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Method for confining the magnetic field of the cross-tail current

inside the magnetopause
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Abstract. A method is presented for analytically representing the magnetic field due to the
cross-tail current and its closure on the magnetopause. It is an extension of a method used by
Tsyganenko (1989b) to confine the dipole field inside an ellipsoidal magnetopause using a scalar
potential. Given a model of the cross-tail current, the implied net magnetic field is obtained by
adding to the cross-tail current field a potential field B = —Vy, which makes all field lines
divide into two disjoint groups, separated by the magnetopause (i.e., the combined field is made
to have zero normal component with the magnetopause). The magnetopause is assumed to be an
ellipsoid of revolution (a prolate spheroid) as an approximation to observations (Sibeck et al.,
1991). This assumption permits the potential ¥ to be expressed in spheroidal coordinates,
expanded in spheroidal harmonics and its terms evaluated by performing inversion integrals.
Finally, the field outside the magnetopause is replaced by zero, resulting in a consistent current
closure along the magnetopause. This procedure can also be used to confine the modeled field
of any other interior magnetic source, though the model current must always flow in closed
circuits. The method is demonstrated on the T87 cross-tail current, examples illustrate the effect
of changing the size and shape of the prescribed magnetopause and a comparison is made to an
independent numerical scheme based on the Biot-Savart equation.

Introduction

Empirical models of the geomagnetic field are analytic
expressions describing the average magnetosphere, satisfying
Maxwell's equations and based on data. The magnetic field due
to each source is usually represented separately, by an expression
containing several free parameters, which are then fit to
observations by least squares. In geospace, five principal
magnetic field sources exist: the Earth's internal currents, the ring
current, Birkeland currents, the cross-tail current and the
magnetopause currents; each has its own unique character and so
requires a distinct functional form to represent it.

This study is concerned with representing the field due to
magnetopause currents. The empirical models of Tsyganenko
(denoted here TU82, T87, and T89 for Tsyganenko and Usmanov
[1982] and Tsyganenko [1987, 1989a], respectively) have used an
exponential-polynomial representation for this component of the
magnetic field, combinations of terms like y™ z" €”** (coslsin)¥,
where W is the tilt angle of the Earth's dipole. Such all-purpose
expansions were meant to represent not just the field of magneto-
pause currents, but also that of Birkeland currents and are likely
to contain contributions from other sources as well.

One drawback of the polynomial expansion is that it is useful
mainly in empirical global models fitted to data. If we want, for
instance, to perform a "theoretical experiment" in which the tail
current is doubled, we have no simple way to obtain a polynomial
that will properly confine the new model field. Polynomials also
do a poor job in representing Birkeland current fields, because
such currents are relatively localized and polynomials do not
represent small-scale features well.
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A more serious deficiency is that the shape of the magneto-
pause in such models is indirectly determined by the interaction
of polynomial terms with other sources, and hence may be
irregular and hard to control. Note that the magnetopause in the
TU82-T87-T89 models is actually a "de facto" surface defined by
a bundle of field lines passing near the dayside null points. Since
these models were based almost entirely on observations made
well inside the boundary, this boundary should actually be
considered to be an extrapolation. There may exist significant
deviations of the de facto magnetopause from the real one,
especially in poorly covered regions. Because of this, and also
because of the inherent shortcomings of the polynomial
representation, unrealistic magnetopause shapes appeared in
some earlier models, especially for large tilt angles. This
difficulty is avoided if the magnetopause shape is taken from
observations of magnetopause crossings and is imposed on the
model.

The field due to the magnetopause currents that confine the
dipole field inside magnetopauses of simple symmetric shapes
can be expressed by a scalar potential expanded in suitable
harmonic functions [Alexeev and Shabansky, 1972; Voigt, 1972,
1981; Stern, 1985; Tsyganenko, 1989b]. This study continues the
one by Tsyganenko [1989b], which assumed an ellipsoidal
magnetopause shape, a convenient approximation to the observed
magnetopause within the Moon's orbit [Fairfield, 1971; Sibeck et
al., 1991; Roelof and Sibeck, 1993]. The purpose of the present
work is to extend this method to computing the field due to
magnetopause currents that confine the field of any internal
current system, in particular the cross-tail current.

