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Abstract—We simultaneously study two classes of two-dimensional time-periodic systems of
differential equations with a small positive parameter, namely, systems with “slow” or “fast”
time whose first-approximation systems are autonomous and conservative and do not contain
terms of order higher than three. Thus, the corresponding unperturbed systems have one, two,
or three rest points.

For the perturbations, we indicate explicit conditions, independent of the small parameter,
under which every original system of either class with coefficients three times continuously
differentiable with respect to the phase variables and the parameter in a neighborhood of zero
has finitely many two-dimensional invariant surfaces homeomorphic to tori for all sufficiently
small parameter values. We also give formulas for these surfaces.
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1. INTRODUCTION

1.1. Statement of the Problem

Consider the standard two-dimensional system

ẋ1 = (−x2 +X1 (t, x1, x2, ε) ε) εν ,

ẋ2 =
(
x3

1 − 2σx2
1 + ηx1 +X2 (t, x1, x2, ε) ε

)
εν (ν = 0, 1)

(1ν)

with a small parameter ε, where σ = 0, 1, η = −1, 0, 1 for σ = 0, η ∈ R for σ = 1, and X1 and X2

are continuous functions defined for t ∈ R, |x1| < x0, |x2| < x0, and 0 ≤ ε < ε0, T -periodic with
respect to t, and belonging to the class C3 with respect to x1, x2, and ε in the above-mentioned
domain.

Essentially, formula (1) describes two different systems, (10) and (11); comparing them, one can
say that system (11) has “fast” time, since when reducing it to (10) one obtains a system with
period Tε.

The first approximation system, or the unperturbed system, corresponding to system (1ν) is
naturally defined as the autonomous system

ẋ1 = −x2ε
ν , ẋ2 =

(
x3

1 − 2σx2
1 + ηx1

)
εν (ν = 0, 1). (2ν)

Obviously, the phase portraits of systems (20) and (21) coincide.
Let us introduce notation for the roots of the polynomial x3

1 − 2σx2
1 + ηx1. We set

γ0 = 0; γ1 = σ −
√

σ2 − η, γ2 = σ +
√

σ2 − η if η ≤ σ2. (3)

If σ = 1 and η ≤ 1, then γ1 = 1 −
√
1− η, γ2 = 1 +

√
1− η, and η = γj (2− γj); if σ = 0 and

η = −1, then γj = (−1)j ; if η = 0, then γj = 0 (j = 1, 2).
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2 BASOV

System (2ν) is conservative. The phase plane of system (2ν) is filled with closed trajectories and
separatrices, which are given by the integrals

x4
1 − 8x3

1σ/3 + 2ηx2
1 + 2x2

2 = a

and surround one, two, or three rest points (0, 0), (γ1, 0), and (γ2, 0); here the last two points can
be absent or coincide with the first one.

The aim of the present paper is as follows. For any sufficiently small ε > 0, we find several
two-dimensional cylindrical invariant surfaces of system (1ν) which are homeomorphic to tori if
time is taken modulo the period and whose phase projections lie in a small neighborhood of some
closed trajectories of the unperturbed system (2ν) and thereby surround one or all rest points.

As a result, we write out closed-form conditions on the functions Xi (t, x1, x2, 0) under which the
perturbed system (1ν) has the above-mentioned invariant surfaces. These conditions depend on σ
and η. We also write out estimates for the number of such surfaces and present the asymptotic
expansion of each of these surfaces in powers of the small parameter.

Systems (10) and (11) are studied simultaneously, since the invariant tori are found with the use
of the same method developed in [1, 2] and substantially modified in [3]. However, when finding
the bifurcation equations, there are important distinctions between the cases ν = 0 and ν = 1, and
we discuss these distinctions in detail.

1.2. Approaches to the Solution

The general method for solving such problems is quite standard and includes three stages. One
should

1. Rewrite system (1ν) in special polar coordinates r and ϕ (called the “action–angle variables”
in [4, Sec. 50]) in a neighborhood of an arbitrary closed trajectory of the unperturbed system (2ν).

2. Find and analyze conditions on the functions Xi (t, x1, x2, 0) in system (1ν) sufficient for
the bifurcation equation to have at least one admissible solution satisfying the nondegeneracy
condition, which guarantees the existence of a nonzero focal quantity generated by the above-
mentioned functions.

3. Make a number of averaging and scaling changes of variables reducing system (1ν) to a system
that, by the Hale lemma [5], has a two-dimensional invariant surface homeomorphic to a torus.

Therefore, nowadays the main problems that necessitate the development of new approaches
and methods arise at the first stage of the analysis when constructing special polar coordinates for
increasingly complicated first approximation systems with several rest points.

Additional interest is also attracted by the second stage, since the bifurcation equation, which is
quadratic for systems with simpler first approximations, in this case has a very complicated integral
structure.

The third stage is standard but should be realized with care, since it permits one to obtain
closed formulas for each invariant surface corresponding to a root of the bifurcation equation.

1.3. Versions of System (11)

1. System (11) can be obtained from the more general T -periodic system

ẏ1 = −y2ε+ Y1 (t, y1, y2, ε) ε2,

ẏ2 =
(
υ0(t)y3

1 + υ1(t)y2
1 + υ2(t)y1 + υ3(t)

)
ε+ Y2 (t, y1, y2, ε) ε2

(11
1)

with a small positive parameter ε, where
∫ T

0
υ0(t)dt > 0 and the Yi are functions similar to Xi.

Indeed, after the change of variables y2 = w2 +
∑3

k=0 υ̃
∗
k(t)y

3−k
1 ε in (11

1), the first approximation(
−y2,

∑3

k=0 υky
3−k
1

)
ε acquires the form

(
−w2,

∑3

k=0 ῡky
3−k
1

)
ε. Here υ(t) = ῡ + υ̃(t), where ῡ is

the mean value of υ(t), and υ̃∗(t) =
∫ t

t∗
υ̃(ζ)dζ is a T -periodic function with zero mean for an

appropriate choice of t∗.
After the change of variables y1 = w1+ζ, we obtain (−w2, ῡ0w

3
1 + υ̌1w

2
1 + υ̌2w1) ε, where ῡ0 > 0,

υ̌1 = ῡ1 + 3ζῡ0, and υ̌2 = ῡ2 + 2ζῡ1 + 3ζ2ῡ0 provided that ζ is a real root of the cubic equation∑3

k=0 ῡkζ
3−k = 0.
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INVARIANT SURFACES OF STANDARD TWO-DIMENSIONAL SYSTEMS 3

Let υ̌1 = 0. If υ̌2 = 0, then we make the scaling change of variables w1 = x1, w2 = ῡ
1/2
0 x2,

ε = ῡ
−1/2
0 ε, but if υ̌2 �= 0, then we make the change of variables w1 = ῡ

−1/2
0 |υ̌2|1/2

x1, w2 =
ῡ
−1/2
0 |υ̌2|x2, ε = |υ̌2|−1/2

ε. We obtain the first approximation (−x2, x
3
1) ε in the first case and

(−x2, x
3
1 + sgn υ̌2x1) ε in the second case. But if υ̌1 �= 0, then we make the change of variables

w1 = −2−1ῡ−1
0 υ̌1x1, w2 = −2−2ῡ

−3/2
0 υ̌1 |υ̌1|x2, ε = 2ῡ1/2

0 |υ̌1|−1
ε and obtain the first approximation(

−x2, x
3
1 − 2x2

1 + 2ῡ1/2
0 |υ̌1|−1

υ̌2x1

)
ε.

In particular, if σ �= 0 in a system of the form (11), then it can be scaled to unity; if σ = 0, then
a nonzero η can be scaled to ±1.

2. The system

u̇1 = u2 + U1 (t, u1, u2, ε) , u̇2 = −u3
1 + 2u2

1ε− ηu1ε
2 + U2 (t, u1, u2, ε) (11

2)

was considered in [3], where Ui = U
[2+i]
i + U

>[2+i]
i ; U [k]

i is a form of order k in u1, u2, and ε with
coefficients 2π-periodic in t assuming that u1 and ε have the first order of smallness and u2 has
the second order of smallness; U

>[k]
i is a function 2π-periodic in t and sufficiently smooth in a

neighborhood of the point u1 = u2 = ε = 0 whose expansion starts from some order > k. This
system can be reduced by the change of variables u1 = x1ε, u2 = −x2ε

2 to system (11) with σ = 1
and

Xi (t, x1, x2, 0) =
2+i∑

p1+2p2=0

U
(p1,2p2,2+i−p1−2p2)
i (t)xp1

1 (−x2)
p2 ;

i.e., if ε = 0, then X1 has six terms at most quadratic in x2 and X2 has nine terms at most cubic
in x2.

