
 

Dynamically assisted Schwinger effect beyond the
spatially-uniform-field approximation

I. A. Aleksandrov,1,2 G. Plunien,3 and V. M. Shabaev1
1Department of Physics, St. Petersburg State University,

7/9 Universitetskaya Naberezhnaya, Saint Petersburg 199034, Russia
2NRC “Kurchatov Institute”—ITEP, Moscow 117218, Russia

3Institut für Theoretische Physik, Technische Universität Dresden,
Mommsenstrasse 13, Dresden D-01062, Germany

(Received 6 March 2018; published 5 June 2018)

We investigate the phenomenon of electron-positron pair production from vacuum in the presence of a
strong electric field superimposed by a weak but fast varying pulse which substantially increases the total
particle yield. We employ a nonperturbative numerical technique and perform the calculations beyond the
spatially-uniform-field approximation, i.e., dipole approximation, taking into account the coordinate
dependence of the fast component. The analysis of the main characteristics of the pair-production process
(momentum spectra of particles and total amount of pairs) reveals a number of important features which are
absent within the previously used approximation. In particular, the structure of the momentum distribution
is modified both qualitatively and quantitatively, and the total number of pairs created as well as the
enhancement factor due to dynamical assistance become significantly smaller.
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I. INTRODUCTION

The process of the vacuum decay accompanied by the
production of electron-positron pairs in the presence of
strong external fields was predicted decades ago [1–3] and
still remains a very intriguing phenomenon. From the
theoretical viewpoint, the interest in this effect is due to
the nonperturbative nature of the pair-production process
taking place in strong quasistatic backgrounds. In order to
probe the quantum vacuum in this regime, i.e., to study the
Schwinger mechanism, one has to employ nonperturbative
evaluation methods instead of using perturbation theory,
which is not applicable in this strong-coupling domain. The
essential point is that the Schwinger effect has never been
observed experimentally as the required field strength is
extremely large. In the case of a static and spatially uniform
electric field, the characteristic critical field strength isEc ¼
m2c3=ðjejℏÞ ≈ 1.3 × 1016 V=cm which is 3 − 4 orders of
magnitude larger than the peak electric field strength
reached in modern laser pulses. Nevertheless, the laser
technologies develop very rapidly, so one may expect the
Schwingermechanism to become experimentally accessible

in the not too distant future. To theoretically support these
studies, it is necessary to find the most promising scenarios
that can be implemented in experiments.
One of the possible schemes was proposed a decade ago

in Ref. [4]. The configuration involves two laser pulses of
different intensity and frequency. While the first pulse is
strong and slowly varying, the second one is weak and fast.
Let E (ε) and Ω (ω) be the peak strength and frequency of
the strong (weak) pulse. If one introduces the Keldysh
parameters γE ¼ mcΩ=jeEj and γε ¼ mcω=jeεj [5], they
should satisfy γE ≪ 1 and γε ≫ 1. This means that the
strong pulse alone acts in the nonperturbative (Schwinger)
regime whereas the individual weak pulse can be treated in
the framework of perturbation theory. It turns out that the
combination of these two pulses can lead to a dramatic
enhancement of the particle yield. This phenomenon was
first studied in Ref. [4], where the external field was
represented as a sum of two spatially uniform Sauter pulses
without a subcycle structure (see also Refs. [6–9]). The
carrier of the laser pulses was taken into account in a number
of subsequent studies [10–15]. Nevertheless, a systematic
analysis of the pair-production process beyond the spatially-
uniform-field approximation (we will also call it the dipole
approximation) still has not been conducted.
In fact, the previously used dipole approximation (DA)

can hardly be justified due to the presence of the fast pulse.
The usual ansatz approximating the monochromatic exter-
nal electric field by a uniform background is justified by the
requirement that the laser wavelength λ be much larger
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than the characteristic length scale of the pair-production
process l ¼ 2mc2=jeEj. This is equivalent to the condition
γ ≪ 1which is not satisfied in the caseof aweakand fast pulse
since γε ≫ 1. One may expect that in the presence of both the
strong and the weak components, the relevant parameter is
the “combined” Keldysh parameter γc ¼ mcω=jeEj, but as
was demonstrated in a number of studies (see, e.g.,
Refs. [4,6,9,11]), the efficient dynamical assistance is likely
to occur only when γc ≳ 1. This suggests that the spatial
variations of theweak fast pulse should be taken into account,
which is the main goal of the present investigation.
In this study we consider a combination of a uniform

