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A Global Analytical Representation of the Magnetic Field Produced by 
the Region 2 Birkeland Currents and the Partial Ring Current 

N. A. TSYGANENKO 1 

Laboratory for Extraterrestrial Physics, NASA Goddard Space Flight Center, Greenbelt, Maryland 

A quantitative model is developed of the magnetic field produced by the electric current system of region 2 
Birkeland currents, dosed via the partial ring current. The distribution of J.L is computed from a given axially 
asymmetric spatial distribution of hot isotropic magnetospheric plasma over an infinitely thin L shell in an 
axisymmetric purely dipolar geomagnetic field, while the field-aligned current density is found from the 
continuity of the net electric current. The magnetic field distribution is derived by a Biot-Savart integral over 
the electric current system. An assumed cosine dependence of the plasma pressure on local time makes it 
possible to reduce the problem of analytical representation of the B field to two dimensions. The obtained 
numerical fits for the partial ring current/region 2 Birkeland current magnetic field are relatively simple, 
continuous, and valid throughout the whole extraterrestrial space from ionospheric heights up to tens of R E . 
To our knowledge, this is a first global analytical representation for the magnetic field of the partial ring 
current system which can be incorporated in future advanced models of the external geomagnetic field. 

INTRODUCTION 

Large-scale B irkeland current systems carry a significant 
fraction of the net magnetospheric electric current and hence 
should have a considerable effect upon the overall structure and 
mapping of the geomagnetic field lines. The importance of an 
explicit inclusion of the field-aligned current systems in 
global quantitative magnetospheric B field models has been 
emphasized in earlier works [Tsyganenko and Usrnanov, 1984, 
Tsyganenko, 1988; 1990; 1991]. In the last of the above 
papers a quantitative model of the region 1 current circuit was 
proposed, based on a transformation of the magnetic vector 
potential of a cone-shaped electric current sheet. The method 
provided a reasonable representation for the contribution from 
the most large-scale higher-latitude Birkeland current system. 
However, that approach cannot be extended to lower-latitude 
region 2 field-aligned currents associated with the partial ring 
current system. 

In the present work as well as in the companion paper by 
Stern [this issue] an attempt is made to bridge this gap. In 
contrast to the case of the region 1 system, there exists a 
clearer understanding of region 2 currents and a quantitative 
description of the basic physical mechanisms which give rise 
to them [Vasyliunas, 1970]. A simplifying assumption is that 
the background magnetic field in the region 2 domain does not 
deviate significantly from the dipolar configuration (which is 
equivalent to assuming that plasma beta is not too large) and 
hence the electric currents can be easily evaluated from data on 
the magnetospheric plasma distribution. This means that, in 
principle, the problem of determination of the magnetic field 
can be solved in a straightforward way by calculating Biot- 
$avart integrals over the region 2/partial ring current system. 
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However, this is only the first (and the easiest) part of the job: 
what we need for practical modeling of the magnetosphere and 
geomagnetic field line mapping is a set of simple analytical 
expansions yielding a convenient approximation for the 
numerically computed magnetic field components. Because of 
the complicated geometry of the partial ring current system 
[Roelof, 1989], the development of a global analytical B field 
model meets some difficulties. One possible solution to the 
problem is proposed below. Another approach based on 
formal transformations of the initially purely dipolar magnetic 
field is developed by Stern [this issue]. In spite of basic 
difference in starting points (plasma pressure distribution in 
the present work and modified Euler potentials in that of Stern) 
and mathematical treatment (a direct analytical fitting of B 
components in this work and "shifted" spherical harmonic 
expansions for the scalar potential in the companion paper), 
the results are much similar, at least qualitatively. 

2. MAGNETIC FmT.n DISTURBANCE PRODUCED BY TI-IE PARTIAL 

RING CURRENT SYSTEM AND ITS NUMERICAL CALCULATION 

The region 2 B irkeland current system (including the partial 
ring current) is believed to arise from an axially asymmetric 
intrusion of hot plasma into the near magnetosphere during 
disturbed periods. Some of the most striking evidence for such 
an asymmetric injection was presented by Roelof [1987] who 
showed by using the measurements of energetic neutral atoms 
that the night-day asymmetry in the ring current particle flux 
can rise to as high as 20:1 during storm time. lijima et al. 
[1990], using AMPTE/CCE magnetometer data, found a 
midnight-noon asymmetry in the azimuthal electric current 
magnitude of the order of 3:1. Since the net volume current 
density should be divergenceless, the local time asymmetry of 
the cross-B current gives rise to Birkeland current j/•, whose 
density can be evaluated from the equation 
V.j = 0. 

• (•oo) 2c(BøxVBø)'VP i)-J = Bø 4 (1) 

where, for the sake of simplicity, the plasma pressure is 
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assumed to be isotropic, and the coordinate s along the 
magnetic field line is measured from the northern ionosphere 
to the equator (that is, oppositely to the B0 vector). 

The next simplifying assumption is that the background 
magnetic field Bo is purely dipolar, which can be justified by 
the relatively low latitude of the region 2 currents. In other 
words, we suppose a basic day-night asymmetry of the plasma 
pressure, while the corresponding magnetic field asymmetry is 
assumed to be negligible. This implies that the plasma beta 
parameter in the partial ring current region is not large. The 
last assumption becomes questionable for strongly disturbed 
periods, during which a significant inflation of the nightside 
magnetosphere at L~6-8 is observed due to injection of hot 
plasma. One more implication of the day-night asymmetry in 
the real magnetosphere is that the center of the region 2 quasi- 
circular zone does not coincide with the geomagnetic pole but 
is shifted to nightside by several degrees. The present model 
fails to take into account these features and should thus be 

considered as just a first step in developing an elaborate model 
of the partial ring current. 

