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Abstract. Quantitative models are developed for representing the global distribution of
the average magnetic field produced by the region 1 and 2 Birkeland current systems. The
problem is solved in four following steps: (1) constructing a realistic tilt-dependent model
of the Birkeland current sheets, based on the formalism of Euler potentials, (2) numerically
computing their field at a large number of points within the modeling region, (3) finding
a best-fit analytical approximation for that field, and (4) adding a current-free shielding
field which confines the Birkeland field within the model magnetopause. At low altitudes
the model field-aligned currents reach the ionosphere along eccentric ovals, which fit the
observed region 1 and 2 zones of lijima and Potemra, and they continue there as horizontal
currents. At larger distances the nightside region 1 currents map to the plasma sheet boundary
layer and are then diverted toward the tail flanks, while currents in the dawn-dusk and dayside
sectors connect directly to the higher-latitude magnetopause. The region 2 current closes
azimuthally near the equator, forming a spread-out partial ring current system. The described

approach allows a great flexibility in the geometry of the Birkeland currents, making it

feasible to infer their properties from spacecraft data.

1. Introduction

Birkeland current systems, discovered by Zmuda and Arm-
strong [1974] and statistically studied by Iijima and Potemra
[1976] 2 decades ago, have not been included until now
in data-based models of the magnetosphere, although there
exists strong evidence for their significant effect upon the
configuration of the Earth’s distant magnetic field. Though
earlier empirical models [Mead and Faitfield, 1975; Tsyga-
nenko, 1987, 1989] did not contain explicit modules for the
field of Birkeland currents, they indicated a persistent equa-
torward shift of the dayside polar cusps with growing level
of disturbance, which could not be entirely attributed to the
effects of an increased tail and/or ring current. Later stud-
ies [Tsyganenko et al., 1993; Tsyganenko and Sibeck, 1994;
Donovan, 1993] confirmed that both the dayside and night-
side effects of the field-aligned currents were comparable
with the contributions from other sources.

Several attempts were made previously [Tsyganenko, 1988,
1991, 1993; Stern, 1993; Donovan, 1993] to quantitatively
describe the effects of Birkeland current systems. However,
none of those models proved to be realistic enough and/or
computationally feasible to be calibrated against spacecraft
data. The purpose of this work is to describe a new model of
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the Birkeland field, which will be included as a separate com-
ponent in an advanced model of the Earth’s magnetosphere.

2. Region 1 Birkeland Current System

One of the principal difficulties with Birkeland currents,
not found in other current systems, is the lack of informa-
tion on their actual global configuration. While there exists a
relatively clear picture of the spatial distribution of these cur-
rents at low altitudes (400—1000 km), little is as yet known
on where they flow and close at larger geocentric distances.
The existing concepts are based mainly on indirect evidence,
such as the correlations of the low-altitude currents with the
solar wind parameters [Bythrow and Potemra, 1983], statisti-
cal studies of the magnetic shear in the plasma sheet boundary
layer [Candidi et al., 1990; Tsyganenko et al., 1993], model
mappings [e.g., Tsyganenko and Sibeck, 1994], and theoret-
ical arguments [e.g., Stern, 1983; Troshichev, 1982].

Another potentially valuable source of information is emerg-
ing now, as computer simulations of the magnetosphere are
becoming more realistic. For instance, a recent study by
Tanaka [1995] traces the flow of region 1 currents from the
ionosphere to the magnetopause. It is quite interesting that,
according to the simulation results, the region 1 Birkeland
currents significantly divert from the magnetic ﬁleldlines for
R > 6 — 8 Rk, in other words, the condition j | B breaks
down in the distant magnetosphere. The same result was re-
cently obtained in the magnetohydrodynamic simulations by
Janhunen et al. [1996].
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According to the above results, the dayside part of the
region 1 oval most likely maps to the vicinity of the boundary
layer adjacent to the magnetopause, while at the nightside
the currents map to the plasma sheet boundary layer and,
after turning around and heading toward the tail flanks, may
connect there to the solar wind.

The geometry of the Birkeland currents is also expected to
depend on the tilt angle of the Earth’s dipole: at ionospheric
altitudes the location of both region 1 and 2 ovals is approxi-
mately fixed in solar-magnetic coordinates, while in the outer
magnetosphere the driving effect of the solar wind causes the
plasma sheet, which is closely associated with the nightside
Birkeland currents, to gradually line up with the Sun-Earth
direction.

The model of the region 1 system should be sufficiently
flexible to reproduce the aforementioned features, so that
when fitting the model to large sets of spacecraft measure-
ments, the data could determine the actual average configu-
ration of the currents.

We model the field of the Birkeland currents in the follow-
ing four steps.

1. Specify the electric current flow and intensity in terms
of suitable Euler potentials, imposing a desired geometry on
the model current distribution.

2. Numerically compute the magnetic field of the current
system described above at many points within the modeling
region by means of Biot-Savart integration.

3. Use the resulting set of magnetic field vectors as a
"database" to which simple analytical representations of the
model field are fitted.

4. Derive and add to the specified field a current-free
"shielding" field, confining the Birkeland field within the
model magnetopause.

