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В рамках нового полностью самосогласованного микроскопического подхода, основанного на методе

энергетического функционала плотности, рассчитана тонкая структура пигми-дипольного резонанса в
208Pb, т.е. энергии и приведенные вероятности E1 переходов для состояний с энергией меньше 10МэВ.

Подход включает приближении случайных фаз, квазичастично-фононное взаимодействие и полностью

учитывает одночастичный континуум. Результаты расчета сравниваются с имеющимися эксперимен-

тами с высоким экспериментальным разрешением. Получено хорошее согласие с экспериментальными

интегральными характеристиками пигми-дипольного резонанса в области выше 5.7 МэВ. Рассмотрен

количественный вклад остаточных спин-спиновых сил и показано, что их вклад может быть значи-

тельным как на малых, так и на больших интервалах энергии. Коллективность 1
− состояний в 208Pb

проанализирована с помощью недавно предложенного нового критерия коллективности.
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1. Введение. Широкая область электрических

дипольных возбуждений ядер вблизи энергии отде-

ления нуклона, так называемый пигми-дипольный

резонанс (ПДР), продолжает оставаться объектом

активных экспериментальных и теоретических ис-

следований в физике низких энергий. Из многочис-

ленных ядер, ПДР которых изучался в различных

экспериментах довольно подробно, повышенный ин-

терес в последнее время проявляется к дважды–

магическому 208Pb (см. [1–4]). Общая физическая

причина этого состоит в том, что из-за относитель-

ной простоты одночастичного и коллективного спек-

тров это сферическое ядро всегда являлось полиго-

ном для экспериментальных и теоретических иссле-

дований. Большую роль здесь сыграла работа [2], в

которой методом (γ, γ′) с хорошим эксперименталь-

ным разрешением были определены энергии и при-

веденные вероятности возбуждения 1− уровней до

энергии 8 МэВ. Эти результаты были недавно под-

тверждены и дополнены новыми данными, получен-

ными методом неупругого рассеяния поляризован-

ных протонов [3, 4], что представляется весьма суще-

ственным в связи с дискуссией о недостатках метода

(γ, γ′) для ядра 120Sn [5].
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Среди теоретических методов описания ПДР (их

обзор можно найти в работах [1, 6]) наиболее широко

используются в настоящее время микроскопические

подходы, основанные на приближении случайных

фаз (“random phase approximation” – RPA), в част-

ности, расширенные варианты RPA, в которых учи-

тываются эффекты квазичастично-фононного вза-

имодействия (КФВ). К подходам этого типа от-

носятся квазичастично-фононная модель ядра [7],

приближение временной блокировки (“time blocking

approximation” – TBA, [8–11]), релятивистская вер-

сия TBA (“relativistic TBA” – RTBA [12]) и модель

частично-вибрационной связи [13]. В работе [2] при-

ведены результаты расчета характеристик ПДР в
208Pb в рамках квазичастично-фононной модели, ко-

торые показали в целом хорошее согласие с экспе-

риментальными данными, полученными в [2]. Одна-

ко, эти расчеты были несамосогласованными и со-

держали подгоночные параметры. Описание данных

[4] в рамках многочастичной модели оболочек [14]

тоже оказалось достаточно хорошим, но в этих рас-

четах также использовались подгоночные процеду-

ры для одночастичных уровней и из-за вычислитель-

ных трудностей модельное пространство было силь-

но ограничено.