Just as the dipole is the easiest source to confine inside a given
magnetopause, since it is compact and symmetric, so the tail
current is the most difficult one, because it extends to large
distances in the antisunward direction and because its circuit
closes on the magnetopause itself. Having successfully confined
the tail field, we have no doubt that the same technique also
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works with other internal fields, given appropriate models to
represent them.

There exist other ways of deriving the magnetopause field
confining the tail field, either by numerically deriving the scalar
potential y describing that field, as obtained by Toffoletto et al.
[1994] or by a recursive application of the Biot-Savart integral,
first used by Mead and Beard [1964]; in the appendix the latter
method is used to further check our analytical approach. These
methods allow any prescribed shape of the magnetopause to be
used, but their output is numerical rather than analytical and

therefore cannot well serve as a module in a data-based model.
Naithar ic tha manadal of Crhuls and M~NAah [1Q71 enitahla cinca

ANCIWGRT 15 WiC INOGCK Uk Olniuel Gl malived 1707 ) SUiwalie, sliile

it uses a very simplified tail model.

Method

We assume that the boundary surface X is an ellipsoid of
revolution (prolate spheroid) [Tsyganenko 1989b], approximating
the directly observed magnetopause. We consider a fully closed
magnetosphere, so that the magnetopause is the surface
separating internal field lines from external ones. This separation
is accomplished by an appropriate distribution of magnetopause
currents, producing a magnetic field Byp whose component
normal to ¥ cancels the normal component of the field By, of
interior sources

n:B, + nByp =0 on X, 1
where n is the outward unit normal to X. Then, and only then, do
no internal field lines cross X, and hence one might say that the
tail field is confined to the magnetosphere or that the space
outside X is "shielded" from internal field sources.

Provided the internal field B, and the shape of the magneto-
pause X are known, it is possible (and convenient) to derive By,
from the boundary condition (1). Under the assumption of a
fixed ("prescribed") magnetopause shape, the boundary condition
(1) is linear with respect to Byp and By,; since B;, can be
resolved into a sum of contributions from various internal sources
(dipole, ring current etc.), By too can be resolved into corre-
sponding components, each of them shielding the field of one
internal source and satisfying (1) with respect to its field.

When the various contributions to B;, are represented by
parametric expressions and the corresponding parts of Byp are
added, their superposition gives a magnetospheric model that can
then be fit to data. One can also perform theoretical experiments
by specifying the internal currents and fields ad-hoc and
superposing them and their shielding fields.

At this level we can distinguish two essentially different kinds
of internal field sources. In the first case, the field to be shielded
is produced by currents flowing entirely in the interior of the
magnetosphere. The corresponding shielding currents form a
completely separate circuit, confined to the magnetopause and
forming there a two-dimensional surface current system. The
contribution Byp which they produce is therefore current-free in
the interior and can be described there by a scalar potential 7.

Byp = -V Viy=0 @
The task of finding Byp subject to (1), for this particular source,
then reduces to a standard Neumann problem with the boundary
condition [e.g., Voigt, 1972, 1981; Stern, 1985; Tsyganenko,
1990, and references therein]

n-B,+ n(-Vy) =0 onX 3)
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The second case is especially relevant to the cross-tail current
and probably also to the Region 1 Birkeland currents. In this
case the internal currents whose field is to be shielded extend to
the magnetopause and include it in their circuit (Figure 1c).
What should one take for By, generated by such sources?

If the cross-tail current alone is viewed as the source of By,
we have an unclosed system with sources and sinks on the
boundary, which means V-J# 0 there. Furthermore, the magne-
topause current is also unclosed, and for such systems [Jackson,
1975, eq. 5.21]

VxB By yf g2, Y1) 4
xB = + L2 pr—=t
Hol * 4n J [r-r @

Since the divergence of J appears in an integral, V-J #0 implies
VxB # 0 everywhere, even where J = 0 locally, therefore the
scalar potential cannot be used.

Some early models have actually used such truncated sheets
[Alexeev and Shabansky, 1972; Voigt, 1972], but these represen-
tations are inconsistent, since they tacitly assumed that the
equation VxB = 0 holds separately for contributions from the
equatorial current sheet and its closure/shielding complement.
As discussed above, this is not true and hence, the direct use of
scalar potentials is invalid.

