БИОХИМИЯ, БИОФИЗИКА, МОЛЕКУЛЯРНАЯ БИОЛОГИЯ

УДК 576.32/.36

ИНГИБИТОРЫ ФОСФОЛИПАЗЫ A_2 МОДУЛИРУЮТ ВЛИЯНИЕ ТРИФЛУОПЕРАЗИНА НА ВНУТРИКЛЕТОЧНУЮ КОНЦЕНТРАЦИЮ ${\sf CA}^{2^+}$ В МАКРОФАГАХ

© 2018 г. З. И. Крутецкая*, Л. С. Миленина, А. А. Наумова, С. Н. Бутов, В. Г. Антонов, академик РАН А. Д. Ноздрачев

Поступило 22.06.2017 г.

С помощью флуоресцентного Ca^{2+} -зонда Fura-2AM впервые показано, что ингибиторы фосфолипазы A_2 —4-бромфенацилбромид и глюкокортикостероиды преднизолон и дексаметазон — подавляют в макрофагах крыс Ca^{2+} -ответы, индуцируемые нейролептиком трифлуоперазином. Результаты свидетельствуют об участии фосфолипазы A_2 и каскада метаболизма арахидоновой кислоты во влиянии трифлуоперазина на внутриклеточную концентрацию Ca^{2+} в макрофагах.

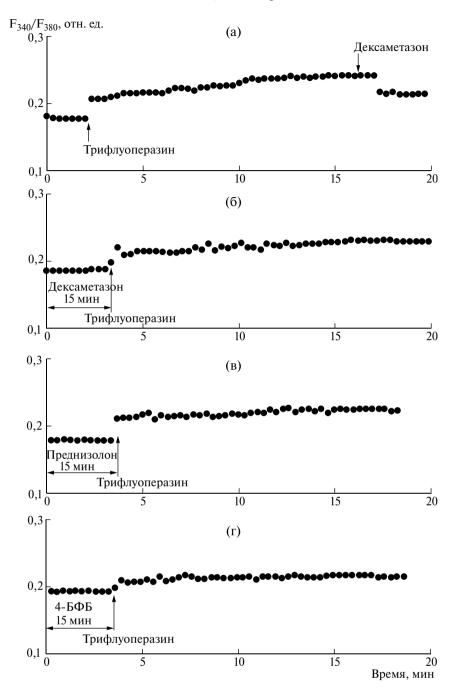
DOI: 10.7868/S0869565218050237

Трифлуоперазин (ТФП, трифтазин) относится к первому поколению типичных нейролептиков фенотиазинового ряда, широко применяемых в терапии шизофрении и других психических заболеваний [1]. Установлено многофакторное влияние ТФП на клеточные процессы [2]. Так, было показано [3], что фенотиазины (ТФП, хлорпромазин) влияют на Cа²⁺-зависимую активацию макрофагов и оказывают иммуномодулирующий эффект на перитонеальные макрофаги крыс.

Ранее [4] нами было впервые обнаружено, что в среде, содержащей ионы Ca^{2+} , $T\Phi\Pi$ вызывает в перитонеальных макрофагах крыс дозозависимое увеличение внутриклеточной концентрации Ca^{2+} ([Ca^{2+}]_i). Однако механизмы, посредством которых $T\Phi\Pi$ вызывает увеличение [Ca^{2+}]_i в макрофагах, до конца не изучены.

Множественность эффектов ТФП может быть связана с его амфифильной природой, что облегчает его проникновение через клеточные мембраны. Обнаружено [5, 6], что ТФП взаимодействует в основном с внутренним монослоем плазмалеммы, в котором локализованы анионные фосфолипиды, в первую очередь фосфоинозитиды. Благодаря этому ТФП может регулировать внутриклеточные процессы, такие как передача сигналов и внутриклеточный транспорт. Кроме того, на тромбоцитах человека показано [5, 7], что психотропные соединения, например, ТФП, могут модулировать

активность ключевого фермента каскада метаболизма арахидоновой кислоты (AK) — фосфолипазы A_2 (ФЛ A_2).