Let us introduce the coordinates 

sin20 -1 
c• = •= r (2) 

2cp(c•,qb) 

Jd = Bo 3 BoxVBo (6) 
in the axially symmetric dipolar magnetic field Bo has only 
the azimuthal component 

6c sin50 (1 + cos20) 
Jdqb = - c•2M (1 + •-os• p(c•,qb) (7) 

Field-aligned and drift current contributions to the magnetic 
field can be found from (4)-(7) by evaluating the Biot-Savart 
integral 

1I(jB + jd)x(r- r' BB+d =•J Ir- r'l 3 )dr (8) 
The magnetization current Jm, in contrast with Jd and j•, 
contains the c• component i•p/i•o[ of the pressure gradient. For 
this reason it is more convenient to replace the part of the 
Biot-Savart integral containing Jm by an equivalent presenta- 
tion in which the current-carrying region is considered as a 
magnetized medium, with the function 

Ix(r) =- • Bo (9) 
cos0 -2 

¾=--• = • (3) 
yielding the spatial distribution of the magnetization vector. 
The corresponding contribution to the magnetic field distur- 
bance outside the current-carrying layer is given by 

The variables c•, •, and the azimuthal angle qb define an 
orthogonal coordinate system [Stern, 1976] in which the 
surfaces c• = const are the dipolar L shells of radius re, while • = 
constant are surfaces of constant scalar potential and cross the 
polar axis at r = rp. The inverse transformation from a pair of 
the coordinates (c•,•)to (r,0) is more cumbersome (see 
Appendix A). 

In the case of isotropic plasma the pressure p does not 
depend on T, and we obtain from (1) the volume density of 
Birkeland current, 

6c •1 + 3 cos20 Dp 
Jt• = c• 2 M sin60 I (cos0) •-• (4) 

where M is the Earth's dipole moment and 

I /'27 7 ? 117 256x ) l(x) = 2-•,-•-x - x 5 + • - 13 x + 1 + 3x 2 (5) 

It can be seen from (4) that the field-aligned current is 
proportional to the azimuthal component of the pressure 
gradient which is positive (negative) in the dusk (dawn) sector 
of northern hemisphere and hence JB is positive (negative) 
there, in accordance with the observed polarity of the region 2 
currents. 

Let us proceed now to the cross-B component of the current 
and its magnetic effect. It is convenient to treat separately 
contributions from the drift and magnetization part of the net 
current. The drift current density 

Bm(r) = I [(r-r') 3g (r')'(r-r') !x(r')] Ir-r'l 5 - Ir-r'l 3 dv (10) 

where the integration is carried out with respect to r' over the 
space occupied by the partial ring current plasma. 

The integral (10) is equivalent to the Biot-Savart one contai- 
ning the diamagnetic current Jrn = c(Vxg) in the integrand, but 
in contrast to the latter, does not include transverse derivatives 
of the plasma pressure. The principal advantage of the 
representation (10) is that it simplifies the calculation of the 
disturbance field if the region 2/partial ring current system is 
assumed to be distributed over a relatively thin L shell. This 
assumption reduces the numerical computation of the net 
disturbance field to a two-dimensional integration over the 
current carrying surface. As shown below, in the analytical 
model of the numerically computed magnetic field, the 
abruptness of a two-dimensional current can be removed by 
means of a smooth interpolation of the B components across 
the integration surface. 

The next simplification can be introduced by making a 
special choice of the local time variation of the plasma 
pressure. In the general case, the axially asymmetric pressure 
function p(c•,qb) gives rise to an essentially three-dimensional 
distribution of the disturbance magnetic field which needs 
separate numerical evaluation at each local time; attempts to 
devise analytical representation for such a general field, are, 
inevitably, difficult. An effective way out is to expand the 
azimuthal variation of p(c•,qb) in Fourier series, retaining, in 
the simplest case, the two leading terms 

p(c•,qb) -• (P0 + Ap cos qb) 8(c•- c•0). (11) 
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The delta function factor represents the thin-layer 
approximation described earlier, where c• 0 --re0 '1 defines the 
location of the current-carrying L shell and the bracketed factor 
in (11) defines the cosinusoidal azimuthal variation of the 
pressure function between the minimal value P0 - Ap at noon 
and the maximal one P0 + Ap at midnight. As follows from (4) 
to (7), in this case the Birkeland current density varies as sine 
•, while the drift current can be formally split up into a sum of 
two terms, of which the first one corresponds to an axially 
symmetric ring current parametrized by P0 and the second one, 
proportional to Ap and varying as cos •, yields a pair of loops 
closing the field-aligned current via the noon and midnight 
sectors at low latitudes. This is illustrated in Figure 1 which 
shows the two components of the partial ring current system 
on the surface (• = (•0 and the resultant pattern of the current 
flow lines given by the sum of Jd and 

It should be noted that the idea of representing the partial 
ring current as the sum of the axisymmetric part and the 
quadrupole two-loop system was suggested earlier by Stern 
[1989], who proposed to model the magnetic effects of the 
region 2 system by making a formal modification of the Euler 

potentials. In that approach the quadrupole electric current 
configuration arises as a result of assuming a sinusoidal varia- 
tion of the first-order correction terms in the Euler potential 
expansions. Here we arrive at the same representation in quite 
a different way, starting from the asymmetric distribution of 
the plasma pressure. Note also that the net configuration 
shown in Figure l c is quite similar to the one obtained by 
Roelof [1989] from the energetic neutral atom data on the ring 
current ion pressure. 

It turns out that the formal separation of the net current into 
the symmetric part (Figure la) and the quadrupole part (Figure 
lb) largely simplifies the task of devising an analytical 
representation for the disturbance magnetic field. Namely, the 
field produced by the axisymmetric part of the current system 
shown in Figure la and denoted henceforth as B s is also 
axially symmetric, while the components of the field Bq from 
the quadrupole part (Figure lb), at any point of space however 
close to the current layer, include the azimuthal dependence 
only via the factor cos • or sin •. 
Specifically, the spherical components of Bq can be represen- 
ted as 

Bqr (r, O, •)) = bqr (r,O) cos •) 
BqO (r, O, •)) = bqO (r,O) cos g) (12) 
Bq• (r, O, •)) = bq• (r,O) sin (• 
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Similarly, the components of the field from the magnetization 
current can also be divided into the dipolar (axisymmetric) and 
quadrupole terms. The validity of representation (12) was 
verified by direct numerical computation of the integrals (8) 
and (10); a mathematical proof is given in Appendix B. 