The model of the Birkeland current field thus obtained
forms a separate module, which can be included in the quan-
titative representation of the net magnetospheric field and
fitted to a large set of spacecraft data. The results of such a
global modeling study are relegated to a separate paper, while
in this work we concentrate on details of the Birkeland field
model itself.

2.1. Specifying the Region 1 Current Sheet

The region 1 current model satisfies the following require-
ments.

1. At low altitudes the currents flow along dipolar field
lines, and the current sheet maps in the ionosphere along
a near-circular closed line, approximating the observed re-
gion 1 zone of lijima and Potemra [1976]. The intensity of
the region 1 current in the model varies with the magnetic
local time (MLT), so that the inflowing and outflowing cur-
rents peak near 0900 and 1500 MLT, respectively, in agree-
ment with the statistical result of Iijima and Potemra [1976].
However, in this idealized model we assume that the spatial
distribution of the currents is symmetric with respect to the
noon-midnight meridian plane.

2. Atlarger distances the shape of the current layer reflects
the distortion of the background magnetic field, stretched
tailward on the nightside. In the tail, the Birkeland currents
map to the outer layers of the plasma sheet [e.g. Tsyganenko
et al., 1993] and are gradually diverted to the tail flanks.
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On the dayside the field-aligned currents extend to higher
latitudes and reach the magnetopause in the vicinity of the
polar cusps.

3. At low altitudes the current sheet position is tied to the
observed Iijima-Potemra oval and is therefore approximately
fixed in solar-magnetic coordinates, following the orientation
of the Earth’s dipole. At larger distances on the nightside,
the Birkeland current sheet follows the stretched magnetotail
field lines and warps in response to changing geodipole tilt,
together with the tail plasma sheet.

The magnetic field of the Birkeland current is curl-free
outside the current sheet and is therefore represented there
by analytical scalar potentials having different forms in the
inner (low-latitude) and outer (high-latitude) regions with re-
spect to the current sheet. Actually, the current occupies a
layer of finite thickness, and a simple interpolation procedure
smoothly models the field in the transition region, spreading
out the electric current density across the layer.

Because we seek to specify the flow lines of electric
current, and because the electric current density j satisfies
V .j = 0, it is convenient to represent it in terms of Euler
potentials:

J=V& xVxi 6}
Using the Euler potentials is especially convenient because
they allow one to label points of space and thus define their
relative position with respect to the current sheet.

Formally, the representation (1) yields a three-dimensional
distribution of the volume current density, so thatj # 0 at any
point of space. However, we use (1) only for constructing the
current flow lines with footpointslying on the Iijima-Potemra
oval, with the purpose of using them as "wires" in the Biot-
Savart integration, and we then assume that there is no current
outside of the sheet.

The Euler potentials &1 and x are defined so that close to
the high-latitude ionosphere they reduce to functions of the
dipole Euler potentials oty = sin? /r and ¢, which guaran-
tees that the lines of V&1 x Vx| automatically follow dipolar
magnetic field lines at low altitudes. However, at larger dis-
tances one must take into account both the nondipolar defor-
mation of distant field lines and the fact that electric current
flow lines in the tail break away from magnetic field lines as
they approach the equator. A suitable form is

o = [no) > 1]+ 1] v @
which reduces to the dipolar Euler potential oy in the limit
of 8 — 0, while at sufficiently large distances the surfaces
of constant o’ extend in the radial direction and asymptot-
ically approach the equatorial plane, so that their shape in
meridional planes resembles the stretched field lines in the
tail plasma sheet.

Itis convenient touse @ = @q(r, §) in place of o', defined
by sin? ®g = «’, so that a line with a given value of @, e.g.,
®q(r, 9) = ©*, reaches Earth’s surface at colatitude ®*.

The parameter n in (2) can take arbitrary values; how-
ever, for n = 3, the lines of constant ® most closely match
the shape of the model magnetospheric field lines [e.g., Tsy-
ganenko, 1995] with the footpoint colatitudes in the range



TSYGANENKO AND STERN: MAGNETIC FIELD OF BIRKELAND CURRENT SYSTEMS

10° < ®g < 20°, corresponding to the location of the re-
gion 1 oval. Figure 1 shows a family of lines of constant ®g
given by (2) with n = 3, providing the coordinate system for
constructing the model region 1 current sheet. _

Actually, the surface followed by the lines of j should reach
Earth at a variable colatitude ®;(¢), approximating the re-
gion 1 oval found by Iijima and Potemra [1976]. We therefore
define

£1(r,0,0) = Oo(r,0) — i () 3)

and assume that the current sheet follows the surface £; = 0.
This makes the electric current flow lines with footpoints at
longitude ¢ follow near-Earth dipole field lines starting at
colatitude ®; (¢). The form chosen was a simple approxima-
tion

“)
&)

Onoon + AO sin? %

T — @,‘(N)

where the superscripts (N) and (S) refer to the Northern and
Southern hemispheres, respectively. The numerical values
of the parameters ®poon = 12° and A® = 8° were specified
in accordance with the average shape and position of the
region 1 oval obtained by lijima and Potemra [1976].