Важным и необходимым шагом в направлении

более последовательного теоретического описания
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ПДР является применение самосогласованных вари-

антов RPA [15–19] и его расширений (см. [20, 21]). По-

скольку самосогласованные модели не содержат сво-

бодных параметров, согласие с экспериментом для

возбужденных состояний в них, как правило, ока-

зывается хуже, чем в несамосогласованных. Напри-

мер, в первых полностью самосогласованных расче-

тах ПДР в 208Pb [15], выполненных в рамках ре-

лятивистского RPA, было получено большое превы-

шение теоретической величины интегральной силы

E1 возбуждений в энергетической области ПДР над

ее экспериментальным значением. Такое же превы-

шение получено в расчетах, выполненных в рамках

RTBA (см. [3, 4, 20]), что, по-видимому, является

следствием свойств использованных в этих расчетах

эффективных сил (см. [6]). Основная проблема, воз-

никающая в задаче описания ПДР в 208Pb почти во

всех самосогласованных моделях, состоит в дефи-

ците E1 силы при энергиях возбуждения меньших

6 МэВ, при которых в экспериментах наблюдается

около 30 % интегральной силы ПДР (см. [4]). Про-

блема описания интегральных характеристик ПДР в
208Pb и его тонкой структуры в самосогласованном

подходе остается, таким образом, до сих пор откры-

той.

Представляется поэтому целесообразным выпол-

нить расчеты E1 возбуждений в энергетической об-

ласти ПДР в ядре 208Pb в рамках недавно разви-

того для ядер без спаривания полностью самосогла-

сованного варианта TBA (continuum TBA – CTBA,

[10, 11]), в котором, кроме эффектов КФВ, пол-

ностью учитывается одночастичный континуум на

уровне RPA. Это является основной целью настоя-

щей работы. Ранее в нашей работе [22] мы применили

этот метод для объяснения экспериментальных ре-

зультатов, полученных “методом Осло” [23] для ради-

ационной силовой функции в 208Pb. В соответствии

с экпериментальными данными в расчетах исполь-

зовался параметр сглаживания ∆ = 200 кэВ и было

получено достаточно разумное описание эксперимен-

тальных данных [23] для E1 радиационной силовой

функции в интервале 5–7.5 МэВ. В отличие от рабо-

ты [22], в настоящей работе рассчитываются все 1−

уровни 208Pb и силовые функции E1 возбуждений в

этом ядре в интервале 0–10 МэВ с параметрами сгла-

живания ∆ = 1 и 10 кэВ.

Второй целью работы является изучение влия-

ния так называемых остаточных спин-спиновых сил

(ОССС) на свойства низколежащих 1− уровней. Эти

силы учитываются нами самосогласованно и без вве-

дения новых параметров. Такой вопрос возникает в

самосогласованных моделях, основанных на энерге-

тическом функционале плотности (ЭФП) Скирма, в

том случае, когда предполагается, что этот функ-

ционал параметризуется безотносительно к какому-

либо двух- или трех-частичному взаимодействию. В

таком функционале остается несколько свободных

параметров, не связанных с другими параметрами

условиями глобальных симметрий и не влияющих на

свойства основных состояний реперных ядер, по ко-

торым эти параметры обычно подгоняются (подроб-

нее см. [24, 25]). ОССС возникают в остаточном взаи-

модействии именно из тех членов ЭФП Скирма, па-

раметры которых остаются неопределенными, если

на матричные элементы остаточного взаимодействия

не накладывается никаких дополнительных условий.

Третьей целью работы является анализ коллек-

тивности 1− состояний в энергетической области

ПДР. Этот вопрос изучался в ряде работ (см., на-

пример, [16–18, 20, 21, 26, 27]), результаты которых

не позволяют, однако, сделать однозначного вывода

о степени коллективности указанных состояний. В

данной работе мы анализируем их коллективность с

помощью нового критерия, предложенного в [28].