time-dependent strong field and a standing wave containing
rapid oscillations in space and time. Both pulses have a
finite duration. We examine the key aspects of the dynami-
cally assisted Schwinger mechanism both within the dipole
approximation and beyond it (bDA). According to the
results of Ref. [9], the particle yield is exponentially sup-
pressed, and the corresponding exponent does not change
when one goes beyond the uniform-external-field approxi-
mation. Nevertheless, in this study we carry out numerical
calculations which provide the exact values of the number
densities of particles created, while the worldline instanton
approach employed in Ref. [9] allows one only to estimate
the total particle yield. Besides, we take into account the
temporal dependence of the strong pulse and examine
various characteristics of the pair-production process.
In particular, we analyze the momentum spectra of particles
created and the integrated number density. The correspond-
ing calculations are performed bymeans of a nonperturbative
numerical technique. It turns out that taking into consid-
eration the spatial dependence of the weak pulse uncovers a
few significant features in the momentum spectra which do
not appearwithin thedipole approximation. Furthermore, the
enhancement due to the dynamical assistance as well as the
total particle yield are also notably altered.
After completion of the present investigation we noticed

the very recent study [16], where it was demonstrated that
the spatial dependence of the external field plays a crucial
role in the context of the Breit-Wheeler process, where a
combination of two fast-varying laser pulses is considered.
It was shown that one can hardly approximate the resulting
field of two pulses with large γ by a spatially uniform
background. In Ref. [17] this conclusion was drawn
regarding a combination of two pulses with γ ∼ 1. In the
present study, we demonstrate that the same applies to the
case of the dynamically assisted Schwinger effect.
In Sec. II we describe the field configuration to be

studied and introduce an approximate enhancement factor
which is used to identify the values of the field parameters
in the dynamical assistance regime. A similar analysis is
carried out beyond the dipole approximation, which reveals
a number of new important features. In Secs. III and IV, we
turn to the study of the momentum distribution of particles
produced within the dipole approximation and beyond it,
respectively. In Sec. V we examine the total number of
eþe− pairs and thus provide the exact quantitative

comparison of the two approaches. Finally, in Sec. VI
we discuss the main findings of the study and the future
prospects. Relativistic units (ℏ ¼ 1, c ¼ 1) are employed
throughout the paper.

II. APPROXIMATE ENHANCEMENT FACTOR

The external electromagnetic field is described by the
following vector potential:

Axðt; zÞ ¼ FðtÞ
�
E
Ω
sinΩtþ ε

ω
sinωt cos kzz

�
;

Ay ¼ Az ¼ 0; ð1Þ
where kz ¼ ω and FðtÞ is a smooth envelope function
(0 ≤ FðtÞ ≤ 1). This external background can be formed by
two pairs of counterpropagating laser pulses with a large
number of carrier cycles. The envelope FðtÞ is chosen in the
following form:

FðtÞ¼

8>>><
>>>:
sin2

�
1

2
ðπN−ΩjtjÞ

�
if πðN−1Þ=Ω≤ jtj<πN=Ω;

1 if jtj<πðN−1Þ=Ω;
0 otherwise:

ð2Þ
Accordingly, the field (1) contains N cycles of the slow
laser pulse including switching on and switching off parts
of half a cycle each and a flat plateau of N − 1 cycles. The
fast pulse governed by the second term in Eq. (1) contains
ðω=ΩÞN cycles. In what follows, we choose N ¼ 10,
which guarantees that both pulses contain a large number
of cycles, and therefore the external background can be
approximated by a sum of two standing waves. Since
γE ≪ 1, the strong pulse can be considered as a spatially
uniform time-dependent field according to the first term in
Eq. (1). We also choose E ¼ 0.2Ec, Ω ¼ 0.02m, and γε ¼
10.0 and vary ω. This leads to γE ¼ 0.1 and γc ¼ 5ðω=mÞ.
Within the dipole approximation, the spatial dependence

of the second term inEq. (1) is neglected by replacing cos k0z
with 1. This dependence can be partially taken into account
by averaging the results obtained in the dipole approximation
for the amplitude εðzÞ ¼ ε cos k0z being considered at
various positions z ∈ ½0; 2π=Ω�. This approach will be
referred to as the local dipole approximation.
The method employed in this study is based on the well-

known Furry picture formalism incorporating vacuum
instability [18]. The external field is assumed to act only
within the time interval tin < t < tout. One can demonstrate
that the number density of particles produced can be
directly extracted from the two specific sets of solutions
of the Dirac equation. The in (out) solutions are determined
by their asymptotic behavior in the region t < tin (t > tout).
After propagating a given out solution backwards in time,
we decompose it in terms of the in solutions and obtain the
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number density of the particles created in the corresponding
out state. Since the external field (1) is periodic (and
monochromatic) in space at each time instant t, and it does
not depend on x and y, a given momentum pz along the z
axis can be changed only by an integer number of ω, while
components px and py are conserved. This allows one to
propagate only a discrete set of Fourier components for
each one-particle solution. This approach was described in
detail in Refs. [19,20]. As a result, our computations
provide the number density of electrons (positrons) pro-
duced per unit volume:

nðpÞ ¼ ð2πÞ3
V

dNp;s

d3p
; ð3Þ

where p is the momentum of the particle and s ¼ �1
determines its spin state. Due to the symmetry of the
external field, the spectra of particles produced are invariant
under the reflection p → −p and independent of s.
The local number density nðpÞ considered at a given

point p cannot yield a reliable quantitative measure of the
dynamical assistance. In this perspective, the total number
of pairs, i.e., the function nðpÞ integrated over p, seems to
be the most suitable parameter. However, its evaluation
becomes very time consuming beyond the dipole approxi-
mation. For this reason, we study in more detail the number
density integrated over py at px ¼ pz ¼ 0:

ny ¼
Zþ∞

0

nð0; py; 0Þdpy: ð4Þ

The y direction is chosen since the magnetic field, which
appears beyond the dipole approximation, is directed along
the y axis and does not affect much the py distribution
computed for the spatially homogeneous configuration. This
was confirmed by studying an individual pulse as a uniform
background and a standing wave, respectively. It turns out
that the momentum spectrum in the transversal direction
(either y or z) in the former case is more similar to the
spectrum along the y direction in the latter case (this fact was
also indicated in Ref. [17]). Moreover, the integral (4)
converges faster than the analogous px and pz integrals.
We use the parameter ny as a guide for searching for the
domain of the dynamical assistance and then study the effect
in more detail by calculating the density nðpÞ and the total
number of particles created. We also introduce an approxi-
mate enhancement factor K ¼ nyðIþ IIÞ=½nyðIÞ þ nyðIIÞ�
where nyðIÞ and nyðIIÞ denote the value of ny in the case
of the individual strong and individual weak pulse, respec-
tively, and nyðIþ IIÞ is associated with the combination of
the both pulses.
Let us first discuss the results obtainedwithin the spatially-

uniform-field approximation. In Fig. 1 we present the values
of ny as a function of the fast-pulse frequency ω for the case
of the individual pulses (I and II) and the combined pulses
(Iþ II). Obviously, the particle yield provided by the strong

slow pulse alone (horizontal line) does not depend on ω. On
the other hand, the function nyðIIÞðωÞ exhibits a quite
nontrivial behavior. Its plot contains a set of large leaps.
Each of them corresponds to the appearance of the next
n-photon channel, and its position can be determined from
the condition 2m� ¼ nω, where m� is the effective laser-
dressed electron mass. In the presence of a weak field
(γε ≫ 1), one has m� ≈m, so the leaps in Fig. 1 appear at
ω=m ¼ 2; 2=3; 2=5… The even leaps do not take place
here. As was demonstrated in many numerical studies
[10,21–23], the dependence of nðp ¼ 0Þ onω has a resonant
structure which consists of sharp peaks at ω ¼ 2m�=n for
odd values of n, while the even-n resonances are forbidden.
This can be understood if one notes that the angular
momentum of the eþe− pair equals zero for p ¼ 0, and thus
its charge-conjugation parity is −1. Since the C parity of the
photon is also −1, the pair can be generated only by
absorbing an odd number of photons. It turns out that this
selection rule remains valid even if the transverse component
of the particle momentum differs from zero, i.e., py and pz

can be arbitrary, provided px ¼ 0 [10,21,23].
When both pulses are present (line “Iþ II” in Fig. 1), the

pair-production yield becomes substantially larger. In Fig. 2
the approximate enhancement coefficient K is depicted
versus ω. One observes that the enhancement can reach
several orders of magnitude, but for smaller values of ω, it
is also quite small. Furthermore, in order to preserve the
nonperturbative character of the pair-production process,
one should also make sure that nyðIÞ ≫ nyðIIÞ which holds
true only in the region ω≲ 0.6m. This means that the
domain of the dynamically assisted Schwinger mechanism
is 0.4m≲ ω≲ 0.6m.
A special emphasis should be placed on the fact that the

more physical characteristic of the pair-production process
is the total number of pairs, unlike the rough estimate ny.
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FIG. 1. The number density integrated over py according to
Eq. (4) as a function of the fast-pulse frequency ω in the case of
the individual pulses (I and II) and in the presence of both pulses
(Iþ II).
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One should at least verify the findings of such an analysis by
the complete calculations of the particle yield. This is
especially important for the quantitative comparison of
various field configurations and various computational
approaches. Besides, the oscillatory behavior of nyðIþ IIÞ
(and accordingly K) proves to be a nonphysical artifact
which does not show up in the total number of particles
created. In Sec.Vwewill address these points inmore detail.
In Fig. 3 we present the results obtained within the local

dipole approximation. Although they quantitatively differ
from the dipole-approximation results for the case of the
second pulse alone (II), the qualitative behavior aswell as the
results for the combined pulses remain almost the same. The
analysis of the momentum distribution of particles produced
also brings us to the conclusion that the local dipole
approximation does not provide any significant findings
besides those established in the usual dipole approximation.

