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Abstract. Empirical data-based models of the magnetospheric magnetic field have been 
widely used during recent years. However, the existing models (Tsyganenko, 1987, 1989a) 
have three serious deficiencies: (1) an unstable "de facto" magnetopause, (2) a crude 
parametrization by the lip index, and (3) inaccuracies in the equatorial magnetotail B• 
values. This paper describes a new approach to the problem; the essential new features 
are (1) a realistic shape and size of the magnetopause, based on fits to a large number 
of observed crossings (allowing a parametrization by the solar wind pressure), (2) fully 
controlled shielding of the magnetic field produced by all magnetospheric current systems, 
(3) new flexible representations for the tail and ring currents, and (4) a new "directional" 
criterion for fitting the model field to spacecraft data, providing improved accuracy for field 
line mapping. Results are presented from initial efforts to create models assembled from 
these modules and calibrated against spacecraft data sets. 

1. Introduction 

Quantitative data-based models of the distant geomagnetic 
field have become one of the essential tools for mapping 
the Earth's magnetosphere. They help to extract more in- 
formation from large amounts of spacecraft measurements 
and make it possible to go beyond qualitative cartoons in 
describing the average configuration of geomagnetic field 
lines, which is crucial for the interpretation of ground and 
ionospheric phenomena [e.g., Elphinstone et al., 1991] and 
for supporting spacecraft observations [Baker et al., 1993]. 
Accurate magnetic field models are important for numeri- 
cally tracing the orbits of solar energetic particles [Bieber et 
al., 1992], for studying the dynamics of the magnetospheric 
plasma [e.g., Spence et al., 1987; Cao andLee, 1994], and in 
quantitative simulations of the substorm effects [e.g., Pulkki- 
nen et al., 1991 ]. 

The works listed above have employed the empirical data- 
based models of Tsyganenko and Usmanov [ 1982] and Tsy- 
ganenko [ 1987, 1989a]. Though widely used in recent years, 
these models have several deficiencies. First, they use an 
oversimplified method for representing the field from the 
magnetopause currents. In all of the above models, this field 
was approximated by sums of terms containing factors with 

nection to Earth. This approach is computationally feasible 
and yields a magnetopause with a fairly realistic shape and 
size in the front region IXml _< 10-15 However, 
farther down the tail the de facto magnetopause becomes un- 
stable and deviates from its expected position, especially in 
the regions where data are sparse or absent. For large tilt an- 
gles of the Earth's dipole, there also emerge spurious "open" 
field lines near the polar cusps. All these features reflect a 
lack of explicit control over the shape the magnetopause and 
the distribution of the interconnection magnetic field on the 
boundary. No direct data on the magnetopause position were 
used in the models so far, and the de facto boundaries should 
be considered as a result of an outward extrapolation of the 
model field beyond the region covered by measurements. 

The second limitation is related to the parametrizing of 
the model. In contrast to the internal field of the Earth, the 
extraterrestrial magnetospheric field is highly variable: in 
addition to small-scale irregularities and substorms, it ex- 
hibits large-scale changes due to varying solar wind pressure 
and effects of the interplanetary magnetic field. In the mag- 
netic field models cited earlier, the only parameter used for 
quantifying the state of the magnetosphere was the Kp index. 
This way of parametrizing a model, though crude, was con- 
venient, since the Kp index is available for any interval of 

exponential XcsM dependence, multiplied by polynomials -,• time, while the solar wind data often are not. Note also that 
in YcsM and Zas•. The polynomial coefficients were fit- ' the Kp index reflects (though in a very indirect manner) the 
ted by least squares to large spacecraft data sets, and the 
model magnetopause appeared as a "de facto" surface that 
separated two families of field lines: those with at least one 
intersection with the Earth's surface and those with no con- 
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actual degree of disturbance which already exists on Earth 
and in the surrounding space; by contrast, the current solar 
wind state (especially the IMF) appears, to some extent, as 
a potential factor, since it induces both immediate (directly 
driven) and delayed (loading-unloading)effects. However, 
in view of the 3-hour resolution of the Kp index and the fact 
that it mixes together effects of several physical processes, it 
is clear that the models need a better method for quantifying 
the magnetospheric conditions. 
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The third problem, encountered in studies of the nightside in the case of a fully closed model), the potential can be 
magnetic field configurations, is a poor fit to observations derived by solving a Neumann problem. This method was 
by predicted model values of the equatoral Bz in the tail used in several studies; however, until recently, it was ap- 
plasma sheet. According to our earlier result [Tsyganenko, plied mainly to the case of shielding the Earth's dipole field 
1989a], as well as that of an independent study of Fair- [Alekseev and Shabansky, !972; Voigt, 1972; Tsyganenko, 
field [1991], the models based on a quasi-two-dimensional 1989b]. Stern [1985] obtained the shielding potential for a 
representation of the field from the tail current sheet [Tsyga- simple model of the ring current as well. In a general case, 
nenko and Usmanov, 1982; Tsyganenko, 1987] significantly the field of any internal magnetospheric source, including the 
underestimate the field line stretching in the inner magneto- cross-tail current sheet and the large-scale Birkeland current 
sphere. On the other hand, at larger tailward distances the system, induces its own shielding currents at the magne- 
more recent model [7•yganenko, 1989a] yielded values of topause, which should also be taken into account. A special 
equatorial Bz that were too small, or even negative, espe- problem with the cross-tail current (and, probably, with the 
cially for quiet conditions. This drawback was mentioned in region 1 Birkeland current) is that its path does not lie en- 
the original paper and was discussed in detail in several later tirely inside the magnetosphere; instead, it extends up to the 
works [Stern and Tsyganenko, 1992; Donovan et al., 1992; boundary and forms there a closure circuit, contributing thus 
Rostoker and Skone, 1993; Peredo et al., 1993; Huang and to the shielding current [Sotirelis et al., 1994]. 
Frank, 1994]. There are two basic reasons for the problems 
with the equatorial tail Bz. The first stems from the fact that 
the net B, in the near plasma sheet (-30 _< X _< -5/•E) 
is a relatively small sum of two terms having large absolute 
values and opposite signs. The first term is the northward 
field BP p + B• s, produced by the Earth's dipole and the 
dipole-shielding (Chapman-Ferraro) currents, while the sec- 
ond term, B, T, is the southward contribution from the tail 
current sheet. Therefore the net Bz is very sensitive to varia- 
tions in both the magnetopause and tail current, so that even 
relatively small changes in the tail current intensity and/or 
geometry can produce large effects with regard to Bz. The 
second source of the Bz problem lies in the mathematical 
procedure for deriving the model parameters and also in the 
uneven coverage of the modeling region by spacecraft data. 
As is discussed in more detail in section 3, the standard least 

squares criterion employed in previous studies tends to op- 
timize the model for the tail lobes at the expense of the fit 
in the plasma sheet, which significantly reduces the mapping 
accuracy there. 

The purpose of this paper is to present initial results of 
recent efforts to develop a new data-based model, free from 
the drawbacks discussed above. Section 2 will describe 

methods for modeling the field of magnetopause currents; 
that field is resolved into several components, each of which 
arises in response to one of the current systems in the interior. 
Section 3 will present first results of assembling the fully 
shielded modules of the model, using new mapping-oriented 
optimization criteria. Section 4 will discuss prospects for 
parametrizing the model by solar wind parameters and is 
followed by a brief summary. 