2. Модель. Основной моделью, использован-

ной в наших расчетах, является самосогласованное

CTBA. Подробное описание этой модели и детали

расчетной схемы даны в работах [11, 28, 29]. Одним

из важных элементов CTBA является метод вычи-

тания [30], который устраняет двойной учет вкладов

КФВ и гарантирует стабильность решений модель-

ных уравнений. Фононный базис CTBA, т.е. набор

фононов, входящих в конфигурации 1p1h ⊗ phonon

(учитываемых во всех наших моделях с КФВ, начи-

ная с работ [31, 8]), формируется на основе крите-

рия коллективности, сформулированного в [28]. Па-

раметром коллективности в этом критерии является

величина 〈V 〉/E, где 〈V 〉 – среднее значение операто-

ра остаточного взаимодействия V в фононном состо-

янии, E – энергия этого состояния. Значения 〈V 〉 и

E рассчитываются в дискретном приближении слу-

чайных фаз (discrete RPA – DRPA), т.е. в RPA, в

котором континуум дискретизируется путем наложе-

ния нулевых граничных условий на одночастичные

волновые функции при некотором значении радиуса

r = Rb. Согласно данному критерию, состояние счи-

тается коллективным, если для него |〈V 〉/E| > vmin,

где vmin – некоторое заданное число. В [28] было по-

казано, что оптимальным для сил Скирма является

значение vmin = 0.05, которое и было использовано в

представленных далее расчетах.

В расчетах нами использовалась параметризация

ЭФП Скирма SV-bas [25], которая дает хорошее опи-

сание гигантского дипольного резонанса в 208Pb в
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TBA (см. [11, 28] и рис. 2 настоящей работы), так

что представляется вполне естественным попытаться

применить основанные на этой параметризации мо-

дели в области ПДР. В дальнейшем мы рассматри-

ваем два варианта этой параметризации: SV-bas0, в

которой ОССС отсутствуют (положены равными ну-

лю те параметры функционала, которые генерируют

спин-спиновые силы в остаточном взаимодействии;

подробнее см. [29]), и SV-bas1, в которой ОССС при-

сутствуют в форме компонент обычных антисиммет-

ризованных сил Скирма. Подчеркнем, что среднее

поле и, следовательно, одночастичный базис в 208Pb

одинаковы в обоих этих параметризациях.

На рисунке 1 показаны силовые функции E1 воз-

буждений в области ПДР в 208Pb, рассчитанные с си-

Рис. 1. (Цветной онлайн) Силовые функцииE1 возбуж-

дений в 208Pb, рассчитанные в рамках CTBA (сплош-

ная красная линия), CRPA (штриховая черная линия)

и DRPA (пунктирная зеленая линия). Расчеты выпол-

нены с силами Скирма SV-bas0 и параметром энерге-

тического усреднения ∆ = 10кэВ

лами SV-bas0 в рамках трех моделей: CTBA, CRPA

(RPA с учетом одночастичного континуума) и DRPA

(с Rb = 18фм). Как видно из этого рисунка, вклад

КФВ, включенный в CTBA, приводит к сдвигу вниз

1− уровней в области ПДР по отношению к их по-

ложению в CRPA и DRPA (в среднем на 240 кэВ)

и к обогащению спектра за счет эффекта фрагмен-

тации. Сравнение силовых функций CRPA и DRPA

показывает, что эффект континуума в этой энергети-

ческой области в 208Pb (для параметра сглаживания

∆ = 10 кэВ) невелик и становится заметным, лишь

когда энергия возбуждения на 1.5 МэВ превышает

энергию отделения нейтрона (7.58 МэВ в этих рас-

четах).

С целью изучения влияния ОССС на свойства E1

возбуждений нами были рассчитаны в CTBA рас-

пределения силы этих возбуждений в широком (0–

30 МэВ) и узком (5–10 МэВ) энергетических интерва-

лах с двумя параметризациями (SV-bas0 и SV-bas1)

и двумя значениями параметра сглаживания (∆ =

= 400 кэВ для широкого интервала и ∆ = 1 кэВ

для узкого). Результаты представлены на рис. 2 и 3.