Alternatively, instead of the r and 0 components given by 
(12) we can introduce 

Fig. 1.Electric current flow lines in the model partial ring current 
computed from (4)-(7) on the surface ct = ct0: (a) The axially 
symmetric ring current corresponding to the first term in (11). (b) The 
quadrupole part corresponding to the second term in (11) and 
containing Birkeland currents. (c) The resultant configuration given by 
the sum the systems (Figure ia) and (Figure lb). In this particular case 
P0 = Ap and therefore the electric current is zero in the noon meridian 

plane. The current flow lines of the southern hemisphere are not 
shown in the plots, all the pattems being symmetrical with respect to the 
equatorial plane. 
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Bc• = Brv + BOW 

By = BW -Brw , (13) 

v = -sin0/S 

w = 2cos0/S 

S=•I +3cos20 

This choice proves to be more convenient than the spherical 
components (12), because everywhere on the L shell 

the B tx and B? components are normal and tangential, res- 
pectively, to the current layer. As a result, their distribution in 
{x - ? space is much more orderly than that of Br and B0. 

3. ANALYTICAL REPRF. SENTATION OF TIlE NUMEmCALLY COMP• 

MAGN•TIC Fru, T n 

Because of the separation of the azimuthal dependence of the 
magnetic field components as indicated in (12), the problem of 
analytical fitting is reduced, in fact, to two dimensions. What 
we have to do is to find convenient representations for the 

axisymmetric components bsct(ot, 7) and bsT(Ot,?) and the 
quadrupole ones bqc•({x,7), bq0(C•,7). 

In doing so, we meet the problem of satisfying the con- 
dition 

V.B =0 (14) 

for the analytical B field. The original field given by integrals 
(8) and (10) is divergenceless and hence a violation of (14) can 
only be introduced by deficiencies of the analytical approxi- 
mation. In principle, these difficulties could be avoided by 
deriving an appropriate analytical representation for the 
vector potential A, which can also be numerically computed 
from the distributions of the electric current and magnetization 
vectors given by (6), (7), and (9). In such a case the analytical 
model magnetic field would be divergence-free by construc- 
tion, since V-(VxA) is identically zero. This approach was 
tried early in this work; however, it turned out that, as a rule, 
even an excellent approximation for A gave but a fair 
agreement for B, while the electric current pattern showed only 
a gross resemblance to the expected distribution and included a 
number of spurious features. An obvious reason is that the B 
and j vectors are composed, respectively, of the first and 
second spatial derivatives of A, so that a good fit for the latter 
does not guarantee as good approximations for the former 
ones. 

As for the quadrupole part of the field, B q, there exists one 
more way to circumvent the problem of satisfying (14). 
Namely, because of the special kind of dependence of the Bq 
components on q• as given by (12), it is sufficient to fit only 

the first two components, while BqO can be easily expressed in 
terms of Bqa and Bqy by applying and therefore identically 
satisfying equation (14). This approach implies, however, that 
the components of j, again, contain dependence on the second 
derivatives of the approximation functions, which leads to the 
same difficulties. 

Bearing all this in mind, it was finally decided to develop 
independent analytical approximations for all three compo- 
nents of the disturbance field. As shown below, due to the 

good accuracy of the approximations, the divergence of the. 
model field does not deviate significantly from zero. 

As a starting point for constructing the analytical model, 

distributions of the magnetic field components (Bqo•, B qT, 
B q•) for the quadrupole term and (Bso•, BsT) for the axisym- 
metric term were found by numerically calculating the integrals 
(8) and (10) at 650 points of the (c•-7) space to provide a good 
coverage of the near-Earth region up to large geocen. tric 
distances. More specifically, the modeling region was divided 
into the inner part with c• > c• 0, lying inside the shell re = 6 
RE, and the outer part with c• < c• 0 extending up to re = 700 RE. 
A non-uniform grid in c•- 7 space was introduced, comprising 
25 values of c• (9 and 16 values in the inner and outer regions, 
respectively) and 26 values of 7 corresponding to the interval 
1 < rp < 350 R E. Due to the axial symmetry of the term B s and 
the relations (12) for Bq, the distribution of the field in the 
whole modeling region was obtained by computing the 
integrals for a single value of 

The integration was done over the two-dimensional surface 

c• = c•0, according to the adopted thin-layer approximation 
(11), and the normalization factor in the integrand was chosen 
so that the net electric current flowing in the infinitely thin 
sheet was equivalent to that produced by an isotropic plasma 
population with p = z¾ = 20 keV/cm -3 trapped within the 
interval 5.5 RE < re < 6.5 RE. As can be verified by 
integrating (7) at the ionospheric level, this corresponds to a 
net (downward at dusk or upward at dawn) Birkeland current of 
about 260 kA. 

3.1. Approximation for the Quadrupole Term 

The distribution of the component bqa (c•,7) is given in 
Figure 2, showing families of plots of bqa against 7 for the 25 
values of c•. The general shape of the profiles is the same both 
in the inner (Figure 2a) and outer (Figure 2b) regions, which 
allows one to represent them with the same functional form. A 
search for an appropriate function has led to the following: 

/'q{x (a,?) =fi(a) sin 7 + f2(a) 

•7 2 + 721({x) 
(15) 

A least squares fitting of the parameters fl, f2, and 71 for each 
of the curves in Figure 2 yielded their numerical values for the 
25 values of ct shown in Figures 3a- 3c by dots. All the 
profiles have distinct kinks between the inner and outer 
regions at the current-carrying boundary c• = c• 0 = 0.167. In 
order to simulate the finite thickness of the current layer in the 
c• coordinate and to ensure a smooth matching between the 
inner and outer slopes of the approximating function, it is 
reasonable to ignore the points lying in the vicinity of the 
kink. The following analytical representations were chosen 
for fl, f2, and 71: 

3 

fl(c0 = f10 + •fli 

i=l • ({x_{Xfli)2 + A{xf21i 
(16) 
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Fig. 2. The family of plots of the quadrupole component bqe t against ¾ 
computed for a set of 25 values of the et coordinate: (a) Plots for the 
inner region tz>ct 0 (r e < reo), (b) Plots for the outer region or<or 0 (r e > 
reo). The curves are labeled by the corresponding values of or; in the 
plot (Figure 2b) only the marginal values are given. The disturbance 
magnetic field magnitude in this and all the foregoing figures 
corresponds to the net Birkeland current of about 260 kA per each 
hemisphere (see text). 