Another approach, which goes back to the simplest model of
Williams and Mead [1965] is to extend the cross-tail current
outside the magnetosphere, in order to maintain current
continuity, as shown in Figure 1a. A very useful by-product of
this modification is that it allows the field components to be
expressed in a simple analytic form, even for spread-out current
sheets with finite thickness and current density variation in the
tailward direction [Tsyganenko and Usmanov, 1982; Tsyganenko,
1987, 1989, Stern, 1990].

Let us denote as B,; the field produced by the extended
equatorial current sheet whose circuit is either closed or extends
to infinity (Figure 1a). The central idea of the present work is to
complement B, by a potential shielding field Byp = -V which
satisfies everywhere on X the boundary condition (3), namely it
cancels n-B, resulting in zero net normal component. The
magnetopause currents are not considered explicitly at this stage;
we only seek a scalar potential ¥ as a continuous function
throughout space. Suppose we have found such a potential,
ensuring that the net field is everywhere tangential to the
boundary £. Now, we may replace the net field outside T with
B =0, without violating Maxwell's equations [Stern, 1987, Figure
4]. (Moreover, instead of B = 0 we could, in principle, replace
the outside field with any other configuration Byema, subject to
only one restriction that By .mn= 0 onZX; that would change
the distribution of current on the magnetopause, but not the field
inside, which is our main concern). As a result, the external part
of the current sheet disappears and the internal current is rerouted
(closed) via the magnetopause surface current (Figure 1c) with
the density K implied by the discontinuity of the tangential
component of B across

MoK = —n X By — V) %)

Thus the desired solution is given by
B=B,,-Vy inside X (6)

B=20 outside

and satisfies all the requirements: n-B= B, = 0 on X, the
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Figure 1. The superposition of the field due to the cross-tail current extended in some fashion so that is closes
outside the magnetosphere (a), and the field produced by the current system (b) which is curl-free inside the
magnetosphere, is equal to the magnetic field due to the desired net cross-tail-magnetopause current system (c).

divergence of the implied current is zero, the curl of B equals the
actual cross-tail current inside, and is zero outside. In terms of
electric currents, the procedure of the above described
"equivalence decomposition” is illustrated in Figure 1: the
extended current sheet (Figure la) providing the field B, is
complemented by the current system of (Figure 1b), the field of
which is curl-free inside the magnetosphere and hence can be
represented there by —V, to produce configuration (Figure lc).
Note, however, that the currents themselves do not enter the
calculation, instead, we just find a potential ¥ satisfying the
condition B, = 0. Figure 1 only explains the logic of our
approach in terms of current flow.

The modular approach, by which each internal source
produces its own contribution By to the magnetopause field, can
also be adapted to the open magnetosphere. In that case, B, on
the magnetopause is not zero but has some specified distribution.
In principle, the non-zero B, can simply be added to the right-
hand side of the boundary condition (3). However, it is more
convenient to first perform the complete shielding of the tail and
consider this as a zero-approximation model. After that, the
effects of nonzero B, can be taken into account by adding to the
shielding field a current-free "interconnection field" [Toffoletto
and Hill, 1989]

Br=-Vir V%p=0 %)
subject to the boundary condition
B,=—n-Vyg on X.

Thus the possibility of an open configuration does not
invalidate any of the preceding but merely adds another module.

0.8 1=04

a
]

Of course, Bz may affect force balance in the magnetosphere,
and therefore the internal currents, for example, those of the tail
[Toffoletto and Hill, 1989], may differ from those of the closed
magnetosphere.

Ellipsoidal Boundary and Inversion Integral

We take the magnetopause as given by observations,
specifically, as an ellipsoid fit to magnetopause crossings [Sibeck
et al., 1991]. We wish to solve Laplace's equation (2) with
Neumann boundary conditions (3). Since our boundary is an
ellipsoid, we use prolate spheroidal coordinates defined in terms
of Cartesian coordinates by

o= I‘fz o>1
n-n
T="0g <1 3)
¢=tan™'@ly)

where

n =\/(x+x0+a)2 +y* +7°

r =‘[(x+xo-a)2 +y*+7°

Note that the origin has been shifted from the center of the
ellipsoid to that of the Earth. Contours of constant o and Tin the
noon-midnight plane (¢ = £%/2) are shown in Figure 2.
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Figure 2. Prolate spheroidal coordinates, in which the surfaces of constant ¢ are ellipses and those of constant 7
are hyperbolas. The Earth is located at (x, z) = (0, 0) and the two foci shared by all ellipses and hyperbolas are
marked with a cross. The x axis corresponds to =1 between the foci and to 7= %1 outside of that interval.
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We use an ellipsoid fitted by Sibeck et al. [1991] for
intermediate values of the solar wind dynamic pressure
Py = nmv?, namely, 1.47 nPa < Py < 2.60 nPa, characterized by
the following parameters: magnetopause location

