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Abstract. Disk-shaped current distributions are useful tools in modeling the
magnetospheres of Earth and other planets and have also been adapted for modeling
the geotail. Such models usually start with an axisymmetric vector potential but may
be modified to account for observed asymmetries, variable thickness, and warping in
response to an inclined orientation of the planetary dipole axis. Models of this type
until now either have lacked the ability to simulate a sharp inner edge of the current
and to control accurately its falloff with distance or did not allow a simple analytical

representation. Here existing methods will be reviewed, after which a new class of
models which overcomes the above deficiencies and also allows the modeling of
current disks of finite thickness flanked by current-free regions will be presented.

1. Introduction

The empirical modeling of the magnetic field in planetary
magnetospheres is best handled by a modular approach, that
is, by developing separate representations for the principal
components of the field and then adding them together. A
commonly observed element of magnetospheric current sys-
tems is a warped current sheet of finite thickness that varies
in space and time. In some cases, for example, in the
magnetospheres of Jupiter and Saturn, the sheetlike currents
are almost axisymmetrical; in the Earth’s magnetosphere,
however, certain asymmetries are observed in the ring
current, and in addition the inner tail current sheet resembles
a disk current confined within a relatively narrow sector of
longitudes. '

The most straightforward way of computing the magnetic
field produced by any given current system is to calculate the
Biot-Savart integral. However, spacecraft experiments pro-
vide the magnetic field data rather than the electric currents.
Furthermore, not only is Biot-Savart integration too cum-
bersome a procedure for routine tracing of field lines, but it
also fails to characterize the field by a small number of
well-defined parameters which can be fitted to observations.
Such fitting is essential for extracting from data the under-
lying distribution of electric currents [e.g., Tsyganenko,
1990} and thus justifying the precise configuration of j used
by the model. To obtain the information from data, models
should be based on flexible and simple analytical functions,
which could yield a large variety of magnetic field configu-
rations parameterized by weight coefficients and geometrical
factors and satisfying some basic requirements, including the
divergence-free condition V- B = 0. '

In this work we briefly survey existing methods for
modeling various current sheets and then describe in more
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detail a new analytical representation capable of reproducing
a wide class of magnetic fields induced by an equatorial
current sheet of finite thickness. As shown below, the
method allows a further generalization, making it possible to
model warped current sheets with a spatial variation of the
current sheet thickness.

2. Models Based on the Spread-Out
Current Filament Integration

Tsyganenko and Usmanov [1982] and Tsyganenko [1987]
(referred to henceforth as TU82 and T87, respectively)
proposed a simple and flexible model of the Earth’s mag-
netospheric tail current sheet with a finite thickness con-
structed as a continuous distribution of infinitely long
straight current filaments. Each filament is parallel to the y
axis, carries a current dI, and lies in the equatorial plane z =
0, producing an axially symmetric magnetic field
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with circular force lines centered on the filament axis. At
large distances from the axis (p >> D), the p-dependent part
of (1) tends to 1/p, fitting a curl-free field from a thin wire,
while for p < D it varies as p/D?, giving the field of a current
density uniformly distributed in a cylinder. Approximating
the tailward variation of the current density df/dx by simple
analytical functions (linear in TU82 and inverse powers of (x
— x,) in T87), the integration can be done analytically,
resulting in compact expressions for B, and B, (see the
original works for details). The B, component remains
identically zero, and this imposes some limitations on the
model: it certainly works better in the far and middle tail
regions, where the field is stretched along the Sun-Earth line,
but worsens at dawn and dusk in the near tail, where the
current flow lines approximate circular arcs. This deficiency
was partially remedied in TU82 and T87 by introducing into
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the expressions for B, and B, a “‘form factor’’ f(y) which
falls off toward the tail flanks and forces the current flow
lines to bend in a desirable way, as shown in Figure 3 of
TUS82. However, such a ‘“‘quick fix’’ solution is incapable of
taking into account the observed geometry of the inner tail
current sheet and the relatively large values of B, on the
dawn and dusk sides.