3. Another special case of system (11) is given by the Duffing equation

ÿ + y3 − 2σy2ε+ ηyε2 = Y (t, y, ẏ, ε) , (11
3)

which describes small oscillations of a periodic oscillator whose restoring force has the third order
of smallness and whose quadratic and linear terms depend on the small parameter.

Equation (11
3) can be reduced by the change of variables y = u1, ẏ = u2 to system (11

2) with

U1 (t, x1, x2, ε) ≡ 0, U2 (t, x1, x2, ε) = −Y (t, x1, x2, ε) .

2. PARAMETRIZATION OF CLOSED TRAJECTORIES AND SEPARATRICES
OF A UNPERTURBED SYSTEM

2.1. Admissible Initial Values

By using the structure of system (2ν), we introduce special polar coordinates by analogy with the
coordinates that were introduced in [6, p. 290], in particular, for the unperturbed system ẋ1 = x2,
ẋ2 = −x3

1 and were then generalized in [2] with the normalization preserved to the unperturbed
system ẋ1 = x2, ẋ2 = −x3

1 − η2x1ε
2 with a single rest point.

The main difference between the special trigonometric functions C(ϕ) and S(ϕ) introduced in [3]
and in the present paper is that the function C(ϕ) is not only nonsymmetric owing to the presence
of a term containing x2

1 in system (2ν) but is also chosen to be not normalized at zero, which
permits directly parametrizing any closed trajectory and separatrix of the unperturbed system by
the above-mentioned trigonometric functions.

Thus, consider the real autonomous system

C ′(ϕ) = −S(ϕ), S′(ϕ) = C3(ϕ)− 2σC2(ϕ) + ηC(ϕ). (4)

Obviously, its trajectories coincide with those of system (2ν).

DIFFERENTIAL EQUATIONS Vol. 44 No. 1 2008 (Reg. No. 101, 15.2.2008)
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The closed trajectories of (4) that are generators of invariant cylindrical surfaces in the
(ϕ,C, S)-space meet the abscissa axis at certain points. To find out what these points are for
various values of σ and η, we introduce the function

f(ζ) = ζ4 − 8σζ3/3 + 2ηζ2.

Then f(0) = 0, f(ζ) → +∞ as ζ → ±∞; by (3), if σ = 1 and η ≤ 1, then f (γj) = γ3
j (4/3 − γj),

and if σ = 0 and η = −1, then f (γj) = −1. In addition, the derivative f ′ = 4ζ (ζ2 − 2σζ + η) is
zero at the points γ0, γ1, and γ2, and f ′(C(ϕ)) ≡ 4S′(ϕ) for the trajectories of system (4).

For certain values of the real parameter c, the relation

f(C) + 2S2 = f(c), or C4 − 8σC3/3 + 2ηC2 + 2S2 = f(c), (5)

is obviously an integral of system (4).

Definition 1. A real parameter c is said to be admissible if c �= γl, l = 0, 1, 2, [see (3)] and
there exists a number b = b(c) such that

b < c, b �= γl, f(b) = f(c), f(ζ) < f(c) for ζ ∈ (b, c).

For any admissible parameter c, (b, c) is referred to as an admissible interval. It is a solution of
the inequality C2 (C2 − 8σC/3 + 2η) < f(c), or f(C) < f(c), and formula (5) describes a closed
curve passing through the points (b, 0) and (c, 0) in the coordinates C and S. Since b, c �= γl,
it follows that this curve is not a separatrix loop of system (4).

Thus if c is an admissible parameter, then the solution of the Cauchy problem for system (4)
with the initial data C(0) = c, S(0) = 0 is given by real-analytic ω = ω(c)-periodic functions
C(ϕ) = C(ϕ, c) and S(ϕ) = S(ϕ, c). In addition, C(ω/2) = b and S(ω/2) = 0.

2.2. Classification of Closed Trajectories of System (4)

For any values of the parameters σ and η occurring in the unperturbed part of system (1ν), we
split the set of closed trajectories of system (4), or the set of admissible values of the parameter c,
into three disjoint classes 0, 1, and 2 depending on which of the rest points (γ0, 0) of system (4)
[the origin, (γ1, 0), or (γ2, 0)] is surrounded by the closed trajectory C(ϕ), S(ϕ) passing through the
point (c, 0) for ϕ = 0. The trajectory can also surround other rest points, only together with
the adjacent separatrices.

For each of these classes of closed trajectories, we establish the boundary of the set of admissible
values of the parameter c, the corresponding boundary for the parameter b, and the range of the
function f(c) depending on the values of the parameters σ and η.

Lemma 1. The parameter c is admissible in the following cases :
a. σ = 1 and η ≤ 0 (η ≤ γ1 ≤ 0, 2 ≤ γ2 ≤ 2− η); then
0a. b ∈ (−∞, b∗a) , c ∈ (c∗a,+∞), and f(c) > 0.
1a. b ∈ (b∗a, γ1) , c ∈ (γ1, 0) , and f (γ1) < f(c) < 0 for η < 0 (γ1 < 0, γ2 > 2).
2a. b ∈ (0, γ2) , c ∈ (γ2, c

∗
a) , and f (γ2) < f(c) < 0, where b∗a = 4

(
1 −

√
1− 9η/8

)
/3 < γ1 for

η < 0 and b∗a = 0 for η = 0, c∗a = 4
(
1+

√
1− 9η/8

)
/3 > γ2; i.e., b∗a and c∗a are roots of the equation

f(C) = f(0).
b. σ = 1 and 0 < η ≤ 1 (0 < γ1 ≤ η, 2− η ≤ γ2 < 2); then
0b. b ∈ (b∗b, 0) , c ∈ (0, γ1) , and 0 < f(c) < f (γ1).
1b. b ∈ (−∞, b∗b) , c ∈ (c∗b,+∞) , and f(c) > f (γ1).
2b. b ∈ (γ1, γ2) , c ∈ (γ2, c

∗
b) , and f (γ2) < f(c) < f (γ1) for 0 < η < 1 (γ1 < η, γ2 > 2 − η),

where b∗b < 0 : f (b∗b) = f (γ1) , c∗b = 1 for η = 1 and c∗b > γ2; f (c∗b) = f (γ1) for 0 < η < 1;
moreover, f (γ1) = γ3

1 (4/3− γ1) > 0.
c. σ = 0, η = −1 [γ1 = −1, γ2 = 1, and f(ζ) = ζ4 − 2ζ2], then
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0c. b ∈ (−∞, b∗c) , c ∈ (c∗c ,+∞) , and f(c) > 0.
1c. b ∈ (b∗c , γ1) , c ∈ (γ1, 0) , and −1 < f(c) < 0.
2c. b ∈ (0, γ2) , c ∈ (γ2, c

∗
c) , and −1 < f(c) < 0, where b∗c = −

√
2 and c∗c =

√
2; i.e., b∗c and c∗c

are roots of the equation f(C) = f(0).
d. either σ = 0 and η = 0, 1 or σ = 1 and η > 1; then
0d. b ∈ (−∞, 0), c ∈ (0,+∞), and f(c) > 0.

Proof. The properties of the function f(ζ) permit one to conclude that the boundary of admis-
sible values of c coincides with the boundary of the intervals on which f ′(C) > 0 with “separatrix”
points deleted.

In case a, we have f ′(C) > 0 for C ∈ (γ1, 0) ∪ (γ2,+∞), and f attains the zero maximum for
C = 0 and minima at the points γ1 and γ2. (If γ1 = 0, then it is an inflection point.) Therefore,
for c = 0 Eq. (5) defines one (η = 0) or two (η < 0) separatrices entering the point (0, 0), and the
equation f(C) = 0 has the roots c∗a = 4/3 +

√
16/9 − 2η > γ2 and b∗a = 4/3 −

√
16/9 − 2η ≤ γ1.

In case b, we have f ′(C) > 0 for C ∈ (0, γ1) ∪ (γ2,+∞), and f attains the maximum at the
point γ1 and the minimum at the point γ2. (If γ1, γ2 = 1, then it is an inflection point.) Moreover,
f (γ1) > 0. Therefore, for c = γ1 Eq. (5) defines one (η = 1) or two (0 < η < 1) separatrices at
the point (γ1, 0), and the equation f(C) = f (γ1) always has a root b∗b < 0 and a root c∗b > γ2 if
0 < η < 1.

Case c is similar to the two preceding cases.
In case d, we have f ′(C) > 0 for C > 0; therefore, every c > 0 is admissible.
By M we denote the set of admissible values of the parameter c. Let M0

a = (c∗a,+∞), M0
b =

(0, γ1), M0
c = (c∗c ,+∞), M0

d = (0,+∞), M1
a = (γ1, 0), M1

b = (c∗b,+∞), M1
c = (γ1, 0), M2

a = (γ2, c
∗
a),

M2
b = (γ2, c

∗
b), and M2

c = (γ2, c
∗
c). Then , by the classification in Lemma 1, the set M has the

form M = Ma =
⋃2

l=0 M
l
a in case a, in which σ = 1 and η ≤ 0, M = Mb =

⋃2

l=0 M
l
b in case b,

in which σ = 1 and 0 < η ≤ 1, M = Mc =
⋃2

l=0 M
l
c in case c, in which σ = 0 and η = −1, and

M = Md = M0
d in case d, in which either σ = 0 and η = 0, 1 or σ = 1 and η > 1.

