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A Global Analytical Representation of the Magnetic Field Produced by
the Region 2 Birkeland Currents and the Partial Ring Current

N. A. TSYGANENKoO]

Laboratory for Extraterrestrial Physics, NASA Goddard Space Flight Center, Greenbelt, Maryland

A quantitative model is developed of the magnetic field produced by the electric current system of region 2
Birkeland currents, closed via the partial ring current. The distribution of j) is computed from a given axially
asymmetric spatial distribution of hot isotropic magnetospheric plasma over an infinitely thin L shell in an
axisymmetric purely dipolar geomagnetic field, while the field-aligned current density is found from the

continuity of the net electric current.

The magnetic field distribution is derived by a Biot-Savart integral over

the electric current system. An assumed cosine dependence of the plasma pressure on local time makes it
possible to reduce the problem of analytical representation of the B field to two dimensions. The obtained
numerical fits for the partial ring current/region 2 Birkeland current magnetic field are relatively simple,
continuous, and valid throughout the whole extraterrestrial space from ionospheric heights up to tens of RE.
To our knowledge, this is a first global analytical representation for the magnetic field of the partial ring
current system which can be incorporated in future advanced models of the external geomagnetic field.

INTRODUCTION

Large-scale Birkeland current systems carry a significant
fraction of the net magnetospheric electric current and hence
should have a considerable effect upon the overall structure and
mapping of the geomagnetic field lines. The importance of an
explicit inclusion of the field-aligned current systems in
global quantitative magnetospheric B field models has been
emphasized in earlier works [Tsyganenko and Usmanov, 1984,
Tsyganenko, 1988; 1990; 1991]. In the last of the above
papers a quantitative model of the region 1 current circuit was
proposed, based on a transformation of the magnetic vector
potential of a cone-shaped electric current sheet. The method
provided a reasonable representation for the contribution from
the most large-scale higher-latitude Birkeland current system.
However, that approach cannot be extended to lower-latitude
region 2 field-aligned currents associated with the partial ring
current system.

In the present work as well as in the companion paper by
Stern [this issue] an attempt is made to bridge this gap. In
contrast to the case of the region 1 system, there exists a
clearer understanding of region 2 currents and a quantitative
description of the basic physical mechanisms which give rise
to them [Vasyliunas, 1970]. A simplifying assumption is that
the background magnetic field in the region 2 domain does not
deviate significantly from the dipolar configuration (which is
equivalent to assuming that plasma beta is not too large) and
hence the electric currents can be easily evaluated from data on
the magnetospheric plasma distribution. This means that, in
principle, the problem of determination of the magnetic field
can be solved in a straightforward way by calculating Biot-
Savart integrals over the region 2/partial ring current system.
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However, this is only the first (and the easiest) part of the job:
what we need for practical modeling of the magnetosphere and
geomagnetic field line mapping is a set of simple analytical
expansions yielding a convenient approximation for the
numerically computed magnetic field components. Because of
the complicated geometry of the partial ring current system
[Roelof, 1989], the development of a global analytical B field
model meets some difficulties. One possible solution to the
problem is proposed below. Another approach based on
formal transformations of the initially purely dipolar magnetic
field is developed by Stern [this issue]. In spite of basic
difference in starting points (plasma pressure distribution in
the present work and modified Euler potentials in that of Stern)
and mathematical treatment (a direct analytical fitting of B
components in this work and "shifted” spherical harmonic
expansions for the scalar potential in the companion paper),
the results are much similar, at least qualitatively.

2. MAGNETIC FIELD DISTURBANCE PRODUCED BY THE PARTIAL
RING CURRENT SYSTEM AND ITS NUMERICAL CALCULATION

The region 2 Birkeland current system (including the partial
ring current) is believed to arise from an axially asymmetric
intrusion of hot plasma into the near magnetosphere during
disturbed periods. Some of the most striking evidence for such
an asymmetric injection was presented by Roelof [1987] who
showed by using the measurements of energetic neutral atoms
that the night-day asymmetry in the ring current particle flux
can rise to as high as 20:1 during storm time. Iijima et al.
[1990], using AMPTE/CCE magnetometer data, found a
midnight-noon asymmetry in the azimuthal electric current
magnitude of the order of 3:1. Since the net volume current
density should be divergenceless, the local time asymmetry of
the cross-B current gives rise to Birkeland current jg, whose
density can be evaluated from the equation
Vi=0

( ) 2c(B0x VBO) Vp )

where, for the sake of simplicity, the plasma pressure is
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assumed to be isotropic, and the coordinate s along the
magnetic field line is measured from the northern ionosphere
to the equator (that is, oppositely to the By vector).

The next simplifying assumption is that the background
magnetic field B, is purely dipolar, which can be justified by
the relatively low latitude of the region 2 currents. In other
words, we suppose a basic day-night asymmetry of the plasma
pressure, while the corresponding magnetic field asymmetry is
assumed to be negligible. This implies that the plasma beta
parameter in the partial ring current region is not large. The
last assumption becomes questionable for strongly disturbed
periods, during which a significant inflation of the nightside
magnetosphere at L~6-8 is observed due to injection of hot
plasma. One more implication of the day-night asymmetry in
the real magnetosphere is that the center of the region 2 quasi-
circular zone does not coincide with the geomagnetic pole but
is shifted to nightside by several degrees. The present model
fails to take into account these features and should thus be
considered as just a first step in developing an elaborate model
of the partial ring current.

Let us introduce the coordinates

)
sin<0 -1
=== )
cos 2
=" A = 3
Y 2 b 3)

The variables o, y, and the azimuthal angle ¢ define an
orthogonal coordinate system [Stern, 1976] in which the
surfaces 0. = const are the dipolar L shells of radius r,, while y=

constant are surfaces of constant scalar potential and cross the
polar axis at r =rp . The inverse transformation from a pair of

the coordinates (a,y) to (r,0) is more cumbersome (see
Appendix A).

