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Abstract—Using Fura-2AM microfluorimetry, we have shown for the first time that sigma-1 receptor ago-
nist, tricyclic antidepressant amitriptyline, significantly inhibits glutoxim- and molixan-induced Ca2+-
responses in rat peritoneal macrophages. The results suggest possible involvement of sigma-1 receptors in the
signaling cascade induced by glutoxim or molixan and leading to intracellular Ca2+ concentration increase in
macrophages.
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Sigma-1 receptors—molecular chaperones of
endoplasmic reticulum membranes—have unique
structure and pharmacological properties [1, 2]. The
ligands of these receptors are compounds with dif-
ferent chemical structure and pharmacological activ-
ity: antidepressants, neuroleptics, analgesics, antitus-
sives, and anticonvulsants [3]. When functioning as
chaperones, sigma-1 receptors interact with the target
proteins (ion channels, receptors, etc.) and modulate
many cellular processes, including Ca2+ signaling [4].

Previously [5], we have shown for the first time that
the disulfide-containing immunomodulators Glu-
toxim® (G, disodium salt of oxidized glutathione with
an additive of a d-metal at a nanoconcentration,
PHARMA-VAM, Russia) and Molixan® (M, a com-
plex of glutoxim and nucleoside inosine, PHARMA-
VAM) increase the intracellular concentration of Ca2+

([Ca2+]i), causing Ca2+ mobilization from the thapsi-
gargin-sensitive Ca2+ stores and subsequent store-
dependent entry of Ca2+ into rat peritoneal macro-
phages. In this connection, it was reasonable to study
the possible involvement of sigma-1 receptors in the
action of G and M on [Ca2+]i in peritoneal macro-
phages, which was the subject of the present study.

We used the sigma-1 receptor agonist, tricyclic
antidepressant amitriptyline [1, 2, 6], which is widely
used to treat anxiety and depression [7].

Experiments were performed on cultured residen-
tial peritoneal macrophages of Wistar rats at room
temperature (20–22°C) 1–2 days after the beginning
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of cell culturing. After the completion of culturing,
[Ca2+]i was determined fluorometrically. The macro-
phage culturing procedure and the automated system
for measuring the intracellular Ca2+ concentration
([Ca2+]i), based on the Leica DM 4000B fluorescent
microscope (Leica Microsystems, Germany), were
described in detail earlier [8]. [Ca2+]i was measured
using the Fura-2AM fluorescent probe (Sigma-
Aldrich, United States). Fluorescence of objects was
excited at wavelengths of 340 and 380 nm, and emis-
sion was recorded at 510 nm. To prevent photobleach-
ing, measurements were performed every 20 s, irradi-
ating the object for 2 s. The [Ca2+]i values were calcu-
lated using the Grynkiewicz equation [9].

In the first series of experiments (results are shown
in Fig. 1a), the cells were incubated for 20 min in the
presence of 100 μg/mL G in a nominally calcium-free
medium, after which Ca2+ entry into the cell was initi-
ated by adding 2 mM Ca2+ into the external medium.
Then, 40 μg/mL amitriptyline was added to the incu-
bation medium. In the second series of experiments
(Fig. 1b), the cells were preincubated for 20 min with
20 μg/mL a mitriptyline in a calcium-free medium and
then incubated with 100 μg/mL G for 20 min, after
which 2 mM Ca2+ was added to the external medium.
The effect of amitriptyline in the presence of M (at the
same concentration as G) was studied using the same
experimental scheme (experimental series 3 and 4).

Data were statistically processed using Student’s
t test. Differences were considered significant at p ≤ 0.05.

Figures 1 and 2 show the results of typical experi-
ments. Data are represented as plots showing the
changes in the ratio of Fura-2AM fluorescence inten-
sities at excitation wavelengths 340 and 380 nm
(F340/F380 ratio) over time, reflecting the dynamics of
2
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Fig. 1. The effect of amitriptyline on the glutoxim-induced increase in [Ca2+]i in rat macrophages. Here and in Fig. 2, the ordi-
nate axis shows the Fura-2AM fluorescence intensity ratio F340/F380 at excitation wavelengths 340 and 380 nm, respectively
(expressed in arbitrary units (arb. units)). The abscissa axis shows time. The results of experimental series (a) 1 and (b) 2 are shown.
Each record was obtained for a group of 40–50 cells and represents a typical variant of six to eight independent experiments.
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changes in [Ca2+]i in cells depending on the measure-
ment time [10].