В связи с этим представлялось целесообразным исследовать возможное участие $\Phi \Pi A_2$ и каскада метаболизма AK во влиянии $T\Phi \Pi$ на $[Ca^{2^+}]_i$ в макрофагах, что и составило предмет настоящего сообщения.

В опытах использовали три ингибитора $\Phi \Lambda A_2$: 4-бромфенацилбромид (4-Б Φ Б) [8] и синтетические глюкокортикоиды дексаметазон и преднизолон [9].

Эксперименты проводили на культивируемых резидентных перитонеальных макрофагах крыс популяции Wistar при комнатной температуре 20-22 °C через 1-2 сут после начала культивирования клеток. Подробно процедура культивирования макрофагов и описание автоматизированной установки для измерения $[Ca^{2+}]_i$ на базе флуоресцентного микроскопа Leica DM 4000B ("Leica Microsystems", Германия) были изложены нами ранее [10]. Для измерения $[Ca^{2+}]_i$ использовали флуоресцентный зонд Fura-2AM ("Sigma-Aldrich", США). Возбуждение флуоресценции объекта производили при длинах волн 340 и 380 нм, эмиссию регистрировали при длине волны 510 нм. Для избежания фотовыгорания измерения проводили через каждые 20 с, облучая объект в течение 2 с. Значения $[{\rm Ca}^{2+}]_i$ рассчитывали по уравнению Grynkiewicz [11]. Статистический анализ проводили с применением критерия t Стьюдента. Достоверными считали различия при $p \le 0.05$.

Санкт-Петербургский государственный университет

^{*}E-mail: z.krutetskaya@spbu.ru

Рис. 1. Влияние ингибиторов фосфолипазы A_2 на Ca^{2+} -ответы, вызываемые трифлуоперазином в крысиных перитонеальных макрофагах. По оси ординат — отношение интенсивностей флуоресценции Fura-2AM F_{340}/F_{380} при длинах волн возбуждающего излучения 340 и 380 нм соответственно (относительные единицы, отн. ед.). По оси абсцисс — время. (а) — к макрофагам, находящимся в нормальном физиологическом растворе, содержащем ионы Ca^{2+} , добавляли 4 мкг/мл трифлуоперазина, на фоне развившегося Ca^{2+} -ответа вводили 16 мкг/мл дексаметазона. (б) — макрофаги, находящиеся в нормальном физиологическом растворе, инкубировали в течение 15 мин с 8 мкг/мл дексаметазона. (в) — инкубация клеток с 25 мкг/мл преднизолона. (г) — инкубация с 20 мкМ 4-БФБ. Затем (6-г) вводили 4 мкг/мл трифлуоперазина. Каждая регистрация получена для группы из 40—50 клеток и представляет собой типичный вариант из 7 независимых экспериментов.

На рис. 1 приведены результаты типичных экспериментов. Данные представлены в виде графика изменения отношения интенсивностей флуоресценции Fura-2AM при длинах волн возбуждающего

излучения 340 и 380 нм (отношение F_{340}/F_{380}) во времени, отражающего динамику изменения $[Ca^{2+}]_i$ в клетках в зависимости от времени измерения [12].

В контрольных экспериментах мы установили, что при добавлении 4 мкг/мл ТФП к макрофагам в нормальном физиологическом растворе, содержащем ионы Ca^{2+} , происходит быстрое повышение $[\mathrm{Ca}^{2+}]_i$ по сравнению с базальным уровнем, равным 92 ± 17 нМ, после чего мы наблюдали продолжительную фазу плато Ca^{2+} -ответа (рис. 1а), на которой $[\mathrm{Ca}^{2+}]_i$ составляла 176 ± 26 нМ.

В настоящей работе мы впервые обнаружили, что преинкубация макрофагов с 8 мкг/мл дексаметазона в течение 15 мин до введения 4 мкг/мл ТФП привела к существенному подавлению ${\rm Ca}^{2+}$ -ответов, вызываемых ТФП (по данным 7 экспериментов — на 37,6 \pm 9,3%, рис. 1б). Аналогичные результаты получили при применении 25 мкг/мл преднизолона (подавление ${\rm Ca}^{2+}$ -ответов составило 54,3 \pm 13,5% по данным 7 экспериментов, рис. 1в). Преинкубация клеток с 20 мкМ 4-БФБ в течение 15 мин до введения 4 мкг/мл ТФП также привела к существенному подавлению ${\rm Ca}^{2+}$ -ответов, вызываемых ТФП (по данным 7 экспериментов на 37,6 \pm 8,8%, рис. 1г).