2. Derivation of the Magnetopause Field for 
Realistic Model Boundaries 

Since the pioneering works of Midgeley and Davis [1963] 
and Mead and Beard [1964], the problem of representation 
of the magnetopause magnetic field has been addressed by 
many authors (see the review by Tsyganenko [1990] for a 
comprehensive list of references). Nowadays, the preferred 
approach is to specify an appropriate analytical boundary 
and represent the magnetopause field inside the magneto- 
sphere by using a scalar potential. Given a distribution of 

Voigt [ 1981 ] circumvented this difficulty by constructing 
a shielded taillike field as a product of a tailward stretch 
imposed on a shielded dipole field. This method provided 
visually reasonable configurations, in which the degree of 
the field line deformation could be easily varied to simu- 
late changes of the magnetotail geometry. However, stretch 
transformations give rise to spurious electric currents, and 
there is no simple way to keep them under control. As a 
result, models of that kind cannot correctly reproduce global 
effects of the tail current [Tsyganenko, 1990]. 

In the works cited above, the magnetopause shape was ap- 
proximated by simple analytical surfaces (paraboloid, cylin- 
der capped with a hemisphere, and ellipsoid). That imposed 
limitations on the shape of the model surface but, because of 
the existence of specific harmonic functions associated with 
the given shape, allowed an easy derivation of the coefficients 
of the corresponding expansions, using the orthogonality of 
eigenfunctions. Toffoletto et al. [1994] suggested a numer- 
ical solution for confining the dipole and cross-tail current 
fields within an arbitrary boundary. However, that method 
pays a high price by requiring a large array of numerical val- 
ues on a two-dimensional grid and an interpolation between 
them, to determine the field components at an arbitrary point 
in space. 

Fortunately, there exists an alternative approach that com- 
bines both features we need: arbitrary shape of the boundary 
and the possibility of compactly representing the scalar po- 
tential as an expansion in a suitable set of harmonic functions. 
This method was proposed by Schulz and McNab [ 1987] but 
has not been duly appreciated so far. Its essence consists 
in replacing the strict boundary condition imposed on the 
normal component of the magnetic field by a weaker one, 
requiring the condition to be satisfied only in a mean square 
sense. 

In this work the method of Schulz and McNab is used for 

constructing shielding potentials for the Earth's dipole, the 
ring current, and the cross-tail current sheet. Each source re- 
quires a separate choice of appropriate expansion functions, 
based on specific properties of the original field. In all cases 
we were able to construct very accurate solutions, even with 
relatively small numbers of expansion terms. 

2.1. The Shape of the Model Magnetopause 

The approximate "source-surface" method gives us a great 
the net normal component B,• at the magnetopause (zero freedom in choosing appropriate model boundaries and there- 



TSYGANENKO: MODELING EARTH'S MAGNETOSPHERIC MAGNETIC FIELD 5601 

fore allows to use shapes derived by statistical studies of di- 
rect observations of magnetopause crossings. The first such 
study was done by Fairfield [1971], who derived a best fit 
ellipsoid surface from several hundred magnetopause posi- 
tions observed by IMP spacecraft. Two decades later, Sibeck 
et al. [ 1991 ], Petrinec et al. [ 1991 ], and Roelof and Sibeck 
[ 1993] performed more detailed studies in which the effects 
of the solar wind pressure and of the IMF B, were addressed. 150 0 -50 - 1 O0 - 150 -200 

Petrinec and Russell [ 1993] introduced an indirect technique XGSU 
of remotely inferring the tail magnetopause shape from lobe Figure 1. Noon-midnight meridian section of the model 
field data, using an approximate pressure balance equation. magnetopause. The axially symmetric boundary is com- 
These works provided a good quantitative basis for model- posed of a hemiellipsoid, smoothly continued by a cylinder 

beyond the Moon's orbit. The size and shape of the magne- 
ing the magnetopause down to 30-40 RE tailward. There topause correspond to intermediate range of the solar wind 
is much less experimental information on the magnetopause dynamic pressure, 1.47 < psw _< 2.60nPa, as given by 
radius and flaring rate at larger distances. Behannon [1970] Sibeck et al. [1991]. - 
and Maezawa [ 1975] estimated the average tail radius near 
the Moon's orbit as 25-30 RE; the same estimate was ob- 
tained by Howe and Binsack [ 1972], who fitted an axially 
symmetric surface to then available spacecraft data. 

On the basis of these above results, we assumed a com- 
posite shape for the average magnetopause, a prolate hemi- 
ellipsoid of revolution in the front (up to tailward distance of 
60-70 RE), smoothly continued in the far tail by a cylindri- 
cal surface, as shown in Figure 1. Following the notation of 
Tsyganenko [1989b], the ellipsoidal part of the boundary is 
given by 

X - xo-a(1-cror) 

Y - a(cro 2 - 1)1/2(1 -- T2)l/2cosq5 (1) 
Z - a(cro 2- 1)•/2(1 - r2)•/2sinq5 

where X, Y, and Z are the GSM coordinates and the ellip- 
soidal coordinates r and q5 span the intervals 0 _< r _< 1 and 
0 _< q5 _< 27r, respectively. The parameters xo, a, and cro can 
be derived from the results of Sibeck et al. [ 1991] and Roelof 
and Sibeck [1993], who also modeled the magnetopause by 
axially symmetric ellipsoids but used a different mathemati- 
cal form, namely, g(r) - A X 2 + B X + C + y2 q_ Z 2 _ 0. 
The relationship between the parameters A, B, and C and 
those in (1), is as follows' 

cro - (1 -- A) -1/2 

B 
xo -- a- 

2A 

In this study we used the values xo - 5.48RE, a -- 
70.48 RE, and fro - 1.078, which correspond to A - 0.14, 
B - 18.2, and C - -217.2, given by Sœbeck et al. [1991] 
for the intermediate range of the solar wind pressure values 
1.47 _< Pdyn _< 2.60 nPa. 

Another useful set of formulas relates the standoff distance 

Rs, the terminator magnetopause radius RD, and the asymp- 
totic tail radius RT with the aforementioned parameters xo, 
a, and fro: 

Rs -- xo + a (cro - 1) 

RD -- •/RS (1 -- cr•'2)(2acro- RS) 
Rr - a •/rro2- 1 

(3) 

The corresponding numerical values for these quantities 
are Rs - 10.98 RE, RD -- 14.69 RE, and RT -- 28.38 RE. 

2.2. The Scalar Potential 

We now seek a potential magnetic field B MP = -•7U 
produced by magnetopause currents, which, when added to 
the field B int from an internal source, provides the required 
distribution of the net normal component B,• at the model 
boundary S. The potential U can be derived by solving the 
Neumann's problem 

V2U - 0 

OU I _/:•int q- B, - 0 On s --n 

(4) 

The first step is to choose an appropriate analytical rep- 
resentation for the scalar potential U. In contrast with the 
approach based on exact solutions [e.g., Stern, 1985; Tsy- 
ganenko, 1989b], no restrictions are imposed on the choice 
of eigenfunctions: any harmonic potential with a sufficient 
number of free parameters can be used. A practical way of 
constructing flexible scalar potentials is to use the expansions 

U - E ai X(b•, r) 
i,k 

containing variable amplitude coefficients ai as well as non- 
linear parameters b•, which may enter into the separate har- 
monics x(b•, r) as scale, shift, and/or rotation factors. 