0=0,=1.08
half-distance between foci

a=705R,
distance from the Earth to the near-Earth focus

di =548 Ry

and distance from the Earth to the ellipsoid-center
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Xg=a—dg =65.0Rg

Note the change in notation from Tsyganenko [1989b].
The general solution of Laplace's equation in this coordinate
system is

y = Z Z P (0)B" (%) (ayy cosme + b, sinmg)  (9)

n=1 m=0

where the P}, are associated Legendre functions. It must be noted
that the different ranges for 6 and 7, 0 21, I11 <1 require
different choices of phase for the P, [see Abramowitz and
Stegun, 1964, section 8.3; Morse and Feshbach, 1953, p. 1286].
An inversion integral for the coefficients a,, and b,, can be
obtained by substituting (9) into the boundary condition (3),
multiplying by P}(7) and either cos mé or sinmé¢ (for a,,, and b,,,
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Figure 3. Field line plots in the noon-midnight meridian for the T87 cross-tail current for Kp = 0, 0%, where the
field is (a) unshielded, (b) shielded on the entire surface, and (c) shielded only on the sunward side of the
ellipsoid. The dotted line is the desired magnetopause surface.
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respectively), then integrating over the ellipsoid surface using the
orthogonality of the Legendre and of trigonometric functions
[Tsyganenko, 1989b] with the result

a,, 1 2z ¢
[ ' J = Ay [ (T2 P2(5) [y (mm Jﬁ-Bm. (10)
-1 0

b nm . sin m¢

where we define

m -1 m=0
Ay = —a--[——-—dp" (a)jl X {%

n do 0=0, 1 m#0

We perform these integrations numerically. The integral over ¢
is performed first, using either Simpson's rule or Fehlberg
integration (Fehlberg's method is preferred when the dipole tilt is
not zero). The integral over Tis then performed using Simpson's
rule.

The expansion for the confinement of a dipole was found by
Tsyganenko [1989b]. For that case the inversion integral reduces
to one dimension and only the a,, and b,, terms remain. To
confine other internal sources, the full expansion may be
necessary. As an illustration of the technique we shield here the
original unwarped T87 cross-tail current for Kp = 0, 0".

The ellipsoid used here approximates the magnetopause for
x> —40 Ry [Sibeck et al., 1991], that is, for only about 1/3 the
length of the ellipsoid. Past x = —40 R this surface is not
supported by observed magnetopause crossings but it does not
contradict expectations until x = —xy = —65.0 R where the
ellipsoid begins to narrow down again, in contrast with the actual
magnetosphere, which maintains an approximately constant tail
radius. For the confinement of the Earth's dipole [Tsyganenko,
1989b], that distant region has a negligible effect: the dipole field
at those distances is very weak, and the added field needed to
confine it there is negligible in comparison with the tail field
which dominates that region. Thus, for shielding the Earth's

Z[Rg] of

% [Rg]
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dipole field, it does not matter if the confining surface is
inaccurate in the far tail. '

The tail current and field, on the other hand, persist to great
distances. If the boundary condition is enforced along the entire
ellipsoid, the field's behavior in the deep tail, where the ellipsoid
closes, does not agree with observations. Figure 3a shows the
unshielded field, while 3b gives field lines of a configuration
completely shielded inside an ellipsoid, yielding a finite closed
magnetosphere. In Figure 3 we include terms through m = 10
(120 terms, 30 of which are nonzero for the case of dipole tilt
¥ =0).