In the case of isotropic plasma the pressure p does not
depend on ¥, and we obtain from (1) the volume density of
Birkeland current,

6cNV1 + 3 cos2o I¢ (-)) @
COS! _
a2 M sin%0 90

jp =

where M is the Earth’s dipole moment and
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It can be seen from (4) that the field-aligned current is
proportional to the azimuthal component of the pressure
gradient which is positive (negative) in the dusk (dawn) sector
of northern hemisphere and hence jp is positive (negative)
there, in accordance with the observed polarity of the region 2
currents.

Let us proceed now to the cross-B component of the current
and its magnetic effect. It is convenient to treat separately
contributions from the drift and magnetization part of the net
current. The drift current density
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in the axially symmetric dipolar magnetic field By has only
the azimuthal component

6(: sin78 1+ cos29)
o2M (1 + 3c0s20)2 PO® D

ide =

Field-aligned and drift current contributions to the magnetic
field can be found from (4)-(7) by evaluating the Biot-Savart
integral

1/GB +Igx(x =17 -
T -3

Bpid = ®)

The magnetization current j,,, in contrast with j4 and jg,
contains the o component dp/do. of the pressure gradient. For

this reason it is more convenient to replace the part of the
Biot-Savart integral containing jp,, by an equivalent presenta-
tion in which the current-carrying region is considered as a
magnetized medium, with the function

Her) =— BL2B0 ®
o

yielding the spatial distribution of the magnetization vector.
The corresponding contribution to the magnetic field distur-
bance outside the current-carrying layer is given by

~30 (r )(r-r’) K(r’)
3 - Ir—r’3] d

where the integration is carried out with respect to r” over the
space occupied by the partial ring current plasma.

Bm(r) = I [(r ry 10)

The integral (10) is equivalent to the Biot-Savart one contai-
ning the diamagnetic current j,, = c(Vx}) in the integrand, but
in contrast to the latter, does not include transverse derivatives
of the plasma pressure. The principal advantage of the
representation (10) is that it simplifies the calculation of the
disturbance field if the region 2/partial ring current system is
assumed to be distributed over a relatively thin L shell. This
assumption reduces the numerical computation of the net
disturbance field to a two-dimensional integration over the
current carrying surface. As shown below, in the analytical
model of the numerically computed magnetic field, the
abruptness of a two-dimensional current can be removed by
means of a smooth interpolation of the B components across
the integration surface.

The next simplification can be introduced by making a
special choice of the local time variation of the plasma
pressure. In the general case, the axially asymmetric pressure
function p(oi,$) gives rise to an essentially three-dimensional
distribution of the disturbance magnetic field which needs
separate numerical evaluation at each local time; attempts to
devise analytical representation for such a general field, are,
inevitably, difficult. An effective way out is to expand the
azimuthal variation of p(a,¢) in Fourier series, retaining, in
the simplest case, the two leading terms

p(o.9) ~ (po + Ap cos ¢) (e — o). (1
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The delta function factor represents the thin-layer
approximation described earlier, where 0y = reo'l defines the
location of the current-carrying L shell and the bracketed factor
in (11) defines the cosinusoidal azimuthal variation of the
pressure function between the minimal value pgy - Ap at noon
and the maximal one p; + Ap at midnight. As follows from (4)
to (7), in this case the Birkeland current density varies as sine
¢, while the drift current can be formally split up into a sum of
two terms, of which the first one corresponds to an axially
symmetric ring current parametrized by p, and the second one,
proportional to Ap and varying as cos ¢, yields a pair of loops
closing the field-aligned current via the noon and midnight
sectors at low latitudes. This is illustrated in Figure 1 which
shows the two components of the partial ring current system
on the surface 0. = 0l and the resultant pattern of the current
flow lines given by the sum of j4 and jp.

It should be noted that the idea of representing the partial
ring current as the sum of the axisymmetric part and the
quadrupole two-loop system was suggested earlier by Stern
[1989], who proposed to model the magnetic effects of the
region 2 system by making a formal modification of the Euler
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potentials. In that approach the quadrupole electric current
configuration arises as a result of assuming a sinusoidal varia-
tion of the first-order correction terms in the Euler potential
expansions, Here we arrive at the same representation in quite
a different way, starting from the asymmetric distribution of
the plasma pressure. Note also that the net configuration
shown in Figure 1c is quite similar to the one obtained by
Roelof [1989] from the energetic neutral atom data on the ring
current ion pressure.

It turns out that the formal separation of the net current into
the symmetric part (Figure 1a) and the quadrupole part (Figure
1b) largely simplifies the task of devising an analytical
representation for the disturbance magnetic field. Namely, the
field produced by the axisymmetric part of the current system
shown in Figure la and denoted henceforth as B is also
axially symmetric, while the components of the field B4 from
the quadrupole part (Figure 1b), at any point of space however
close to the current layer, include the azimuthal dependence
only via the factor cos ¢ or sin ¢.

Specifically, the spherical components of By can be represen-
ted as

qu (r’ 0; ¢) = bqr (r,6) cos ¢
qu (rv 9, ¢) = qu (r!e) cos ¢
Bq¢ 0, 0)= bq¢ (r,8) sin ¢

12

Similarly, the components of the field from the magnetization
current can also be divided into the dipolar (axisymmetric) and
quadrupole terms. The validity of representation (12) was
verified by direct numerical computation of the integrals (8)
and (10); a mathematical proof is given in Appendix B.