InFig. 4we display the dependences calculated beyond the
dipole approximation, i.e., using the expression (1). First, we
observe that the dipole approximation considerably over-
estimates the particle yield, especially in the large-ω region. It
is no surprise since the Keldysh parameter γc increases with
increasing ω while the dipole approximation appears to be
better justified for smaller γc. Second, one observes a different
multiphoton structure in the case of the individual weak pulse
(II). Since the photons now possess not only energy, but also
momentum along the z axis (the projection equals þω or
−ω), the “resonance” condition has a different form. Let q
andp be the initial and final 4-momenta of a certain electronic
state, respectively. The conservation laws read

p ¼ qþ nþkþ þ n−k−; ð5Þ
where k� ¼ ðω; 0; 0;�ωÞt and n� are integer numbers.
Taking into account px ¼ pz ¼ 0 and the relations p2 ¼
q2 ¼ m2 (again, the effective mass in a weak field approx-
imately equals the electron mass), one obtains

2nþn−ω ¼ p0ðnþ þ n−Þ; ð6Þ
which means that the particle yield should considerably
increase with increasing ω at the points ω=m¼ðnþþn−Þ=
ð2nþn−Þ. One can assume here that nþ ≥ n−. The relation
derived now allows one to explain the structure of the
graph II (bDA) depicted in Fig. 4. The numbers in the graph
denote the correspondingvalues ofnþ andn−. Aquite similar
analysis was performed in Ref. [22] in order to explain the
positions of the multiphoton resonances in the scenario
involving twocounterpropagatinghigh-intensity laser pulses.
In Fig. 4 one notices that beyond the dipole approximation in
the vicinityω ≈ 2m no resonances occur. Another distinctive
feature of the ny dependence consists in the presence of the
3 − 1 (or 1 − 3) resonancewhich corresponds to an even total
number of photons absorbed. This demonstrates that the
previously discussed selection rule can be violated beyond
the dipole approximation.
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FIG. 2. The approximate enhancement factor defined by
K ¼ nyðIþ IIÞ=½nyðIÞ þ nyðIIÞ� as a function of the fast-pulse
frequency ω.
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FIG. 3. The values of ny as a function of ω calculated within the
DA and the local dipole approximation (LDA) for the three
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We observe that the different dynamics taking place
beyond the spatially-uniform-field approximation leads to
the substantially different patterns (this aspect will also be
emphasized in the following two sections). Besides, the
more accurate results indicate that the enhancement due to
the dynamical assistance is, in fact, weaker. The latter point
will also be discussed in Sec. V. In the next two sections, we
study the momentum distribution of particles created for
the specific choice of ω (and accordingly γc).

III. MOMENTUM DISTRIBUTION WITHIN THE
DIPOLE APPROXIMATION

In this section, we examine the momentum spectra of
particles produced within the spatially-uniform-field

approximation. The major part of the results is presented
for ω ¼ 0.5m.

A. Transversal direction

As was pointed out above, within the dipole approxima-
tion, all of the directions in the y − z plane, i.e.,
perpendicular to the electric field, are equivalent. Without
loss of generality, we set pz ¼ px ¼ 0 and vary py. In Fig. 5
we present themomentumdistribution of particles created as
a function of py for the three configurations: I, II, and Iþ II.
The so-called shell structure revealed herewas accounted for
in Refs. [12,13]. The peaks in Figs. 5(a) and 5(c) have the
positions that satisfy 2Eð0; py; 0Þ ¼ nΩwith EðpÞ being the
effective energy in the external field:

EðpÞ ¼ 1

2π

Z2π
0

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ½px þ γ−1E sin xþ γ−1ε sinðωx=ΩÞ�2 þ p2

y þ p2
z

q
; ð7Þ

where the term with γ−1ε should be omitted in the case I. The
peaks in Figs. 5(a) and 5(c) correspond to n ¼ 651; 653…
In the case II of the weak external background, the effective
energy can be estimated as EðpÞ ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
, and the peak

in Fig. 5(b) is related to the condition 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

y

q
¼ nω

with n ¼ 5 (py ≈ 0.75m). Note that the number of photons
is always odd in accordance with the selection rule
discussed in the previous section.
The appearance of the fast pulse leads to lifting the

momentum distribution evaluated in the case of the slow
pulse alone (I). Note that the presence of the weak pulse
almost does not affect the expression (7) since γε ≫ 1.
Accordingly, the lifting effect is not accompanied by any
shift of the peaks.
However, the eþe− pair can be now produced by