Adopting the potential £; in the form (3) guarantees that
the current flow lines remain on the surface &;(r, 6, ¢) = 0
having the necessary properties. To obtain the desired shape
of the current flow lines on that surface, we have to specify the
second Euler potential in (1), x;. Itis convenient to represent
1t as

x1=G1(r) fi(g) (6)

separating the dependence on the radial distance r and the
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Figure 1. Coordinate lines of constant ®g(r,0) =

arcsin («'!/2), given by (2) with n = 3 and providing a coor-
dinate system for modeling the region 1 currents.
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longitude ¢ into two independent factors. Near Earth the
factor G| should be nearly constant, which makes the az-
imuthal component of j in (1) tend to zero for small r. Since
&1 in that region is approximately a function of the dipole Eu-
ler potential g and x; is a function only of ¢, then, by (1),
j automatically follows dipole field lines at low altitudes. In
the present version of the model, we assumed

Gi(r) = [(r/ro)* +1]7" !

with rg = 30REg and « = 10.

The second factor, fi(¢), controls the local time distribu-
tion of both azimuthal and field-aligned components of the
current, so that jy o¢ fi and jj o f{. The following form
was assumed in this model:

¢~ ”2)2 - 67r4] 8)

4

fi@) = Al (G
where the parameter b controls the longitudinal position of
the peaks of the field-aligned current density at ionospheric
altitude; for small values of b, the peak current occurs near
noon, while larger values shift it closer to the dawn-dusk
meridian. The parameter € controls the relative amount of
the current closing at large distances across the noon and
midnight meridian planes: if € = 1, then j, = 0 at
¢ = 0 and jy peaks at ¢ = m, i.e. all current flow lines
are diverted to the nightside, and there is no closure across
the noon meridian plane. In the opposite case, € = 0, there
is no closure across the midnight meridian, so that the cur-
rent flow lines with the ionospheric footpoints on the night
side are diverted away from the midnight meridian plane and
close on the dayside. We assume the nightside currents to en-
ter and exit the magnetosphere at the tail flanks, rather than
being generated inside the plasma sheet. Therefore the factor
J1(¢) should equal zero at the midnight meridian, and hence
we choose € = 0. The factor A in (8) is a normalization
constant.

The electric current model specified by (1)—(8) is quite
simple and flexible, allowing a variety of possible configura-
tions. Using Euler potentials is of crucial importance, since
it allows one to easily determine the position of a given point
with respect to the electric current sheet.

Figures 2 show the shape of the current flow lines in the
model (only lines of the northern hemisphere are displayed).
Figure 2a shows the lines in their whole extent, while in Fig-
ure 2b the lines were traced only inside the magnetosphere,
until they hit the model magnetopause.

Near the Earth’s surface the currents flow along dipolar
field lines and close in the ionosphere across the polar cap as
circular segments oriented in the dawn-dusk direction.

As shown in the plots, on the nightside the current flow
lines first map to the plasma sheet boundary layer and then
are diverted to the flanks, in agreement with the expected ge-
ometry of Birkeland currents. In the dawn-dusk and dayside
sectors the currents map to the higher-latitude magnetopause,
in line with their proposed origin on open field lines, as is dis-
cussed above.

It is important to note that the family of electric current
flow lines, shown in Figure 2a, does not represent the final
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Figure 2. Three-dimensional view of the model region 1
electric current flow lines, defined by equations (1)—(8).
(a) The current sheet in its entirety, with the flow lines start-
ing from the ionosphere on the dusk side, crossing the noon
meridian plane sunward from Earth, then arriving back to the
ionosphere on the dawn side and closing via the polar cap.
(b) The same flow lines, but only inside the magnetosphere.
As is discussed in the text, the addition of the shielding field
is equivalent to closing the currents in Figure 2b via the mag-
netopause surface currents (not shown here). The position of
the model magnetopause (cross sections in the equatorial and
noon-midnight meridian planes) is shown by dashed lines.

configuration of the model current; rather, it corresponds to
the unshielded field of the Region 1 system. As is discussed
in more detail in section 2.4, the existence of a magnetopause
leads to a major modification of both the magnetic field and
global pattern of the electric current. The assumption of full
shielding (i.e., B, = 0) uniquely determines that modifi-
cation, no matter how the currents close outside the mag-
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netosphere. Because the exact mode of closure makes no
difference (and is in any case not known), it will be assumed
that the circuit closes by surface currents lying on the model
magnetopause.

2.2. Effects of the Geodipole Tilt

The dipole tilt effects were modeled by introducing a tilt-
dependent warping of coordinates in the modeling region.
More specifically, the Cartesian coordinates (X, Y, Z), en-
tering implicitly in (1), were replaced by (X*, Y, Z*), where

X* = X cos W* — Zsin ¥*
Z* = XsinW* + Z cos ¥*

®

The angle ¥* = W*(r, W), specifying rotation around the
Y axis, is a function of the dipole tiltangle W and of the radial
distance r, so that at the Earth’s surface W* equals W, but it
decreases gradually with increasing geocentric distance, and
falls off to zero in the distant magnetosphere. The specific
functional form for W* used in this model and providing the
desired warping reads as follows

sin W
r
V(Ry +1)% +AR? —/(Ry — r)* + AR?
VR + 12+ AR? —\/(Ry — D> + AR?

sin ¥* =

X

(10)

where the parameter Ry is the geodipole’s "radius of influ-
ence" and AR is the scale thickness of the transition layer
between the dipole- and the solar-wind-dominated regions.
The values Ry = 9Rg and AR = 3Rg were chosen in the
current version of the model. Figure 3 displays the family
of lines of constant coordinates X* and Z*, illustrating the

Z,R;

Figure 3. The tilt-dependent coordinate system, defined by
equations (9)—(10). The warped coordinate lines in the noon-
midnight meridian correspond to the dipole tilt angle of ¥ =
30°.
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warping effect: at low altitudes the starred coordinates are
close to the solar-magnetic ones, while at larger distances
the lines of constant Z* become aligned parallel to the so-
lar wind flow, resembling in shape the warped current sheet
of the magnetotail. Note that a similar transformation was
suggested by Hedgecock and Thomas [1975] for representing
the HEOS data in the curvilinear "geocentric magnetospheric
equatorial" (GME) coordinates.