Заметный сдвиг вниз распределений, полученных с

Рис. 2. (Цветной онлайн) Сечение фотопоглощения в
208Pb, рассчитанное в рамках CTBA с силами Скирма

SV-bas0 (сплошная красная линия) и SV-bas1 (штрихо-

вая черная линия). Параметр энергетического усредне-

ния ∆ = 400 кэВ. Экспериментальные данные из рабо-

ты [32] показаны зелеными точками

Рис. 3. (Цветной онлайн) Силовые функцииE1 возбуж-

дений в 208Pb, рассчитанные в рамках CTBA с силами

Скирма SV-bas0 (сплошная красная линия) и SV-bas1
(штриховая черная линия). Параметр энергетического

усреднения ∆ = 1кэВ

параметризацией SV-bas1, объясняется главным об-

разом большим различием в числе фононов фонон-

ного базиса CTBA, построенного согласно вышеопи-
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санному критерию коллективности: 28 фононов в

случае SV-bas0 и 83 фонона в случае SV-bas1.

3. Тонкая стуктура и интегральные харак-

теристики ПДР в 208Pb. На рисунке 4 показаны

результаты наших расчетов тонкой стуктуры ПДР в
208Pb в сравнении с экспериментом. На панели (a)

представлены экспериментальные данные из работы

[2], на панели (b) – из работы [4]. В этих эксперимен-

тах до энергии отделения нейтрона были измерены

приведенные вероятности B(E1) возбуждений, а вы-

ше этого порога – суммы вероятностей для соответ-

ствующих интервалов энергии. На панелях (c) и (d)

показаны результаты, полученные в рамках CTBA

для сил SV-bas0 и SV-bas1. Анализ эксперименталь-

ных данных в [4] показал, что ПДР в 208Pb располо-

жен в энергетической области ниже 8.23 МэВ. Дан-

ные [2–4] показывают также, что ПДР в этом ядре

можно разделить на два широких резонанса: нижний

(НПДР – в интервале от 4.8 до ≈ 5.7 МэВ) и верх-

ний (ВПДР – в интервале от 5.7 до 8.23 МэВ). Выше

8.23 МэВ ВПДР примыкает к низкоэнергетическому

хвосту гигантского дипольного резонанса (ГДР). За-

метим, что ВПДР находится в области так называ-

емого 1~ω изоскалярного дипольного резонанса (см.

[33, 34]), энергия которого в модели гармонического

осциллятора равна 6.9 МэВ в 208Pb.

Таблица 1. Значения сумм приведенных вероятностей
E1 переходов B(E1) и их средних энергий 〈E〉 =
=

∑
EB(E1)/

∑
B(E1) в ядре 208Pb в энергетическом интер-

вале 5.7–8.23 МэВ, вычисленные в CTBA и CRPA. Экспери-
ментальные данные из работы [4]

∑
B(E1) (e2фм2) 〈E〉 (МэВ)

CTBA (SV-bas0) 1.73 7.31

CTBA (SV-bas1) 1.54 7.13

CRPA (SV-bas0) 1.68 7.55

CRPA (SV-bas1) 1.17 7.28

Эксперимент 1.55 7.41

Наши расчеты, как и большинство других само-

согласованных расчетов, упомянутых во Введении,

не дают E1 силы в 208Pb ниже 5.7 МэВ, но непло-

хо описывают в CTBA интегральные характеристи-

ки ВПДР, вычисленные по данным работы [4] (см.

табл. 1). Как видно из рис. 4 и табл. 1, результаты

расчетов с силами SV-bas0 и SV-bas1 заметно отли-

чаются друг от друга в области ВПДР. В CTBA экс-

периментальная интегральная сила
∑

B(E1) лучше

воспроизводится с силами SV-bas1, но средняя энер-

гия 〈E〉 =
∑

EB(E1)/
∑

B(E1) и общая форма рас-

пределения E1 силы лучше описываются с силами

SV-bas0.