Following Schulz and McNab [1987], we replace the 
boundary condition in (4) by a requirement of a minimum 
mean square of the residual normal field in the vector space 
{a, b} of the parameters ai and bi: 

min fs { OU(a, b rs) int,_ 2 {.b3 0.' - a, (5) 
In practice, the integration in (5) can be replaced by sum- 
mation over a set of K points having a sufficiently even 
distribution on the model magnetopause, so that the quantity 
to be minimized is 

1 • OU pint/_ 2 - {37. - ø 
k=l 

(6) 
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As is described below, this approach has been successfully A denser distribution of points was used in the front region, 
implemented to derive analytical potentials for the case of which lie closer to the dipole and therefore have larger Bdn ip 
full shielding (B,• - 0) of principal sources of the magneto- 
spheric magnetic field. 

2.3. Shielding of the Earth's Dipole Field 

Shielding of the dipole source is the simplest case, due 
to the following special properties of the dipole field [e.g., 

than those at large tailward distance. Even for such a rela- 
tively small number of terms, a very good quality of shielding 
was obtained, with typical values of {6B• 2 ) •/2 as low as 0.001 
nT and maximal lB. I not exceeding 0.003-0.005 nT. Later 
it was found that some of the nonlinear parameters bi and 
di tended to cluster in close pairs in the course of iterations, 

Tsyganenko, 1990]. First, the magnetic moment M of a while the corresponding coefficients Ai and Ci took opposite 
dipole tilted by the angle • with respect to the Z axis can be signs and rapidly grew in magnitude. That suggested a need 
represented as 

M = M II q- M ñ = M (C• sin • + 6z cos •) (7) 

and therefore the potential for an arbitrary • can be reduced 
to a linear combination of solutions for • - 90 o and • - 0 ø . 

Second, in the case of axially symmetric boundaries, the 
normal component Bn dip on the surface either varies as sin •5, 
where •5 = tan-•(Z/Y), or does not depend on •5 at all, for 
the cases • = 0 ø and • - 90 ø, respectively. With a proper 
choice of fitting potentials, this permits us to reduce the 
dimensionality of the problem from 2 to 1; in other words, it 
suffices to minimize {6B• 2 ) on a line rather than on a surface. 

What harmonic functions are the most appropriate for 
shielding the dipole ? Spherical harmonics, used by Mead 
[1964], Choe and Beard [1974], and Schulz and McNab 
[1987], rapidly diverge with increasing geocentric distance 
and provide satisfactory results only for/• < 8-10/•E. El- 
lipsoidal harmonics [Tsyganenko, 1989b] have appropriate 
behavior up to 40-60/•E tailward; however, they are equiv- 
alent to combinations of high-order polynomials of Cartesian 
coordinates and hence become unstable at larger distances. 
Other candidates are the parabolic [Alekseev and Shabansky, 
1972; Stern, 1985] and cylindrical [Voigt, 1972; Beard et al., 
1982] harmonics. The parabolic harmonics decay in the anti- 
sunward direction; however, there arise numerical problems 
at the dayside, close to the focus of the paraboloid. For that 
reason, in this work preference was given to the cylindrical 
harmonics, which have the desired behavior at both small 
and large distances and are the most feasible ones from the 
computational viewpoint. 

At an early phase of this work, the expansions 

to include in the expansions (8) and (9) "derivative" terms, 
obtained from the original cylidrical harmonics by differen- 
tiating with respect to the parameters bi and di, which yields 
U ñt ~ [p Jo(p/bi)+(X-bi)Jl(p/bi)] exp(X/bi) sin•and 
UIIt~ [X Jo(p/di) - p Jl(p/di)] exp(X/di). By construc- 
tion, these additional terms are also harmonic functions, but 
in contrast to the original cylindrical harmonics, they have 
a nonmonotonic variation with X and therefore increase the 

flexibility of the model potential. 
Finally, six-term expansions were adopted for the poten- 

tials U ñ and UII, each containing three "original" and three 
"derivative" cylindrical harmonics. After some algebra and 
denoting ai = Alibi, ci : Ci/di, the corresponding final 
expressions for the magnetic field components in the cylin- 
drical coordinates p - (y2 + Z2)1/2, • _ tan-1 (Z/y), and 
X, read as follows: 

3 X p 
B} -- sin •5 {- E ai exp(•-/) J1 (•//) + 

i=1 

x_) .= •-/ exP(bi bi bi (10) 

3 

B• -sin•5 (•ai exp(ff---•.)[J,(P--)/(P)- ß bi bi 
i=1 

•/ ] t5 .X [.X (/9)_ J0(.) + ¾ J0 
i----4 

N P---) exp(X) sin4• (8) S = 
i----1 

p2X 1)J, (P--)/(•/)] } (11) + ß 

P (9) VII = ECi Jo(•i) exP(di 
i=1 

with N= 5-7 terms were explored for the cases • - 0 ø and 
• = 900 , respectively. Optimal values for the nonlinear pa- 
rmeters bi and di were searched out by using the downhill 
simplex algorithm [Press et al., 1992], while the coefficients 
Ai and Gi were determined at each step by a standard matrix 
inversion procedure. The "merit function" (6) was mini- 
mized on a set of K=175 points, distributed between the 
subsolar point and X m -350/• on the line of intersection 
of the model magnetopause and the noon-midnight meridian 
plane (taking advantage of the matching in the 4• depen- 
dence between the dipole field and cylindrical harmonics). 

3 

B} - cos •5 (- E ai exp(X) J, ( P--)/(•/)+ bi bi ß 
i----1 

6 

E ai exp(X) [Jo( 'ø ) + bi bi 
i=4 

X- bi j1(/9)/(/9)] } bi bi bi 

3 

B• - - • ci exp(X) (P--)+ di Jo di 
i----1 

6 

x p Z)_ E ci exp(•//) [•i J' (di 
i=4 

x Jø(ag 

(12) 

(13) 
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3 

B• -- -Eci exp(X) P----)+ di J1 ( di 
i=1 

6 

i• 4 Ci X) [,o Jo( '0 ) q- g J1 (/9)] (14) .= •// exP(di di di 

B• -0 (15) 
For a given value of the Earth's dipole tilt angle •, the 

components of the dipole-shielding field can be found by 
using (10-15) as 

BDS -- B x cos • + BII sin • (16) 
The 24 parameters ai,bi,ci, and di (i = 1,2,..., 6) were 

computed for the average model magnetopause shown in 
Figure 1. For completeness, several sets of parameters 
were found, corresponding to boundaries with different 
rates of tailward flaring. More specifically, the boundaries 
were obtained from the "base" model magnetopause with 
z0 = 5.48 fi•E, a = 70.48 fi•E, and •r0 = 1.078, shown in 
Figure 1, by a transverse scaling of fi•T and ]•D in (3) by a 
factor 1 + c, keeping fi•$ = 10.98 fi•E as before, but mak- 
ing appropriate changes in z0, a, and •r0. Table 1 gives the 
values of the shielding field parmneters for 7 values of c, in- 
cluding the case e = 0 of the base model. Figure 2 displays 
three configurations of the magnetic field lines, correspond- 
ing to e = 0 (Figure 2a), base model with fi•T = 28.38fi•; 
e = -0.15 (Figure 2b), providing a "sharper" magnetopause 
with a smaller tail radius fi•T = 24.12 fi•; and e = 0.15 
(Figure 2c), for a blunter boundary with fi•T = 32.64 fi•. 

In all cases the standoff distance and the position of the 
"seam" between the ellipsoidal and cylindrical parts of the 
boundary remained the same, equal to Rs - 10.98/• and 
XM = --65 RE, respectively. 