absorbing n photons of the strong pulse and ñ photons of
theweak one. Supposing thatn corresponds to a certain peak
in Fig. 5(a), in the presence of both pulses, the combination
of ñ photons of the weak pulse and n − ðω=ΩÞñ photons of

the strong pulse corresponds to the same resonance. Since in
our caseω=Ω ¼ 25, the total number of photons is n − 24ñ,
and thus the additional photons of the weak field do not
change its parity. This explains why the even resonances
do not appear in Fig. 5(c). Nevertheless, this might as well
not be the case. In Fig. 6 we display the Iþ II spectrum
for ω ¼ 0.6m. Since ω=Ω ¼ 30 is now even, the even
peaks now appear. The numbers in Fig. 6 denote the
values of n (large numbers) and ñ (subscripts). For each
resonance, ñ can be increased by an arbitrary even
number 2k, provided n is decreased by 60k.

B. Longitudinal direction

In Fig. 7 we display the spectrum of particles produced
with py ¼ pz ¼ 0 and various values of px. By means of a
similar analysis in terms of resonance conditions, one
identifies in Figs. 7(a) and 7(c) the peaks with n ¼
650; 651… The even peaks are now not forbidden. In
Fig. 7(b) we observe now three sharp peaks which corre-
spond to n ¼ 5, 6, and 7. As px tends to 0 the value of
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FIG. 5. The momentum distribution of particles created as a function of their transversal momentum py (px ¼ pz ¼ 0) for the three
external field configurations (I, II, and Iþ II) and ω ¼ 0.5m.
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2Eðpx; 0; 0Þ almost reaches 4Ω, which explains the rapid rise
of the distribution function. However, at the very point
px ¼ 0 the pair-production probability is again very low.
This indicates that the even-n processes are not permitted if
the longitudinal momentum vanishes.

Next wewill investigate how the patterns discussed above
change when one goes beyond the dipole approximation.

IV. MOMENTUM DISTRIBUTION BEYOND THE
DIPOLE APPROXIMATION

The field configuration (1) now consists of both the
electric field along the x axis and the magnetic field along
the y axis, so the cylindrical symmetry is not present now.
In this section we analyze the spectra in the three spatial
directions.

A. Magnetic field direction y

We now set px ¼ pz ¼ 0. The py spectra contain again a
set of pronounced peaks (see Fig. 8). However, their
positions differ from those found in the dipole approxi-
mation. In order to describe this difference in the case of the
individual weak pulse [Fig. 8(a)], we turn again to the
conservation law (5). This expression can now be used to
determine the resonance position py for given nþ, n−, and
ω. Taking into account p2 ¼ q2 ¼ m2, one obtains

py=m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþn−Þ2
ðnþ þ n−Þ2

�
ω

m

�
2

− 1

s
: ð8Þ
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FIG. 7. The momentum distribution of particles created as a function of their longitudinal momentum px (py ¼ pz ¼ 0) for the three
external field configurations (I, II, and Iþ II) and ω ¼ 0.5m.
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This expression predicts a resonant peak at py ≈ 0.66m
(resonance 3 − 2 or 2 − 3) which is clearly seen in Fig. 8(a).
The other resonances are considerably suppressed as they
appear in higher orders of perturbation theory. The reso-
nance 2 − 2 would correspond to py ¼ 0, but it does not
show up in Fig. 8(a) since it has an even sum nþ þ n−. The
analysis of the momentum distributions beyond the dipole
approximation reveals that the processes with even photon
numbers are suppressed only in the case of the py spectra.
In the presence of the two pulses, the spectrum possesses

a more complicated structure. Besides the peaks predicted
within the dipole approximation, there exist also additional
peaks in between. They can be accounted for by means
of the conservation laws, which in this case take the
following form:

p ¼ qþ nþkþ þ n−k− þ nk0; ð9Þ
where k0 ¼ ðΩ; 0; 0; 0Þt is the 4-momentum of the strong
pulse photon. Then we set px ¼ pz ¼ 0 and use the
relations p0 ¼ EðpÞ and q0 ¼ EðqÞ. The resonance con-
dition reads

Eð0;py;0ÞþEð0;py;ðn− −nþÞωÞ¼ ðnþþn−ÞωþnΩ:

