of
calculations using these formulas agree well with the results of full-scale simulations.

At lower pressures, the role of spatial transport increases and, thus, the character-
istic lengths le (8.32) and ln (8.33) also increase. The increase in length le (8.32) leads
to the flattening of density profiles (8.39) in the inner region. Because of the increase
in length ln, the region with a sharp change of the ion density spreads out due to ion
diffusion; hence, the transient region can no longer be treated as a jump. As a result,
the ion density profiles become bell-shaped.

At ln ⩾ Λ, the negative ions are able to pass throughout the entire discharge
volume due to their diffusion. However, they remain trapped in the inner region by
the electric field; as a result, a Boltzmann distribution (similar to that for electrons) is
established

− ∇ = − ∇ =T n n T n n E. (8.47)e e e n n

It follows from equations (8.32) and (8.33) that, generally, the own diffusion of
the negative ions prevails (ln > Λ) only when attachment is insignificant as compared
to the ambipolar diffusion of negative ions (ion diffusion with the electron temper-
ature), i.e., when τ ν ≪ 1aan (see [14, 10] for details).

Condition (8.47) leads to the relationship

=n r n n r n( ) (0) [ ( ) (0)] , (8.48)k
e e n n

1

which strongly depends on the temperature ratio k = Te/Ti and coincides with
distribution (8.38) only in the particular case =T Te i. The establishment of a
Boltzmann distribution for electrons and negative ions at low pressures is illustrated
in figure 8.22, in which the simulation results shown in figure 8.19 for a pressure of
p = 0.15 Torr are replotted in accordance with equation (8.48)1.

Since k≫1 in discharges, it follows from equation (8.48) that the electron density
profile is nearly flat, ∼ ≈n r n( ) conste e0 , which is indeed observed at reduced
pressures (see figures 8.18 and 8.19). Here, transport processes play a major role
for the negative ion balance (see figure 8.23), in contrast to the above case with
τan νa > 1 (cf figure 8.20). The field-induced and diffusive fluxes of negative ions are
almost the same in magnitude, but opposite in sign; hence, a small difference
between them is sufficient to balance the production and loss of ions at any point
(figure 8.23). The plasma-chemical processes govern only the global balance of ions
in the central region. In equation (8.26) for the positive ion density np(x), the terms
on the left-hand side are also approximately equal to each other. However, they are
summed and, thus, at a significant degree of electronegativity (nn(0) > ne(0)), balance
equation (8.26) for positive ions can be written in the form −2DpΔ nn = Zine0. This

1Note that, for the recombination regime (νd < npKr), it follows from equations (8.36) and (8.37) that
∇ = ∇ + ∇ ≈ ∇n n n n n n n n/ / / 2 /e e n n p p n n, which results, in contrast to equation (8.38), in an ion distribution
that is more flat than the electron distribution (see [10, 14] for details). In such a situation (which occurs, e.g.
for halogens), the attachment and ionization frequencies are approximately the same, Zi ≈ νa, as was noted in
[35].
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gives a parabolic distribution of the ion densities and a flat profile of the electron
density ne(r) at r < r0 [33]:

ν= − = ≈ ≈n r n r r n n r D n r n( ) [1 / ], / /4 , ( ) const. (8.49)n n0
2

0
2

n0 e0 i 0
2

p e e0

Figure 8.23. Contributions of spatial transport and volume processes to the negative ion balance for p = 0.15
torr and I = 50 mA: (1) the diffusion component of the negative ion flux, (2) its drift component, and (3) the
resulting flux balancing the production and loss of negative ions in volume plasma-chemical processes. From
[10].

Figure 8.22. Boltzmann distributions of electrons and negative ions for p = 0.15 Torr and I = 50 mA: (1) ne (r),
(2) ne(0)/[nn(r)/nn(0)]

1/k (see equation (8.48)), and (3) electron density profile (8.35) in the outer region. From
[10].
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We note that the ion diffusion in the inner region proceeds with the coefficient
2Dp of the own ion–ion ambipolar diffusion, rather than with the usual coefficient of
ambipolar diffusion Dp(1 + k). It can be seen from figures 8.18 and 8.19 that, at low
pressures, simple parabolic law (8.49) for the ion density profiles agrees well with the
results of full-scale simulations2.