f2 (00 =f20 +f21• +f22• 2 +f23 

• 2 (c•-o•f23) 2 + Actf2 3 

+ .fi4 •-•½4 
(•-ø•./•4)2' + 

where 

•= 0.5 ['• (o•-o•Ed•2) 2 + Ac••f 2 - (c•-o•[j•2)] 

(17) 

and 

(q-qqn)2 + Aqqn 
(18) 
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Fig. 3. The results of least squares fitting the bqe t plots of Figure 2 by the 
functions (15-18): (a)The dependence of the parameterfl on or; the dots 
correspond to the "first-level" fitting using (15) and the solid line gives 
the best fit approximation (16), (b) As in the Figure 3a, for the 
parameter f2 approximated by (17). (c) As in the Figure 3a, for the 
parameter ¾1 approximated by (18). In each case the points lying 
between the dashed lines were ignored by the least squares procedure, 
which gave a smooth transition between the inner and outer slopes 
resulting in a distributed current layer. 
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where ponding to {z > {z o and {z < {z o. The final functional form for 

representing bq,• was chosen as 

bq•(lz,•,) = go(It) + gl(lt)•, 2 

The function ({z-o[i)l[(o[-o[i) 2 + Alzi2] 1/2 plays an im- 
portant role in this representation, and the pairs of variables 
and q proved to be effective for approximating continuous 
smooth functions which have essentially different behavior on 
opposite sides of a transition point {z = {z 0. The first variable, 
•, is nearly zero for {z > {z 0 and varies linearly for 
while the second one, q, is the mirror reverse of • with respect 
to {z 0. As a result, composing sums f(•) + g(•) or, for a more 
general case with multiple transition points, f(•i+qj)+ 
g(•j+qk), enables one to develop analytical fits to a large 
variety of possible functions. 

Solid lines in Figures 3a-3c show the analytical 
approximations (16-18) fitting the dotted profiles obtained by 
an iterative least squares procedure. In each case the three 
points corresponding to re = 7.0, 8.0, and 9.0 were ignored, 
which resulted in a smooth transition between the inner and 

outer current-free regions. Table 1 gives numerical values of 
all parameters appearing in (16) - (18) and in the subsequent 
expressions (19) - (40) which define the rest of the model. 

Figure 4 presents distributions of the bq,• component in the 
same format as was used for bq{ z in Figure 2. In this case there 
is a significant difference between the two families cortes- 

1 
+ g2(l) 09) 

+ 
where • = 4 ,•2+ d2([5). Here we have five parameters 
(go, gl, g2, 72, and d) depending on It = •f-•, rather than on Ix; 
this choice of the argument is more convenient because, in 

line with symmetry considerations, b q,• shows a linear 
dependence on 0 near the z axis. The following approxima- 
rions for the parameters were adopted, namely 

3 it_[lgki + E , 

i=1 • 2 (lS-Ilgki) 2 + Allgki 
(20) 

where k --0, 1, and 2, 

3 

= + E 
i=1 

(21) 

TABLE 1. Best Fit Values of the Model Partial Ring Current Parameters 

Formula Parameter Values* 

16 f10 = -46.42 fll = -122.8 
all 1 =0.09414 A. afl 1 =0.2022 
•Zfl 3 =0.1141 a•Zfl 3 =0.2620 

17 f20 = -4.849 f21 = 29.75 
f24 = 4.519 0t•/2 = 0.03* 
A•J23 = 0.0348 af24 = 1.321 

18 Y10 = 0.2797 Y11 = 6.647 
A0t•y 1 = 0.03* qy1 = 0.7494 

20 goo = 2.093 g01 = 2.304 
ol = 0.6675 A•gol = 0.3863 

go3 = 0.3791 AlJgo3 = 0.07* 

g10 = -8.947 gll = -8.730 
ll = 1.141 a_l}gl 1 =0.1165 

g 13 = 0.3749 Al•g 13 = 0.06* 

g20 = 62.49 g21 = 63.10 
21 = 1.3609 A_[}g21 = 0.1721 

g23 = 0.6329 AlJg23 = 0.07* 

21 720 = 4.796 721 = 4.851 

•[•• = 1.316 AOy21 = 0.1806 = 0.6315 AlSy23 = 0.1' 

22 d o = 0.09164 d 1 = 0.007276 
15 d = 0.20* AI5 d = 0.02* 

f12 = 11.99 
all2= 0.2108 

f22 = -27.99 
A•t2 = 0.1502 
ActJ24 = 0.393 

Y12 = 0.3778 
Aqy 1 = 0.7276 

g02 = 4.305 
I•go2 = 0.3749 

g 12 = 0.2307 
I•g 12 = 0.2006 

g22 = -0.1730 
[tg22 = 0.2065 

722 = -0.05983 
[ty22 = 0.2785 

d 2 = -0.02285 
qd = 0.2826 

f13 = 145.9 
Aaf12= 0.05493 

f23 = -0.004782 
el23 =0.220 

•¾1 = 0.1551 

g03 = -2.274 
al•go2 = 0.1304 

g13 = 0.1629 
al•g12 = 0.1821 

g23 = 0.03397 
Al•g22 = 0.08875 

723 = -0.001735 
AISy22 = 0.2238 

d 3 = 0.09208 
And = 0.05532 
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TABLE 1. (Continued) 

Formula Parameter Values* 

24 h10 = 9.125 hll = 32.57 
h14 = 15.96 Cthl 1 20.1103 
ACthl 2 = 0.09002 Cthl 3 = 0.1442 
ACth 14 = 0.6993 

25 h20 = 6.378 h21 = 0.2826 
h24 = 23.96 Cth21 = 0.269 
Cth22 = 0.1994 ACth22 = 0.00947 
Cth24 = 0.1211 ACth24 = 0.03051 

26 h30 = -52.94 h31 = - 110.9 
h34 = 102.7 h35 = 4.436 
ACth31 = 0.02* Aqh34 = 0.03463 