The easiest way to extend the results given above to dif- 
ferent standoff distances is to apply a uniform scaling trans- 
formation to the field (16), that is, use 

B•)s(r) - t• 3 BDs(t•r) (17) 

for the shielding field inside a magnetopause, uniformly com- 
pressed/expanded by a factor ,•. The modified field B•)s(r ) 
is also curl-free and satisfies the shielding condition on the 
new boundary. Superposing the two transformations allows 
one to model the dipole shielding field for a wide variety of 
possible average boundary shapes. 

2.4. Shielding of the Magnetotail Field 

It is much harder to find a solution to the shielding problem 
for the case of the cross-tail current than for the geodipole. 
First, the tail field no longer varies as sin • along the cir- 
cles in the Y-Z plane, as the dipole field does. Instead, the 
B• component abruptly reverses its direction as the observa- 
tion point crosses the equatorial current sheet. This means 
that the shielding scalar potential should contain higher-order 
harmonics of the angle •, which requires many more param- 
eters in the fitting algorithm. Adding to that complication, 
the least squares fitting can no longer be reduced to a one- 
dimensional minimization, and hence the sum (6) must in- 
clude points scattered over the entire surface, rather than on 
a single line. 

Table 1. Values of the Parameters of the Dipole-Shielding Field (Equations (10)-(16)), for Seven Values of the Flaring 
Parameter c 

c -0.15 -0.10 -0.05 0.0 0.05 0.10 0.15 

al 2.3201 0.56459 0.34613 0.24777 0.18550 0.15401 0.36944 
a2 -33.817 -32.997 -30.219 -27.003 -24.064 -21.183 -12.109 
a3 -7.3791 -2.6020 -1.0478 -0.46815 -0.27494 -0.87867 -9.8385 
a4 16.116 10.385 8.1492 7.0637 6.3689 5.8432 3.4316 
a5 -7.1853 -4.1069 -2.5606 -1.5918 -0.95028 -0.82001 -0.29360 
a6 -1.5378 -0.53885 -0.21156 -0.090317 -0.04663 -0.00001 0.0094316 
bl 29.804 43.053 50.903 57.522 64.173 68.687 51.044 
b2 15.255 13.352 13.333 13.757 14.304 15.039 19.087 
b3 2.0426 2.0078 1.9951 2.0100 2.1399 3.3004 8.0832 
b4 11.171 10.476 10.347 10.458 10.648 11.003 14.413 
b5 4.0723 4.3181 4.4983 4.5798 4.5269 4.3373 4.5040 
b6 2.2204 2.1807 2.1619 2.1695 2.2849 1.5656 3.0303 

cl -24.634 -0.34300 -0.53887 -0.65385 -0.70835 -0.74268 -0.26542 
c2 49.046 -21.271 -19.771 -18.061 -16.408 -14.938 -11.590 
c3 -63.008 -2.5562 -0.98885 -0.40457 -0.17071 -0.085853 0.73751 
c4 -13.179 -8.4702 -6.4572 -5.0995 -4.1943 -3.5410 -4.0315 
c5 8.7750 3.3336 2.0427 1.2846 0.78142 0.44164 -2.1084 
c6 10.160 0.52528 0.19881 0.078231 0.030995 0.01240 -0.075475 
dl 14.853 51.081 42.571 39.592 38.437 37.768 53.490 
d: 3.1900 14.089 13.516 13.291 13.260 13.281 17.212 
d3 2.2795 2.0196 2.0013 1.9970 2.0136 2.1681 3.3504 
d4 10.307 10.419 10.177 10.062 10.012 9.9545 13.382 
d5 3.1708 4.1867 4.3853 4.5140 4.5538 4.4771 8.7610 
d6 2.4347 2.1922 2.1678 2.1558 2.1626 2.2865 3.3459 

The case c = 0 corresponds to the average magnetopause shape and size for 1.47 _< p•w _< 2.60 nPa, as given by Sibeck et al. [1991]. 
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Figure 2. Magnetic field lines of the Earth's dipole field, 
confined within the model magnetopause by addition of the 
shielding field (equations (10)-(16)). The three panels dis- 
play the field configurations with the same standoff distance, 
but having different rates of the tailward flaring of the model 
magnetopause (dashed line), quantified by the transverse 
scaling parameter ½' (a) ½ - 0, corresponding to the un- 
changed magnetopause shape of Figure 1, (b) ½ - -0.15, 
yielding a sharper boundary shape, and (c) ½ - 0.15, giving 
a blunter magnetopause. In all the three cases, the dipole tilt 
angle g• -- 250 . 

Second, the effect of the geodipole tilt, which by (7) and 
(16) reduces to a simple superposition for the dipole shield- 
ing field, is much more complicated for the tail. We actually 
do not know exactly how the tail current sheet behaves in 

response to the Earth's dipole tilt, but we use various approx- 
imations for describing its two-dimensional warping, which 
parameters are determined from data. The latter fact also im- 
plies that the tail-shielding field must be iteratively adjusted 
in the course of a search of the cross-tail field parameters. 

Before we proceed to the tail-shielding problem, a brief 
description of the model used for the cross-tail equatorial cur- 
rent sheet is given below. Readers are referred to the original 
paper [•yganenko and Peredo, 1994] for more details. 

2.4.1. The cross-tail current model. In this work, a 
new model of the field of the cross-tail current [7•yganenko 
and Peredo, 1994] is employed. Unlike earlier models [Tsy- 
ganenko and Usmanov, 1982; •yganenko, 1987, 1989a], it 
provides better representation of the observed features, in- 
cluding a gradual merging of the cross-tail and ring currents 
as well as a steep variation of the current density at the inner 
edge of the current sheet. The model allows the superposi- 
tion of several independent "modes" with different rates of 
tailward decrease of the current density, and these can be 
mixed in variable proportions to achieve a best fit to data. 

The model field is specified by means of a vector potential 
A - A•f•, from which the magnetic field components can 
be derived in a straightforward way. We use a cylindrical 
coordinate system {p, •b, Z}, whose origin is shifted by Xc 
along the Sun-Earth direction, so that 

p - [(x - + 
•h - tan-i[Y/(X - Xc)] (18) 

In these coordinates the azimuthal component of the vector 
potential reads 

A• - p• f• S3,)S? (19) 
where 

2bi 

t, = ' ) + s?) (20) 
$f') = V/'[b, + •'(Z, Z,, 0)] 2 + (p + g,)2 (21) 
5'! 2) = v/[b, + •'(Z, Z,, 0)] 2 + (p - g,)2 (22) 

The function ((Z, Zs, D), entering in (21)-(22), is a smooth 
substitute for Zr - I Z - Zs l, providing a controlled fi- 
nite thickness of the current sheet [7•yganenko and Peredo, 
1994]' 

•' - Z,. Z,. > O (23) 
½ - 0.5 (z/o + o) _< o 

where Z, = Z, (X, Y, gr) and O = O(X, Y) describe the 
tilt-dependent shape of the current sheet and the variation of 
its thickness along and across the tail. 