In turn, class l (l = 0, 1, 2) consists of admissible values of c in the set M l = {M l
a in case a, M l

b

in case b, M l
c in case c, and M l

d in case d}; i.e., M =
⋃2

l=0 M
l.

2.3. Separatrices of System (4)

The partition into classes 0, 1, and 2 introduced for closed trajectories determines the singular
point (0, 0), (γ1, 0), or (γ2, 0), respectively, of system (4) for which the admissible intervals (b, c) and
separatrices are constructed in Lemma 1 for various values of the parameters σ and η distinguished,
in turn, between cases a–d.

Corollary 1. In case a, formula (5) with c = c∗a describes the equations of two separatrices, left
and right, forming a separatrix figure-eight entering the point (0, 0) and denoted by Sb

a ∪ Sc
a, where

Sb
a is the trajectory of system (4) passing through the point (b∗a, 0) and Sc

a is the trajectory passing
through the point (c∗a, 0). If η ↗ 0, then b∗a ↘ γ1 ↘ 0 and c∗a ↗ γ2 ↗ 2; therefore, Sb

a = ∅ for η = 0.
In cases b, formula (5) with c = c∗b describes the equations of the separatrix figure-eight entering

the point (γ1, 0) and denoted by Sb
b ∪Sc

b, where Sb
b is the trajectory passing through the point (b∗b, 0)

and Sc
b is the trajectory passing through the point (c∗b, 0). If η ↗ 0, then b∗b ↘ b1, where b1 is a root

of the equation f(C) = f(1), γ1 ↗ 1, and c∗b ↘ γ2 ↘ 1; therefore, Sc
b = ∅ for η = 1.

In case c, formula (5) with c = c∗c describes the equations of the separatrix figure-eight again
entering the point (0, 0) and denoted by Sb

c ∪ Sc
c , where Sb

c is the trajectory of the solution with
the initial data C(0) = −

√
2, S(0) = 0, and Sc

c is the trajectory with the initial data C(0) =
√
2,

S(0) = 0.
In cases d, the separatrices are absent.

Note that for the parametrization of Sb the initial data on the abscissa axis have to be posed at
the left point b∗ rather than at the right point (which is a rest point).

DIFFERENTIAL EQUATIONS Vol. 44 No. 1 2008 (Reg. No. 101, 15.2.2008)
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Thus, the above-introduced partition into classes 0, 1, and 2 implies the following: if the param-
eter c ranges over the set M l (l = 0, 1, 2) of admissible values, then the closed trajectories C(ϕ),
S(ϕ) of system (4) passing through the points (c, 0) for ϕ = 0 fill either a neighborhood of the
singular point (γl, 0) inside a separatrix surrounding that point or (for classes 0 and 1) the entire
phase plane outside a separatrix figure-eight entering the points (γ0, 0) and (γ1, 0), respectively.

This remark completes the construction of the phase portrait of the unperturbed system (2ν),
which coincides with (4) after the change of time t = ϕ/εν .

3. PASSAGE INTO A NEIGHBORHOOD
OF A CLOSED TRAJECTORY OF CLASS 0

3.1. Special Polar Change of Variables

Let c range over the set of admissible values in class 0. Then the closed trajectories C(ϕ), S(ϕ)
of system (4) passing through the point (c, 0) for ϕ = 0 fill the following neighborhoods of the
origin: outside Sb

a ∪ Sc
a in cases 0a and 0c, inside Sb

b in case 0b, and any neighborhood in case 0d.
We fix an arbitrary c and find the ω-periodic solution C(ϕ), S(ϕ) of system (4) with the initial

data C(0) = c, S(0) = 0.
We investigate the perturbed system (1ν) in a small neighborhood of the closed cylindrical

surface f (x1)+2x2
2 = f(c) generated by the chosen trajectory x1 = C(ϕ), x2 = S(ϕ) of system (2ν).

To this end, in system (1ν) we perform a special affine polar change of variables with a nonsymmetric
nonnormalized generalized cosine:

x1 = C(ϕ)(1 + r), x2 = S(ϕ)(1 + r)2 (|r| < 1), (6)

which transforms the cylindrical surface to the point r = 0.
For the realization of the substitution (6), it is necessary that system (1ν) satisfies the inequality

|x1| , |x2| < x0 for all r < 1. Since the interval [b, c] is the range of the function C(ϕ), the function
f(C) attains its minimum at one of the points γl (l = 0, 1, 2), and 2S2 = f(c)− f(C), from (5), we
have |C(ϕ)| ≤ max{−b, c} and |S(ϕ)| ≤ max

√
(f(c)− f (γl))/2.

We have |x1| < 2|C(ϕ)| and |x2| < 4|S(ϕ)| in the change of variables (6); consequently, the
desired inequality is valid if

max
{
−b, c,

√
2f(c)− 2f (γl)

}
< x0/2. (7)

If c grows inside some range of admissible values, then the left-hand side of inequality (7)
increases; therefore, condition (7) can substantially restrict the set of closed trajectories in class 0.

The function
p(C) = f(c) + 2σC3/3− ηC2

(
p′(C) = 2σC2 − 2ηC

)
,

depending on c, plays an important role when making the change of variables (6). By (5),

p(C) = C4 − 2σC3 + ηC2 + 2S2 = CS′ + 2S2.

By differentiating the change of variables (6) according to system (1ν) and by solving the re-
sulting equations for ṙ and ϕ̇, we obtain the system

p(C)&ṙ = (S&X0(C, &) + (S′&X1 + SX2) ε) εν ,

p(C)&2ϕ̇ =
(
p(C)&3 + C&X0(C, &) + (CX2 − 2S&X1) ε

)
εν ,

(8ν)

where

& = 1 + r, X0 = 2σC2&(&− 1)− ηC
(
&2 − 1

)
, Xi = Xi

(
t, C&, S&2, ε

)
.
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3.2. Verification of the Monotonicity of the Angular Variable

In general, the function p(C) occurring on the left-hand side in system (8ν) can change sign.

Lemma 2. Let c be an admissible parameter in class 0. Then p(C) ≥ p0 > 0 in system (8ν)
for C ∈ [b, c]; moreover, b < 0 < c. But if c belongs to class 1b and η < 1, then p(C) changes sign
on [b, c].

Proof. We have p(0) = f(c) > 0 in all cases considered in the lemma; therefore, p(C) > f(c)/2
for |C| ≤ τ . In addition, p(C) ≥ q(C) = C2 (C2 − 2C + η) for C ∈ [b, c], since f(C) ≤ f(c).

The inequality η ≤ 0 is valid in case 0a; then p(C) ≥ f(c) for C ≥ 0 and C ∈ [η, 0), since
p′(C) < 0 for C ∈ (η, 0). Since q(C) has the roots γ1, 0, 0, and γ2, we have q(C) > 0 for C < γ1.
Since η ≤ γ1, we find that p(C) ≥ p∗ > 0 for C ∈ [b, η].

In cases 0b and 1b, we have η > 0; therefore, q(C) ≥ q∗ > 0 for C ∈ [b,−τ ].
If C ∈ [τ, c], then in case 0b, we have 0 < c < γ1 and q(C) > 0 for C ∈ (0, γ1).
In case 1b, we have p′(C) < 0 for C ∈ (0, η) and p(η) = f(c) − η3/3 at the point of minimum.

But η ≤ γ2 < c, and so p(C) ≥ p∗ > 0 for C ≥ 0 if f(c) > η3/3, which is valid only for
η = 1. If, on the other hand, 0 < γ1 < η < 1, then this condition fails for c close to c∗b, since
η3/3 > f (γ1) = γ3

1 (4/3− γ1).
Case 0c is obvious, since p(C) = f(c) + C2 in it.
Case 0d is also obvious, since q(C) > 0 for any C �= 0 if η > 1.
Remark 1. It follows from geometric considerations that p(C) is zero in cases 1a, 1c, and 2,

provided that the interval [b, c] does not contain zero for any admissible value of c, since the deriva-
tive ϕ̇ in system (8ν) should change sign when going around a closed trajectory not surrounding
the origin if the motion is observed from the point (0, 0). In case b, b < 0 < γ1 < γ2 < c. Neverthe-
less, if from the point (0, 0) we observe going around a closed trajectory lying outside a separatrix
figure-eight and sufficiently close to it, the polar angle is oscillating in a neighborhood of the adja-
cency of the figure-eight to the singular point (γ1, 0), which again implies a change of sign of p(C).
Therefore, in cases 1 and 2, special polar coordinates should be introduced in neighborhoods of the
points (γ1, 0) and (γ2, 0) after the preliminary shift of the origin to these points.