A search for a better representation of the near-tail mag-
netic field resulted in analytical models based on disklike
equatorial current sheets [Connerney et al., 1981; Tsyga-
nenko, 1989a] (referred to henceforth as CAN81 and T89,
respectively) that are briefly discussed in the next section.

3. Models Based on the Equatorial
Current Disks
Another approach starts from the equation for the vector

potential A. Assuming that all currents are confined to the
equatorial plane z = 0, A everywhere else satisfies

VxVxA=0. (2a)

We use cylindrical coordinates (p, ¢, z) and assume axially
symmetric azimuthal electric currents, which implies A p =
A, = 0 and reduces (2a) to the following equation for the
azimuthal component 4 , = A of the vector potential:

3’4 9 [13(pA)
.._7+ —_— J—
az ap [p dp

=0 (2b)

Separation of variables leads to a general solution

A= f TC () exp (AAlZ) dA ()
0

where J; is the Bessel function. The function C(A) contains
all relevant information on the distribution of the azimuthal
electric current in the current sheet and can be completely
defined by imposing appropriate boundary conditions.

One way to impose the boundary conditions, used in
CANBI, is to specify the distribution of the electric current
in the equatorial plane as

2 0A

I(p)=——
Ho 9z z=0

) (4)
where I(p) is a given function of the radial distance from the
axis of symmetry. This approach was successfully employed
for constructing the CAN81 model of the Jovian current
disk, in which the function I(p) had an abrupt inner cutoff
and fell off outward as p“l; however, the assumed current
profile did not allow all components of the magnetic field to
be derived in a closed analytical form.

An alternative approach, developed in T89, is to specify
the distribution of the transverse component of the magnetic
field: '

1 a(pA)
By(p) = - —2 , )
p 9p z=0

There is a very limited number of analytical approximations
for I(p) or B,(p) which, used as boundary conditions, yield
the vector potential (3) in a compact analytical form. Among
such functions for B,(p) is the form specified in T89:
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B,(p) ~ (a®+ p?H 172, (6)

providing maximal depression amplitude at the origin and a
gradual outward decay of the disturbance field. Combining
(6) with (5) and (3) and applying the Fourier-Bessel trans-
form leads to a very simple analytical vector potential:

Alp, 2) =Cp Ml(a+|2)*+ p21" = (a + |2))}, (7

where a is the characteristic scale length, roughly corre-
sponding to the position of the maximum of the electric
current density. Substituting (7) in (2b), it can be easily
verified that the vector potential is curl-free everywhere
except on the equatorial plane. As shown in T89, one can
obtain a family of independent current disk vector potentials
by taking a sequence of derivatives of the ‘‘basic-mode’’
potential (7) with respect to the parameter a. We refer the
reader to the original T89 and CANS81 papers for further
details and proceed in the next section to describe a new
family of solutions for the vector potential.

4. Axisymmetric Curl-Free Vector Potentials:
A New Family of Basic-Mode Current
Disk Models

The analytical vector potentials derived in T89 were used
for modeling the magnetic field produced by the ring current
and the tail current sheet in the Earth’s magnetosphere.
Special measures were taken to simulate the observed day-
night asymmetry of the ring and tail current systems: the
vector potentials were multiplied by appropriate truncation
factors, the current sheet thickness was assumed to vary in
the Sun-Earth direction, and warping of the current sheet
due to the geodipole tilt was introduced through a modifica-
tion of the z dependence. An advantage of using vector
potentials is that none of these modifications violate the
condition V- B = 0.