Alternatively, instead of the r and ® components given by
(12) we can introduce

Fig. 1.Electric current flow lines in the model partial ring current
computed from (4)-(7) on the surface o = ag: (2) The axially
symmetric ring current corresponding to the first term in (11). (b) The
quadrupole part corresponding to the second term in (11) and
containing Birkeland currents.(c) The resultant configuration given by
the sum the systems (Figure 1a) and (Figure 15). In this particular case
PO = Ap and therefore the electric current is zero in the noon meridian
plane. The current flow lines of the southern hemisphere are not
shown in the plots, all the pattemns being symmetrical with respect to the
equatorial plane.



5680

By, =Byv + Bgw

By=Bgv —Byw , (13)
v = —sinB/S
w = 2cos6/S

s=\}1 + 3cos20

This choice proves to be more convenient than the spherical
components (12), because everywhere on the L shell o = o

the Bg, and BY components are normal and tangential, res-
pectively, to the current layer. As a result, their distribution in
o - Y space is much more orderly than that of By and Bg.

3. ANALYTICAL REPRESENTATION OF THE NUMERICALLY COMPUTED
MAGNETIC FIELD

Because of the separation of the azimuthal dependence of the
magnetic field components as indicated in (12), the problem of
analytical fitting is reduced, in fact, to two dimensions. What
we have to do is to find convenient representations for the
axisymmetric components bso(c,Y) and bgy(al,y) and the

quadrupole ones bgo(0L,Y), bao(cLY).

In doing so, we meet the problem of satisfying the con-

dition

VB=0 (14)
for the analytical B field. The original field given by integrals
(8) and (10) is divergenceless and hence a violation of (14) can
only be introduced by deficiencies of the analytical approxi-
mation. In principle, these difficulties could be avoided by
deriving an appropriate analytical representation for the
vector potential A, which can also be numerically computed
from the distributions of the electric current and magnetization
vectors given by (6), (7), and (9). In such a case the analytical
model magnetic field would be divergence-free by construc-
tion, since V-(VxA) is identically zero. This approach was
tried early in this work; however, it turned out that, as a rule,
even an excellent approximation for A gave but a fair
agreement for B, while the electric current pattern showed only
a gross resemblance to the expected distribution and included a
number of spurious features. An obvious reason is that the B
and j vectors are composed, respectively, of the first and
second spatial derivatives of A, so that a good fit for the latter
does not guarantee as good approximations for the former
ones.

As for the quadrupole part of the field, B4, there exists one
more way to circumvent the problem of satisfying (14).
Namely, because of the special kind of dependence of the By
components on ¢ as given by (12), it is sufficient to fit only
the first two components, while B¢ can be easily expressed in
terms of By and Bgy by applying and therefore identically
satisfying equation (14). This approach implies, however, that
the components of j, again, contain dependence on the second
derivatives of the approximation functions, which leads to the
same difficulties.

Bearing all this in mind, it was finally decided to develop
independent analytical approximations for all three compo-
nents of the disturbance field. As shown below, due to the
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good accuracy of the approximations, the divergence of the:
model field does not deviate significantly from zero.

As a starting point for constructing the analytical model,
distributions of the magnetic field components (Bqa, Bgy
B4¢) for the quadrupole term and (Bsq, Bgy) for the axisym-
metric term were found by numerically calculating the integrals
(8) and (10) at 650 points of the (c:-y) space to provide a good
coverage of the near-Earth region up to large geocentric
distances. More specifically, the modeling region was divided
into the inner part with o > 0y, lying inside the shell re = 6
RE, and the outer part with & < 0 extending up to re = 700 RE.
A non-uniform grid in a-y space was introduced, comprising
25 values of o (9 and 16 values in the inner and outer regions,
respectively) and 26 values of y corresponding to the interval
1 <1p <350 RE. Due to the axial symmetry of the term B and
the relations (12) for Bq, the distribution of the field in the
whole modeling region was obtained by computing the
integrals for a single value of ¢.

The integration was done over the two-dimensional surface
o = 0 according to the adopted thin-layer approximation
(11), and the normalization factor in the integrand was chosen
so that the net electric current flowing in the infinitely thin
sheet was equivalent to that produced by an isotropic plasma
population with p = Ap = 20 keV/em™3 trapped within the
interval 5.5 RE <1e < 6.5 RE. As can be verified by
integrating (7) at the ionospheric level, this corresponds to a
net (downward at dusk or upward at dawn) Birkeland current of
about 260 kA.

3.1. Approximation for the Quadrupole Term

The distribution of the component bgq (0.,Y) is given in
Figure 2, showing families of plots of bgo against y for the 25
values of a. The general shape of the profiles is the same both
in the inner (Figure 2a) and outer (Figure 2b) regions, which
allows one to represent them with the same functional form. A
search for an appropriate function has led to the following:

Y

’\/ ¥ + 13

A least squares fitting of the parameters f1, f2, and 1 for each
of the curves in Figure 2 yielded their numerical values for the
25 values of o shown in Figures 3a- 3c by dots. All the
profiles have distinct kinks between the inner and outer
regions at the current-carrying boundary o = 0 = 0.167. In
order to simulate the finite thickness of the current layer in the
o coordinate and to ensure a smooth matching between the
inner and outer slopes of the approximating function, it is
reasonable to ignore the points lying in the vicinity of the
kink. The following analytical representations were chosen

for f1, f2, and Y;:

bqo, (oY) =f1(a) sin y + fp(ox) (15)

O0—0f] 1

3
f1i@) = fio+ Xfii (16)

i=1 2
'\/ (a-o1i)? + Aoy
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Fig. 2. The family of plots of the quadrupole component bqq, against Y
computed for a set of 25 values of the & coordinate: (a) Plots for the
inner region 0>0) (rp < 7e0), (b) Plots for the outer region a<oq (r, >
Teo)- The curves are labeled by the corresponding values of ¢; in the
plot (Figure 2b) only the marginal values are given. The disturbance
magnetic field magnitude in this and all the foregoing figures
corresponds to the net Birkeland current of about 260 kA per each
hemisphere (see text).