In the external region (shell), in which the negative ions are almost absent, the
plasma density profile varies in accordance with equation (8.35). In [10, 33], the
position of the boundary point r = r0 was found from the negative ion balance using
model profiles (8.49). Unfortunately, this procedure is rather laborious and provides
a low accuracy.

It seems that the position of the boundary can be found in a more simple and
reliable way from the continuity of the positive ion flux at r = r0

= + − ≈ + −D n r D k n l R r l D k n R r2 (1 ) ( tan( ) )) (1 ) ( ). (8.50)p n0 0 p e0 e d 0 e p e0 d 0

Model electron density profiles (8.35) with r0 defined by equation (8.50) (see figure
8.22) agree well with the results of full-scale simulations shown in figure 8.19.

Based on the analysis performed, we recommend the following procedure to
obtain approximate density profiles in the plasma of electronegative gases in the
detachment regime (νd < Krnp):

(i) First, the parameter τanνa is estimated.
(ii) Then it is necessary to indent from the wall by the thickness δsh of the

space-charge sheath, which can be estimated, e.g. according to [14].
(iii) In the external electron–ion plasma region (r0 < r < Rd), where

≈ ≫ ≈n n n 0p e n , the electron density varies according to equation (8.35)
and the negative ion density varies according to equation (8.46). If τanνa > 1,
then the thickness of this region is equal to le (see equation (8.32)) and the
denominator in equation (8.35) is equal to unity (r0 = Rd −le). In the opposite
case (τ ν < 1an a ), we have le ≈ Λ and the thickness of this region is estimated
by formula (8.50).

(iv) Finally, the density profiles in the central region (r < r0) are determined.

At τanνa > 1, the density profiles are similar and are described by equation (8.39),
whereas the density values are related by expression (8.37). Electron density profile
(8.39) is matched to expression (8.35) at r = r0 = Rd −le. The ion densities undergo a
jump at this point: the negative ion density drops to nearly zero (see equation (8.45)),
whereas the positive ion density decreases to the value equal to the electron density
given by equation (8.35) . At τanνa > 1, the thickness of the transition zone ∼ <l l( )n e

is small and it can be regarded as a jump in the ion density.
At τanνa < 1, the electron density profile is flat ( ≈n x n( )e e0) and the ion density

profile is parabolic. These densities are related by formulas (8.49). The electron

2We note also that, in order for profiles (8.49) to be established, it is enough to satisfy the condition τanνa < 1.
The mechanism for the volume loss of negative ions, which is determined by the right-hand side of equation
(8.27), can be either recombination (at ν < K nd r p) or detachment (at νd > Krnp).
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density profile is matched at the point r = r0, whose position can be estimated from
equation (8.50).

If the ion diffusion can be negligible in this case, the peripheral region of the pure
(electron–ion) plasma occupies practically the whole column cross-section, i.e., the
central region is small, r0 ≪Rd [34–36]. In this situation the condition of discharge
maintenance coincides with the condition for pure plasma (8.2) both in the cases of
the detachment-dominated and of the recombination-dominated plasma core cases.
It follows from the fact that the main part of the ionization, as well, as of the
diffusion, takes place in the pure electron–ion plasma, and the processes in the
relatively small ion–ion central core give a negligible contribution in the overall
balance of the positive ions.

Substituting the calculated expressions for νion, and using the shock condition
(8.36) together with the overall balance of negative particles, (8.30), and with the
partial density profiles (8.35) and (8.39), it is easy to find the coefficients in equations
(8.35), (8.39) and the ion density jump at the shock.

The width l1 of the central ion–ion plasma core equals

ν τ π=l L D D2 ( ). (8.51)1 a an n

The central density of the negative ions is

ν τ=n n D D( ) (8.52)0 e0 n d an p

It should be noted that the spatially averaged electronegativity ¯ ¯n n/n e can be rather
large in this case.