Before we specify the functions Z• and D, note that the 
vector potential (19) is a superposition of N terms (N = 7 
in the final version), each of which produces a magnetic 
field of some disclike axisymmetric equatorial current sheet. 
The weight coefficients fi and nonlinear parameters 9i en- 
sure a proper radial distribution of the current density, with 
a spread-out inner edge and a gradual outward decay. A nat- 
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ural question arises then: why can this axisymmetric current 
disc approximate the observed cross-tail current, which flows 
from dawn to dusk and then closes via the boundary closure 
current ? The answer is as follows [Sotirelis et al., 1994; 
Stern, 1994, section 5]. Suppose we have derived a curl-free 
shielding field which, when added to the field of the current 
disc, provides Bn - 0 everywhere on the model boundary. 
After that, we can remove the external field outside the mag- 
netopause, i.e., set B = 0 there, without having violated any 
of Maxwell's equations (which, in particular, imply conti- 
nuity of Bn across the boundary). As a result, the external 
part of the current disc disappears. At the same time, having 
eliminated the exterior magnetic field, we introduce a jump 
in the tangential component of B and hence a surface cur- 
rent which, by V ß j - 0 (implied by Maxwell's equations), 
automatically serves as a closure current for the remaining 
intramagnetospheric segment of the cross-tail current. 

present choice, (24)-(29), is based on our previous experi- 
ence in modeling the tail current. For example, one persistent 
feature of the 1989 model was a rapid thickening of the cur- 
rent sheet toward its dawn and dusk flanks, and taking out 
that degree of freedom led to a poorer agreement with data. 

The preceding representation fully defines the current 
sheet geometry and contains, in total, 10 nonlinear param- 
eters: 4 in the function Zs(X, Y, •) and 6 in D(X, Y). In 
this study, we used a combination of three vector potentials 
(19) for representing the field of the tail current sheet, with 
different scales of the tailward decrease of the electric cur- 
rent [•yganenko and Peredo, 1994]. The net cross-tail field 
is then a sum 

BCT -- aT,1 BCT, 1 q- aT,2 BCT,2 q- aT,3 BCT,3 (30) 
contributed by vector potentials of the form (19), with the 
scale lengths L - 100 RE, 40 RE, and 15 RE, respectively, 

Following the approach adopted in earlier models, the and with variable amplitude factors aT,1, aT,2, and aT,3. All 
shape of the current sheet was specified through the function three modes share the same 10 geometrical parameters, ap- 
Zs(X, Y, •), composed of two terms, pearing in Z• and D. Additional degrees of freedom can 

Z•(X Y, •) - Z•i)(X, •) + Z!2)(Y, •) (24) be gained by introducing a variable shift X, of the tail and 
' ring currents, as defined by (18), and allowing for a uniform 

simulating separately the current sheet deformations in the scaling of the magnetic fields by a variable factor. We will 
X-Z and Y-Z planes. The first term further discuss this point in section 4. 

Z!I) (X, •) -- 
0.S tan • [v/(X - R, cos •)2 + (AX cos •)2 

-v/(X + + (zxx 

contains two parameters: the "hinging distance"/•n and the 
scale distance AX defining the width of the transition region 
between the near-Earth and tailward parts of the current sheet. 
The second term 

2.4.2. Scalar potentials for shielding the tail field. As 
was already mentioned, the tail shielding potential should 
contain higher-order (m > 1) terms with sin mqb and cos mqb, 
to properly match the field reversal between the lobes. An 
obvious solution is to use general series of cylindrical har- 
monics, that is, to expand (8)-(9) to include the terms 

Jm (p/bi) exp(X/bi ) sin mq5 
Jm(p/bi) exp(X/bi) cos mq5 (31) 

Z!2)(Y, •) - -a sin• 
y4 

y4 q_ L4w 
(26) 

has the same form as in the earlier model [7•yganenko, 
!989a], where the coefficient G controls the amplitude of 
the current sheet warping in the Y-Z plane and the scale 
length L• defines its extension in the dawn-dusk direction. 

Spatial variation of the sheet half thickness, D(X, Y), was 
modeled in a Similar way, as a sum of three terms 

with rn > 1. This approach was pursued at an earlier stage 
of this work, and it was found that the cylindrical harmonics 
with rn _< 7 provided a fairly good shielding and, at the same 
time, a manageable number of expansion terms. However, 
although we retained the cylindrical harmonics for shielding 
the ring current (section 2.5), a simpler class of functions was 
later used for the tail shielding field, namely, the rectangular 
harmonics produced by separating Laplace's equation (4) in 
Cartesian coordinates' 

o(x, ¾) - o0 + (27) 

The coefficients Do, D•, and D v define the sheet's half 
thickness in the midnight meridian plane and amplitudes of 
its variation in the X and Y directions, respectively, while 
the functions f• and fy were chosen as 

fx -- 0 X <XD 

(x - = X>XD 
(X - Xo)2 + L2• 

(28) 

U cr exp(X V/a 2 q_/3 2) I, sin aY ' sin/3Z (32) 
Like cylindrical harmonics, the rectangular harmonics de- 
cay exponentially tailward, but they contain just sines and 
cosines of the scaled coordinates Y and Z, rather than Bessel 
functions. 

A linear combination of the harmonics (32), sharing a sin- 
gle array of scale lengths pi, was chosen as a basic potential 
for shielding the field of the cross-tail current sheet: 

and 

y2 

fv - y2 + L•2 (29) 
Of course, many alternative analytical forms can be chosen 
for specifying the configuration of the current sheet. The 

U - Z ait• exp [ q_ X cos--sin-- Z• p} Pi Pk i ,k Pi 
(33) 

Terms with sin Y/Pi and cos Zips: have been left out in (33), 
so that the shielding potential is even with respect to Y 
and odd with respect to Z. This corresponds to the case 
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of a symmetric unwarped current sheet when the dipole tilt over the model magnetopause between the subsolar point 

How can tilt effects, first of all, the warping of the current 
sheet be taken into account ? Since for !P • 0 the warped 
current sheet and its field are no longer symmetric with re- 
spect to the GSM equatorial plane, we have to include terms 
with cos Zips: in the potential. In this way, one can obtain 
an optimal set of parameters for a given value of the dipole 
tilt !P. However, this is not a full solution to the problem: we 
need a shielding field that could be used for arbitrary values 
of the tilt angle and would have an analytical dependence on 
!P. Such a model can be devised by adopting an extended 
expansion for the scalar potential, in which the coefficients 
are functions of !P, for example, 

N 

U - (ai + cos y) x 
i,k=l 

exp + X cos • sin •+ 
Pi Pk Pi Pk 

N 

y• (ci• singt + dil• sin3gt)x 
i,k=l 

exp + q• X cos cos • q• q• 
(34) 

The potential (34) is composed of two terms with different 
symmetries. The first term produces a field with the same 
symmetry as that of an untilted dipole (!P = 0), i.e., B• 
and Bz are odd and even functions of Z, respectively. The 
second term has the opposite symmetry, corresponding to the 
field of a dipole with !P - 90 ø, so that the B• component 
is even and Bz is odd with respect to Z. The net shielding 
field given by the potential (34) satisfies general symmetry 
conditions [e.g., Mead and Fairfield, 1975] 

-z, - z,-½) 
¾, -z, - v, z,-½) 

(x, v, -z, - (x, 
(35) 

Of course, the assumed form of the dependence of U on • in 

and X • -230 R/•. To avoid degeneracy in the inverse 
problem, which might result in an ill-conditioned system of 
equations and numerical instabilities, a moderate amount of 
randomization was introduced both in the location of indi- 

vidual points on the magnetopause and in the corresponding 
values of the tilt angle !P. 

Second, as noted in section 2.4.1, the field of the cross-tail 
current was assumed to be the superposition (30) of three 
modes. For this reason, the "partial" tail-shielding fields 
BTS,1, BTS,2, and BTS,3 were found separately for the three 
basic cross-tail modes, BCT, l, BCT,2, and BCT,3, respectively, 
so that the net shielded tail field 

By = aT,1 (BcT, 1 q- BTS,1)q- 
at,2 (BcT,2 + BTS,2) + at,3 (BcT,3 + BTS,3) (36) 

was kept confined within the magnetopause for any set of 
individual mode amplitudes at,1, at,2, at,3. This permits 
one to vary intensities and profiles of the tail current, so 
that it could be fitted to data without violating the shielding 
condition. 