1
5 (@) =20 + f1& +f2282 + fos
V (a—aﬁ3)2 + Aa%%
+ 2 s arn
'\/ (a-—aﬁ4)2 + Aoc%2 4
where
E =05 [\/ (a-ogm)? + Aazﬁ - (a—agﬁ)]
and
n-n
10) = Y10+ M1E2 + 112 n »  (18)
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Fig. 3. The results of least squares fitting the bga. plots of Figure 2 by the
functions (15-18): (a)The dependence of the parameter f] on o; the dots
correspond to the “first-level” fitting using (15) and the solid line gives
the best fit approximation (16), (b) As in the Figure 3a, for the
parameter f5 approximated by (17). (¢) As in the Figure 3a, for the
parameter Y| approximated by (18). In each case the points lying
between the dashed lines were ignored by the least squares procedure,
which gave a smooth transition between the inner and outer slopes
resulting in a distributed current layer.
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where

E=05 ['J (a—agw)z + on.év1 - (a—aml)]

= & + (@—0gy)

The function ((x—a,')/[(()t—ot,')2 + Aa,'z] 172 plays an im-
portant role in this representation, and the pairs of variables &
and n proved to be effective for approximating continuous
smooth functions which have essentially different behavior on
opposite sides of a transition point o, = ¢ig. The first variable,
g, is nearly zero for o > ag and varies linearly for o < 0,
while the second one, 1), is the mirror reverse of & with respect
to 0.p. As a result, composing sums (&) + g(E) or, for a more
general case with multiple transition points, f(&;+1 j) +
g(§j+1]k), enables one to develop analytical fits to a large
variety of possible functions.

Solid lines in Figures 3a-3c¢ show the analytical
approximations (16-18) fitting the dotted profiles obtained by

an iterative least squares procedure. In each case the three
points corresponding to rg = 7.0, 8.0, and 9.0 were ignored,
which resulted in a smooth transition between the inner and
outer current-free regions. Table 1 gives numerical values of
all parameters appearing in (16) - (18) and in the subsequent
expressions (19) - (40) which define the rest of the model.
Figure 4 presents distributions of the bgy component in the

same format as-was used for bgg, in Figure 2. In this case there
is a significant difference between the two families corres-

ponding to o > 0y and o < 0lg. The final functional form for
representing bgy was chosen as

bgfony) = go(B)+gl(B)#
1 + 73B)

+ 828) —1_ (19)

'\/ P+ 150

= '\ly2 + dz(ﬁ). Here we have five parameters
(20- 1, £2, 12, and d) depending on B = ‘\/;, rather than on a;

this choice of the argument is more convenient because, in
line with symmetry considerations, bgy shows a linear

where {

dependence on 6 near the z axis. The following approxima-
tions for the parameters were adopted, namely

2kB) =B| gko + ng; B-Boki s

\] (B-Bgki)? + AB

(20)

where k =0, 1, and 2,
3 B-Bryai

@) = ho+ Zlvzi
=
_Br)2 + ABZ
V(B By2i) +ABY2‘

@n

TABLE 1. Best Fit Values of the Model Partial Ring Current Parameters

Parameter Values*

Formula
16  fip=-4642 fi1=-122.8
1 =0.09414 Aoy =0.2022

%13 =0.1141 A$3 =0.2620

17 fo=-4849 H1=29.75
fr4=4519 =0.03*
Aap3 = 0.0348 o4 =1.321

18 ¥10=0.2797 Y11 = 6.647
Aagy] = 0.03* Tyl = 0.7494

20  goo=2.093 £01 =2.304
Bgo1 =0.6675 ABgo1 =0.3863
Bgog 0.3791 ABgo3 = 0.07*
810 =-8.947 g11=-8.730
Be11 =1.141 ABg11=0.1165
Bg13 =0.3749 ABg13 =006
820 =62.49 £21=63.10
Bg21=1.3609 ABgoy1 =0.1721
Bgzs 0.6329 ABg23=0.07*

21 po=479 121 =4.851
By21 = 1316 AByp1 =0.1806
By23 =0.6315 APy3 =0.1*

22 dy=0.09164 d1 =0.007276
B4 =0.20* ABg = 0.02*

N2=11.99 f13=1459
op2= 02108 Acpp2=0.05493
2 =-2199 3 =-0.004782
=0.1502 o3 =0.220
Aupg = 0393
712=0.3778 1 =0.1551
Any) =0.7276 &
02 = 4305 203 =-2.274
Bgo2 =0.3749 ABgo2 =0.1304
g12 = 0.2307 £13=0.1629
Bg12 =0.2006 ABg12=0.1821
£22 =-0.1730 223 =0.03397
Bg22 =0.2065 ABgzz = 0.08875
Y22 = -0.05983 123 =-0.001735
liﬂz =0.2785 Aﬂﬁz =0.2238
dp = -0.02285 d3 = 0.09208
ng = 0.2826 Ang = 0.05532



TSYGANENKO: MAGNETIC FIELD PRODUCED BY BIRKELAND CURRENTS 5683

TABLE 1. (Continued)