Since the electron attachment results in considerable reduction of the ionization
rate (neZi), for plasma maintainence of the strongly electronegative gases rather than
high reduced field (E/p) are necessary. In the fluid ion description used it means that
the ion temperature can increase significantly, particularly, at low pressures [40]. As
the pressure decreases, the directed velocity acquired by the ions in the field can
become higher than the random (thermal) velocity. The coefficient of ion diffusion
also increases. This can dramatically change the ion density profiles [40], presented
in figures 8.18 and 8.19, and shows that taking into account ion heating (which
increases the ion diffusion coefficient) dramatically changes the shell thickness. For
this reason, when analysing the spatial profiles of the charged particle densities in
electronegative gases, one of the central problems is the ion temperature [40].

The ion density profiles computed for p = 0.15 Torr without and with allowance
for ion heating in the longitudinal electric field are shown in figures 8.18 and 8.19,
respectively.

Ion heating was calculated by the formulas for the effective transverse ion
temperature [40]

= + +
+

T T
M M Mw

M M
( )

3(2 )
, (8.53)i

i
2

i

where M and Mi are the masses of a molecule and an ion, respectively, and w is the
ion drift velocity in the longitudinal electric field Ez. For example, at p = 1 Torr, the
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transverse ion temperature is ≈760 K, whereas at p = 0.15 Torr, it is ≈5200 K. For
oxygen, an order of magnitude of the ion temperature as a function of the parameter
pΛ is presented, e.g. in [40].

In [38] the kinetic and fluid approaches were compared to the modeling of the
molecular plasma of the positive column of a dc oxygen discharge in a 12 mm
diameter glass tube at gas pressures of 0.5–3 Torr and discharge currents of
5–200 mA.

As oxygen is a molecular gas, for the correct description of the glow discharge it is
necessary to consider big enough nomenclature plasma-chemical processes with the
participation of various atomic and molecular oxygen states. The accounted set are
listed in table 8.4.

In the fluid model, the rate constants of the processes with the participation of
electrons were obtained by convoluting the corresponding cross-sections with a
Maxwellian EDF, whereas in the kinetic model, they were obtained by convoluting
these cross-sections with an EDF calculated with the help of the Comsol
Multiphysics [13].

Typical EDFs obtained by self-consistently simulating the dc discharge plasma at
gas pressures of p = 1 and 0.15 Torr are shown in figures 8.24 and 8.25 It can be seen
that all the EDFs are strongly non-equilibrium. For this reason, the rate constants of
many plasma-chemical processes differ significantly from those obtained in the fluid

Figure 8.24. Local EDFs for p = 1 Torr and i = 50 mA. The solid curves shows the results of self-consistent
calculations for the radius r varying from 0 to Rd with a step of Rd/5. The dashed curve shows the local EDF
f w( )0

0 . From [38].
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model, which deals with the same temperature all the electrons. In turn, this leads to
the difference in the plasma parameters that significantly depend on these rate
constants. At high pressures, the EDF is close to local; i.e. the function f w( )0

0 is
independent of r (figure 8.24). At low pressures, the EDF is not only non-
equilibrium but also non-local. In this case, the values of f0(ϵ) represented as a
function of the total energy ϵ = w + eϕ (r) (i.e., without normalizing and shifting by
the space potential) coincide at different radii (figure 8.24a). The same EDFs f0(ϵ)
plotted using the conventional local representation as functions of the kinetic energy
w (similar to figure 8.24) differ for different radii r (figure 8.24b).

In oxygen, the energy loss due to inelastic collisions is dominant over almost the
entire energy range. Hence, using the equality λ λ λ=ϵ * and the total cross-sections
for elastic and inelastic collisions (σ = 5 × 10−16 cm2 and σ* = 5 × 10−17 cm2,
respectively), we obtain the estimate λϵ ≃0.2/p (in cm), where p is in Torr. It follows
from the above estimates that, for oxygen, the criterion for the EDF to be non-local
(λϵ > Λ) is Λ <p 0.2 cm Torr, which agrees with the results of simulations [38].
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