3.3. Completion of the Polar Change of Variables

For a smooth function υ(ζ, ε), we set υζ = ∂υ/∂ζ and υε = ∂υ/∂ε. We denote the arguments
(t, C(1 + r), S(1 + r)2, ε) = (κ) and (t, C, S, 0) = (κ0). Then in system (8ν), we have

Xi(κ) = Xi (κ0) + (Xx1
i (κ0)C +Xx2

i (κ0) · 2S) r +Xε
i (κ0) ε+O

(
(|r|+ ε)2

)
and, by (1ν), (6), and (7), O(· · ·) ∈ C3

r,ε for |r| < 1, 0 ≤ ε < ε0.
Let R(t, ϕ, r, ε) = X1(κ)S′+X2(κ)(1+r)−1S and R0(t, ϕ) = R(t, ϕ, 0, 0). By taking into account

Lemma 2, one can rewrite system (8ν) in the form

ṙ =
((

R1r +R2r
2
)
S +

(
R0 +Rr

0r +Rε
0ε+O

(
(|r|+ ε)2

))
p−1ε

)
εν ,

ϕ̇ =
(
1 + pΦ1r +O

(
|r|2

)
+ (Φ0 +O(|r|+ ε)) ε

)
εν ,

(9ν)

where
R1 =

(
2σC2 − 2ηC

)
p−1, R2 =

(
2σC2 − ηC

)
p−1,

Φ1 = (1 + CR1(C)) p−1, Φ0(t, ϕ) = (X2 (κ0)C −X1 (κ0r) · 2S)p−1

in view of the fact that C = C(ϕ), S = S(ϕ), and O(· · ·) ∈ C3
r,ε for |r| < 1, 0 ≤ ε < ε0.

Therefore,

R1(C) = p′p−1, R2(C) = (p′ + ηC) p−1, Φ1(C) = p−1 + Cp′p−2,

R0(t, ϕ) = X1 (κ0)S′ +X2 (κ0)S, Rε
0(t, ϕ) = Xε

1 (κ0)S′ +Xε
2 (κ0)S,

Rr
0(t, ϕ) = (Xx1

1 (κ0)C +Xx2
1 (κ0) · 2S)S′ + (Xx1

2 (κ0)C +Xx2
2 (κ0) · 2S)S

DIFFERENTIAL EQUATIONS Vol. 44 No. 1 2008 (Reg. No. 101, 15.2.2008)
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in system (9ν); moreover,

S′ = C3 − 2σC2 + ηC, p(C) = f(c) + 2σC3/3− ηC2 = CS′ + 2S2.

3.4. Preliminary Averaging

First, we introduce the ω-periodic real-analytic function

p∗(C(ϕ)) =

C(ϕ)∫
c

p−3(θ)θ
(
p′

2(θ)− ηp(θ)
)
dθ

satisfying the equation p∗′ = p−1 (p′Φ1 −R2) and show that the averaging change of variables

r = p−1(C(ϕ))
(
z + p∗(C(ϕ))z2

)
(10)

reduces system (9ν) to the system

ż =
(
O

(
|z|3

)
+

(
R0 + Zz +Rε

0ε+O
(
(|z|+ ε)2

))
ε
)
εν ,

ϕ̇ =
(
1 + Φ1z +O

(
|z|2

)
+ (Φ0 +O(|z|+ ε)) ε

)
εν ,

(11ν)

where Z(t, ϕ) = p−1Rr
0 − p−1p′SΦ0 − 2p∗R0.

To this end, we differentiate (10) according to systems (9ν) and (11ν) and cancel εν ; then(
R1p

−1
(
z + p∗z2

)
+R2p

−2z2
)
S +

(
R0 +Rr

0p
−1z +Rε

0ε
)
p−1ε+O

(
(|z| + ε)2

)
ε+O

(
|z|3

)
= p−1 (1 + 2p∗z) (R0 + Zz +Rε

0ε) ε+
(
−p−2p′

(
z + p∗z2

)
+ p−1p∗′z2

)
(−S) (1 + Φ1z +Φ0ε) .

By matching the coefficients of z, z2, ε, zε, and ε2, we obtain obvious identities for the above-
mentioned p∗(C) and Z(t, ϕ).
Remark 2. If desired, in the first equation in system (9ν), one can nullify all terms containing εν ,

i.e., nullify O (|z|3) in system (11ν). This was carried out in [2].
Now in systems (11) one should average the functions R0(t, ϕ) and Z(t, ϕ), but since ϕ̇ = 1+ · · ·

in (110) and ϕ̇ = ε+ · · · in (111), it follows that the averaging changes of variables and conditions
for their existence are different.

For functions υ(t, ϕ) T -periodic in t and ω-periodic in ϕ in the case ν = 1, we use the expansion

υ = ῡ + υ̂(ϕ) + υ̃(t, ϕ), ῡ =
1

ωT

ω∫
0

T∫
0

υ(t, ϕ)dt dϕ, υ̂ =
1
T

T∫
0

υ(t, ϕ)dt − ῡ.

Then the functions
∫
υ̂(ϕ)dϕ and

∫
υ̃(t, ϕ)dt are also periodic and are uniquely determined by the

condition that their mean value is zero.
If ν = 1, then it is unnecessary to single out the term υ̂; therefore, we simply write υ = ῡ+υ̃(t, ϕ).
Let us show that, by using the change of variables

z = y +Gν(t, ϕ, y, ε)ε
(
Gν(y, ε) = 0

)
, (12ν)

where G0 = g̃0
0(t, ϕ) + g̃0

1(t, ϕ)y and G1 = ĝ1
0(ϕ) + ĝ1

1(ϕ)y + g̃1
0(t, ϕ)ε + g̃1

1(t, ϕ)yε, one can reduce
system (11ν) to the system

ẏ =
((

R0 + Lνy + Y ν
0 ε

)
ε+O

(
(|y|+ ε)3

))
εν ,

ϕ̇ =
(
1 + Φνε+Φ1y +O

(
(|y|+ ε)2

))
εν .

(13ν)
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Here Φ0(t, ϕ) = Φ1g̃0
0 + Φ0; Φ1(t, ϕ) = Φ1ĝ1

0 + Φ0; Lν = Z̄ − Y ν , where Y 0(ϕ) = g̃0
0

′
Φ1 and

Y 1(ϕ) = R̂0Φ1; Y 0
0 (t, ϕ) = g̃0

0Z +Rε
0 − g̃0

0

′
Φ0 − g̃0

1R0 and Y 1
0 (t, ϕ) = ĝ1

0Z +Rε
0 − ĝ1

0

′
Φ1 − ĝ1

1R0 − g̃1
0

′
;

R0, Rε
0, Φ0, and Φ1 are the functions introduced in (9ν), and Z is defined in (11ν).

Here and throughout the following, the dot stands for the partial derivative with respect to t,
and the prime stands for the partial derivative with respect to ϕ.

By differentiating the change of variables (12ν) according to systems (11ν) and (13)ν) and by
cancelling εν , we obtain

(R0 + (y +Gνε)Z +Re
0ε) ε+O

(
(|y|+ ε)3

)
= (1 + ε∂Gν/∂y)

(
R̄0 + L̄0y + Y 0

0 ε
)
ε+Gν′

ε (1 + Φνε+Φ1y) + Ġνε1−ν .

Let ν = 0. The terms multiplying ε and yε form the equations

g̃0
0

′
+

˙̃
g0
0 = R0 −R0, g̃0

1

′
+

˙̃
g0
1 = Z − g0

0

′Φ1 − L0,

whose right-hand sides have zero means.
Suppose that the periods T and ω = ω(c) satisfy the condition

|qω − pT | > K(p+ q)−τ , K > 0, τ ≥ 1, p and q are positive integers. (140)

Then, by Lemma B.5 in [7, p. 17], the equations have solutions g̃0
0(t, ϕ) and g̃0

1(t, ϕ) of the
same smoothness as that of the right-hand sides; i.e., the solutions are continuous, real-analytic,
ω-periodic in ϕ, and T -periodic in t. They are uniquely determined by the conditions g0

0 = 0 and
g0
1 = 0. Now the terms multiplying ε2 form an obvious identity by virtue of the choice of Y 0

0 .
Let ν = 1. For ε2 and yε2, we obtain the equations

R0 = R̄0 + ĝ1
0

′
+

˙̃
g1
0, Z = L̄1 + ĝ1

0

′
Φ1 + ĝ1

1

′
+

˙̃
g1
1 ,

whence it follows that ĝ1
0

′
= R̂0,

˙̃
g1
0 = R̃0; ĝ1

1

′
= Ẑ − Ŷ 1,

˙̃
g1
1 = Z̃, and the desired functions g1 can

be found successively and uniquely without additional conditions like (14). Now from the resulting
identity for the terms with ε3, we find Y 1(t, ϕ), which completes the construction of the change of
variables (12ν).