ð10Þ

In order to evaluate the effective energy EðpÞ, we employ
again the expression (7) even though we go beyond the
dipole approximation. The reason for this is that the second
pulse contribution (the term with γ−1ε ) is always very small,
so it does not need to be modified. Using Eqs. (7) and (10),
we identify the resonant peaks in Fig. 8(b). It turns out
that the main peaks, which can also be found in Figs. 5(a)
and 5(c), correspond to the processes with nþ ¼ n−. For
each value of nþ ¼ n−, there is the same series of main
peaks being enumerated by n (see Table I). The additional
peaks in Fig. 8(b) emerge as the resonances with nþ ≠ n−.
Note that Eq. (10) is symmetric with respect to the
interchange nþ ↔ n−, so we assume that nþ ≥ n−. The
resonance condition (10) formally allows the integers nþ
and n− to also be negative. This, however, in turn, leads to
greater values of n, and thus such processes are strongly
suppressed in comparison to those displayed in Table I
and thus are not indicated here. Note that the spectrum
contains only the peaks with an odd sum nþ nþ þ n−. The
resonances located by means of Eq. (10) and those found
numerically coincide at least with 1.5% accuracy.
If the additional peaks appear already in theDA spectrum,

e.g., for ω ¼ 0.6m (see Fig. 6), the results obtained beyond
the DA reproduce the same resonant structure. If the DA
distribution contains only odd peaks, the number of reso-
nances doubles beyond this approximation. Although the
resonant structure appears mainly owing to the presence of
the high-intensity slow field, the modified dynamics of the
weak pulse beyond the dipole approximation gives rise to

the additional signatures in the momentum spectrum. The
weak fast pulse now not only lifts the momentum distribu-
tion but also changes its overall structure assisting the pair
production process in the strong field.

B. Propagation direction z

When only the weak pulse is present, the spectrum
contains peaks which can be located using Eq. (5) [see
Fig. 9(a)]. However, the resonant values of pz are now not
described by the right-hand side of Eq. (8) since the pz
component of the particle momentum can change due to the
absorption of photons. Setting px ¼ py ¼ 0 and using
Eq. (5), one obtains

2nþn−ω ¼ p0ðnþ þ n−Þ − pzðnþ − n−Þ; ð11Þ

where p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

z

p
. This leads to

pz ¼
nþ − n−

2
ω� nþ þ n−

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −

m2

nþn−

s
; ð12Þ

where nþ and n− are positive. This expression allows one to
identify the resonances in Fig. 9(a). Whereas in the dipole
approximation one observes only one peak at py ¼ 0.75m,
beyond the DA, the spectrum becomes more complicated.
The two high sharp peaks are associatedwith the 2 − 3þ and
3 − 2þ transitions, where, besides nþ and n−, we indicate
the sign in Eq. (12). Note that both the 4 − 1þ and 4 − 1−
resonances correspond to pz ¼ 0.75m because the square
root in Eq. (12) vanishes. Moreover, according to Eq. (12),
the positions of these “accidentally” degenerate resonances
are very sensitive with respect to the small changes of the
fast-pulse frequency ω. It turns out that for ω ¼ 0.50034m
the expression (12) predicts the 4 − 1þ and 4 − 1− peaks at
pz ¼ 0.797m and pz ¼ 0.704m, respectively, which corre-
spond to the peaks in Fig. 9(a). On the other hand, the
positions of the other resonances change by less than 0.3%.
Since the external field (1) is, in fact, not monochromatic, it

TABLE I. The series of the resonant peaks in Fig. 8(b). Each of
the M series predicts the main peaks already found within the
dipole approximation while all of the A series reproduce the
additional ones.

Series nþ − n− n

Main peaks (M) 0 − 0 651, 653, …
1 − 1 601, 603, …
� � � � � �

Additional peaks (A) 1 − 0 628, 630, …
2 − 1 578, 580, …
� � � � � �
2 − 0 607, 609 …
3 − 1 557, 559, …
� � � � � �
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is no accident that the 4 − 1 peak splits into two. One could
also expect that the structure of the momentum distribution
in Fig. 9(a) is quite unstable in the vicinity of pz ¼ 0.75m.
Our computations with different envelope functions FðtÞ
confirm this point. The same holds true when one analyzes
the peaks 2 − 2þ and 2 − 2− in the vicinity of pz ¼ 0. In
contrast to the results obtained in the dipole approximation,
the even resonances are now allowed.
To further clarify and illustrate the aspects discussed, we

present the spectrum for ω ¼ 0.502m (see Fig. 10). The 2 −
2 and 4 − 1 resonances split and form four distinct peaks
(the 2 − 2− peak has a negative value of pz), while the
positions of the peaks 2 − 3þ, 3 − 2þ, and 3 − 3þ remain
almost the same.
In the presence of the two pulses [see Fig. 9(b)], the

resonant structure can be deciphered as in the previous
subsection. Instead of Eq. (10), one has now

Eð0;0;pzÞþEð0;0;pzþðn− −nþÞωÞ¼ ðnþþn−ÞωþnΩ:

ð13Þ

This relation does not possess the symmetry nþ ↔ n− and
provides now a larger variety of resonances. The peaks in
Fig. 9(b) are described in Table II. Each n–nþ–n− resonance
can also be represented as the (n − 50Þ–ðnþ þ 1Þ–ðn− þ 1Þ
resonance similarly to what is shown in Table I. Although in
Table II the total number of photons nþ nþ þ n− is always
odd, the even peaks can also emerge as was found in our
calculations for other values of ω.