In the control experiments in series 1 and 3, we
found that the incubation of macrophages for 20 min
with 100 μg/mL G (Fig. 1a) or 100 μg/mL M (Fig. 2a)
in a calcium-free medium caused a slowly developing
increase in [Ca2+]i, ref lecting the mobilization of Ca2+

from the intracellular stores. On average (according to
the results of six experiments for each sample), 20 min
after the addition of the agents, [Ca2+]i increased from
the basal level (90 ± 18 nM) to 150 ± 19 nM for G and
158 ± 20 nM for M. When 2 mM Ca2+ was added to
the external medium, we observed a further increase in
[Ca2+]i, reflecting the entry of Ca2+ into the cytosol
(Figs. 1a, 2a). On average (according to the results of
six experiments for each sample), during the entry of
Ca2+, [Ca2+]i increased to 382 ± 32 and 394 ± 34 nM
for G and M, respectively.

In the experiments of series 2, we found that the
preincubation of macrophages with 20 μg/mL ami-
triptyline for 20 min before the addition of 100 μg/mL
G significantly attenuated the glutoxim-induced Ca2+

mobilization from the stores (on average by 39.6 ±
9.2%, according to the results of seven experiments)
and subsequent Ca2+ entry into the cell (on average by
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46.3 ± 10.1%, according to the results of seven experi-
ments) (Fig. 1b). Similar data were obtained when
studying the effect of 20 μg/mL amitriptyline on the
Ca2+-responses induced by 100 mg/mL M (Fig. 2b,
experiments of series 4). On average (according to the
results of seven experiments), amitriptyline attenuated
the molixan-induced Ca2+ mobilization from the
stores and the Ca2+ entry into the cell by 46.8 ± 8.2 and
55.4 ± 9.0%, respectively.

The addition of 40 μg/mL amitriptyline on the
background of developed Ca2+ entry induced by G
(Fig. 1a) or M (Fig. 2a) caused a significant (on
average, 67.8 ± 15.0%, according to the results of
12 experiments) inhibition of the store-dependent
Ca2+ entry into the macrophages.

Thus, in this study, we have shown for the first time
that the sigma-1 receptor agonist tricyclic antidepres-
sant amitriptyline inhibits both phases of the Ca2+-
response induced by G or M in rat peritoneal macro-
phages. These results are consistent with the published
data obtained under different experimental condi-
tions. For example, it was shown earlier [11] that ami-
triptyline suppresses the Ca2+ mobilization from the
stores and subsequent store-dependent Ca2+ entry
induced by ATP or thapsigargin in human leukemia
cells (HL-60 line). It was also shown that the sigma-1
1  2018



224 KRUTETSKAYA et al.

Fig. 2. The effect of amitriptyline on the molixan-induced increase in [Ca2+]i in rat macrophages. The results of experimental
series (a) 3 and (b) 4 are shown. 
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receptor agonist cocaine inhibits the store-dependent
Ca2+ entry induced by thapsigargin in the endothelial
cells of rat brain vessels [12], and the sigma-1 receptor
agonist (+)-SKF-10047 inhibits the Ca2+ mobiliza-
tion from the stores and the store-dependent Ca2+ entry
induced by thapsigargin in Chinese hamster oocytes and
human embryonic kidney cells (HEK 293 line) [13]. In
addition, it is known that amitriptyline blocks the volt-
age-gated L-type Ca2+ channels (Cav1.2) in rat heart
ventricular cardiomyocytes [14, 15].

The results obtained in the present study suggest a
possible involvement of sigma-1 receptors in the com-
plex signaling cascade triggered by G and M and lead-
ing to an increase in [Ca2+]i in rat peritoneal macro-
phages. The results also indicate that a combined use
of drugs G or M and the antidepressant amitriptyline
in clinical practice is undesirable.
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