27 T30 = 0.5491 ¾31 = 10.59 
AtYff3 = 0.08581 qy3 = 0.9916 

29 P00 = 4.485 P01 = 0.05852 
P04 = 0.* Ayp 0 = 0.003892 
Ayp03 = -0.003066 P10 = 0.09373 
P13 = -0.02229 P14 = 0.* 
AYe12 = 0.0511 Aye13 =0.1194 
P22 = 0.1629 P23 = 7.193E-5 
Ayp21 = 0.008633 Ayp22 = 0.02737 

30 P30 = 0.04043 P31 = -0.07719 
P34 = -2.555E-6 Ayp 3 = 1.146E-3 
Ayp33 = 9.600E-3 Ayp34 = 0.0104 

31 A•0= 0.04375 A•I = 0.3747 
A• = 0.1209 Ayg = 5.526E-5 

32 qp20 = -0.0827 qp21 = 0.1800 
A/;qp22 = 0.03203 A•qp23 = 0.3818 

33 aqp20 = 0.08208 aqp21 = 0.1128 
aGXq;,22 = 0.01754 a•qp23 = 0.3070 

h12 = 8019. 
ACthl 1 = 0.03181 
ACth 13 = 0.08868 

h22 = -0.5026 
Ctw = 0.01331 
Cth232 0.148 

h32 =-15.39 
Cth31 20.1707 
Aqh35 = 1.003 

•2 = O.7596 
Aq,l( 3 = 1.059 

P02 = 0.7067 
Ayp01 = 0.0046 
Pl 1 = -3.369 
Ayp 1 = 0.0612 
P20 = -8.333 
P24 = 3.008 
Ayp23 = 0.02577 

P32 = -0.01124 
Ayp31 = 5.978E-3 

•1 = 2.394E-3 

22 = 0.2448 
= 4.45E-3 

Aqp22 = 0.1088 
A¾;xq = 7.123E-4 

h 13 = -8080. 
Cth12 = 0.1442 
Cth142 0.4497 

h23 = -28.88 
ACth21 = 0.02433 
ACth23 = 0.1733 

h33 = 103.5 
Ctw = 0.00175 

ocli3= 0.1406 

P03 = -0.003066 
Ayp02 = 0.02842 
P12 = 3.849 
Aypll = 0.00915 
P21 = -0.2815 
Ayp 2 = 0.003324 

P33 = 3.241E-4 
AYp32 = 9.141E-3 

A•i = 2.709E-3 

qp23 = 0.4616 

Aqp23 = 0.3286 

35 q00 = 1.287 q01 = -0.8869 q02 = 1.221 q03 = -0.3252 
q04 = 6.344E-3 q05 = 6.67E-2 q06 = 0.442 [q01 = 2.002E-3 
A{q01 = 2.888E-3 •q02 = 0.01239 A{q02 = 8.016E-3 •03 = 0.3217 
a•q03 = 0.2000 •q04 = 0.01028 Ar•q04 = 6.034E-3 •.•/05 = 0.04327 
A;q05 = 0.01884 ¾q0 = 5.199E-5 

36 q10 = -10.07 qll = 10.19 q12 = -5.232 q13 = 1.846 
ql 4 = -4.674 •ql 1 = 0.0, •A•ql 1 = 4.426E-3 
•q12 = 0.01924 Areal 2 = 0.01438 $q13 = 0.03555 A•13 = 0.0671 
$q14 = 0.09675 A•/14 = 0.01525 ¾ql = 1.262E-3 

37 q20 = -32.78 q21 = -27.67 q22 = 64.90 q23 = 0.00598 
q24 = 3.058 [q21 = 0.03281 A•q21 = 0.01666 [q22 = 0.03213 
A•q22 = 0.03066 •q23 = 3.309E--4 A•,•23 := 0.01339 C:q24 = 0.1029 
A•q24 = 0.2284 ¾q2 = 1.0E-5* 

38 q30 = -0.01069 q31 = -0.03202 q32 = 0.0237 q33 = -0.1002 
q34 = -0.1142 q35 = -7.0E-6 /;t?31 = 0.2931 A;tt31 = 0.06616 
;-'32 = 0.0359 A;032 = 0.01305 /;•33 = 0.04509 A/;/?33 = 0.05109 
•3 = 0.09608 A•/3 = 0.06922 A;q35 = 2.221E-3 /;• '= 0.1511 
A• = 0.01' ¾q3 = 5.0E-4' 

•zoo = -0.1381 •01 = 9.942 
A/;•z01 = 0.082 /;•z02 = 0.039 
A/;•z03 = 0.36 ¾•z0 = 0.003* 

q10 = -0.1827 ql 1 = 0.9298 
A•q12 =0.021 ¾ql =0.0149 

39 •02 = 0.3151 
A/;ct02 = 0.046 

q12 = 0.2471 40 

•03 = 0.4775 
t;ct03 = 0.265 

0.2885 

*Fixed ones are denoted by asterisks. 
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Fig. 4. The family of plots of the quadrupole component bq¾ against 'y 
computed for a set of 25 values of the 0• coordinate: (a) Plots for the 
inner region 0•>0• 0 (r e < reO), (b) Plots for the outer region 0•<0• 0 (re > 
reO ). The curves are labeled by the corresponding values of 0•; in Figure 
4b only the marginal values are given. 

d(l• ) = d O 4- al• 4' d2• 2 4' a 3 
q-qd 

-qd) 2 + Aq 2 d 

(22) 

q = b, + (I]-I]d). The corresponding plots are given in Figure 5. 
The azimuthal component distribution in the dawn-dusk 

meridian plane is presented by two families of bq• (ct,7) plots 
shown in Fig. 6. In this case the following analytical 
representation was chosen 

bq½(Ct,T ) l(Ct ) + h2(ct)T2 + h3(ct) ' 1 

(23) 

(c) 

,5.0 

4.0 

3.0 

i 

i 

i 

i 

i ß I 

i i 

i I 

I I 

-2'0o d ...... •.':• ...... •.'• ...... •.'• ...... •.• ....... l'.b . 