Third, it would greatly increase the model's flexibility if 
some nonlinear characteristics of the tail current (for exam- 
ple, the "hinging distance" Rm) could be included among 
the adjustable parameters. However, that would require a 
reevaluation of the values of ai•, bi•, cid, di•, pi, and qi, at 
each iteration, which was not feasible with our computing 
capabilities. For that reason it was decided to use the ini- 
tial values of ai•, bi• ..... qi for the whole sequence of the 
data-fitting iterations and then recalculate them, using the 
final values of the nonlinear parameters, in order to restore 
the shielding. In all cases such an adjustment produced only 
a slight (_< 1%) increase of the rms deviation of the model 
field from a data set, so that there was no need for further 
iterations. 

Figure 3 illustrates the shielding of the tail field, for the 
case of the mode BeT, 1 with the longest fall-off scale length, 
L = 100 R•. Figures 3a and 3b show the magnetic field 
lines corresponding, respectively, to the unshielded field (30) 
of the equatorial current disc and after the addition of the 
shielding field Bts, 1. 

As a quantitative measure of the shielding quality, the ratio 
Q -- [((6BT' n)2)]1/2/max(BcT- n) of the rES residual 

(34) is by no means unique: other appropriate functions could normal component of the net field to the maximal normal 
be adopted (e.g., polynomials in !P), with the requirement that field from the unshielded source was evaluated. For the 
the corresponding factors in the first and second sums be an 
even and an odd function of !P, respectively. 

With 1 <_ i, k _< N- 4, the representation (34) contains 
64 unknown coefficients ai•:, bi•:, cid:, di•, and 8 nonlinear 
parameters pi and qi, all of which are found by minimizing 
the net (6B•) over the model boundary. 

Three important things should be pointed out here. First, 
since the shielding potential (34) contains a parametric de- 
pendence on the geodipole tilt angle, it is necessary that many 
different values of • be represented in the sum (6), scattered 
within a sufficiently wide range. Similarly, to ensure good 
accuracy of the shielding from the nose region to the far tail, 
sufficient spatial coverage is needed. In this study, the shield- 
ing problem was solved separately for each of the three tail 
modes by minimizing (6) on a set of 644 points distributed 

three tail modes with L = 100, L = 40, and L = 15, the 
values of Q were found to be 0.83%, 0.64%, and 0.65%, 
respectively. 

2.5. Ring Current Module 

The ring current module, like the tail module (36), must 
represent fields from two sources: 

BRC = aRC (BRcI q- BRCS) (37) 

The parentheses on the right contain the sum of the field 
BRCi produced by the current inside the magnetosphere (i.e., 
the ring current proper) and the corresponding shielding field 
BRCS. The sum yields the field of a unit-amplitude shielded 
ring current, and therefore multiplying it by an arbitrary 
amplitude factor aRC does not violate the shielding condition. 
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Figure 3. Lines of the magnetic field produced by the tail 
current system: (a) lines of the unshielded field (equation 
(30)) of the cross-tail current sheet, and (b) net field, includ- 
ing that given by the tail shielding potential (34). In this 
specific example, the tail field mode with the largest fall-off 
scale length, L - 100/•E, is displayed, for zero tilt angle. 
The model magnetopause is shown by the dashed line in both 
panels. 

The internal ring current term B}•ci was represented by a 
vector potential of the form (19), with a special choice of the 
parameters fi and #i, so that the radial profile of the current 
density is confined within a relatively narrow region/i• _< 10- 
12/i•E and has a maximum at 6-8/i• (see Tsyganenko and 
Peredo [ 1994] for details). On the basis of our experience 
with previous models, the ring current thickness was allowed 
to vary in the day-night direction. We also allowed for a shift 
of the whole ring current along the X-axis and introduced a 
scaling of its dimension by some factor, as additional degrees 
of freedom. 

The model ring current was assumed to be centered on the 
dipole equatorial plane, so that it inclines by the angle • to 
the GSM equatorial plane, in response to the Earth's dipole 
tilt. 

Let us now consider the shielding term B}•cs. At suffi- 
ciently large distances, the field of the ring current becomes 
close to that of a dipole. Therefore it was decided to try 
using cylindrical harmonic expansions (section 2.4.2) for ap- 
proximating the correponding shielding potential. However, 
because of the distributed nature of the ring current, the zero- 
and first-order harmonics alone did not provide sufficient ac- 
curacy, as they did for the Earth's dipole. For that reason, 
higher-order terms up to rn=5 were included, containing in 

total 60 coefficients and 10 nonlinear scaling parameters. A 
least squares fitting procedure was again employed, to obtain 
their optimal values, determining the shielding field BRcs. 
For this ring current model, the shielding quality was found 
to be 1.6%. The shielded ring current field (37) was then 
included in the model as an independent term, whose param- 
eters were found together with the tail parameters by least 
squares fitting to spacecraft data. 

Figure 4 shows field lines corresponding to the ring current 
term (37). The slight inward bending of the lines which cross 
the nightside equatorial plane at large distances is caused by a 
small residual eastward current, due to incomplete cancella- 
tion of separate terms in the expansion (19). This unphysical 
current, however, does not pose any major problem: in com- 
parison to the large westward current due to the tail terms 
(36), it is very small. 

3. Assembling the Model: Data and Least 
Squares Fitting Criteria 

This section describes first results of assembling the above 
modules into a new global representation of the magnetic 
field, based on spacecraft data. As in the previous mod- 
els [Tsyganenko, 1987, 1989a], one important component is 
still missing, the fields of Birkeland current systems. Several 
attempts have been made recently to develop feasible approx- 
imations for the field-aligned current contribution [ Usrnanov 
and Tsyganenko, 1984; Tsyganenko, 1988, 1991, 1993; Stern, 
1993]. However, we still lack a complete and flexible model 
for the field from both region 1 and 2 currents; the reader 
is referred to the papers cited above and/or recent reviews 
by Tsyganenko [1990] and Stern [1994] for more detailed 
discussion. 

This paper is focused primarily on the methods for rep- 
resenting the field from various separate internal magne- 
tospheric sources and the corresponding components of 
the magnetopause current, which ensure their confinement 
within the boundary. The question of parametrizing the 
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Figure 4. Lines of the magnetic field, produced by the 
shielded ring current, in the case of • - 0. A slight inward 
bending of the outermost field lines in the tail region is a 
model artifact, resulting from an incomplete cancellation of 
terms in expansion (19). The model magnetopause is shown 
by the dashed line. 
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model by the solar wind pressure and the IMF will be further 
discussed in section 4; however, a comprehensive treatment 
of that subject is relegated to a separate work. 

In the present study, the new approach was tested by 
fitting the model parameters to a subset of magnetometer 
data, corresponding to the relatively narrow range 1.9 < 
Psw < 2. lnPa of solar wind pressures. These values of psw 
are close to the long-term average for the decade 1964-74 
and lie approximately in the middle of the larger interval 
1.47 < psw < 2.60nPa, corresponding to the chosen val- 
ues of the model magnetopause parameters. The data set 
included the IMP and HEOS data used for constructing the 
earlier 1987 and 1989 models as well as data taken by the 
ISEE 1 and 2 spacecraft during 1977-1981 [Fairfield et al., 
19941 

The magnetic field data set comprised 2949 averages, 
nonuniformly distributed in the Earth's magnetosphere within 
the Moon's orbit, as shown in Figure 5. There are very few 
data tailward of X - -35/i•, and the density of the points 
is much higher sunward of X - -25/i•; more than half of 
the data in this region came from ISEE measurements. 