Using the starred coordinates (9) in equation (1) leads to
the desired deformation of the Birkeland current sheet for
W = 0 and expands the representation (1) for the electric
currents by Euler potentials to the full range of tilt angles.

We will discuss the dipole tilt effects further in the next
section.

2.3. Approximating the Region 1 Field in the Inner and
Outer Modeling Domains, and in the Transition Region
Between Them

The magnetic field produced by the model Region 1 Birke-
land currents was obtained as follows. The whole space be-
tween the ionosphere and the model magnetosphere was di-
vided into five domains, parametrized by the Euler potential
£ = ©p — ©;: domain I, the northern high-latitude region
Oy < G)EN) — 50g; domain II, the southern high-latitude re-
gion ®p > @ES) + 8®y; domain III, the low-latitude region
@l{N) + 809 < O < @53) — 8®; domain IV, the northern
transition region @;N) —80) < Q) < ®§N) + §®p; and do-
main V, the southern transition region @gs) — 8609 < Oy <
0" + 50,.

Figure 4 shows the configuration of the region 1 current
sheet in the noon-midnight meridian plane, displayed to-
gether with the magnetic field lines in the data-based magne-
tospheric model for average conditions: solar wind pressure
p = 2 nPa, Dst = —10 nT, AE = 250 nT, IMF By = 0,
and a small southward B, = —2 nT, which gives rise to a
nonzero normal component across the model magnetopause,
as shown in the plot [Tsyganenko and Stern, 1995].

At the nightside, the transition region can be associated
with the plasma sheet boundary layer, and its half-thickness
is defined by the parameter §®, which corresponds to the
latitudinal half-thickness of the lijima-Potemra oval at the
ionospheric altitude. In the present model, this parameter
was set equal to §®g = 2°.

The Biot-Savart integration was performed for two sets of
points, comprising 14,725 points in the outer (high-latitude)
domains I and II and 9,862 points in the inner (low-latitude)
domain III, covering the spatial region 1Rg < R < 60Rg
and including seven values of the dipole tilt angle in the range
0° < W < 35° (because of symmetry, it suffices to consider
positive values only). The above numbers of points were
chosen in order to keep a reasonable compromise between
the requirements of sufficient accuracy and computational
limitations. The integration was done by approximating the
volume current distribution as a collection of current sheets,
each of which was further approximated by a collection of
wires. The advantage of "wires" over volume or surface inte-
grals is that the continuity of current is automatically guaran-
teed; the disadvantage is a "graininess" of the magnetic field

LELELEL S BLALEL UL LALELELE BLELEL ILALELELELIL]

10}

-10F

-10
X, Rg
Figure 4. Location of the model region 1 current sheet
(shaded area) with respect to the background magnetospheric
magnetic field lines, plotted for average magnetospheric con-
ditions, as given by a data-based model with a small south-
ward interplanetary magnetic field [Tsyganenko and Stern,
1995].

10 0

within the region occupied by the currents themselves, which
requires taking special measures (described in more detail in
subsection 3.2.1).

Arrays of Biot-Savart field vectors thus obtained were then
used for finding best-fit approximations for the curl-free mag-
netic field in domains I-III. The field in the plasma sheet
boundary layer domains IV and V, containing the model cur-
rent sheets, was computed by interpolating between the val-
ues on the boundary, which spread out the thin current sheets
into a wider diffuse layers.

The success of such an approach depends critically on
the quality of the analytical approximation of the fields in
the current-free regions. This is why the choice of the ap-
proximating functions, described in the next subsection, is of
paramount importance.

2.3.1. Approximating the field in the low-latitude do-
main. The curl-fre¢ magnetic field in domain III can be
represented by a variety of harmonic functions. After many
trial runs with different kinds of potential fields, we chose a
combination of conical harmonics with a set of image dipoles
located outside of the modeling region.

The conical harmonics [Tsyganenko, 1991] are curl-free
vector potentials, derived by separating variables in the equa-
tion Vx V x A = 0 and assuming that the potential A is
purely radial (and hence that the corresponding magnetic field
is purely toroidal). The result is a set of harmonics

- - 6 6. .
A = (v/r)(tan™ 2 + cot™ 5) sinmao . 11
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Note that the same curl-free magnetic fields can be obtained
by assuming a scalar potential in the form U(r, 0, ¢) =
£, ¢)/r" and solving Laplace’s equation for n = 0. In
the case n = 1, the angular dependence in the scalar po-
tential remains the same as in (12), but the field has also a
nonzero radial component, and in the case n > 2 the potential
is expressed in standard spherical harmonics.