It is also possible to shield the field only for x> —x; and leave
B, unchanged for x < —x,, by matching dy/on =0 tailward of x, ;
the result is shown in Figure 3c. By comparing these extreme
cases (Figures 3b and 3c) and others we have found that the
boundary conditions deep in the tail have little effect on the field
nearer the Earth. In particular, comparison of Figures 3b and 3¢
shows that the field lines in the region between the subsolar point
and x = —40 are not visibly different. We also compare the fields

produced by these two extreme cases numerically; in particular
along the y = z =5 R line between the subsolar point and x =
—40, the largest difference occurs at x = —40, and is only about
0.5%, and even at x = —60 it is only about 2%. Therefore our
results for x>—40 R, seem insensitive to the boundary condition
at x<-x,. '

There is an independent method for computing the shielding
magnetic field with good accuracy, based on a numerical
procedure suggested by Mead and Beard [1964]. The method,
based on the Biot-Savart equation, is a powerful tool for
shielding fields within a wide class of boundaries. It was used in
several earlier works for shielding Earth's dipole but is equally
good for numerically solving the tail shielding problem. We
provide a brief outline of this independent technique in the
appendix and use it as a check on the results given by the scalar
potential method. A comparison of results given by these two
different methods shows good agreement.
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Figure 4. Field line plots for the T87 cross-tail current (a) without and (b) with shielding.
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Results

Figure 4 again shows the magnetic field lines for the T87
cross-tail current, with and without shielding, magnified and
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Figure 5. Contours of B, (in nanotesla) on the magnetopause (¢
= 0, = 1.08) as a function of the spheroidal coordinate 7 and the
rotation angle ¢ around the x axis (¢ = 0 in the y>0 equatorial
plane) where (a) is without shielding, (b) is with shielding to
order m=10 and (c) is with shielding to order m=15. The
subsolar point corresponds to T =1 (see Figure 2 and
accompanying text for an explanation of spheroidal coordinates).
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covering only the region in which the ellipsoidal surface is
known to fit data. The expansion (9) of the shielding potential
uses terms through m=10, corresponding to 120 terms, 30 of
which are nonzero when the dipole tilt is zero. Figure 5 maps the
distribution of the normal component of B (in nanotesla) on the
entire upper half of the prescribed magnetopause, without
shielding (Figure 5a) and with shielding (Figure 5b). It is clear
that B, has been greatly reduced on the entire surface. The
residual B, can be further reduced by adding terms to the
shielding expansion, as shown in Figure 5c, where components
up to m=15 (255 terms) have been used.

If we include the dipole field, tilted by 30°, and shield both the
cross-tail current and the dipole, we obtain the field of Figure 6.
In Figure 4b the outermost field line does not follow the
magnetopause very well near the subsolar point, but the fit is
much better in Figure 6, because in the subsolar region the dipole
field is 5-10 times stronger than the tail field and its shielding is
much more accurate.

For completeness, Figure 7 gives current flow lines on the
magnetopause for the combined dipole-tail field (like the one in
Figure 6, but here with ¥=0) assuming no magnetic field outside
the magnetopause. The flow lines are nested around the cusp,
confirming quantitatively the pattern proposed by Axford et al.
[1965]. The magnetopause current is found, for illustrative
purposes only, using (5). This current system is calculated from
the solution (6), not vice versa. Any magnetic field in the
magnetosheath will, of course, modify this current system, but
not the field inside.

When the T87 cross-tail current was fit to data, it was
combined with a different magnetopause model, based on an
exponential-polynomial expansion. Therefore it does not make
much sense to discuss the accuracy of the resultant field in the
present calculation. It is, however, instructive to study the effect
of independently changing the magnetopause size and shape,
keeping the cross-tail current fixed. We evaluate the effect of
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Figure 6. Field line plot of dipole and cross-tail current field
with both sources shielded, the dipole tilted by ¥ =30° and the
tail current sheet appropriately shifted.
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Figure 7. Current flow lines on the magnetopause: (a) as viewed
from above the dawn flank, (b) projected onto the x-z plane and
(c) projected onto the y-z plane.

these variations on the subsolar and geosynchronous magnetic
fields and on the footpoint latitude of the polar cusp. Both the
Earth's dipole and the cross-tail current are included as internal
sources, the ring and Birkeland currents are not.