However, the T89 model had two troublesome deficien-
cies. First, it failed to properly reproduce a steep profile of
the electric current density in the vicinity of the inner edge of
the current sheet, a feature that is at times indirectly
evidenced at tailward distances of 5-8Rp [Sergeev and
Malkov, 1988]. It also lacked the diamagnetic eastward ring
current that exists in the inner L shells [e.g., Lui et al.,
1987]1. Instead, the T89 equatorial current profile exhibited
an approximately linear increase of the westward current
I(p) in the interval 0 < p = a. Second, even for the
“‘slowest-mode’’ vector potential (7), the current density
decreased outward as p~2 for p >> a, while the average
observed decrease is much slower [e.g., Behannon, 1968];
this deficiency caused some problems with regard to cor-
rectly reproducing both B, and B, distributions in the tail
[e.g., Stern and Tsyganenko, 1992; Peredo et al., 1993].

These considerations motivated us to develop further the
analytical modeling of the tail current system. Our general
approach was to find analytical solutions to (2b) yielding the
desired current distribution near the axis of symmetry and
having different variation scales at larger distances. Once
such a family of basic functions is obtained, one can easily
match a wide variety of electric current profiles by con-
structing appropriate linear combinations of the analytical
solutions.

The starting point of the present study is to specify a
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Figure 1. (Left) Variation of the electric current density in

the equatorial current disk with radial distance as prescribed
by the original model (8); (right) plot of the corresponding
Fourier-Bessel amplitude C(A).

desirable profile for the electric current. We have chosen it
as a piecewise-continuous function

I(p) =0 p=F
T p=p

I(p) = I, sin® (—

2 pr—p
pP2—p

) pP1<p<p; ®)

I(p) =1,, exp p>ps

displayed in Figure 1 (left panel) and completely defined by
its peak value I,,, the parameters of the inner slope p; and
p5, and the e-folding scale L of the descending outer part of
the profile. The plot in the right panel of Figure 1 shows the
typical shape of the Fourier-Bessel amplitude C(A) corre-
sponding to the function (8) and found by numerically
evaluating the integral

=52 J " L)) p dp ©
0

As seen in the plot, the function C(A) is characterized by a
rapidly decaying oscillatory behavior, suggesting an expan-
sion of the form

N

C(A) = 2 fiexp (—a;A) sin (B;A):

i=1

(10)

as a possible candidate for fitting the function C(A) by least
squares. An outstanding advantage of the expansion (10) is
that it allows the integral (3) to be expressed in a closed
analytical form. Moreover, it was found in initial test runs
that the least squares fits of the curve for C(A) in Figure 1 by
the sum (10), even with N = 2, yielded the accuracy within
afew percent. Thus encouraged, we chose to base our model
on the representation (10); however, instead of fitting C(A)
as given by (10), we fitted to (8) the corresponding analytical
function for the electric current that follows from (10) upon
substitution in (3) and subsequent derivation of I(p) from (4).
To reduce the number of free parameters, we assumed a; =
B; in (10) and, after inserting it in (3), obtained

N

A= fi Jm Ji(xp) exp [-A(B; + |2)]
0

i=1

N =)
-sin (B;A) d)t=p2f,~"—ﬁ——, (11)
e 1052

where
Sii=[Bi+ 2>+ (o + B2,
Sy =1B;+1z2)*+ (p — B,

2B,
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Equation (11) can be verified by using formula 6.752.1 of
Gradshteyn and Ryzhik [1980], which after taking the deriv-
ative with respect to the parameter b, yields the result iii the
right-hand side of (11). The corresponding distribution of the
electric current density in the equatorial plane follows from

4):
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(12)
and this is the analytical function used for fitting the current
profiles (8).

5. Application to the Ring Current
and Magnetospheric Tail

The next step was to choose several basic-mode functions
(8) with different rates of tailward decrease of the electric
current density and to find best-fit values for N coefficients f;
and N nonlinear parameters B8;. The calculations reported
here were done for N = 7, p; = 4, p, = 8, and five values
of the e-folding distance: L = 100, 40, 15, 8, and 4 (all the
distances are given in arbitrary units, e.g., in planetary
radii). The first value yields the slowest variation of I(p) and
thus the most extended current disk, while the last one
represents a sharply peaked current confined within the
interval 5 = p = 15. We also experimented with more
localized profiles which rise and fall like a sinusoidal wave
given in the middle part of (8) extended over the entire
interval p; < p < 2p, — p;.