In this work, we used the conical harmonics (equation
(11)), appropriate for n = 0, retaining the first five terms
in the expansion in m for A,.

The corresponding magnetic field is inversely proportional
to r, establishing the behavior of the model field at small
altitudes. To improve the fitting, we added to that field the
contribution from a set of 36 dipoles placed on four planes
parallel to the solar-magnetic equatorial plane, at Zsy =
+4RE and Zgpy = +20RE. Another set of 10 dipoles was
placed on the Z sy axis. Simultaneous fitting of the moments
of the dipoles and the amplitudes of the conical harmonics to
the Biot-Savart field yielded an rms fit better than 3% of the
rms field over the whole modeling region and in the range
—35° < ¥ < 35° for the dipole tilt angles.

2.3.2. Approximating the field in the high-latitude do-
mains. Several sets of harmonic expansions were tried for
fitting the Biot-Savart field in the high-latitude regions. In
the end we chose a combination of image dipoles with a set
of three current loops, located near the equatorial plane. The
current loops have a circular shape, which ensures a suffi-
ciently smooth spatial variation of the model field and at the
same time allows computationally effective code. The mo-
ments of the dipoles as well as the current loop positions and
strengths were fitted by least squares to the Biot-Savart field,
also yielding an rms accuracy of about 3%.

2.3.3. Approximating the field in the transition region
and the interpolation procedure. By construction, the
approximations used here for the magnetic fields in the low-
and high-latitude regions are divergence- and curl-free and
closely match the Biot-Savart field, whose normal component
B, is continuous across the current sheet, while the tangen-
tial one exhibits a jump, proportional to the surface current
density. Therefore one can expect that a smooth interpola-
tion of the magnetic field vector across the transition layer
between the two regions will spread out the initially thin cur-
rent sheet over a finite thickness and approximately conserve
the property V - B = 0 inside the current sheet.

Each of the five domains in Figure 4 corresponds to a range
of the Euler potential & in (1), and each of the separating
surfaces has a specific value of £;. Given a point in space,
one thus easily finds by calculating its £; to which region
it belongs. In case the point is inside one of the transition
regions, its value of &; allows one to find straddling points
(X1, Y1, Z)) and (X2, Y2, Z2) on the bounding surfaces en-
closing the transition, and then one can perform linear inter-
polation between those points.

2.4. Derivation of the Shielding Field

As was noted above, the electric current system shown
in Figure 2a extends outside the magnetopause, in a way
which is obviously nonrealistic, and its magnetic field extends
continuously across the magnetopause as well. Assuming a
closed magnetosphere in which B, on the magnetopause is
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zero (an assumption that can later be modified by adding a
suitable interconnection field [Toffoletto and Hill, 1989]), we
add acurrent-free field B = —V U which cancels any nonzero
B,, and thus enforces the "full-shielding" boundary condition,
confining the field of Birkeland currents inside the magne-
topause. After that the field outside the magnetosphere can
be set equal to zero and, as was discussed by Sotirelis et al.
[1994] with regard to the tail current system, such a procedure
is equivalent to redirecting the currents outside the magneto-
sphere, making them flow on the boundary and thereby close
the internal part of the current system. The actual geometry
of the currents outside the magnetopause may differ, but be-
cause perfect shielding was assumed, the field on the inside
is not affected by whatever happens outside, so that one may
assume the currents close on the magnetopause.

The shielding field for the Birkeland current systems can be
easily found by an approach used for other principal sources
of the magnetospheric field [Schulz and McNab, 1987; Tsy-
ganenko, 1995]. Namely, we choose appropriate flexible
potential fields with a sufficient number of degrees of free-
dom (e.g., harmonic expansions for a scalar potential, or a
combination of various current sheets) and fit their parame-
ters by least squares, to achieve a minimal rms (B,f‘) on the
magnetopause.

In this model we used a superposition of rectangular har-
monics for the shielding scalar potential, similar to those used
for the tail field shielding in the model of Tsyganenko [1995]:

N
1 1
U= Z (aik + bix cos W) exp[\/:z:x]x

y 7z
cos — sin — + Z (cik sin W + djg sin 3¥) x

Pi P

1 1 Y z
exp[ —2+—2X] CcOS — COS — (12)
q; di qi 9k

The potential (12) proved to be quite effective in shielding
the Birkeland field, and with N = 5 it reduced the rms resid-
ual (B2)!/2 at the magnetopause to about 1% of that of the
unshielded field.

3. Modeling the Region 2 Birkeland Current
System

The field of the region 2 currents was modeled by essen-
tially the same method. However, the geometry of the re-
gion 2 currents is different in several aspects from that of the
region 1 system, as follows:

1. The entire circuit of the region 2 currents is believed
to be contained inside the magnetosphere and to be closed
by a partial ring current on the nightside. Therefore differ-
ent forms of the Euler potentials should be used instead of
functions (3) and (6).

2. The region 2 currents are observed at lower latitudes,
where the field is closer to that of a dipole. Hence one may as
an approximation assume that the field-aligned currents and
the associated partial ring current are rigidly tied to the Earth’s
dipole, so that their configuration in the solar-magnetic coor-
dinates is not affected by changes of the dipole tilt angle, in
contrast to the region 1 system.
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3. The MLT distribution of the region 2 field-aligned cur-
rents at ionospheric altitude differs from that of region 1 in
that the maxima of its current density are shifted to the night-
side from the dawn-dusk meridian, rather than being on its
dayside.