Рис. 4. (Цветной онлайн) Экспериментальный и теоре-

тический спектр E1 возбуждений в 208Pb в области

ПДР. На панели (a) представлены экспериментальные

данные из [2], на панели (b) – из работы [4]. На ниж-

них панелях показаны результаты, полученные в рам-

ках CTBA с силами SV-bas0 (панель (c)) и SV-bas1 (па-

нель (d))

Для НПДР, согласно данным [4], имеем:
∑

B(E1) = 0.63 e2 фм2, 〈E〉 = 5.3МэВ. Согласие с

данными по интегральной силе НПДР, полученное в

[21] в рамках модели частично-вибрационной связи,

возможно, объясняется тем, что в этих расчетах,

включающих эффекты КФВ, не использовался ме-

тод вычитания. В моделях, в которых этот метод не

применяется, энергия большинства уровней умень-

шается, иногда весьма значительно, однако при этом

нарушается внутренняя согласованность теории и

появляются сильная зависимость результатов от

числа фононов в фононном базисе и связанный

с этой зависимостью порог нестабильности реше-

ний. В CTBA без вычитания мы также получаем

удовлетворительное согласие с вышеприведенными

интегральными характеристиками НПДР, но в этом

варианте модели значительно ухудшается описание

данных по ГДР в 208Pb и сильно уменьшаются энер-

гии низколежащих уровней (в частности, энергия

3−1 состояния становится меньше 1 МэВ).

4. Анализ коллективности 1− состояний в
208Pb. На рисунке 5a, показаны значения величин

〈V 〉/E для 1− состояний в 208Pb, рассчитанные в са-

мосогласованном DRPA с силами Скирма SV-bas0.

На остальных панелях этого рисунка приведены рас-

пределения вероятностей изовекторных (рис. 5b) и

изоскалярных (рис. 5c) E1 возбуждений в 208Pb, рас-

считанные в рамках того же подхода. Энергетиче-

ское распределение значений 〈V 〉/E показывает, что

остаточное взаимодействие для состояний из обла-

сти ПДР носит характер притяжения (〈V 〉 < 0), то-
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Рис. 5. (Цветной онлайн) Значения параметра коллек-

тивности 〈V 〉/E для 1
− состояний в 208Pb (a) и распре-

деления вероятностей изовекторных (b) и изоскаляр-

ных (c) E1 возбуждений в этом ядре. Значения веро-

ятностей даны в единицах максимальных вероятностей

для каждого распределения. Расчеты в RPA с силами

Скирма SV-bas0 (подробнее см. текст)

гда как для состояний из области ГДР – отталки-

вания (〈V 〉 > 0). Максимальное значение величины

|〈V 〉/E|, достигаемое в области ПДР (в интервале от

5 до 8.23 МэВ), составляет 0.12. Это значение оказы-

вается даже большим, чем максимальное значение

этой величины для состояний в области ГДР, равное

0.06 при E = 12.6МэВ. Всего в области ПДР в дан-

ном расчете имеется три 1− состояния, удовлетворя-

ющих упомянутому в разделе 2 условию коллектив-

ности |〈V 〉/E| > vmin = 0.05. С другой стороны, для

наиболее коллективных состояний ядра 208Pb (3−1 ,

2+1 и 4+1 ) значения |〈V 〉/E| в аналогичном расчете

равны 2.71, 0.82 и 0.58, соответственно, что значи-

тельно больше максимального значения |〈V 〉/E| для

ПДР. Эти результаты позволяют классифицировать

отдельные состояния из области ПДР как умеренно

коллективные.

Относительно небольшое значение параметра

коллективности низколежащих 1− состояний можно

объяснить эффектом “остаточной” коллективно-

сти, который возникает, когда в спектре имеется

состояние с большим максимальным значением

|〈V 〉/E|. В 208Pb таким состоянием является 3−1 с

〈V 〉/E = −2.71. Остальные состояния с Jπ = 3−

имеют значения |〈V 〉/E|, которые меньше макси-

мального более чем на порядок. В случае Jπ = 1−,

состоянием, в котором концентрируется коллектив-

ность, является ложная дипольная мода, энергия

которой в модели гармонического осциллятора

равна 1~ω и совпадает с энергией ПДР (см. [35, 36]),

а в полностью самосогласованном RPA стремится к

нулю при увеличении частично-дырочного базиса,

при этом ее параметр коллективности 〈V 〉/E → −∞.