4. PASSAGE TO A NEIGHBORHOOD
OF A CLOSED TRAJECTORY OF CLASSES 1 AND 2

4.1. Shift to the Singular Points (γ1, 0) and (γ2, 0) of the unperturbed System

Now let the parameter c be chosen from class 1 or 2; therefore, η ≤ 1 for σ = 1 and η = −1 for
σ = 0. In this case, the closed trajectories of system (4) passing through the points (c, 0), where c
ranges over all admissible values, fill the following neighborhoods of the singular points (γ1, 0) and
(γ2, 0) of the unperturbed system (2ν): 1, inside Sb

a; 1b, outside Sb; 1c, inside Sb
c ; 2a, inside Sc

a;
2b, inside Sc

b; 2c, inside Sc
c .

As was mentioned in Remark 1, one cannot directly make the change of variables (6) in sys-
tem (1ν) in these domains, since it would require dividing by the alternating function p(C) in
system (8ν).

The difficulty thus arising is removed by the introduction of polar coordinates directly in a
neighborhood of the point (γ1, 0) or (γ2, 0); to this end, the origin in systems (10) and (4) should
be shifted to these points.

We introduce a common notation for classes 1 and 2. Set

γ̆ = γj (j = 1, 2); σ̆ = σ − 3γ̆/2, η̆ = 3γ̆2 − 4σγ̆ + η;

b̆ = b− γ̆, c̆ = c− γ̆.
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By (3), if σ = 1 and η ≤ 1, then σ̆ = 1 − 3γj/2 and η̆ = 2γj (γj − 1); and if σ = 0 and η = −1,
then σ̆ = 3(−1)j−1/2 and η̆ = 2.

We perform two shifting changes of variables

x1 = γ̆ + x̆1, x2 = x̆2; C = γ̆ + C̆, S = S̆. (15)

The first change of variables in (15) reduces system (1ν) to the form

˙̆x1 =
(
−x̆2 + X̆1 (t, x̆1, x̆2, ε) ε

)
εν ,

˙̆x2 =
(
x̆3

1 − 2σ̆x̆2
1 − η̆x̆1 + X̆2 (t, x̆1, x̆2, ε) ε

)
εν (ν = 0, 1),

(1̆ν)

where X̆i (t, x̆1, x̆2, ε) = Xi (t, γ̆ + x̆1, x2, ε).
The second change of variables in (15) reduces system (4) to the system

C̆ ′(ϕ) = −S̆(ϕ), S̆′(ϕ) = C̆3(ϕ)− 2σ̆C̆2(ϕ) + η̆C̆(ϕ), (4̆)

which has the singular points (0, 0) and either (−γj, 0), (2− 2γj , 0) if σ = 1 and η ≤ 1 (cases a
and b) or ((−1)j−1, 0) and (2(−1)j−1, 0) if σ = 0 and η = −1 (case c). System (4̆) parametrizes the
same phase portrait as (4).

By analogy with f(C), we introduce the function

f̆
(
C̆

)
= C̆4 − 8σ̆C̆3/3 + 2η̆C̆2.

Then f̆(0) = 0, f
(
γ̆ + C̆

)
= f (γ̆) + f̆

(
C̆

)
, and f ′ (γ̆ + C̆

)
= f̆ ′ (C̆)

= 4S̆′. For any c̆ = c − γ̆, the
relation

f̆
(
C̆

)
+ 2S̆2 = f̆ (c̆) or C̆4 − 8σ̆C̆3/3 + 2η̆C̆2 + 2S̆2 = f̆ (c̆) (5̆)

is an integral of system (4̆).
By Lemma 1, if c is an admissible parameter, then we have the following for γ̆ = γ1: 1a, 0 <

f̆ (c̆) < −f (γ1); 1b, f̆ (c̆) > 0; 1c, 0 < f̆ (c̆) < −f (γ1) = 1. We also have the following for γ̆ = γ2:
2a, 0 < f̆ (c̆) < −f (γ2); 2b, 0 < f̆ (c̆) = f (γ1)−f (γ2) = 16 (γ2 − 1)3 /3; 2c, 0 < f̆ (c̆) < −f (γ2) = 1.
In this case, one always has b̆ < 0 and c̆ > 0.

4.2. Polar Change of Variables in Classes 1 and 2

By analogy with the changes of variables without the symbol ,̆ we subject system (1̆ν) to the
successive changes of variables (6̆), (1̆0), and (1̆2ν) leading to systems (8̆ν) and (9̆ν), (1̆1ν), (1̆3ν).

The only fact to be justified is the positivity of the function

p̆
(
C̆

)
= f̆ (c̆) + 2σ̆C̆3/3− η̆C̆2 for C̆ ∈ [b̆, c̆];

i.e., one should prove an analog of Lemma 2, which permits one to derive systems (9̆).
By (4̆) and (5̆), we have p̆ = C̆4 − 2σ̆C̆3 + η̆C̆2 + 2S̆2 = C̆S̆′ + 2S̆′2, whence we obtain

p̆
(
C̆

)
≥ q̆

(
C̆

)
= C̆4 − 2σ̆C̆3 + η̆C̆2

for C̆ ∈ [b̆, c̆], and q̆
(
C̆

)
has the roots 0, 0 and −γj, 2− 2γj in cases a and b or (−1)j−1, 2(−1)j−1

in cases c.
Since p̆(0) = f̆ (c̆) > 0, we have p̆

(
C̆

)
≥ f̆ (c̆)/2 for |C̆| ≤ τ (τ > 0) and q̆

(
C̆

)
> 0 if C̆ is nonzero

and does not lie between nonzero roots of q̆.
Consider the following cases: 1a, c̆ < −γ1 < 2−2γ1; 2a, 2−2γ2 ≤ −γ2 < b̆; 2b, −γ2 < 2−2γ2 < b̆;

1c, c̆ < −γ1 = 1 (the roots 1 and 2); 2c, b̆ > −γ2 = −1 (the roots −1 and −2). Therefore,
q̆
(
C̆

)
≥ q0 > 0 for C̆ ∈ [b̆,−τ ] ∪ [τ, c̆].
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It remains to consider case 2b, in which 0 < γ̆ = γ1 ≤ 1. If γ1 = 2/3, then σ̆ = 0 and
p̆

(
C̆

)
= f̆ (c̆) + 4C̆2/9 ≥ p0 > 0. We set γ∗ = 4γ1 (γ1 − 1) / (2− 3γ1); then p̆′

(
C̆

)
= 2σ̆C̆2 − 2η̆C̆ =

(2− 3γ̆) C̆
(
C̆ − γ∗

)
. If γ1 > 2/3, then −γ1 < 0 < 2− 2γ1 < γ∗ and p̆′

(
C̆

)
> 0 for C̆ ∈ (0, γ∗); and

if γ1 < 2/3, then γ∗ < −γ1 < 0 < 2− 2γ1 and p̆′
(
C̆

)
< 0 for C̆ ∈ (γ∗, 0). Therefore, we always have

p̆
(
C̆

)
≥ f̆ (c̆) > 0 for C̆ ∈ [−γ1, 2 − 2γ1] and q̆

(
C̆

)
> 0 outside this interval.

Thus, in cases 1 and 2, in system (7̆), we have p̆
(
C̆

)
≥ p0 > 0 for C̆ ∈ [b̆, c̆]. In addition,

p̆
(
C̆

)
= p(C)− γ̆S′ = p

(
γ̆ + C̆

)
− γ̆S̆′.

Remark 3. It is reasonable to shift the origin to the point (γj, 0) only if the existence and
smoothness domain of the functions Xi of system (1ν) specified by the constant x0 is sufficiently
large; otherwise, the set of admissible values c satisfying inequality (7) would be empty. Therefore,
we assume that x0 > −γ1 in case 1a, x0 > cb in case 1b, and x0 > γ2 in case 2.
Remark 4. The notation introduced for classes 1 and 2 can be used for class 0 as well. To this

end, it suffices to assume that γ̆ (in addition to γ1 and γ2) can be equal to γ0 = 0. Then, for class 0,
the change of variables (151) reducing system (1ν) to (1̆ν) proves to be the the identity mapping,
σ̆ = σ, η̆ = η, and C̆ = C; i.e., all formulas marked by˘coincide with the corresponding formulas
without this symbol.

5. EXISTENCE CONDITIONS FOR INVARIANT SURFACES

5.1. Invariance of the Function R0(c)

In forthcoming considerations, the function R0 = R0(c) in system (13ν) and the function R̆0 =
R̆0 (c̆) in system (1̆3ν) (c̆ = c− γ̆) are of interest.