4. The greatest difficulty with the region 2 current system is
therelatively wideradial extension of its partial ring current in
the low-latitude near-equatorial region, which means that the
simple method of representing the magnetic field components
in this area by interpolating between their boundary values
would lead to significant ingccuracies in the electric current
and large deviations of V - B from zero.

The rest of this section discusses in more detail the way
the region 2 model addresses the above points.

3.1. Representing the Region 2 Electric Current

As was noted in section 2.1, the representation (1) for the
region 1 currents was not intended to model the spread-out
distribution of the volume current density across the current
sheet. Rather, it was used only for constructing a thin cur-
rent sheet by tracing the current flow lines from the region 1
oval in the ionosphere. The case of the region 2 system is
somewhat different: as was mentioned above, the thin-sheet
approximation is too crude there. The Euler potential rep-
resentation similar to (1) is also used for j, but it must be
modified to represent a thick current layer, in which the cur-
rent density is smoothly distributed within a relatively large
range of the coordinate £ and is zero outside it.

The easiest way to do that is to multiply the vector prod-
uct VE x Vx by a scalar "form factor" p(£), providing a
smooth distribution of the electric current density which is
bell-shaped in the vicinity of the region 2 surface and which
vanishes outside the current layer. According to this, we
assumed the region 2 current density to have the form

J=V&E x V) p&) (13)
Itis easy to check that the above modification does not violate
the continuity of current density, so that (13) satisfies V - j =
0 with any function p(&2). In this model, a simple single-
peak function was adopted as the form factor for the current

density:

for |§| < A&,
for |§] > A&

2. 7§
&) = {;"s (3ag;) (14)

where A£; is the halfthickness of the current sheet in the
& space. In the present model, we assumed A&, = 0.035,
so that a region 2 zone with a latitudinal width of 5° in the
ionosphere maps to a relatively wide region —10 < X <
—5RE in the nightside equatorial magnetosphere.

The first Euler potential for the region 2 current system
was chosen as

£ = aq(F, 0) — au(1, ©;(9)) (15)

where the function oy(7, 6) was a stretched modification
[Stern, 1987] of the dipole Euler potential ay(r, 8) = sin2 o/r,
with stretched coordinates denoted by tildes. The purpose of
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the stretch transformation was to make the shape of the re-
gion 2 current sheet closer to the average observed shape of
the magnetic field lines with footpoints on the centerline of
the Iijima-Potemra region 2 oval. The function ®; in (15)
has a form similar to that for the region 1 model (4),

©; = Onoon + AG sin’ % (16)
but with different values of the parameters: ®poon = 21°
and A® = 5.5°, so that the region 2 oval is located at lower
latitudes, and its day-night asymmetry is smaller than that of
region 1.

We adopted a three-dimensional Cartesian stretch transfor-
mation, in which perturbation terms were added to all three
coordinates, so that x, y, and z in the purely dipolar Euler
potentials were replaced by

f=x+filx,y,2)
g=y+gx,y,2)
h=x+hi(x,y,2)

a7

respectively, where

x 2 2 22
i = [a1+az;+a3r—2+a4r—2+as;7]q(r)
y Xy
g = [ b5 |ae) (18)
Z XZ
hy = [Cl—+62—7]4(r)
r r

The coefficients of expansions (18) were found by least
squares, from the requirement that the stretched field vectors
in the vicinity of the region 2 current system provide the clos-
est directional fit to a data-based model field [Tsyganenko,
1995; Tsyganenko and Stern, 1995] for average conditions.
Note also that the expansions (18) contain a smooth function
q(r), which gradually increases with r, at the same time g
and ¢’ are zero inside the sphere r = Ry ~ 1.2Rg, so that
the dipolar coordinates remain intact near the ionosphere.

Figure 5 shows the magnetospheric magnetic field config--
uration, chosen for fitting the parameters of the stretch trans-
formation (17)—(18), similar to that in Figure 4. The shaded
area in the figure corresponds to the location of the distributed
partial ring current and associated region 2 Birkeland current,
whose boundaries are given by the surfaces &, = +A&. As
can be seen in the plot, these boundaries do not exactly match
the shape of the model field magnetic lines because of the
inevitable inaccuracies of representing the model field by a
simple stretching of dipolar lines.

The second Euler potential for the region 2 system, x2,
was assumed to have the form

x2 = Ga(y) f2(¢) (19)

in which, as in (6), we also expressed the dependence on the
longitude by a separate factor f,(¢). However, the quasi-
dipolar geometry of the region 2 and the partial ring current
system suggested the use of the coordinate y = cos 8/r? as
the argument in G, [Stern, 1993; Tsyganenko, 1993], instead
of the radius r, as in (6)—(7). More specifically, we chose
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Figure 5. Location of the region 2 currents (shaded area)
with respect to the same magnetospheric field configuration
as in Figure 4. The day-night asymmetry of the region 2
system was fitted to that of the background field by using the
stretch transformation of the dipolar field, given by equations
(17)—(18).