BETA 

2.0 

Fig. 5. The results of least squares fitting of the bqy plots of Figure 4 by 
the functions (19)-(22): (a) The dependence of the parameter gO on 
the dots correspond to the "first-level" fitting by using (19) and the solid 
line gives the best-fit approximation (20), (b) Same as in Figure 5a, for 
the parameter g 1 approximated by (20). (c) Same as in Figure 5a, for 
the parameter g2 approximated by (20). (d) Same as in the panel (a), 
for the parameter ¾2 approximated by (21). In each case, the points 
lying between the dashed lines were ignored by the least squares 
procedure, which gave a smooth transition between the inner and outer 
slopes resulting in a distributed current layer. 
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Fig. 5. (continued) 

with 
4 

h•(•) -- h•o + • h•i 
i=1 

c• - O[ h l i 

• (o• - C•hli) 2 + AO[2hl i 
h2(c• ) = h20 + h21 [ c•-ø[h21 + c• w 

(c• - C•h21 + c• w + AC•2h21 

c•-O[h21 - c• w ] 
- {Xh21 -Ctw) 2 + Act 2 . h21 

+ h22 

• 2 (c•-O[h22) 2 + AC•h2 2 
4 

+ • h2i 
i=3 

o•-e•h2 i 

•• (o[-O[h2i) 2 + AC•2h2 i 
h 3 (•) = h30-I- h31(•-•h31/ 2 2 [•({x-{Xh31+{Xw3)+A{Xh31 

+ • (•-{lh3 ;- C•w3) 2 + Ac•2 h ] + h32• + h33• 2 31 

q q 
+ h34 + h35 

TI +ATIh3 4 TI +ATIh3 5 

where 

• 2 •= (fl-O[h31+O[w3) 2 + A•h31 -(fl-O[h31+O[w3) , 

1 l = • (•-•h31-•w3)2 + A•2 h + (•-•h31-•w3) 31 

, (24) 

(25) 

(26) 

and with 

y3(oO = Y30 + 'Y31• 2 + Y32 

-q?3) 2 + AB 2 73 

(27) 

where 

[•(O[-O[y3) 2+ A{12T3- ({l-o[y3)] 
'1 = + 

3.2. Approximation for the Symmetric Ring Current Field 

The magnetic field B s produced by the axially symmetric part 
of the isotropic plasma distribution (11) was modeled by 
using, in general, the same approach as in the case of the 
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Fig. 6. The family of plots the quadmpole component bq¾ against ¾ 
computed for a set of 25 values of the • coordinate: (a) Plots for the 
inner region •>0[ 0 (r e < reO ). (b) Plots for the outer region •<0[ 0 (r e 
> reO). The curves are labeled by the corresponding values of •; in 

Figure 6b only the marginal values are given. 
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quadrupole term. However, in contrast with the latter, it was 
found easier to consider first the plots of Bs(e0 for a Selection 

of constant values of % that is to change the order of 

approximating the dependence on e• and T- Since Bse• ~ • = 
for small e•, it is convenient to start off with the family of 

plots of f(•)= •-lBso[(•) shown in Figure 7. For sufficiently 
large values of % the contours T=const lie close to the Earth; 
that is why the plots for T > 0.1 show a regular and almost 
monotone variation, while those with T < 0.1 have sharp 

maxima at •0 = •] e•0 corresponding to location of the ring 
current whose density at the low latitudes is much larger than 
in the near-Earth polar regions. 

Attempts to find an appropriate functional form for B 
resulted in the following one 

• = • [ p0(•) + Pl(Y)•]•2+A•2(T ) 

where 

and 

+ P2(T) TI--TIP2(T) 

• [q--qp2(T)] 2+ ATI 2p2(T) 
+ P3(T) •-•0 ], 

n = • + (•-1•o). 

(28) 

The second and third terms in curly brackets, respectively, 
approximate the left and right slopes of the profile shown in 
Figure 7, while the last term represents a jump at [1 = •0 which 
is present on some curves. 

The representation (28) contains four coefficients, P0.--P3, 

and three nonlinear parameters, A•, 11p 2, and Alrlp 2 which are 
fUnctions of T. The corresponding analytical fits were sought 
in the form 

p•(¾) = ko + •Pki 

•),2+A•p k i=l •T2+A•pk i 
+ Pk3 

where k = 0, 1, and 2, 

i 1 + 

(•'2 + A•'p2 k$)3/2' 
(29) 

p3(T)= T 4 1 30 +Y-•P3i / , 
• A•p i=1 /y2+A•,p23/•' y2+ 3 

(30) 

25.0 

•C? 20.0 

I:2 15'0 

13 10-0 

• 5.0 

0.0 
0.0 0.2 0.4 0.6 0.8 1.0 

BETA 

Fig. 7. Several plots showing the variation of bso•[1-1 for the 
axisymmetric model ring current along the contours of constant ¾ 
coordinate. The corresponding values of ¾ are given near the curves. 
The peaks at the plots for small values of ¾ are localized at the current 
layer position with I• = I•0 = or01/2. 

(•-•1)2 + A• 
A[(T) = A[0 + A•I 

where•=•T2+A• , 

(31) 

TIp2(T) = Tip20 + Tip21 • + 11p22 

• •2+A•211p22 
+ qp23' 

2+A•2 TIp23 

(32) 

where•:•T2+AT 2 , and 
ATIp2(T): ATIp20 + Allp21• + ATIp22' 

•ff •2+A•2Allp22 
+ Aqp23' 

'••2+A•2Aqp23 
where/• = •/T2+A•q ß 

(33) 

At last, it only remains to give expressions for the B sT 
component. Several typical profiles of B sy distribution along 
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the lines of constant T are shown in Figure 8. On going from 
larger to smaller values of T, smooth profiles gradually pass 

into discontinuous ones with a jump at • = o• 0. 

Here again, the expression for the B sT-component was 
chosen as a sum of terms providing separate representation of 
the right and left branches of the curves. It was found that an 
accurate approximation can be obtained with the following 
functional form 

Bgy (Ix,y) = qo(Y) + ql(Y) • •12+•1• (Y) + q2(Y) • 
+ q3(T) [• - O•0(T)] 3 (34) 

where ,1=0.5{• [•-o[0(T)] 2 + Ao[ 02 + 

and A• o = 0.02. 