Formula Parameter Values*
24 h10=9.125 h11=3257 h12 = 8019. h13 = -8080.
h14=1596 o171 =0.1103 Aoy11 =0.03181 op12 = 0.1442
Aoy = 0.09002 013 = 0.1442 Aoy13 = 0.08868 0p14= 0.4497
Aoty14 =0.6993
25 hpp=6.378 hy1=0.2826 hyp = 05026 ho3= -28.88
h4=23.96 o1 =0.269 oy, = 0.01331 Ao =0.02433
o2 =0.1994 Aaypo =0.00947 oyn3=0.148 Aayos =0.1733
o524 =0.1211 Aayn4 =0.03051
26 h3p=-52.94 h31 =-1109 h32 =-15.39 h33=103.5
h34=102.7 h3s5 =4.436 oy31 =0.1707 Oy =0.00175
Axpzp =0.02* Anp3g4 = 0.03463 Any3s = 1.003
27 Y30 = 0.5491 v31 = 10.59 v32 = 0.7596 on3=0.1406
Aoy = 0.08581 Ny3=0.9916 Any3 =1.059
29 Poo = 4.485 PO1 = 0.05852 po2 =0.7067 P03 = -0.003066
Po4 =0+ Aypp = 0.003892 Ayp01 = 0.0046 Ay,0p =0.02842
Avpo3 = -0.003066 P10 =0.09373 P11 =-3.369 r12=3.849
p13 = -0.02229 P14 =0.* Ayp) =0.0612 Ayp11 = 0.00915
Ayp12=0.0511 Ayp13=0.1194 p2() -8.333 p21 =-0.2815
P22 =0.1629 p23 7.193E-5 P24 =3.008 Ayyo =0.003324
Ayp21 = 0.008633 Ayp2p =0.02737 Ayp23 =0.02577
30 P30 = 0.04043 p31=-0.07719 32 =-0.01124 P33 =3.241E4
P34 = -2.555E-6 AYp3 = 1.146E-3 Ayp31 =5.978E-3 Ayp32 =9.141E-3
AYp33 = 9.600E-3 A’yp34 0.0104
3 AEp=0.04375 AE; =03747 {1 =2.394E-3 A{j =2.709E-3
Ay =0.1209 Ay =5.526E-5
32 20 = -0.0827 Np21 = 0.1800 TMp22 = 0.2448 Np23 = 0.4616
AE np22 = 0.03203 Alpp3 = 03818 Ay = 4.45E-3
33 Anppp = 0.08208 Anpr1 =0.1128 Anp2p =0.1088 Anpp3 = 03286
A§A1'|p22 0.01754 ALAnp23 = 0.3070 A’YAr| =7.123E-4
35 q00 = 1.287 901 = -0.8869 q02 =1.221 q03 = -0.3252
904 = 6.344E-3 q05 = 6.67E-2 q06 = 0.442 CqOI = 2.002E-3
ACqu = 2.888E-3 =0.01239 Acqoz = 8.016E-3 3 = 0.3217
Alg03 = 0.2000 =0.01028 Alg04 = 6.034E-3 Lq05 =0.04327
ACqOS 0.01884 Yg0 = 5.199E-5
36 q10=-10.07 q11 =10.19 q12=-5232 q13 =1.846
q14=-4.674 11=0.0* AL 11 =4426E-3
£q12=0.01924 ACz12 =0.01438 €413 = 0.03555 Ag13 =0.0671
qu4 0.09675 ALg14=0.01525 Yq1 =1.262E-3
37 q20=-32.78 q21=-27.67 §22=6490 423 =0.00598
q24=3.058 21 =0.03281 ALgn1 =0.01606 422=0.03213
AL02 =0.03066 23 = 3.309E-4 ALg3=0.01339 £424=0.1029
A§q24 =0.2284 Y42 = 1.0E-5*
38 q30 = -0.01069 q31 =-0.03202 432 0.0237 433 =-0.1002
q34 =-0.1142 q35 = -1.0E-6 31 =0.2931 31 = 0.06616
C 432 = 0.0359 Alg32=0.01305 =0.04509 A§133 0.05109
3 = 0.09608 AE g3 = 0.06922 A 435 2.221E-3 e =0.1511
Zg 0.01* Y43 = 5.0E-4*
39 opo = -0.1381 o1 =9.942 a2 = 03151 03 =0.4775
Algn1 =0.082 Co02 = 0.039 Alq0p =0.046 Lo03 = 0.265
Algn3 = 0.36 Yo0 = 0.003*
40  nyo=-0.1827 n11 = 09298 n12 = 0.2471 Aln1y = 02885
Aln12=0.021 Y1 =0.0149

*Fixed ones are denoted by asterisks.
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Fig. 4. The family of plots of the quadrupole component bgy against Y

computed for a set of 25 values of the o coordinate: (a) Plots for the
inner region a>wQ (7 < 7¢0), (b) Plots for the outer region a<ag (rp >
r¢0)- The curves are labeled by the corresponding values of a; in Figure
4b only the marginal values are given.

n-nd

d(B) = do+di& + k2 +dy (22)

Mm-ng)? + A‘nj

where & = 0.5 [\’ (B-Ba)? + Aﬂi - (B—Bd):l and where

n =& + (B-Bg)- The corresponding plots are given in Figure 5.