Введение 16 мкг/мл дексаметазона (рис. 1а) или 25 мкг/мл преднизолона на фоне развившегося плато Ca^{2^+} -ответа, индуцированного $\mathrm{T}\Phi\Pi$, вызывало уменьшение $[\mathrm{Ca}^{2^+}]_i$ на $35,0\pm9,7$ или $46,4\pm9,2\%$ соответственно. При добавлении 40 мкМ 4-БФБ на фоне фазы плато Ca^{2^+} -ответа мы также зарегистрировали существенное уменьшение $[\mathrm{Ca}^{2^+}]_i$ (по данным 7 экспериментов на $33,8\pm11,4\%$).

Таким образом, мы впервые показали, что ингибиторы Φ ЛА $_2$ —4-бромфенацилбромид и стероидные противовоспалительные агенты преднизолон и дексаметазон — значительно подавляют Ca^{2+} -ответы, вызываемые нейролептиком $\operatorname{T}\Phi\Pi$ в перитонеальных макрофагах крыс. Это свидетельствует об участии ключевого фермента каскада метаболизма АК Φ ЛА $_2$ во влиянии $\operatorname{T}\Phi\Pi$ на $\operatorname{[Ca}^{2+}]_i$ в макрофагах.

Полученные результаты согласуются с моделью встраивания (intercalation mechanism) амфифильных антипсихотических агентов, в том числе фенотиазиновых нейролептиков, во внутренний монослой плазмалеммы, в котором локализованы

анионные фосфолипиды. Трициклическое гидрофобное кольцо молекулы ТФП встраивается в гидрофобную фазу мембраны, в то время как алкильный фрагмент с терминальной аминогруппой взаимодействует с полярными головками кислых липидов [5, 6]. Это может приводить к изменению жидкостных свойств мембраны и функционирования мембраносвязанных ферментов, таких как фосфолипаза С и фосфолипаза А₂.

Полученные данные также свидетельствуют о нежелательности совместного применения нейролептика $T\Phi\Pi$ и стероидных противовоспалительных средств на основе дексаметазона и преднизолона.

СПИСОК ЛИТЕРАТУРЫ

- Dilsaver S.C. // Amer. Fam. Phys. 1993. V. 47.
 P. 199–204.
- Sudeshna G., Parimal K. // Eur. J. Pharmacol. 2010.
 V. 648. P. 6–14.
- 3. Hadjimitova V., Bakalova R., Traykov T., et al. // Cell Biol. Toxicol. 2003. V. 19. P. 3–12.
- 4. Миленина Л.С., Крутецкая З.И., Наумова А.А. и др. В сб.: Рецепторы и внутриклеточная сигнализация. М., 2017. С. 188—192.
- Oruch R., Lund A., Pryme I.F., et al. // J. Chem. Biol. 2010. V. 3. P. 67–88.
- 6. Jaszczyszyn A., Gasiorowski K., Swiatek P., et al. // Pharmacol. Rep. P. 2012. V. 64. P. 16–23.
- 7. Walenga R.W., Opas E.E., Feinstein M.B. // J. Biol. Chem. 1981. V. 256. P. 12 523–12 528.
- 8. Irvine R.F. // Biochem. J. 1982. V. 204. P. 3–16.
- Gewert K., Sundler R. // Biochem. J. 1995. V. 307. P. 499–504.
- 10. *Миленина Л.С., Крутецкая З.И., Наумова А.А.* и др. // Цитология. 2015. Т. 57. № 7. С. 518—525.
- 11. *Grynkiewicz G., Poenie M., Tsien R.Y.* // J. Biol. Chem. 1985. V. 260. P. 3440–3450.
- 12. Xie Q., Zhang Y., Zhai C., et al. // J. Biol. Chem. 2002. V. 277. P. 16 559–16 566.