The net contribution from external sources was taken as 
the sum of three terms 

B - BDS q- BT q- BRC (38) 

The term BDS is the dipole-shielding field represented by the 
harmonic expansions (10)-(16) with the parameter values 
given in Table 1. The terms BT and BRC are the contri- 
butions from the self-shielded tail and ring current sources, 
given by (36) and (37), respectively. Note that the dipole 
shielding term BDs does not contain any free parameters 
which could be derived from data: as soon as the shape and 
size of the magnetopause are specified, this term becomes 
fully determined as a unique solution of the boundary prob- 
lem (4). 

Several trial runs were performed, fitting the model (38) 
to the data with different selections of free parameters. In the 
end, the following set of 10 variable parameters was adopted 
for further experiments: (1) the ring current amplitude aRC, 
(2-4) the three amplitudes of tail modes aw,• to aT,3, (5) the 
shift X, of the tail current system along the XaSM axis, (6- 

•o 

o 

o 

120 

L...' N•,/' i.i•4,'., .d•:'. ':' ,i' ..'. i i 
.......... '• "•",':?. . •';½:'jt.•:• .•: :•.=.{;;i¾?.":: i",.'.'• ....... • ............... I ............... ! ......... 

' ! i "..:! 
, • .• *J"i½ ! ' • . ......... ...... ............... ........... ......... 

........... -'-x'":<? ............... ....... .::i .......... 
.N, i "5':.i\"• ' ' 

• i ...•...'i ..... ............... ! ...................................... 
.i i i,j '<-' , I 

10 0 -10 -20 -30 -40 -50 -$0 -70 
XG$1• 

Figure 5. Spatial distribution of the data points in the space- 
craft data set used for least squares fitting of the model pa- 
rmeters. The data correspond to a narrow interval of the 
solar wind pressure with 1.9 < psw <_ 2.1 nPa and comprise 
a total of 2949 magnetic field averages, obtained from IMP, 
HEOS, and ISEE measurements made during 1966-1981. 

7) the "hinging distance"/•H and the warping amplitude G, 
defining the tilt-dependent transverse shape of the cross-tail 
current sheet, and (8-10) the parameters Do, D•, and D2, 
which control the cross-tail current thickness, as defined by 
(27)-(29). The search for their optimal values was performed 
in a sequence of iterations, combining a standard linear least 
squares method for the four amplitudes with the downhill 
simplex algorithm for the nonlinear parameters. After a few 
hundred iterations, the parameters given above converged to 
an optimal set of values, and then a final adjustment of the 
tail and ring current shielding fields was performed. 

Tracing field lines in models with the parameters obtained 
in these early runs showed a discouraging persistent feature: 
as in the 1989 model, a region with unrealistic small val- 
ues of equatorial Bz emerged again in the tail current sheet 
at 10 _< /i• _< 35/i•. Attempts to remedy the problem 
by including tail modes with different values of e-folding 
distances or by starting the fitting procedure from different 
initial values of the parameters did not lead to a satisfactory 
result. Eventually, it was realized that the source of the prob- 
lem lies in the least squares fitting criterion. Namely, all the 
empirical models so far devised fit parameters by unweighted 
least squares, minimizing 

X-'m(i) _ n(i) 12 N 0'1 -- • t•-•ob s Umodell 
i=1 

(39) 

This criterion provides the "best fit" approximation to the 
observed distribution of B vectors. Obviously, the tail lobe 
regions with strong B are likely to dominate in defining op- 
timal values of the parameters entering in ]3model. Also, as 
can be seen in Figure 5, the tail lobes contribute many more 
data points, since they occupy a larger volume and are bet- 
ter covered by spacecraft orbits. Therefore criterion (39) 
discriminates against regions of weak magnetic field, in par- 
ticular, against the "neutral sheet" in the equatorial plasma 
sheet. However, regions with weak magnetic fields are of 
crucial importance to the physics, especially for understand- 
ing substorm mechanisms. Even small variations of B in 
these regions can lead to significant changes in the predicted 
field line geometry and hence to large errors in mapping. 

The magnetic field vector can be represented as the product 
of a scalar magnitude and a unit direction vector, ]3 = B b, 
and only b is actually relevant for the mapping procedure! 
This implies that the mapping accuracy can be increased if, 
instead of fitting the full vector, B, we use the direction vector 
b = ]3/B, so that the quantity to be minimized becomes 

• N - y'}. h.(i) _ '•'obs 
i=1 

model 

essentially weighting observations by 1/B. 

This conjecture was confirmed by optimization runs using 
rr2 instead of rr• as the merit function. In all runs employing 
the new mapping-oriented criterion, it yielded much more 
robust configurations of the plasma sheet field, with just 
minor changes in other regions of the magnetosphere. Of 
course, with perfect data and a model that could accom- 
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modate any configuration, the model minimizing (39) would 
also minimize (40), i.e., both criteria would provide the same 
parameter values. However, real models are not perfect and 
real data are noisy and nonuniform, which leads to biased 
parameter values. 

Another subtle point is that since criterion (40) empha- 
sizes the field direction and does not explicitly contain its 
magnitude, one might expect large errors in the latter. Note, 
however, that the direction vectors b © in (40) are calculated 
by using the total field, including the Earth's dipole contri- 
bution, which is known and hence does not contain variable 
model parameters. This ensures that the model values of B 
remain close to the observed ones: a comparison of the mod- 
els based on the criteria (39) and (40) revealed only a minor 
(within 10%) difference in the gradient of the near-Earth tail 
lobe field. 

Figure 6 shows two field line configurations, obtained by 
minimizing (39) and (40) for the same data set with 1.9 < 
psw < 2.1 nPa. Clearly, much more magnetic flux crosses the 
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Figure 6. Shielded magnetic •ld lin• con•urations, ob- 
tained by calibratin• the new model a•ainst the data set 
shown in Figure 5. • dipol• tilt an•l• •quals 20 ø . • two 
p•cls display the results of usin• two different criteria for 
5ttin• the model to data: (a) the st•d=d criterion, in which 
the minimal rms deviation (39) of the model B vectors from 
the menured ones w• sought, and (b) the new criterion, in 
which the rms difference (40) between the model and ob- 
served 5eld directions w• minimized. Note the si•niScant 
difference in the •ount of the magnetic flux crossin• the 
pl•ma sh•t. 

1o 

%s. 
Figure 7. Dawn-dusk profiles of the net equatorial Bz in the 
model, for three different values of X. In agreement with 
Fairfield [ 1986], Bz grows toward the tail's flanks. The plots 
correspond to the model field illustrated in Figure 6b. 

near-Earth plasma sheet in the second case (plot B), than in 
the first (plot A). At geocentric distances smaller than 10/•E, 
the degree of field line stretching in Figure 6b is close to that 
given by the 1989 model for Kp = 2-, 2, 2+ [Tsyganenko, 
1989a, Figure 9]. The average Kp value for the data set 
1.9 < psw < 2.1 nPa is about 2+, which means that the new 
model provides realistic Bz values both at close and large 
distances. 

In Figure 7 dawn-dusk profiles of equatorial Bz are shown 
for three values of X. The model values of Bz are much 
closer to those observed, discussed by Stern and Tsyganenko 
[1992], Rostoker and $kone [1993], Peredo et al. [1993], 
Huang and Frank [1994]. Also, in accordance with well- 
established observations [Fairfield, 1986], the model B, in- 
creases from the midnight meridian to the tail flanks. 