The azimuthal component distribution in the dawn-dusk
meridian plane is presented by two families of bq¢ (0t.y) plots
shown in Fig. 6. In this case the following analytical
representation was chosen

1

'\/ 72+v§(a>

(23)

bao (@) =| ki(@) + hy(@)y? + h3(a)
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Fig. 5. The results of least squares fitting of the bﬂ plots of Figure 4 by
the functions (19)-(22): (a) The dependence of the parameter g on B;
the dots correspond to the “first-level” fitting by using (19) and the solid
line gives the best-fit approximation (20), (b) Same as in Figure 5a, for
the parameter g1 approximated by (20). (¢) Same as in Figure 5a, for
the parameter g9 approximated by (20). (4) Same as in the panel (a),
for the parameter ¥ approximated by (21). In each case, the points
lying between the dashed lines were ignored by the least squares
procedure, which gave a smooth transition between the inner and outer
slopes resulting in a distributed current layer.
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(D)

Fig. 5. (continued)

with 4
o —Opj
hy(0) = hyo + X by - , (24)
i=1 22 4 Ac2
(@ —op )+ ahli
-0lpop + O
ha(a) = hyp + hyy [ hal * Sw
- 2 2
(O -0apy +0w)” + Amhz1
_ O-Cp - Uy
(d—ah -o )2+Aoc2
2w h21
+ hy 1
- 2 2
'\/ (o-0p92)~ + Ao K22
4
0-0
+ 3 b hai . 25)

2
hy (0) = h3o + hal(a‘ah:il/['\/ (@O +an3Y+AG

2
+ \j (@-aps - ay3)? + Aa ,m] + hagf + hask?
n

n

+ h34 (26)

where

2
€= '\/ (-3 +aws)? + Aa = (@—Cp31+00y3)

n= '\/ (a—0p31—Chyy3)2 + Aafm + (Q—0ip31—0hy3)
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and with

N-Nys3

2
(M-ny2)? + An
V & »
where

E=05 ['\/(a—a.ﬂ)z + Aa; - (a-ayg)]

N =§ + (0—0y3).

@n

Y3(00) = Y30 + 3182 + 132

3.2. Approximation for the Symmetric Ring Current Field

The magnetic field By produced by the axially symmetric part
of the isotropic plasma distribution (11) was modeled by
using, in general, the same approach as in the case of the

00
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5.
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< 0.400
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<
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o
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Fig. 6. The family of plots the quadrupole component bgy against y
computed for a set of 25 values of the o coordinate: (a) Plots for the
inner region 0>0y (re < 700). (b) Plots for the outer region a<op (v
>re0)- The curves are labeled by the corresponding values of a; in
Figure 64 only the marginal values are given.
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quadrupole term. However, in contrast with the latter, it was
found easier to consider first the plots of Bg(c) for a selection
of constant values of 7y, that is to change the order of

approximating the dependence on o and Y. Since Bgg, ~ B = ‘\I;
for small o, it is convenient to start off with the family of
plots of £(B) = p~1B o (B) shown in Figure 7. For sufficiently
large values of 7, the contours y=const lie close to the Earth;
that is why the plots for y 2 0.1 show a regular and almost
monotone variation, while those with vy < 0.1 have sharp

maxima at Py = \Jao corresponding to location of the ring
current whose density at the low latitudes is much larger than
in the near-Earth polar regions.

Attempts to find an appropriate functional form for Bgq
resulted in the following one

Bso, =B [ Po(Y) + PI(Y)#

E2+AE2(y)
+ P n—npzzv)
[r-npan ] + an,
+ p3(¥) B : (28)
(B-Bo)?+AB2

where
&= o.S{V‘ (B-Bo)2+ABZ - (B - Bo>}

and

n=§&+(B-Po).

The second and third terms in curly brackets, respectively,
approximate the left and right slopes of the profile shown in
Figure 7, while the last term represents a jump at B = By which

is present on some curves.
The representation (28) contains four coefficients, pg...p3,

and three nonlinear parameters, AE, TNp2, and Anpy which are
functions of y. The corresponding analytical fits were sought
in the form

Pko + 2 P ——
\/ ?2+A72 72+A72

PHY) =

+ Pla ] +Pk4Y 29
12 + A'yz /2
pk3
where k=0, 1, and 2,
4 n
p3(Y)= P30 +2 P3i , (30)
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Fig. 7. Several plots showing the variation of b saﬂ_l for the
axisymmetric model ring current along the contours of constant y
coordinate. The corresponding values of y are given near the curves.
The peaks at the plots for srnall values of 7y are localized at the current

layer position with B =pg = ao
\/ (&-¢1)2 + ALY

AL(y) = AEp + AL

where { = \ } 72+A'Y§ ,

Np2(Y) =

GD

Mp20 + Npu& + Npoo————

*\/ 2
C +A§1‘|p22

I S
+ Np23
—\/ 2,AL2
go+ Cmm
2
where{:'\’yz+A'y , and
n

ANpo(Y) = AMpao + ANpp & + AMpoy—(——————

(32)

Q Anp22

+ ANpy3 (33)

where { = \ ’ 72+A'yin .

At last, it only remains to give expressions for the B sy

2.A
¢ cA'qusi

component. Several typical profiles of By distribution along
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the lines of constant y are shown in Figure 8. On going from
larger to smaller values of , smooth profiles gradually pass
into discontinyous ones with a jump at o, = ot.

Here again, the expression for the Bgy-component was

chosen as a sum of terms providing separate representation of
the right and left branches of the curves. It was found that an
accurate approximation can be obtained with the following
functional form

By (01) = Qo) + 1) ———— + N &

'\’ 242

vas [& - won]

where 'r]=0.5{»\/ [cz—-oco('y)]2 + Aa% + [a—ao('Y)]},

E=n- [0‘-0‘0(7)] ,

€2

and Aoy = 0.02.