_r (20)
JrEHvd

where the value yg = 0.006 provided the closest fit to the lati-
tudinal distribution of the partial ring current density obtained
by Tsyganenko [1993] as the exact solution of the continu-
ity equation for an azimuthally asymmetric distribution of
isotropic plasma in a purely dipolar magnetic field.

The longitudinal factor f(¢) was assumed to have a form
similar to fi(¢) in the region 1 model, given by (8). The shift
of the peak of the current of region 2 to the nightside, noted
earlier, was achieved by rotating the distribution (8) by 180°
around the Z gy axis, so that ¢ = ¢ — . The parameter € in
this case was also set equal zero. All region 2 field-aligned
currents are assumed to close across the midnight meridian
in this model, as shown in Figure 6 (and implied by physical
arguments).

Gar(y) =

3.2. Approximating the Region 2 Magnetic Field

To approximate the Biot-Savart field in the inner and outer
curl-free regions outside of the region 2 current sheet shown
in Figure 5, we used potential fields in the same form as for the
region 1 current system. As was mentioned at the beginning
of this section, we reduced the geodipoletilt effects to simple
rigid rotation of the entire region 2 system around the Y axis,
so that the fitting was made in solar-magnetic coordinates,
assuming W = 0. Owing to the absence of terms containing
W, the approximating forms here were much simpler.

However, as was already said above, when modeling the
region 2 system, one encounters the problem of representing
the field inside the thick region with spread-out currents. The
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large spatial extent of this region, combined with a complex
curved geometry of the current flow lines, makes it unfeasible
to employ the interpolation method used for approximating
the region 1 field. We adopted a different approach, desribed
in the following subsection.

3.2.1. The model field inside the region 2 current sheet.
The magnetic field inside the current sheet is not curl-free and
hence cannot be approximated by the gradient of a scalar po-
tential. In principle, one could try to find appropriate vector
potentials, either by fitting a model potential K(i") to the one
obtained from the electric current by Biot-Savart integration
or by fitting the vector V x V x A to the current density given
by equation (13). However, neither of those two approaches
yielded satisfactory results, so it was finally decided to aban-
don vector potentials. Instead, the single thick current sheet
was replaced by a set of parallel sheets filling the transition
region, their field ﬁs was derived by Biot-Savart integration,
and separate best fit analxtical approximations were found
for three components of Bs. Although this approach does
not automatically guarantee that the field is divergence-free
(as do vector potentials), the approximate condition V-B & 0
should still hold with a stﬁcient accuracy, provided the fit
to the Biot-Savart field Bg is close enough, because Bg is
divergence-free by construction. ’

To numerically derive the field inside the current layer be-
tween the surfaces &, = —A&; and £ = Aé;, nine additional
surfaces £ = kA&, were inserted in the space between them,
with k = —0.8, —0.6, ..., 0.6, 0.8. Each of the 11 surfaces
was then assumed to carry a fraction of the current com-
mensurate with (14), and the current on each surface, in its
turn, was shared by 99 evenly spaced "wires," obtained by
numerically tracing flow lines of the electric current vector
(13) like those shown in Figure 6, closed across the polar
cap in the ionosphere. Magnetic fields from each wire were

Figure 6. The configuration of the region 2 electric current
flow displayed in three dimensions. Only one sheet of current
flow lines is shown here for the sake of visual clarity; a set of
11 such sheets, located within a wide layer (the shaded area
in Figure 5), was used for calculating the magnetic field. The
position of the model magnetopause (the dusk portion of the
equatorial section and the northward noon meridian section)
is shown by dashed lines.
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derived by Biot-Savart integration and summed. Altogether
the Biot-Savart field Bs was obtained for 2759 points.

The derivation of the Biot-Savart integral at a point in-
side the region of closely spaced current sheets required spe-
cial care because contributions from the sections of the wires
closest to the point involve small denominators, which can
greatly increase the numerical inaccuracy. In order to reduce
that problem, we derived the integral at points located exactly
halfway between the neighbor sheets, and the segments of the
wires closest to the derivation point were omitted from the
summation. .

Given a set of magnetic field vectors Bg inside the region of
currents, the next task was to find suitable analytical approx-
imations for Byy, Bsy, Bsz. It helps here to use coordinates
tailored to the geometry of the current layer. Since the cur-
rent is confined between the surfaces of constant §&, = +A&»,
it is natural to use the variable t = &, /A& to define the po-
sition of a point in the direction transverse to the sheet, so
that —1 <t < +1. On a surface of fixed ¢, two coordinates
can define the position of a point. For one of them we chose
s = cos#, which was found to be approximately propor-
tional to the distance L from the equatorial plane, measured
along the stretched field line in units of the equatorial radius
Ry of that line. For the other coordinate, the solar-magnetic
longitude ¢ was chosen. The coordinates {¢, s, ¢} are not
orthogonal, but it does not matter for our purposes.