An alternative merit function, which could be used instead 
of (40) as a measure of mapping quality, is the rms angle 
between the observed magnetic field and the one given by 
the model: 

rr3- E[cos_,{•,(i) },(i) /.12 /N (41) "-'obs ' '-'model J J / 
i=1 

The merit function (41) gains relatively more contribution 
from points with a large difference between the model and 
observed b vectors. However, near the optimal values of the 
model parameters, the overall difference becomes negligible, 
so that the criteria based on (40) and (41) yield almost the 
same results. 

Finally, it should also be realized that the mapping- 
oriented criteria based on (40) or (41) are technically more 
difficult to implement since, in contrast to (39), the ampli- 
tudes of the separate current systems enter in (40) and (41) 
as non-linear parameters, thus increasing the dimensionality 
of the search algorithm and imposing more restrictions upon 
the flexibility of the model. 

4. Discussion 

The purpose of this paper is to outline basic principles of 
the new approach and to illustrate it for a small data set cor- 
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responding to average solar wind conditions. An important 
piece of work still remains to be done: calibrating the model 
by current values of the solar wind pressure and IME In this 
section we will briefly discuss this issue. 

Let us consider first the effects of the solar wind dynamic 
pressure upon the dipolar part of the magnetopause field. The 
geodipole field and its shielding field Bi•s dominate the near- 
Earth magnetosphere <lXl < 15 and become negligibly 
small at larger distances. In this front region, changes in the 
solar wind pressure psw = pv 2 produce self-similar contrac- 
tions or expansions of the magnetopause [Sibeck et al., 1991; 
Roelof and Sibeck, 1993]. This allows for easy parametriza- 
tion of Bi•s by psw, using a uniform scaling transformation 
(17) with • - [Psw/P!øw)] 1/6. 

However, the situation is more complicated with regard to 
the tail and ring currents. First, the terms BT and BRC contain 
many free parameters, including four amplitude coefficients 
and several geometrical factors discussed in section 2.4.1, 
and these parameters themselves might be affected by Psw. It 
is well known that there is a good correlation between psw and 
the magnitude of the tail lobe field [e.g., Nakai et al., 1991 ]. 
Therefore we might explore an empirical dependence of the 
amplitudes aT,1 -- aT,3 of the tail terms (36) on Psw, and then 
fit the model to magnetic field data tagged by simultaneous 
values of the pressure, considering Psw as an additional input 
variable, like spatial coordinates or the Earth's dipole tilt 
angle. 

Nonetheless, there still remain at least two reservations. 
First, the magneto sphere's response to variations of the solar 
wind pressure is by no means instantaneous and does not 
occur simultaneously over its whole length. Rather it is likely 
to be a wave-like reconfiguration, propagating tailward from 
the dayside. Since the solar wind takes about 10 minutes to 
pass the near-Earth magnetosphere, while in most cases only 
hourly averages of psw are available with the magnetic field 
data, this implies an inevitable blurring of the correlation 
between the magnetospheric field and psw. Second, even 
with averaging over sufficiently long time periods, the global 
effect of the psw variations cannot be reduced to self-similar 
scaling of the magnetopause dimensions. Though there exist 
quantitative models based on many direct observations of 
the front part of the boundary [Sibeck et al., 1991; Petrinec 
et al., 1991; Roelof and Sibeck, 1993], much less is known 
about the tailward magnetopause and its response to varying 
interplanetary conditions. 

There is also strong evidence for IMF influence upon the 
magnetopause shape and upon its sensitivity to changes of 
the pressure Psw. Again, for the front region of the boundary, 
the results of Sibeck et al. [ 1991 ], Petrinec et al. [ 1991], and 
Roelofand Sibeck, [ 1993] provide a good base for calibrating 
the models. However, tailward ofX •-, - 15 RE, much fewer 
boundary crossings are available that have simultaneous solar 
wind observations; indirect methods may be very beneficial 
in this region. Petrinec and Russell [1993] derived the tail 
magnetopause shapes for different Psw and IMF Bz, based on 
measurements of B inside the tail lobes and an approximate 
form of the pressure balance equation. Using their results 
(equations (4)-(5) and Figure 4), it is possible to evaluate the 
tail radius RT as a function of Psw. For XOSM = --20 RE this 
yields curves which can be nicely fitted by a power law as 

RT -- 27.01 p•-w 0'224 and RT -- 30.48 p•-w 0'248 for northward 
and southward IMF, respectively, in good agreement with an 
earlier result of Nakai et al. [ 1991 ], who crudely estimated 
RT oc p•-w 0'24 (such agreement is not surprising, however, 
since both Nakai et al. [1991] and Petrinec and Russell 
[1993] used the same data and employed the same simpli- 
fied pressure balance equation for inferring the tail boundary 
flaring angle). It is more interesting to note a remarkable 
agreement of their results with that of Lui [ 1986], who mea- 
sured the tail boundary radius at -20 < XosM < -15 RE 
using direct observations of the magnetopause crossings by 
IMP 6 in 1971-73. Fitting the dependence of log RT against 
log Psw by a straight line, he obtained the slope between -0.22 
and-0.23, which is very close to the aforementioned results 
of Nakai et al. [ 1991 ] and Petrinec and Russell [ 1993]. The 
tail radius is thus more sensitive to changes in Psw than is the 
standoff distance. 

The considerations stated above will be taken into account 

in the next phase of this project, aimed at developing an 
advanced magnetospheric field model, parametrized by solar 
wind conditions and some indices which reflect the current 

state of principal magnetic field sources. 
In this work, an axially symmetric surface was employed 

for the average magnetopause shape. Given a large scatter of 
the observed magnetopause positions and lack of experimen- 
tal information on its shape at high latitudes, it makes little 
sense, at this point, to introduce more refined approximations, 
taking into account possible deviations from the axial sym- 
metry. However, this issue should be addressed in greater 
detail in future models, which will be able to take into ac- 
count distortions of the magnetopause shape due to transient 
features in the solar wind. Such models should necessarily 
satisfy the pressure balance at the magnetopause and hence 
will incorporate axial asymmetry, in particular near the polar 
cusps. The method described above has much flexibility and 
appears quite suitable for solving that problem, which is one 
of the most challenging tasks in magnetospheric physics. 

5. Summary 

1. A compact and flexible six-term analytical represen- 
tation was developed for the magnetopause field, shielding 
the Earth's dipole field within a realistically shaped bound- 
ary, valid for arbitrary values of the dipole tilt angle and up 
to large geocentric distances. The coefficients of the scalar 
potential expansions were computed for several rates of the 
tailward flaring of the magnetopause; combined with the 
scaling transformation, this allows the size and shape of the 
boundary to be easily varied. 

2. Similar representations were devised for the magne- 
topause field components due to the tail and the ring current 
systems. The tail shielding field is approximated by ex- 
pansions in rectangular harmonics, while that for the ring 
current employs combinations of cylindrical harmonics with 
different scale lengths. 

3. Assembling the aforementioned modules and deter- 
mining their parameters from spacecraft data has provided 
realistic, fully shielded magnetic field configurations. A new 
mapping-oriented criterion was used in the optimization pro- 
cedure: instead of B vectors, it fitted unit direction vectors 
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B/B. The "best fit" modeling, in this sense, implies the best 
accuracy of mapping; in particular, this allows to eliminate 
the occurrence of unrealistically small equatorial B• values 
and produces a more reliable field line tracing. 
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