Fitting (34) to the 26 numerically computed profiles of Bgy
versus o yielded numerical values of the functions ¢4(y), 41(Y),

22(7), q3(Y), 0g(Y), and M (y), which, in turn were least squares
fitted using the following

3 .
GV =qo0 + zqm S-Squi
i=1
(ttaoi)’ + Ac
1
+ ):4qo. + qet2 (35
1=

'\/ (t-Caoi)” + A§

100

o
o
—
SN}
=
=
>
2
=
<
Nt
<
=
=
<
O
m
800001
=10.0 77 T T LRI e B e e
00 0.2 04 6 08 1.0

Fig. 8. Several plots showing the variation of b-"Y for the axisymmetric
model ring current along the contours of constant y coordinate. The
corresponding values of y are given near the curves. The abrupt jumps
at the plots for small values of y are localized at the current layer
position with o = 0.
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2 s
) =qo+ _Zlqu' hald
1=
'\/ (c—cqu-)2 v ag2,
+ un (36)
=3
\/ (c—;ql, + Ac
@M =qxp + 2 Qi Sl
l.=1 2
\/ (t¢i)” + AL,
. 1
2
(C-qus) + Aciza
+ au . a7
2
»\/ (&-tqa)” + Acfm
() = L 930 + _Zlqai C—C_q:;i
i= 2
(YZW; \/ (68gsi)” + 422,
2
\/ (sas)” + 822, AL

where, for g;(y) in (35-38), { = v P+Pqi withi=0, 1,2, and

3, respectively, and

£=05 V(C—%)z + ACZ - - Cg)

The non-linear parameters were approximated as

2
0p(Y) = Olgg + 0‘01( \} C2+A€ao1 - C]

€-Caoi

3
+ Y, doj

i=2

39

,\/ (Gooi)” + A82

7,

where
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and
2 ¢
MW =M+ X Mi— ——— (40)
i=1 )
E2+AL
nnu
where

C=\/72+7i1 :

4. RESULTS AND DISCUSSION

Table 1 summarizes the results of the least squares search for
the model parameters entering in (15) - (40). The concrete
forms of the above approximating functions including the
number of terms, the initial values, and number of variable
non-linear parameters were chosen in all cases according to
individual features of the profiles to be fitted, in order to reach
a compromise between the requirements of accuracy and
simplicity of the model expressions. In most cases, the
relative error of fitting the field components did not exceed a
few tenths of percent throughout the whole current-free region
reSSRporr, 210 RE. The intermediate region is occupied by
distributed currents spread out over the interval r, <5 RE orre
2 10 Rg , derived by the adopted procedure of smooth
interpolation of the field components. This is illustrated by
Figures 9-10 which show the transverse profiles of the electric
current density in the partial ring current layer obtained by
numerical calculation of the VxB for the equatorial region and
at high latitudes above the ionosphere. The plots correspond
to the quadrupole part of the system which contains Birkeland
currents. Figure 9 presents a near-equatorial profile of the
azimuthal component of the VxB; it can be seen that the
current attains the peak value at r = 6 R and gradually
decreases on both sides from the maximum. The solid line
without dots gives the variation of the disturbance magnetic
field, and the dotted line shows distribution of V*B. As discus-

sed in the beginning of section 3, the violation of V-B=0

50 4 YGSM = 0
] ZGSM = 0.5 RE
00 T
5.0
_1Q05 curl B (DT/RE)
i — Bz (nT
1 et div B (nT/RE)
—150: T T T T T T T T v —T T
-15.0 -10.0 -5.0 0.0
XGSM, RE
Fig. 9. Near-equatorial profiles of model B,, VXB, and VB,

corresponding to the quadrupole part of the partial ring current system.
The quantities are computed in the midnight meridian plane along the
line z = 0.5 R, parallel to the X;5p axis.
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Fig. 10. A profile of the field-aligned component of VXB yielding,
within a constant factor, the model Birkeland current, computed along
the line z = 1 RE parallel to the YGsps axis and lying in the dawn-dusk
meridian plane. Two layers of oppositely directed field-aligned currents
are present at ¥ = + 0.5 Rg. The small kink at ¥=0 is an artifact of the
numerical differentiation near the polar axis.

condition is due to the adopted independent representation of
all three components of B. The relative importance of that
unphysical feature can be tested by mapping a small square
element in the equatorial plane to the ionosphere along the
model field lines and evaluating the relative difference in the
magnetic flux on both ends of the field line tube. The
analytical field (15) - (40) calibrated to the net Birkeland
current of 1 MA was added to the quiet magnetospheric field as
given by the divergence-free model of Tsyganenko [1987] and
a tracing procedure was carried out for a number of field line
tubes. In most cases the relative difference in the magnetic
flux did not exceed 10%, the largest values being observed
within the interpolation region containing the current-
carrying L shell.

Figure 10 corresponds to a dawn-dusk “polar pass™ above the
ionosphere and shows the profile of field-aligned component
of VXB computed at z=1 Rg along the line Xgg); = O parallel
to the Yggn axis. Note here that the model does not incorpo-
rate magnetic effects of the ionospheric electrojets which can
be significant at low altitudes, but which rapidly fade out at
larger distances and hence produce but a negligible effect on
the pattern of field line mapping. Variation of the Bxgsm
component of the disturbance field along the same line as in
Figure 10 is shown in Figure 11. As can be expected, we have
an almost constant antisunward field in the polar region,
which abruptly becomes sunward on crossing the layers of
Birkeland current and approaches zero at larger distance.

Figure 12 present the plots of (VXB)¢, Bsz, and V'Bg,
corresponding to the axisymmetric part of the ring current,
along the line y=0, z=0.5 RE in the midnight meridian plane.
Again, as a result of the smooth interpolation procedure, the
original infinitely thin current surface is transformed into a
spread-out distribution of the volume current density. The
magnetic field variation reflects typical features of many ring
current models: a depressed nearly uniform field at inner L
shells and a rapidly decreasing dipolelike By outside the
current-carrying region. As in the case of the quadrupole field,

the magnitude of V-Byg, is also relatively small.
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Fig. 11. Profile of the By sy component of the magnetic field
produced by the electric current distribution illustrated in the preceding
Figure 10, along the same line. The field is antisunward and is almost.
constant in the high-latitude polar region; on crossing the layers of
Birkeland current we observe the abrupt jumps of By and its gradual

decrease to zero at larger distances.