The magnetopause changes its size and shape in response to
the changing solar wind. Changes in size are primarily an effect
of changing solar wind dynamic pressure P4y, =nm v,
proporl:ional to P’,’y/ff [Sibeck et al., 1991]. Changes in shape (i.e.,
flaring) are thought to result from the competing effects of
dayside reconnection and nightside activity. Let pressure P,

19,399

correspond to the ellipsoid fitted by Sibeck et al. [1991] for
intermediate values 1.47 nPa < Py, < 2.60 nPa. Assuming here
a self-similar variation, Table 1 compares the characteristic
dimensions, the footpoint latitude of the cusp (defined in this
context by the location of the magnetic field null point on the
model magnetopause), noon geosynchronous field and subsolar
field contributions for dynamic pressures 0.5P,, Py, 2P,. The
flaring angle of these three surfaces at x=0 is 31.7° and we use
the T87 cross-tail current for Kp = [2; 2, 2*].

The flaring angle, however, may vary independently,
depending on the amount of magnetic flux in the tail, which itself
is a function of the past history of magnetic reconnection. To
model such variations, the same Kp = [2;2,2"] cross-tail
current sheet is enclosed in three different magnetopauses of
different flaring angle. The desired flaring angles are obtained by
adjusting the average magnetopause while the subsolar distance
and the distance to the ellipsoid center are kept fixed. The results
appear in Table 2.

The footpoint latitude of the cusp seems to be strongly affected
by the flaring angle, but not as much by changes in the solar wind
dynamic pressure. The tabulated field strengths due to the
shielded dipole are larger when the magnetopause is compressed
and smaller for increased flaring, as expected. The tabulated
field strengths due to the shielded cross-tail current are opposite
to the dipole field in both direction and behavior. These
estimates indicate general behavior but are limited in that one
would not expect the cross-tail current to remain constant while
the magnetopause changed shape and/or size and vice versa.

Summary

We have developed a method for obtaining the magnetopause
field confining the tail field inside a prescribed ellipsoid of
revolution, which gives a good approximation of the observed
magnetopause [Sibeck et al., 1991]. The field of any other
internal source, for example, ring or Birkeland currents, may be
confined by using the same method.

The model fields obtained here use the T87 tail current model
of Tsyganenko [1987] and are meant only to illustrate the
method. Examples demonstrate the effect of changing the size
and shape of the prescribed magnetopause and a comparison to
the numerical method of Mead and Beard [1964] is given in the
appendix. In the future such tail-shielding expansions may be
combined with a representation of the tail field as one of the
modules in a global representation of the magnetospheric field,
whose parameters are fit to data. Only then will the actual
expansion terms become meaningful.

Appendix: Shielding Based on the Biot-Savart
Equation—An Independent Test for the Scalar
Potential Method

An independent method for computing the shielding magnetic
field, based on a numerical procedure suggested by Mead and
Beard [1964] that uses the Biot-Savart equation, is used to shield
the T87 cross-tail current. The results are then compared to our
previous analytic result.

An outline of this method is as follows. Consider a surface S
enclosing an electric current system, some part of which may
follow the surface as a boundary current. The problem is to find
the distribution of shielding currents on the surface S, consistent
with making B =0 in the exterior. Consider a point r inside S
lying very close to the boundary. The total field at this point is
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Table 1. Cusp latitude, Subsolar Field (Including Shielding Field) and Noontime Geosynchronous Field are Given for

Different Size Magnetopauses Corresponding to Different Solar Wind Dynamic Pressures

Subsolar Field

Magnetopause Geosynchronous Field
SW Pressure X PE Pr Cusp Latitude ~ Dipole Tail Total Dipole  Tail '~ Total
P=0.5 P, 124 165 319 78.1° 1249 133  111.6 39.8 8.6 31.2
P=P, 11.0 14.7 284 78.7° 133.8 123 121.5 56.3 8.5 47.7
P=20P, 9.8 13.1 253 79.1° 147.1 113 1357 79.6 84 71.2

Subsolar distance (xs), magnetopause radius at the Earth (p = pg at x = 0) and magnetopause radius in the tail
(p = pg at x = —65) are given in Ry and magnetic field strengths are given in nanotesla.