Sample results of the least squares fitting are shown in
Figures 2 and 3. Figure 2 displays long-range plots of the
electric current profiles for the entire fitting interval 0 < p <
300. The curves correspond to three values of L; in each plot
the original functions (8) and the corresponding approxima-
tions (12) are graphed as solid and broken curves, respec-
tively (the difference is almost indistinguishable in the plots
for L = 15 and 40). Four panels in Figure 3 show the current
density profiles on a magnified scale along the p axis in order
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Figure 2. Plots of the electric current density for three
values of the e-folding distance L. The solid curves corre-
spond to the original distribution (8); and the broken curves
are those given by best-fit seven-term expansions (12).

to better illustrate details in the inner region. In all cases; the
seven-term expansions (12) accurately reproduce the current
profiles. The values of the coefficients f; to f; and the
parameters B8; to B for the six models are listed in Table 1.
By combining the six solutions into a linear supérposition of
six vector potentials (11) with appropriate weight factors,
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one can match a wide class of possible axisymmetric mag-
netic field distributions produced by infinitely thin equatorial
current disks with various radial profiles of the electric
current density, ranging from a very extended one given by
the slowest-mode solution with L = 100 to a very localized
ring current (Figure 3, top left and bottom right panels,
respectively). Of course, the number of basic mode func-
tions (six) as well as the number of terms N = 7 in the
expansions (11) and (12) may be varied according to the
required accuracy and the scatter in the input magnetic field
data. The purpose of the present work is simply to describe
the method rather than recommend a specific format.

As indicated above, all six sets of coefficients given in
Table 1 coiespond to the same position and slope of the
inner edge of the current profile defined by the particular
choice of the parameters p; = 4 and p, = 8. However, the
models obviously allow an additional degree of freedom
through an appropriate scaling of the radial distance p.
Namely, it is easy to verify from (9) and (3) that any scaling
transformation of a given electric current profile I'(p) =
I(kp) leads to a modified vector poteritial A’(p, z) = k™~
A(kp, kz) and hence B'(p; z) = B(kp, kz). In other words,
the radial scaling of the current generates a family of
self-similar magnetic fields.

The next step in generalizing the model is to modify the
vector potential (11) by replacing | z| by a smooth function in
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Figure 3. Plots of the electric current density similar to those in Figure 2 but on a magified horizontal
scale, showing detailed shapes of the profiles near the origin.
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Table 1.
Outward Decrease of Current Density

Coefficients f; and Nonlinear Parameters B; for the Current Disk Models With Different Rates of