C. Electric field direction x

The momentum distributions for py ¼ pz ¼ 0 are
depicted in Fig. 11. Their structure can be explained almost
in the same way as it was done for the py spectrum. In the
case of the fast pulse (II), the only difference is that the even
resonances are now not forbidden, so the 2 − 2 resonance
now leads to a dramatic rise of the production probability in
the vicinity of px ¼ 0 [Fig. 11(a)]. The peaks 4 − 2 (2 − 4)
and 3 − 3 are less pronounced, for they correspond to
higher orders of perturbation theory.
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FIG. 9. The momentum distribution of particles created as a function of pz (px ¼ py ¼ 0) for the field configurations II and Iþ II
(ω ¼ 0.5m).
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FIG. 10. The momentum distribution of particles created as a
function of pz (px ¼ py ¼ 0) for the field configuration II and
ω ¼ 0.502m.

TABLE II. The list of the resonant peaks discovered beyond the
dipole approximation in the pz spectrum [Fig. 9(b)]. The pz
values derived from Eq. (13) (D) match those found exactly (E).

Peak n nþ n− pz=m (D) pz=m (E) nðpÞ
M1 651 0 0 0.293 0.294 1.3 × 10−4

M2 653 0 0 0.511 0.512 1.1 × 10−5

M3 655 0 0 0.663 0.663 4.4 × 10−6

M4 657 0 0 0.788 0.789 9.3 × 10−7

M5 659 0 0 0.898 0.905 6.2 × 10−7

A1 626 1 0 0.096 0.093 7.0 × 10−5

A2 628 0 1 0.198 0.199 1.6 × 10−5

A3 626 1 0 0.404 0.404 8.2 × 10−5

A4 603 2 0 0.607 0.606 2.7 × 10−5

A5 628 1 0 0.698 0.699 1.4 × 10−5

A6 630 1 0 0.868 0.867 1.3 × 10−6

A7 605 2 0 0.946 0.948 5.0 × 10−7
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The resonant structure in Fig. 11(b) is notablymodified in
comparison to the results obtained in the dipole approxi-
mation. Apart from the previously found (main) resonances,
there are again additional peaks. The resonance condition
now reads

Eðpx;0;0ÞþEðpx;0;ðn− −nþÞωÞ¼ ðnþþn−ÞωþnΩ:

ð14Þ
By inspection of this equation, we find that the additional
peaks correspond to the absorption of one fast-pulse photon
traveling in either direction andn¼627;628…Alternatively,
the resonances can appear as the 2 − 1 (or 1 − 2) processes
with n ¼ 577; 578… or in even higher orders in nþ and n−.
Performing the more accurate calculations beyond the

uniform-field approximation, we establish that the momen-
tum spectra of particles have in fact a different structure.
Nevertheless, the accurate quantitative comparison of
the two approaches seems complicated. For instance, in

Fig. 11(b), the number density evaluated beyond the dipole
approximation can be much larger than the dipole-approxi-
mation values. In the next section, in order to gain a
complete quantitative picture, we compute the total number
of pairs.

V. TOTAL NUMBER OF PAIRS

In this section we discuss finally the total particle yield
and compare the results obtained within the uniform-field
approximation and beyond it. In particular, we perform the
numerical integration of the density function nðpÞ:

N ¼ 2

Z
nðpÞdp; ð15Þ

where the factor 2 appears due to the spin degeneracy. The
total number of pairs N represents an extremely important
characteristic which has a direct relation to experiments
and is a very useful indicator in comparison of various
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FIG. 11. The momentum distribution of particles created as a function of px (py ¼ pz ¼ 0) for the field configurations II and Iþ II
(ω ¼ 0.5m).

TABLE III. The total number of pairsN produced in the presence of the individual fast pulse (II) and both the fast and the strong pulse
(Iþ II) for various values of the fast-pulse frequency ω. The results were obtained in the DA and bDA. The values ofN are displayed in
units of ƛ−3 where ƛ is the reduced Compton wavelength of the electron (ƛ ≈ 386 fm). The particle yield N ðIÞ amounts to
6.6 × 10−6ðƛ−3Þ.