We extend the domain of the function R0(c) introduced in system (9ν) for c ∈ M0 to admissible
values c in classes 1 and 2.

For any admissible parameter c ∈ M , we set

R0 =
1

ωT

ω∫
0

T∫
0

(S′(ϕ)X1(t, C(ϕ), S(ϕ), 0) + S(ϕ)X2(t, C(ϕ), S(ϕ), 0)) dt dϕ, (16)

where X1 and X2 are given in system (1ν) and C(ϕ), S(ϕ) is a real-analytic ω-periodic solution of
system (4) with the initial data C(0) = c, S(0) = 0. In class 0, formula (16) is a formula for the
mean value R0 in (13ν).

Lemma 3. Let c be an admissible operator, and let c̆ = c − γ̆; then, in systems (4) and (4̆),
the periods ω = ω(c) and ω̆ = ω̆ (c̆) of solutions with the initial data (c, 0) and (c̆, 0) are given by the
formula

ω(c) = ω̆ (c̆) = 2

c∫
b

(
f(c)− f(ζ)

2

)−1/2

dζ (f(b) = f(c), b < c), (17)

and R̆0 (c̆) = R0(c) in system (1̆3ν) obtained for classes 1 and 2.

Proof. We have S2 = C ′2 in system (4); therefore, 2C ′2(ϕ) + f(C(ϕ)) ≡ f(c) in (5), whence it
follows that dϕ = ±((f(c) − f(C))/2)−1/2dC. By integrating from b to c (over a half-period), we
obtain (17) for ω(c). By proceeding in a similar way in system (4̆), we obtain

ω̆ (c̆) = 2

c̆∫
b̆

((
f̆ (c̆)− f̆

(
C̆

))/
2
)−1/2

dC̆.
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By performing the change of variables C̆ = C− γ̆ in (152) and by taking into account the relation
f̆(ζ) = f (γ̆ + ζ)− f (γ̆), we again obtain (17).

By (1̆), (15), and (17), we have X̆i

(
t, C̆, S̆, 0

)
= Xi

(
t, γ̆ + C̆, S̆, 0

)
= Xi(t, C, S, 0) and S̆′ = S′;

i.e., C̆3 − 2σ̆C̆2 + η̆C̆ = C3 − 2σC2 + ηC, and ω̆ = ω; therefore,

R̆0 (c̆) = (ω̆T )−1

ω̆∫
0

T∫
0

(
S̆′X̆1

(
t, C̆, S̆, 0

)
+ S̆X̆2

(
t, C̆, S̆, 0

))
dt dϕ = R0(c).

5.2. The Structure and Analysis of R0(c) in the Analytic Case

Let us analyze the function R0(c) for the case in which Xi (t, x1, x2, 0) are analytic functions.
Suppose that the functions Xi (t, x1, x2, 0) in system (1ν) are continuous, T -periodic in t, and

analytic with respect to x1 and x2 in the domain G = {(t, x1, x2) : t ∈ R, |x1| , |x2| < x0}; i.e.,
Xi (t, x1, x2, 0) =

∑∞
p,q=0 X

(p,q)
i (t)xp

1x
q
2 are absolutely and uniformly convergent power series in H

with real continuous T -periodic coefficients. Then under condition (7) in (9ν), the series

R0(c) =
∞∑

p,q=0

(
X

(p,q)
1 (t)S′(ϕ)Cp(ϕ)Sq(ϕ) +X

(p,q)
2 (t)Cp(ϕ)Sq+1(ϕ)

)

is absolutely convergent for arbitrary t and ϕ.
Since the integral of the product of an even and an odd function and that of S′ over the period

are zero, it follows that formula (16) acquires the form

ω(c)R0(c) =
∞∑

p=1

∞∑
q=0

X
(p,2q)
1

ω∫
0

S′CpS2qdϕ+
∞∑

p=0

∞∑
q=1

X
(p,2q−1)
2

ω∫
0

CpS2qdϕ.

By integrating the relation (2q + 1)CpS2qS′ = (CpS2q+1)′ + pCp−1S2q+2, we obtain

ω(c)R0(c) =
∞∑

p=0

∞∑
q=1

(
p+ 1
2q − 1

X
(p+1,2q−2)
1 +X

(p,2q−1)
2

) ω∫
0

Cp(ϕ)S2q(ϕ)dϕ.

By (5), we have S2q(ϕ) ≡ ((f(c)− f(C(ϕ)))/2)q ; therefore,

ω∫
0

Cp(ϕ)S2q(ϕ)dϕ = 2

c∫
b

Cp

(
f(c)− f(C)

2

)q−1/2

dC.

As a result,

R0(c) =
2

ω(c)

∞∑
p=0

∞∑
q=1

a(p,q)dp,q(c),

a(p,q) =
p+ 1
2q − 1

X
(p+1,2q−2)
1 +X

(p,2q−1)
2 ,

dp,q(c) =

c∫
b

ζp

(
f(c)− f(ζ)

2

)q−1/2

dζ

(16a)

for any admissible parameter c under condition (7), where the X
(p,q)
i (t) are the coefficients of the

seriesXi (t, x1, x2, 0) in system (1ν), ω(c) is the period given by (17), and f(ζ) = ζ4−8σζ3/3+2ηζ2 <
f(c) for ζ ∈ (b(c), c).
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For example, R0 = 2ω−1(c)
∑2

p=0 a
(p,1)dp,1(c) for system (11

2) in [3]; i.e.., R0 is a linear combina-
tion of three integral functions dp,1(c).

Let us analyze the functions dp,q(c) and the number of zeros of R0(c). Note that

f(c)− f(ζ) = (c− ζ)(f(c)/c+ f(ζ)/ζ + (c+ ζ − 8/3)cζ).

But f(b) = f(c); therefore, f(c)/c + f(b)/b+ (c + b− 8/3)bc = 0. By substituting f(c)/c into the
first equation, we obtain the expansion

f(c)− f(ζ) = (c− ζ)(ζ − b)
(
f(b+ ζ + c)(b + ζ + c)−2 − (bc+ ζb+ ζc)

)
.

By Lemma 1, if c ∈ M , then f ′(c) = 4 (c3 − 2c2 + γc) > 0 and f ′(b) < 0. The differentiation of the
identity f(c)− f(b(c)) ≡ 0 implies that b′(c) = f ′(c)/f ′(b) < 0.

Consider the integral functions dp,q(c). It follows from (16a) that

d′
p,q(c) = ζp

(
f(c)− f(ζ)

2

)q−1/2
∣∣∣∣∣
ζ=c

− ζp

(
f(c)− f(ζ)

2

)q−1/2
∣∣∣∣∣
ζ=b

b′(c)

+

c∫
b

ζp

(
q − 1

2

) (
f(c)− f(ζ)

2

)q−3/2

· 2−1f ′(c)dζ,

whence we obtain

d′
p,q(c) =

2q − 1
4

f ′(c)

c∫
b

ζp

(
f(c)− f(ζ)

2

)q−3/2

dζ (p ≥ 0, q ≥ 1).

Consequently, d′
2k,q(c) > 0 for c ∈ M , d′

2k+1,q(c) > 0 for c ∈ M2 [since b(c) > 0], and
d′

2k+1,q(c) < 0 for c ∈ M1
a or c ∈ M1

b (since c < 0) (k = 0, 1, . . .). In this case, the functions
dp,q(c) have the same signs as their derivatives for the above-mentioned admissible values of the
parameter c.

Owing to an appropriate choice of the factors a(p,1) (p = 0, 1, 2) fixing some coefficients of the
forms U

[2+i]
i (t, u1, u2, ε) in (11

2), it was shown in [3] that one can find two zeros of the function
R0(c), one of which lies in an arbitrarily small given neighborhood of an arbitrary admissible value
c, and R0(c) with three zeros was constructed.

5.3. Main Condition

Definition 2. The equation R0(c) = 0, where R0(c) is given by (16) and c ∈ M , is referred to
as the bifurcation equation of system (1ν).

For system (1ν), we assume that

∃c∗ ∈ M : R0 (c∗) = 0, Lν
∗ �= 0, (18ν)

where Lν
∗ = Lν (c∗) is given by (13ν) if c∗ ∈ M1; Lν

∗ = L̆ν (c̆∗) is given by (1̆3ν) if c∗ belongs to
class 1 or 2 (and then c̆∗ = c∗ − γ̆).

If it turns out that some root of the equation R̄(c) = 0, for example, c∗∗, is not admissible, i.e.,
c∗∗ �∈ M , then it cannot be used, since it is impossible to make the polar change of variables (6) with
C(0) = c∗∗. From the geometric viewpoint, this implies that the closed trajectory of the unperturbed
system (2ν) with the maximum abscissa equal to c∗∗ does not pass through the point (c∗∗, 0).