Value at e-Folding Length Given

L=238

L=4

Ring Current

0.118616E+04
0.252925E+04

—0.233342E+04

0.818938E+03

—0.175597E+03

0.345697E+02

—0.427391E+01

0.127500E +02
0.500500E+01
0.390000E +01
0.303750E+01
0.224000E +01
0.165500E +01
0.116700E +01

0.162956E +04

—0.999837E+03

0.604064E+03

—0.294699E +03

0.338718E+02

—0.532189E+01

0.398828E+00
0.545000E +01
0.351000E+01
0.254000E+01
0.214400E+01
0.154000E +01
0.112200E+01
0.800000E +00

0.325977E+09

—0.381152E+09
—0.994041E+08

0.161100E+09

—0.652105E+07
—0.287028E+03

0.388412E+02
0.816698E+01
0.805331E+01
0.827317E+01
0.793957E+01
0.757452E+01
0.396497E+01
0.285116E+01

L = 100 L = 40 L=15
fi  0.891397E+05*  0.110383E+05  0.283794E+04
f,  0.309039E+05 0.835763E+04  0.223097E+04
f;  0.830897E+04 0.484295E+04  —0.110543E+05
f.  0.288275E+04 0.735456E+04  0.218400E+05
fs  0.376743E+04  —0.128267TE+07  —0.200364E+05
fo  —0.325129E+04 0.226321E+07  0.898058E+04
' 0.992913E+02  —0.986108E+06  —0.829337E+01
B,  0.111671E+03 0.599926E+02  0.204500E+02
B,  0.508541E+02 0.355469E+02  0.941250E+01
By 0.263637E+02 0.198489E+02  0.587500E+01
Bs  0.137853E+02 0.809250E+01  0.525000E+01
Bs  0.491787E+01 0.609094E+01  0.452500E+01
Bs  0.447682E+01 0.60187SE+01  0.423750E+01
B, 0.304050E-+01 0.593437E+01  0.218800E+01

*Read as 0.891397 x 10°.

the vicinity of the equatorial plane, so that the infinitely thin
current sheet is replaced by one having a finite thickness.
The easiest way is to use (z> + D?) 12 instead of |z, as was
done in T89. Another way is to replace |z| by an interpolat-
ing function (either a parabola or a spline) for | z| < D, taking
care to preserve the continuity of the first derivative at z =
+D. In this case, the modification does not introduce any
spurious electric current density outside the current layer
(such currents, though very small, were present in the T87
and T89 models; they can be removed by using a similar
method, as proposed by Stern [1990]). The last approach was
used in the present work: instead of |z|, we substituted in

an
|zl >D
|z] < D.

¢ =z
{=0.5(z%D + D)

As mentioned above, one more desirable modification is
the inclusion of hinging and warping of the current sheet in
response to variations in the planetary dipole tilt angle .
For relatively small tilt angles (as is the case in the Earth’s
magnetosphere) a realistic warped current sheet can be
modeled through the replacement z — (z — z,), where the
function z;, = z,(x, y, ¥) describes the shape and position
of the current sheet and its dependence on the dipole tilt
angle [e.g., Tsyganenko, 1989a]. Several studies have de-
duced the surface shape function z; from observed neutral
sheet crossings [Russell and Brody, 1967; Fairfield, 1980,
Gosling et al., 1986; Dandouras, 1988] or from model-fitting
results [Tsyganenko, 1989a; Stern, 1990; Peredo and Stern,
1991; Peredo et al., 1993].

To illustrate the technique introduced in the present study,
we use the current sheet surface used by Peredo et al. [1993]
in their derivation of a local tail model:

(13)

4
y .

z5(y, ¥) = (RH -G }TL;‘) sin ¥, (14)
where Ry = 7.02R gives the tail ‘‘hinging distance,”’ while
the amplitude G = 34.03 and the scale length L, = 19Rg
control the spatial variation of the warping in the y — z plane

(no x dependence was assumed in this particular example).
Furthermore, as in the T89 model, the present treatment can
also incorporate a spatially varying current sheet half-
thickness D(x, y). Summarizing the above two transforma-
tions, all occurrences of |z| in (11) are replaced by

(=lz—z4x,y, ¥)

[Z - Zs(x9 Y, \I,)]Z
D(x, y)

|z—z4(x, y, ¥)|>D(x,y) (153

.=0.5 + D(x, y) (15b)

|z = z4(x, ¥y, ¥)| < D(x, y).

After that, expressions for the components of the magnetic
field B = V x A and electric current density j = (1/uq)V X
B can be found from (11) and (15) in a straightforward way.
Figure 4 illustrates the north-south variation of the cross-tail
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Figure 4. Plots of the distribution of j, component of the
electric current across the current sheet with a finite half-
thickness D = 1.72 atx = —10 and y = 10. The dashed and
solid curves are for untilted (¥ = 0) and tilted (¥ = 35°)
dipoles, respectively, showing the effect of warping the
current sheet as given by (14). In the tilted case, the current
sheet is shifted in the positive z direction; a small artificial
current density also emerges outside the current sheet,
owing to the modification of the initially curl-free vector
potential.
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Figure 5. Two-dimensional projections of the electric cur-

rent flow lines in the warped current disk (¥ = 30°) crossing
the midnight meridian plane at x = —20 and x = —30. A
small amount of the current flows out of the sheet at its upper
boundary, which is an artifact of the tilt-related deformation.