N (DA) N (bDA)

ω=m II Iþ II K II Iþ II K

0.30 <10−11 3.4 × 10−5 5.1 <10−11 1.6 × 10−5 2.5
0.35 <10−11 6.2 × 10−5 9.3 <10−11 2.2 × 10−5 3.3
0.40 3.5 × 10−11 1.1 × 10−4 16 1.1 × 10−11 3.3 × 10−5 4.9
0.45 1.8 × 10−9 2.0 × 10−4 30 1.7 × 10−10 5.0 × 10−5 7.5
0.50 9.3 × 10−10 3.5 × 10−4 53 2.4 × 10−10 7.8 × 10−5 12
0.55 6.4 × 10−7 6.9 × 10−4 94 4.3 × 10−8 1.3 × 10−4 19
0.60 4.8 × 10−7 1.3 × 10−3 180 6.4 × 10−8 2.1 × 10−4 31
0.65 5.0 × 10−7 2.3 × 10−3 320 8.1 × 10−8 3.5 × 10−4 51
0.70 1.8 × 10−4 4.1 × 10−3 22 1.1 × 10−7 5.7 × 10−4 84
0.75 1.8 × 10−4 7.2 × 10−3 39 2.0 × 10−5 9.3 × 10−4 35
0.80 2.5 × 10−4 1.2 × 10−2 48 2.4 × 10−5 1.5 × 10−3 48
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computational approaches. On the other hand, the calcu-
lation of this quantity is rather time consuming, especially
beyond the dipole approximation where the cylindrical
symmetry is broken by the appearance of the magnetic
field. Nevertheless, we carry out the calculations for various
values of the fast-pulse frequency ω (see Table III). We also
evaluate the full enhancement factor K which is defined as
K ¼ N ðIþ IIÞ=½N ðIÞ þN ðIIÞ�, where the particle yield in
the case of the individual strong pulse is independent ofω. It
is seen now that the dipole approximation indeed over-
estimates the amount of pairs. Our calculations confirm the
other findings of Sec. II. Namely, one observes that the
enhancement factor is almost insignificant for ω≲ 0.3m.
Besides, the individual contribution of the weak pulse
becomes larger than that of the strong pulse for ω≳ 0.7m
(DA) and ω≳ 0.8m (bDA). Within the interval
0.3m≲ ω≲ 0.7m, the enhancement factor in the dipole
approximation can reach a value of about 300. However,
according to the results obtained beyond this approximation,
the total particle yields are about 1 order of magnitude
smaller.

VI. DISCUSSION AND CONCLUSION

Within the present investigation, we examined the main
characteristics of the dynamically assisted Schwinger effect
going beyond the previously used dipole approximation. In
particular,we took into account the coordinate dependenceof
the fast weak pulse. It turned out that according to thesemore
precise calculations, the patterns established in the homo-
geneous-field approximation cannot always be expected to
provide the real features of the pair-production process.
Instead, our results suggest that one has to take into account
the spatial dependence of the external field in order to obtain
more accurate quantitative and qualitative predictions.
We summarize our main findings below:
(1) The structure of the momentum spectra of particles

created becomes significantly different beyond the
dipole approximation. The number of resonant
peaks can double, and the momentum distributions
along all three directions x, y, and z become quite
different.

(2) Within the dipole approximation, the transversal
momentum distribution never contains resonances
corresponding to an even number of photons ab-
sorbed. However, beyond the dipole approximation,
such peaks do appear unless the momentum along
the propagation direction vanishes (pz ¼ 0).

(3) The momentum spectra obtained in the dipole
approximation and beyond it exhibit different
quantitative behavior. While the latter mostly

correspond to smaller values of the production
probability, they can also have higher peaks. In
order to accurately predict the quantitative character-
istics of the spectra, one has to perform the calcu-
lations beyond the dipole approximation.

(4) The enhancement of the particle yield due to the
dynamical assistance, which is the essence of the
processes considered in our study, turns out to be
overestimated in the dipole approximation. The
more precise calculations predict an enhancement
factor that is several times smaller together with
particle yields that are about 1 order of magnitude
smaller.

Although the external background considered in the
present study incorporates the spatiotemporal dependence
of the laser field, further steps towards studying more
realistic configurations can also be taken. First, one can
examine pulses of a finite size instead of two infinite pulses
forming a standing wave. According to the recent studies
[16,17], the coordinate dependence of the envelope func-
tion can play a very important role, especially in the case of
short laser pulses. Besides, in many studies of various
scenarios within the dipole approximation, it was demon-
strated that the momentum spectra of particles and other
characteristics can be very sensitive to changes in the shape
of the laser pulse (see, e.g., Refs. [9,15,23–25]). The
analysis of the pulse shape effects beyond the dipole
approximation is an important issue to be investigated
further.
Finally, we stress that the spatial dependence of the

external background in the context of Schwinger pair
production was considered so far in a very few studies
[16,17,20,26–28]. We expect that multidimensional inho-
mogeneities should be significant for a much broader class
of possible scenarios.
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