The condition Lν
∗ �= 0, that is, the presence of a term linear in y in the first equation in

system (13ν) or (1̆3ν) implies the existence of dissipative terms inducing a nonzero focal quantity
due to terms Xi (t, x1, x2, 0) in system (1ν).
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5.4. Choice of Polar Coordinates

Let the parameter c∗ satisfy the main condition (18ν). We fix the initial data (c∗, 0) for an
ω∗ = ω (c∗)-periodic solution C(ϕ), S(ϕ) system (4); this determines a closed trajectory whose
small neighborhood, as is shown below, contains the projection of a T -periodic two-dimensional
cylindrical surface for any small ε > 0.

If the chosen parameter is c∗ ∈ M0, then the composition of the polar change of variables (6)
with c = c∗ and the averaging changes of variables (10) and (12ν) is a polynomial in y and ε with
ω∗-periodic coefficients T -periodic in t and real-analytic in ϕ,

x1 = C
(
1 + p−1(C)

(
y +Gνε+ p∗ (y +Gνε)2

))
,

x2 = S
(
1 + p−1(C)

(
y +Gνε+ p∗ (y +Gνε)2

))2

,

and can be represented in the form

x1 = C(ϕ) (1 + F ν
1 (t, ϕ, y, ε)/p(C(ϕ))) ,

x2 = S(ϕ) (1 + 2F ν
2 (t, ϕ, y, ε)/p(C(ϕ))) ,

(19ν)

where F ν
i = F ν[1]

i + F ν[2]
i + F ν[>2]

i ; moreover,

F
0[1]
i = y + g̃0

0ε, F
0[2]
1 = p∗y2 +

(
2g̃0

0p
∗ + g̃0

1

)
yε+

(
g̃0
0

)2

p∗ε2,

F
0[2]
2 = F

0[2]
1 +

(
y2 + 2g̃0

0yε+
(
g̃0
0

)2

ε2

)
/(2p), F

1[1]
i = y + ĝ1

0ε,

F
1[2]
1 = p∗y2 +

(
2ĝ1

0p
∗ + ĝ1

1

)
yε+

((
ĝ1
0

)2

p∗ + g̃1
0

)
ε2,

F
1[2]
2 = F

1[2]
1 +

(
y2 + 2ĝ1

0yε+
(
ĝ1
0

)2

ε2

)
/(2p);

the F ν[>2]
i are polynomials of degree ≥ 3 in y and ε, and, by (17), the period is

ω∗ = 2

c∗∫
b∗

(f (c∗)− f(ζ))−1/2
dζ.

If either c∗ ∈ M1 or c∗ ∈ M2, then the composition of the changes of variables (151), (6̆) with
c̆ = c̆∗ = c∗ − γ̆, (9̆), and (1̆3) can be represented in the form

x1 = γ̆ + C̆(ϕ)
(
1 + F̆ ν

1 (t, ϕ, y, ε)/p̆
(
C̆(ϕ)

))
,

x2 = S̆(ϕ)
(
1 + F̆ ν

2 (t, ϕ, y, ε)/p̆
(
C̆(ϕ)

))
,

(1̆9ν)

where the F̆ ν
i are polynomials similar to F ν

i and, by Lemma 3, ω̆∗ = ω∗.
We have thereby proved the following assertion.

Lemma 4. Let c∗ satisfy the main condition (18ν) and inequality (7), and let condition (140)
with ν = 0 be valid for the period ω = ω∗. Then the change of variables (19ν) with c∗ ∈ M0 or the
change of variables (1̆9ν) with c∗ ∈ M1 or c∗ ∈ M2 reduces system (1ν) to the system

ẏ =
(
Lν

∗yε+ Y ν
∗ ε2 +O

(
(|y|+ ε)3

))
εν , ϕ̇ =

(
1 + Φν

∗ε+Φ∗
1y +O

(
(|y|+ ε)2

))
εν , (20ν)

which coincides with system (13ν), where c = c∗, or with system (1̆3ν), where c̆ = c∗ − γ̆. In this
case, Lν

∗ �= 0 and Y ν
∗ = Y ν

0 (t, ϕ, c∗) for class 0, and Y ν
∗ = Y̆ ν

0 (t, ϕ, c̆∗) for classes 1 and 2. In a
similar way, one can define Φν

∗ and Φ∗
1.
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6. CONSTRUCTION ALGORITHM
FOR A TWO-DIMENSIONAL INVARIANT SURFACE

6.1. Final Averaging

The forthcoming considerations are quite standard. They guarantee that a two-periodic invariant
surface of system (20ν) is found for all sufficiently small ε > 0.

First, we nullify Y ν
∗ (t, ϕ) in system (20ν) by performing the change of variables

y = u+Hν(t, ϕ, ε)ε, (21ν)

where H0 = h0 + h̃0(t, ϕ)ε, H1 = h1 + ĥ1(ϕ)ε + h̃1(t, ϕ)ε2, which reduces (20ν) to the system

u̇ =
(
Lν

∗uε+O
(
(|u|+ ε)3

))
εν ,

ϕ̇ =
(
1 +

(
Φν

∗ + hνΦ∗
1

)
ε+Φ∗

1u+O
(
(|u|+ ε)2

))
εν .

(22ν)

The function Hν occurring in the change of variables (21ν) satisfies the equation L0
∗h

0 + Y 0
∗ =

h̃0
′
+ ˙̃

h0 for ν = 0 and the equation L1
∗h

1+Y 1
∗ = ĥ1

′
+ ˙̃

h1 for ν = 1. This implies that hν = −Y ν
∗ /Lν

∗ ,
the first equation is uniquely solvable by virtue of condition (140), and the other implies the uniquely

solvable equations ĥ1
′
= Ŷ 1

∗ and ˙̃
h1 = Ỹ 1

∗ .
Now we average Ψν

∗(t, ϕ) = Φν
∗(t, ϕ) + hνΦ∗

1(ϕ) in system (22ν) by making a T - and ω∗-periodic
invertible change of the angular variable

ϕ = ψ + Ξν(t, ψ, ε)ε, (23ν)

where Ξ0 = ξ̃0(t, ψ) and Ξ1 = ξ̂1(ψ) + ξ̃1(t, ψ)ε. This change of variables reduces (22ν) to the
system

u̇ =
(
Lν

∗uε+O
(
(|u|+ ε)3

))
εν , ψ̇ =

(
1 + Ψν

∗ε+Φ∗
1(ψ)u+O

(
(|u|+ ε)2

))
εν . (24ν)

Obviously, under the change of variables (23ν), Ξν is uniquely found from the equation Ψ0
∗ =

Ψ0
∗ + ξ̃0

′
+ ˙̃

ξ0 or the equations ξ̂1
′
= Ψ̂1

∗ and
˙̃
ξ1 = Ψ̃1

∗.
The inverse change of variables for (23ν) has the form

ψ = ϕ+Υν(t, ϕ, ε)ε, (23ν
0)

where
Υ0 = −ξ̃0(t, ϕ) + ξ̃0(t, ϕ)ξ̃0

′
(t, ϕ)ε +O

(
ε2

)
,

Υ1 = −ξ̂1(ϕ) +
(
ξ̂1(ϕ)ξ̂1

′
(ϕ) − ξ̃1(t, ϕ)

)
ε+O

(
ε2

)
are functions T -periodic in t and real-analytic ω∗-periodic in ϕ.

6.2. Use of the Hale Lemma

To reduce the original system (1ν) to a form that permits one to establish the existence of a
two-periodic invariant surface in it for all sufficiently small parameter values, it remains to perform
the scaling change of variables

u = vε3/2 (25)

reducing system (24ν) to the form

v̇ =
(
Lν

∗vε+ V ν(t, ψ, v, ε)ε3/2
)
εν , ψ̇ =

(
1 + Ψν

∗ε+Ψν(t, ψ, v, ε)ε3/2
)
εν , (26ν)

where V ν and Ψν are continuous functions of their arguments in a small neighborhood of v and ε,
continuously differentiable in v and ψ, T -periodic in t, and ω∗-periodic in ψ.
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Indeed,
V ν(t, ψ, v, ε) = O

((
|v|ε3/2 + ε

)3
)
ε−3,

Ψν(t, ψ, v, ε) = Φ∗
1v +O

((
|v|ε3/2 + ε

)2
)
ε−3/2,

and the functions O(· · ·) are real-analytic for all ψ and three-times continuously differentiable in a
small neighborhood of the point v = ε = 0. Therefore, in particular, V ν

v and Ψν
v are continuous at

this point.
System (26ν) satisfies the assumptions of Lemmas 2.1 and 2.2 [5], which imply that it has

an invariant surface v = Γ(t, ψ, ε)ε1/2 for all sufficiently small ε > 0, where Γ is a continuous
continuously differentiable function T -periodic in t and ω∗-periodic in ψ.

We have thereby proved the following assertion.