B =B, +Byp (A1)
where B, and By are contributions from the internal part of the
current system and from that lying at the boundary, respectively.
The assumption of complete shielding of the magnetic field
outside the boundary is equivalent to the statement that B is
tangential to S and equals the jump in the field across the
infinitely thin magnetopause. This yields an equation for the
surface current density

UK XxXn = B, +Byp (A2)
in which n is an inward unit normal to S and Byp can be
expressed as a Biot-Savart integral containing explicitly the
surface current, thus reducing (A2) to an integral equation for K,
equivalent to that used by Beard et al. [1982]

1 K()x(r-r) q

—_— ’ A3
PRES S} a3

Following Mead and Beard [1964], we avoid problems with the
singularity in the integrand by decomposing Byp into a sum of
two terms

By = B, +B,

where B, is the contribution of a small area element AS in the
immediate vicinity of r and B, is the contribution of the rest of S.
The singularity is confined to the vicinity of AS. Viewed from
points infinitesimally close to the boundary, AS appears as an
infinite plane, and therefore the local current density K(r) creates
fields (B,, —-B,) on opposite sides of the boundary. The other

components B;,, and B, are continuous across the boundary, so
just inside one gets

B(r) = B+ B.+B,
and just outside

0 =B,+B-B,

Adding the two equations, we have

B(r) = 2(Bjy +B.) (Ad)

Since

B, = ﬁj' K)x{r—r) (AS)
S-AS

© an e—rf’

we get from (A4) and from U K(r) =n X B(r)

K(r) = nx[—z-Bim + !

K(r')x(r-r’)
Ho 27 Js-As

Il' — r'|3 ds :| (A6)
This may be viewed as a recursion for obtaining K(r), starting
from K =0 on the right. This equation was used by Tsyganenko
[1976, 1981] for shielding the magnetospheric field in earlier
models. It is a powerful method, applicable for any shape of the
shielding surface; however, it has a disadvantage: the final
solution of (A6) is only available numerically in the form of large
arrays of the electric current components. Nonetheless, it is a
good tool for testing our analytic solutions; results of such a test
are described below.

Table 2. Cusp Latitude, Subsolar Field (Including Shielding Field) and Noontime Geosynchronous Field are Given for

Different Flaring Angles (at x = 0)

Magnetopause Geosynchronous Field ~ Subsolar Field
Flare Xg Pr Pr Cusp Latitude  Dipole Tail Total Dipole  Tail Total
28° 11.0 12.7 245 80.4° 1405 100 1305 571 6.4 513
31.7° 11.0 14.7 284 78.7° 133.8 123 1215 56.3 8.5 47.7
35° 11.0 16.7 322 77.3° 129.4 144 1150 55.2 10.7 445

Subsolar distance (xg), magnetopause radius at the Earth (p = py at x = 0) and magnetopause radius in the tail
(p = pr at x=—65) are given in R and magnetic field strengths are given in nanotesla.
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Figure 8. Thenet B, at y =z =5 Ry as a function of x for the shielded Kp = [0; 0, 0"] T87 cross-tail current is
plotted using both potential and Biot-Savart shielding for purposes of comparison.

We chose the integration surface S to be the same ellipsoid X
as was used in finding our analytic solution. The internal field
B, is that produced by the T87 current sheet; however, an
important difference between this numerical method and the
analytical scheme is that the field B, in (A6) is only the
contribution of the part of the T87 current sheet lying inside the
magnetosphere (hence computed numerically), while in
computing the expansion coefficients (10) we used analytical
formulas giving the field of the full T87 current, which extends to
infinity outside the magnetopause. The ellipsoid boundary was
divided into 1971 elements comprising a non-uniform mesh,
covering the surface from the subsolar point up to x=—77 Rg in
the tail. Magnetopause currents were evaluated by solving (A6)
iteratively; for each iteration, the components of K at the center
of each element were found by summing over the remaining
elements. The iterations converged quickly, 8-10 cycles were
quite sufficient to obtain a self-consistent solution.

Figure 8 shows a profile of the z component of the numerically
computed field of a shielded current sheet along a line parallel to
the x axis, compared with the corresponding result given by the
analytical solution (6). The difference between the two plots is
negligible, becoming significant only outside the model
magnetosphere, where the numerical solution abruptly goes to
zero, as it should, while the harmonic expansion yields a
continuous extension of the internal solution to the outside. As
already noted, since the shielding procedure ensures zero normal
component at the boundary, we can set B = 0 outside the
ellipsoidal cavity.
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