component of the current density for the slowest-mode
solution with L = 100. The dashed curve in Figure 4
represents j, for a configuration with zero dipole tilt angle,
while the solid curve displays the corresponding density for
a 35° tilt. In both cases a constant current sheet half-
thickness D = 1.72 and the warped surface (14) have been
used. The tilt-related deformation of the current sheet is
illustrated in Figure 5, which shows two two-dimensional
cuts of the electric current flow line structure for ¥ = 35°,
The separation between neighboring current flow lines is
such that a constant amount of current is contained between
the lines. As seen in the plots, there is a small amount of in-
and outflowing current at the sheet boundary; this effect,
absent for ¥ = 0, is an artifact of the tilt-related modification
of the vector potential and can also be noticed in the j,
profile shown in Figure 4 (solid curve).

The model current distributions described here are all
ring-shaped, making them appropriate for modeling ring
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currents, both that of the Earth and also much stronger ones
like those of Jupiter and Saturn.

Such models are, however, also useful for modeling the
field of the Earth’s magnetotail current. The tail current
sheet is observed to fit smoothly to the ring current [Frank,
1971; Sugiura and Poros, 1973], and its flow lines deduced
from ratios B, /B, [Tsyganenko et al., 1993] maintain grad-
ually diminishing curvature throughout the near-Earth tail.
As already noted, the T87 model is based on straight
filaments and does a poor job of describing this curvature,
which is why T89 was based on ring currents, as described in
equations (2a)—(7).

While the use of ring currents in the tail allows curvature
to be represented, a new problem arises: how to avoid an
unphysical contribution from portions of the current flow
outside the magnetopause. Ideally, the cross-tail current
should be deflected upon reaching the magnetopause and
should then continue along the surface.

In the T89 model, the vector potential A was modulated by
a weight function W(x, y), which indeed diverted the
current but into a rather broad pattern. The effect of the
closure current system was simulated by introducing a pair
of additional current sheets shifted by 30-40R in the z
direction, each sheet carrying about half the current that was
in the central sheet and flowing oppositely to the latter, that
is, from dusk to dawn. However, this was just a ‘‘zero-
order”” solution, capable of taking into account only the
gross effect of the return current system. A fundamentally
different remedy which does have the desired effect is the
confinement of the ring current inside a prescribed magne-
topause surface by adding a magnetopause field represented
by a scalar potential [Voigt, 1981; Stern, 1985; Tsyganenko,
1989b1; appropriate currents are then obtained by assuming
B = 0 outside the boundary. The calculation of such shield-
ing is beyond the scope of this study, but it should be noted
that promising work in this direction was reported by Sotire-
lis et al. [1993] and will be presented in a later article.

6. Summary

We have presented a new analytical technique to describe
the magnetic field from disklike electrical current sheets.
The technique follows from an axially symmetric represen-
tation for the magnetic vector potential, leads to compact
and flexible expressions for the magnetic field, and may be
modified to represent nonaxisymmetric configurations. A sam-
ple configuration, corresponding to a warped current sheet like
the one across the Earth’s magnetotail, is used to illustrate the
feasibility of the approach. Separate ‘‘modes’’ can readily be
combined to simulate the tailward variation of the field and
electric current in a realistic magnetotail; use of the vector
potential facilitates inclusion of spatial variations in the current
sheet thickness and/or tail warping effects due to tilt of the
planetary dipole moment without violating the divergence-free
condition. The proposed method can be used for quantitative
modeling of the Earth’s magnetotail and ring current field as
well as those in the magnetospheres of Jupiter, Saturn, and
other planets with similar magnetic field structures.
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