Fitting (34) to the 26 numerically computed profiles of B sy 
versus o: yielded numerical values of the functions q0(Y), ql(Y), 
q2(Y), q3(Y), ct0(Y), and •11(Y), which, in turn were least squares 
fitted using the following 

3 

qo0 = qo0 + Zqoi 
i=1 

•-•qoi 

• (•-•q0i) 2 + A• 2 qoi 

5 1 
+ Z qoi + q06• 2 

i=4 •(•_•,qoi)2+A•2qoi 
(35) 

10.0 

n,' ,5.0 
LJ_l ß 

x o.o 

c,._9 -5.0 

I O. 00001 -10.0 ......... , 
0.0 0.'2 0.4 0.'6 

ALPHA 

Fig. 8. Several plots showing the variation of bs• for the axisymmetric 
model ring current along the contours of constant ¾ coordinate. The 
corresponding values of ¾ are given near the curves. The abrupt jumps 
at the plots for small values of ¾ are localized at the current layer 

.. 

position with 0• = ct 0. 

2 ql ("1) = qlo + • qli 

i=1 • (;_;qli) 2 2 + A;ql i 
4 1 

+ •qli 

i=3 • (/•-•qli) 2 + A• 
2 

q20 = q20 + Z q2i 
i=1 2 

q2i 

1 

+q23 2 2 '+ 
+ 

2 

qli 

(36) 

q3(T) = 

1 
+ q24 , (37) 

'•/(;-;q24) 2 + A; 2 q24 

1 3 q3o + • q3i 

(T2 •q • i=l •1 2 + (•-•q3i) + A• 3 

2 

q3i 

•--•q3 1](38 ) + q34 + q35 , 

+ A• q3 q35 

where, for qi(T) in (35-38), • = •/T2+T2qi, with i = O, 1, 2, and 
3, respectively, and 

0.5 •(•_•)2 + A• 2 _ (; - . 

The non-linear parameters were approximated as 

f10(¾) = f100 + SO1 /••2+A•20[01- •) 

where 

3 

+ • C•oi' 
• - [{xo i 

i=2 

• (•-•o•0i)2 + A• 2 
(39) 
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and 

where 

2 

'11(7) = •llo + •. •11i 
i=l 

Tlli 

4. Rl•suI2s nl• DISCUSSION 

Table 1 summarizes the results of the least squares search for 
the model parameters entering in (15) - (40). The concrete 
forms of the above approximating functions including the 
number of terms, the initial values, and number of variable 
non-linear parameters were chosen in all cases according to 
individual features of the profiles to be fitted, in order to reach 
a compromise between the requirements of accuracy and 
simplicity of the model expressions. In most cases, the 
relative error of fitting the field components did not exceed a 
few tenths of percent throughout the whole current-free region 
r e _• 5 R E or r e _• 10 R E. The intermediate region is occupied by 
distributed currents spread out over the interval re -• 5 RE or r e 
_• 10 R E , derived by the adopted procedure of smooth 
interpolation of the field components. This is illustrated by 
Figures 9-10 which show the transverse profiles of the electric 
current density in the partial ring current layer obtained by 
numerical calculation of the VxB for the equatorial region and 
at high latitudes above the ionosphere. The plots correspond 
to the quadrupole part of the system which contains Birkeland 
currents. Figure 9 presents a near-equatorial profile of the 
azimuthal component of the V xB; it can be seen that the 

current attains the peak value at r = 6 RE and gradually 
decreases on both sides from the maximum. The solid line 

without dots gives the variation of the disturbance magnetic 
field, and the dotted line shows distribution of V'B. As discus- 

sed in the beginning of section 3, the violation of V'B=0 
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_;;;; ................ ,...**** ß ß "'-- 

::; curl. B,(nT/ 
--- Bz (nT). %. 
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Fig. 9. Near-equatorial profiles of model B z, VxB, and V.B, 

corresponding to the quadrupol e part of the partial ring current system. 
The quantities are computed in the midnight meridian plane along the 
line z = 0.5 R E parallel to the XGS M axis. 
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Fig. 10. A profile of the field-aligned component of VxB yielding, 
within a constant factor, the model Birkeland current, computed along 
the line z = 1 R E parallel to the YGSM axis and lying in the dawn-dusk 
meridian plane. Two layers of oppositely directed field-aligned currents 
are present at Y = _+ 0.5 R E. The small kink at Y=0 is an artifact of the 
numerical differentiation near the polar axis. 

condition is due to the adopted independent representation of 
all three components of B. The relative importance of that 
unphysical feature can be tested by mapping a small square 
element in the equatorial plane to the ionosphere along the 
model field lines and evaluating the relative difference in the 
magnetic flux on both ends of the field line tube. The 
analytical field (15) - (40) calibrated to the net Birkeland 
current of 1 MA was added to the quiet magnetospheric field as 
given by the divergence-free model of Tsyganenko [1987] and 
a tracing procedure was carried out for a number of field line 
tubes. In most cases the relative difference in the magnetic 
flux did not exceed 10%, the largest values being observed 
within the interpolation region containing the current- 
carrying L shell. 

Figure 10 corresponds to a dawn-dusk "polar pass" above the 
ionosphere and shows the profile of field-aligned component 
of VxB computed at z = 1 R E along the line Xos m = 0 parallel 
to the YOSM axis. Note here that the model does not incorpo- 
rate magnetic effects of the ionospheric electrojets which can 
be significant at low altitudes, but which rapidly fade out at 
larger distances and hence produce but a negligible effect on 
the pattern of field line mapping. Variation of the BXGSM 
component of the disturbance field along the same line as in 
Figure 10 is shown in Figure 11. As can be expected, we have 
an almost constant antisunward field in the polar region, 
which abruptly becomes sunward on crossing the layers of 
Birkeland current and approaches zero at larger distance. 