150
10.0 ]
50 1
0.0
1 —— Bz (nT)
504 —— curl B (nT/RE)
~] +rerediv B (nT/RE)
-10.0 ] T T T T T T T T T T T T T T
-15.0 -10.0 =5.0 0.0
XGSM (RE)
Fig. 12. Near-equatorial profiles of model B;, VxB, and V-B,

corresponding to the axisymmetric part of the partial ring current
system. The quantities are computed in the midnight meridian plane
along the line z = 0.5 RE, parallel to the X gps axis.

It should also be noted that, since the dipolar magnetic field
is self-similar, the disturbance field produced by the model
partial ring current can be easily scaled to any value of the
characteristic distance rgg = a'lo. Namely, if “new” values of
the net electric current and equatorial radius of the partial ring
current are related to “old” ones as I” = %I and 7 g = Vreg, then
the corresponding “new” value of the disturbance field at a
fixed point of space r can be evaluated as B'(r) = (x/V)B(r/v).
In empirical modeling of the magnetosphere based on sets of
magnetometer data, the factors y and v should be considered as
free parameters to be determined by a least squares fitting of
the model to the measurements. One more degree of freedom
can be introduced by allowing a rotation of the whole current
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system by an angle ¢q around the polar axis, simulating the
local time shift of the partial ring current toward dusk sector
deduced in early observations [e.g., Kamide and Fukushima,
1971] and modeled by Usmanov and Tsyganenko [1984].

In summary, a quantitative representation is developed for
the magnetic field produced by a system with a partial ring
current closed via large-scale region 2 Birkeland currents. The
proposed analytical model is based on an electric current
distribution consistent with the axially asymmetric distribu-
tion of hot isotropic plasma, the formation of which in the
near magnetosphere is believed to be due to injections from
the tail plasma sheet during substorms. The model contains
four free parameters defining the net magnitudes of the electric
current in the axially symmetric and quadrupole parts of the
system, its characteristic scale size, and the angular position
of the partial ring current with respect to midnight meridian.

The question of primary interest in implementing the above
results for practical modeling of the magnetosphere is to
determine to what extent does the partial ring current system
affect the mapping the geomagnetic field lines. An answer to
this question can be obtained by incorporating the repre-
sentation (15) - (40) into a global model which correctly takes
into account all other field sources including region 1 system
of Birkeland currents, and then fitting that model to spacecraft
data. This problem extends beyond the scope of the present
paper and will be addressed in future works.

APPENDIX A: TRANSFORMATION FROM DIPOLAR TO SPHERICAL
COORDINATES

From (2) and (3) we obtain the fourth-order equation for r

Aroy2-y2=0 (A1)

Using the Descartes-Euler solution (Korn and Korn, 1968)
and selecting a proper combination of signs, we arrive at the
following expression for r in terms of o and y

r=4[(m+ ‘/_c) (g + (:)]-1

(A2)

where

1/3
c=(a2/2 + ‘/?) / _§(ﬁ)ll3

4
64 o
A TRy

g=Vc2 + aryi2/3

Substituting (A2) in (3), we obtain the necessary expression
for 6.

APPENDIX B: ON SEPARATING THE AZIMUTHAL
DEPENDENCE IN THE DISTURBANCE MAGNETIC
FIrL.D COMPONENTS

The possibility of separating the dependence on ¢ in the
components of Bq as given in (12), can be verified by

representing the quadrupole term as

Bq=Vqu, (B1)
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where

) dv,

II”', ®2)
r |

ch

with jg4 corresponding to the quadrupole part of the
divergenceless current j4 + jp containing the parameter Ap as
the amplitude factor.

Let us assume first that the geocentric distance of the obser-
vation point r is larger than rgq = ao'l or, in other words, the
whole electric current system lies inside the sphere of radius r.
In such a case the factor Ir — r’I"! in the integrand can be
expanded [e.g., Korn and Korn, 1968] as

I G) o

X Cm P;n (cosB) P:'(cose') cos m(¢ - 9")

r-r1l=

(B3)

where o,y =1form=0and ¢, =2 form>0.
The-components of jg contain factors sin ¢ or cos ¢*, which
can be rewritten as

cos ¢ sin (0—¢") + sin ¢ cos (¢—0")

and

cos ¢ cos (¢—¢°) — sin ¢ sin (¢-9°) ,

respectively. Integrands corresponding to spherical compo-
nents of the vector potential (B2) include scalar products of
unit vectors ey, eg, ¢ and ey, €'g, e'p in various combina-
tions; these will also yield terms containing cos(¢—¢ ) and
sin(¢—¢°).

Because of the orthogonality of the sine and cosine
functions, only a few terms of the expansion (B3) will provide
a non zero contribution to (B2). By writing down explicitly
the integrands for each component of Ag, it is easy to verify
that

Agr=agr (r.8)sin ¢,
Aq0 = aq0(r,0) sin ¢,
Agd = agy (r,0) cos 0,

from which the above representation for B4 follows.

In a more general situation a part of the current system may
be located at r*>r. In this case its contribution to the integral
(B2) must be considered separately and the expansion (B3)
should be made in powers of (r/r"). The remaining part of the
proof is similar to the one given above.

Obviously, this result can be generalized for the case of more
complex azimuthal variation of the pressure function. The
principal statement here is that there is a one-to-one
correspondence between the Fourier expansion terms for the
local time distribution of pressure and for the components of
the disturbance magnetic field. In other words, any harmonic
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term ir the expansion for p (a.,9) gives rise to only one term
of the same order in the expansions for B components.
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