Сравнение трех распределений на рис. 5 позволя-

ет сказать, что 1− состояния из области ПДР не яв-

ляются ни чисто изоскалярными (IS), ни чисто изо-

векторными (IV). Тем не менее, их вклад в общее

распределение силы для изоскалярного E1 резонанса

больше, чем для изовекторного. Количественно этот

вклад можно оценить с помощью энергетически-

взвешенных правил сумм (“energy weighted sum

rule” – EWSR), определяемых моментами m1 =
∑

EB(E1) (EWSR) и m−1 =
∑

E−1B(E1) (inverse

EWSR – IEWSR). Для сил Скирма SV-bas0 вклад

ПДР в эти правила сумм, т.е. вклад суммы по со-

стояниям с энергией от 0 до 8.23 МэВ в полные мо-

менты m1 и m−1, для изоскалярных E1 возбуждений

равен 3.6 % для EWSR и 23 % для IEWSR. Для изо-

векторных E1 возбуждений вклад ПДР равен 1.3 %

для EWSR и 4.5 % для IEWSR. Таким образом, вклад

ПДР в IS EWSR в 2.8 раза больше, чем в IV EWSR.

Вклад ПДР в IS IEWSR в 5 раз больше, чем в

IV IEWSR. Отметим, что полученное нами значение

3.6 % для вклада 1− состояний из области ВПДР в

IS EWSR почти совпадает с экспериментальной ве-

личиной 3.7 %, измеренной в [34] для 1− состояний в
208Pb с энергией от 6.37 до 7.28 МэВ.

Наш вывод о преобладании изоскалярных компо-

нент в низколежащих 1− состояниях ядра 208Pb сов-

падает с результатами других работ (см., например

[17, 27]). Однако, наш вывод о большей максималь-

ной коллективности состояний из области ПДР по

сравнению с ГДР противоположен результатам, по-

лученным в [18, 27]. Причиной этого различия яв-

ляется используемый нами критерий коллективно-

сти, который определяется параметром, обратно про-

порциональным энергии состояния E, при ĒGDR ≈

≈ 2ĒPDR (GDR и PDR – английские аббревиатуры

для ГДР и ПДР).

5. Заключение. В работе структура и инте-

гральные характеристики пигми-дипольного резо-

нанса в ядре 208Pb проанализированы в рамках

самосогласованной модели, основанной на прибли-

жении случайных фаз и включающей эффекты
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квазичастично-фононного взаимодействия и одноча-

стичного континуума. Среднее поле и остаточное

частично-дырочное взаимодействие были определе-

ны в модели энергетического функционала плотно-

сти (ЭФП) Скирма. Показано, что в рамках этого

подхода можно одновременно получить хорошее опи-

сание структуры гигантского дипольного резонанса

в 208Pb и интегральных свойств ПДР в области вы-

ше 5.7 МэВ. Теоретическое описание ПДР ниже этой

энергии в самосогласованной модели требует даль-

нейшего развития теории, в том числе поиска новых

параметризаций ЭФП Скирма или, возможно, дру-

гих функционалов.

Исследовано влияние остаточных спин-спиновых

сил на свойства низколежащих 1− уровней. Пока-

зано, что это влияние может быть заметным, одна-

ко более определенный вывод можно сделать лишь

при условии уточнения соответствующих парамет-

ров ЭФП Скирма, которые остаются пока плохо

определенными. Проведен анализ коллективности

1− состояний в 208Pb на основе недавно предложен-

ного критерия коллективности. Получено, что от-

дельные наиболее коллективные состояния в области

ПДР можно отнести к умеренно коллективным.
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