Lemma 5. System (20ν) with any sufficiently small ε > 0 has a continuous surface

y = Hν(t, ϕ, ε)ε + Γν (t, ϕ+Υνε, ε) ε2 (27ν)

T -periodic in t and continuously differentiable and ω∗-periodic in ϕ, which is obtained by the sub-
stitution of the invariant surface v = Γ(t, ψ, ε)ε1/2 into the composition of the changes of vari-
ables (21ν), (23ν

0), and (25).

7. RESULTS OF ANALYSIS

7.1. Main Theorem

Lemmas 1–5 imply the following assertion.

Theorem 1. For any parameter c∗ satisfying the test condition (18ν) and condition (140) if
ν = 0, for any sufficiently small ε > 0, system (1ν) has a continuous two-dimensional invari-
ant surface T ν

c∗ = T ν
c∗(t, ϕ, ε) that is T -periodic in t and continuously differentiable and ω∗ =

23/2
∫ c∗

b∗
(f(c)− f(C))−1/2dC-periodic in ϕ.

If c∗ ∈ M0, i.e., c∗ ∈ (c∗a,+∞) in case a, c∗ ∈ (0, γ1) in case b, c∗ ∈ (c∗c ,+∞) in case c, and
c∗ ∈ (0,+∞) in case d, then T ν

c∗ is obtained by the substitution of the surface (27ν) into the change
of variables (19ν) and has the form

x1 = C(ϕ) + F ν
1

(
t, ϕ,Hν(t, ϕ, ε)ε + Γν (t, ϕ+Υνε, ε) ε2, ε

)
C/p(C),

x2 = S(ϕ) + 2F ν
2

(
t, ϕ,Hν(t, ϕ, ε)ε + Γν (t, ϕ+Υνε, ε) ε2, ε

)
S/p(C).

(28ν)

If either c∗ ∈ M1 [i.e., c∗ ∈ (γ1, 0) in cases a and c and c∗ ∈ (c∗b,+∞) in case b] or c∗ ∈ M2

(i.e., c∗ ∈ (γ2, c
∗
a) in case a, c∗ ∈ (γ2, c

∗
b) in case b, and c∗ ∈ (γ2, c

∗
c) in case c, then T ν

c∗ is given
by formula (2̆8ν), which is similar to (28ν) and is obtained by the substitution of the surface (27ν)
into the change of variables (1̆9ν).

Corollary 2. For any sufficiently small ε > 0, the invariant surface T ν
c∗(t, ϕ, ε) of system (1ν)

is a two-dimensional cylindrical surface whose embedding in the three-dimensional space of the
variables x1, x2, t is given by formula (28ν) or (2̆8ν). The surface T ν

c∗ is homeomorphic to a two-
dimensional torus if the time t is taken modulo the period T .

Corollary 3. If c∗ ∈ M0, then the invariant torus T ν
c∗(t, ϕ, ε) occurring in Theorem 1 admits

the asymptotic expansion

x1 = C +
(
τ ν
1 ε+ δν

1ε
2
)
Cp−1 +O

(
ε3

)
, x2 = S + 2

(
τ ν
2 ε+ δν

2ε
2S

)
p−1 +O

(
ε3

)
, (29ν)
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where τ 0
i = g̃0

0 + h0,

δ0
1(t, ϕ) = Γ0(t, ϕ, 0) + h̃0 + p∗

(
h0

)2
+

(
2g̃0

0p
∗ + g̃0

1

)
h0 +

(
g̃0
0

)2

p∗,

δ0
2(t, ϕ) = δ0

1(t, ϕ) +
((

h0
)2
+ 2g̃0

0h
0 +

(
g̃0
0

)2
)
/(2p),

and τ 1
i and δ1

i are given by similar formulas with the superscript 0 replaced by 1, with the coefficient
g̃0

i (t, ϕ) replaced by ĝ1
i (ϕ), and with the new term g̃1

0(t, ϕ)ε2 added to δ1
1.

If c∗ ∈ M1 or c∗ ∈ M2, then T ν
c∗(t, ϕ, ε) admits an expansion (2̆9ν) that differs from (29ν) by the

presence of the sign˘over all functions and the addition of the term γ1 or γ2 to the equation for x1.

7.2. Results in the Phase Space

For any t ∈ [0, T ], by P tν
c∗ = P tν

c∗ (ϕ, ε) we denote the projection of the invariant surface T ν
c∗ onto

the phase space of system (1ν). By Theorem 1, the projection P tν
c∗ is a closed curve diffeomorphic

to a circle.

Definition 3. The trace of system (1ν) induced by the parameter c∗ in condition (18ν) is defined
as the closed set P ν

c∗ =
⋃

t∈[0,T ] P
tν
c∗ .

Obviously, the trace P ν
c∗ lies in an arbitrarily small neighborhood of the smooth closed curve

x1 = C(ϕ), x2 = S(ϕ) for any sufficiently small ε > 0, where C(0) = c∗ and S(0) = 0.

Corollary 4. The following assertions are valid for any sufficiently small ε > 0.
1. The trace P ν

c∗ is an annular domain whose boundaries P ν
c∗in and P ν

c∗out are homeomorphic to
a circle and can stick together completely or partially, for example, if system (1ν) is autonomous.

2. By (29ν), the width of the trace P 1
c∗ is of the order of at least ε2, and the width of P 0

c∗ can be
of the order of ε owing to g̃0

0(t, ϕ) occurring in τ 0
i .

3. In accordance with the classification in Lemma 1, the trace P ν
c∗ can have the following position

and form :
c∗ ∈ M0

a = (c∗a,+∞) ⇒ IntP ν
c∗in ⊃

(
Sb

a ∪ Sc
a

)
, Sb

a = ∅ if η = 0;
c∗ ∈ M1

a = (γ1, 0) ⇒ η < 0, (γ1, 0) ⊂ IntP ν
c∗in, P

ν
c∗out ⊂ IntSb

a;
c∗ ∈ M2

a = (γ2, c
∗
a) ⇒ (γ2, 0) ⊂ IntP ν

c∗in, P
ν
c∗out ⊂ IntSc

a;
c∗ ∈ M0

b = (0, γ1) ⇒ (0, 0) ⊂ IntP ν
c∗in, P

ν
c∗out ⊂ IntSb

b;
c∗ ∈ M1

b = (c∗b,+∞) ⇒ IntP ν
c∗in ⊃

(
Sb

b ∪ Sc
b

)
, Sc

a = ∅, if η = 1;
c∗ ∈ M2

b = (γ2, c
∗
b) , ⇒ 0 < η < 1, (γ2, 0) ⊂ IntP ν

c∗in, P
ν
c∗out ⊂ IntSc

b;
c∗ ∈ M0

c = (c∗c ,+∞) ⇒ IntP ν
c∗in ⊃

(
Sb

a ∪ Sc
a

)
;

c∗ ∈ M1
c = (γ1, 0) ⇒ (γ1, 0) ⊂ IntP ν

c∗in, P
ν
c∗out ⊂ IntSb

a;
c∗ ∈ M2

c = (γ2, c
∗
c) ⇒ (γ2, 0) ⊂ IntP ν

c∗in, P
ν
c∗out ⊂ IntSc

a;
c∗ ∈ M0

d = (0,+∞) ⇒ (0, 0) ⊂ IntP ν
c∗in, where Int γ stands for the set of points on the plane

lying inside the closed curve γ.
4. The trajectory of any solution lying on the torus T ν

c∗ never leaves its trace P ν
c∗ and performs

an infinite rotation with frequency τ ν
c∗ = (1/ω∗ +O(ε)) εν in accordance with the equation for ϕ̇ in

system (20ν).
5. Two arbitrary traces of system (1ν) induced by different parameters c∗1 and c∗2 do not meet

each other for all sufficiently small ε.

Remark 5. By generalizing system (1ν), one can assume that X1 and X2 are quasiperiodic
functions of t with m basic frequencies ω1, . . . , ωm.

The function Θ(t) is quasiperiodic if Θ(t) = Θ̌ (ω1t, . . . , ωm), where Θ̌ (θ1, . . . , θm) is a function
T -periodic in the variables θ1, . . . , θm.
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In other words, instead of (1ν), one can consider system (1̌ν) with quasiperiodic perturbations
X̌i(θ1, . . . , θm, x1, x2, ε) by virtually supplementing it with the equations θ̇j = ωj (j = 1, . . . ,m)
instead of the equation ṫ = 1, which permits one to apply the Hale lemma to the resulting sys-
tem (2̌6ν).

For the useful realization of all averaging changes of variables, one need only to require that the
basic frequencies satisfy the Siegel condition for small exponents similar to (140) :

|q1ω1 + · · ·+ qmωm| > K|q|−τ ,

where |q| �= 0, K > 0, and τ > 1. (Here |q| = |q1|+ · · · + |qm|; q1, . . . , qm are integers.)
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