Figure 12 present the plots of (VxB)•, Bsz, and V'Bs, 
corresponding to the axisymmetric part of the ring current, 
along the line y=0, z=0.5 RE in the midnight meridian plane. 
Again, as a result of the smooth interpolation procedure, the 
original infinitely thin current surface is transformed into a 
spread-out distribution of the volume current density. The 
magnetic field variation reflects typical features of many ring 
current models: a depressed nearly uniform field at inner L 
shells and a rapidly decreasing dipolelike B s outside the 
current-carrying region. As in the case of the quadrupole field, 

the magnitude of V'Bs, is also relatively small. 
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Fig. 11. Profile of the BXGSM component of the magnetic field 
produced by the electric current distribution illustrated in the preceding 
Figure 10, along the same line. The field is antisunward and is almost, 
constant in the high-latitude polar region; on crossing the layers of 
Birkeland current we observe the abrupt jumps of B x and its gradual 
decrease to zero at larger distances. 
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Fig. 12. Near-equatorial profiles of model B z, VxB, and V-B, 
corresponding to the axisymmetric part of the partial ring current 
system. The quantities are computed in the midnight meridian plane 
along the line z = 0.5 R E parallel to the XGS M axis. 

system by an angle •0 around the polar axis, simulating the 
local time shift of the partial ring current toward dusk sector 
deduced in early observations [e.g., Kamide and Fukushima, 
1971] and modeled by Usmanov and Tsyganenko [1984]. 

In summary, a quantitative representation is developed for 
the magnetic field produced by a system with a partial ring 
current closed via large-scale region 2 Birkeland currents. The 
proposed analytical model is based on an electric current 
distribution consistent with the axially asymmetric distribu- 
tion of hot isotropic plasma, the formation of which in the 
near magnetosphere is believed to be due to injections from 
the tail plasma sheet during substorms. The model contains 
four free parameters defining the net magnitudes of the electric 
current in the axially symmetric and quadrupole parts of the 
system, its characteristic scale size, and the angular position 
of the partial ring current with respect to midnight meridian. 

The question of primary interest in implementing the above 
results for practical modeling of the magnetosphere is to 
determine to what extent does the partial ring current system 
affect the mapping the geomagnetic field lines. An answer to 
this question can be obtained by incorporating the repre- 
sentation (15) - (40) into a global model which correctly takes 
into account all other field sources including region 1 system 
of Birkeland currents, and then fitting that model to spacecraft 
data. This problem extends beyond the scope of the present 
paper and will be addressed in future works. 

APPENDIX A: TRANSFORMATION FROM DIPOLAR TO SPHERICAL 

COORDINATES 

From (2) and (3) we obtain the fourth-order equation for r 

r 4 + tzT -2- T -2 = 0 (A1) 

Using the Descartes-Euler solution (Korn and Korn, 1968) 
and selecting a proper combination of signs, we arrive at the 
following expression for r in terms of ct and ? 

r=4[(•2g-c+•0 (g + c)]-' (A2) 

where 

(et2/2+,•31/3 4(. ?2 )1/3 c= - "47+ ,,:2/2' 
c• 4 64 

f=•-•y2 + 4 

It should also be noted that, since the dipolar magnetic field 
is self-similar, the disturbance field produced by the model 
partial ring current can be easily scaled to any value of the 
characteristic distance re0 = col0 ß Namely, if "new" values of 
the net electric current and equatorial radius of the partial ring 
current are related to "old" ones as I' = ZI and r'e0 = Vre0, then 
the corresponding "new" value of the disturbance field at a 
fixed point of space r can be evaluated as B'(r) = (Z/v)B(r/v). 
In empirical modeling of the magnetosphere based on sets of 
magnetometer data, the factors • and v should be considered as 
free parameters to be determined by a least squares fitting of 
the model to the measurements. One more degree of freedom 
can be introduced by allowing a rotation of the whole current 

g=•c 2 +4l?l 2/3 

Substituting (A2) in (3), we obtain the necessary expression 
for 0. 

APPENDIX B' ON SEPARATING THE AZIMLrl•IAL 

DEPENDENCE IN THE DISTURBANCE 1V[AGNETIC 

Fl•.•.n COMPO• 

The possibility of separating the dependence on • in the 
components of B q as given in (12), can be verified by 
representing the quadrupole term as 

Bq= VxAq, (B1) 
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where 

Aq li jq(r') dv (B2) =•' Ir- r'l ' 

with jq corresponding to the quadrupole part of the 
divergenceless current Jd + JB containing the parameter Ap as 
the amplitude factor. 

Let us assume first that the geocentric distance of the obser- 
vation point r is larger than reo = %-1 or, in other words, the 
whole electric current system lies inside the sphere of radius r. 

In such a case the factor Ir- r'1-1 in the integrand can be 
expanded [e.g., Korn and Korn, 1968] as 

ir, r.l_l = 1 n•0 (½)n (n-m)! r = (n+m)! 

m m 

x Crn (cos0) rn(½ P,, (cos0') cos - (B3) 

where Crn = 1 for rn = 0 and Crn = 2 for rn > 0. 

The components of jq contain factors sin q•' or cos q•', which 
can be rewritten as 

and 

cos q• sin (q•-q•') + sin q• cos 

cos • cos (•-•') - sin • sin (•-•') , 

respectively. Integrands corresponding to spherical compo- 
nents of the vector potential (B2) include scalar products of 

unit vectors er, e0, e•) and e'r, e'0, e'o in various combina- 
tions; these will also yield terms containing cos(O-O') and 

sin(0-0'). 
Because of the orthogonality of the sine and cosine 

functions, only a few terms of the expansion (B3) will provide 
a non zero contribution to (B2). By writing down explicitly 
the integrands for each component of Aq, it is easy to verify 
that 

Aqr = aqr (r,0) sin 0, 
AqO = aqO(r,O) sin O, 
aqO = aqO (r,O) cos O, 

from which the above representation for Bq follows. 
In a more general situation a part of the current system may 

be located at r' > r. In this case its contribution to the integral 
(B2) must be considered separately and the expansion (B3) 
should be made in powers of (r/r'). The remaining part of the 
proof is similar to the one given above. 

Obviously, this result can be generalized for the case of more 
complex azimuthal variation of the pressure function. The 
principal statement here is that there is a one-to-one 
correspondence between the Fourier expansion terms for the 
local time distribution of pressure and for the components of 
the disturbance magnetic field. In other words, any harmonic 

term iv. the expansion for p (t•,q•) gives rise to only one term 
of the same order in the expansions for B components. 
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