The components of the magnetic field within the current
sheet were approximated and fitted by least squares, using
the following functional forms:

WE
M
M

By = ali™ 0y (£)S)(s) cos me
k=0 I=1 m=0
3 5 4
By = Z Z Z al™ 0, (1)Si(s) sinme 1)
k=0 I=1 m=1
3 5 3
B, = Z Z Z al™ Q. (t)Cy (s) cos me

~
I
)
-
Il
_
3
Il
)

Each expansion contains 80 coefficients, found by least squares
along with the nonlinear parameters entering in the factors
Ox (1), Si(s), and C;(s). These are simple analytical func-
tions, representing fundamental modes in the variation of the
field components in the ¢ and s directions. More specifi-
cally,

Q=1 Qi=t@+)""?
o A
Q2 =10, Q3——(§)<Z> 17058 (22)
and
| ~/=2eb;sexp(bys?) forb, <0
Si(s) —{ sexp[bis> — )] forby =0 )
. exp(b;sz) forb; < 0
Gs) = { exp [bl(s2 - 1)] forb; > 0 (24)

Figure 7 shows families of plots of the functions Qg — Q3,
Sy, and Cj, illustrating their behavior for different values of
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Figure 7. The functions Qo(t) — Q3(2), Si(s), and C;(s),
used as the fundamental modes in the expansions (21) ap-
proximating the field components inside the region 2 current
sheet.

the parameters. Again, these functions are not orthogonal,
in contrast to Chebyshev’s polynomials, which were initially
explored for that purpose. However, fitting by least squares
does not require orthogonality of the modes; in addition, the
above functions Q¢ — Q3 tend to zero outside the current
sheet, while the Chebyshev’s polynomials rapidly diverge
there, creating problems in splicing the approximation (17)
to the outer and inner region solutions, as is discussed below
in more detail.
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Fitting the expansions (21) to the Biot-Savart sets of values
of By, By, and B, provided the rms accuracies 3.1%, 1.9%,
and 1.7%, respectively.

3.2.2. Matching the approximations at the current
sheet boundaries. Since we approximate the field by dif-
ferent expansions in the three adjacent regions, it is important
for the solutions to be smoothly joined at the boundaries in
order to avoid abrupt jumps in the field components. That
was handled by interpolating B across strips centered on the
boundaries. In the strips, the solutions from both sides were
combined by means of a smooth weight function of the coor-
dinate &, providing a gradual transition across the boundaries
&§=—A& and £ = +AE.

3.3. The Shielding Field for the Region 2 System

The shielding field for the region 2 current system was
represented by combinations of the same set of potential fields
as with region 1 currents, that is, by rectangular harmonics
(13), and it was derived by the same method. In this case
the sources of the field to be shielded lie entirely within the
magnetosphere, and therefore their normal component on the
magnetopause varied more smoothly, which is why the same
set of rectangular harmonics yielded better accuracy (about
0.1%) than in the case of the region 1 currents.

4. Results

The main purpose of the preceding sections was to describe
the methods that allowed us to develop a reasonable and rel-
atively compact analytical representations for the large-scale
systems of Birkeland currents. In this section, some results of
testing the newly devised models for the region 1 and 2 field
will be discussed. It should be kept in mind that the eventual
goal of this study is to incorporate the Birkeland field models
in a global data-based representation of the magnetospheric
field and calibrate the intensity of region 1 and 2 systems as
functions of the solar wind parameters and geophysical in-
dices. Although the first results of such studies [Tsyganenko
and Stern, 1995] have confirmed the feasibility of this ap-
proach, we relegate a detailed treatment of that subject for a
separate paper.

Figure 8a shows the plots of the variation of the By com-
ponent of the net disturbance field produced by the model
Birkeland current systems, as would be seen by a spacecraft
with a dawn-dusk circular orbit at an altitude of H =~ 800
km, similar to that of TRIAD or Magsat. The net currents
in the region 1 and 2 systems were set equal to 2 MA and 1
MA, respectively, which roughly corresponds to the values
reported by lijima and Potemra [1976]. The profile is quali-
tatively similar to the typically observed variation of By [e.g.,
Zanetti et al., 1983]: a nearly constant sunward field above
the polar cap, rapid excursions of B, on crossing the field-
aligned current layers, and arelatively weak disturbance field
at lower latitudes. Figure 8b shows the profile of numerically
computed field-aligned current density, with the larger peaks
from the region 1 system and smaller ones with the opposite
polarity from the region 2 currents.

Figure 9 displays the distribution of the B, component
along the Xgsm axis, produced by the net region 1—-2 system
both on the dayside and on the nightside, and in Figure 10
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Figure 8. The dawn-dusk variation of (a) the B, compo-
nent of the magnetic field due to the region 1 and 2 current
systems, as it would be measured by a low-altitude polar-
orbiting spacecraft, and (b) the corresponding field-aligned
component of the volume current density. The total magni-

tudes of the region 1 and 2 currents were set equal to 2 MA
and 1 MA, respectively, in this example.

the corresponding nightside profile of the azimuthal compo-
nent of the electric current is given (the equatorial current on
the dayside is close to zero, since we assumed that all of the
region 2 current closes on the nightside). The overall effect
in B; on the dayside is a negative disturbance that decreases
with growing r, with AB &~ —10nT near the subsolar point.
This result is close to the estimate by Tsyganenko and Sibeck
[1994], for approximately the same values of the total cur-
rent as in the present model. On the nightside, the negative
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Figure 9. The profile of the magnetic field disturbance along
the Sun-Earth line due to the region 1 and 2 current systems.
The same magnitudes of the total currents, as in Figure 8,
were assumed.
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Figure 10. The nightside profile of the westward partial ring
current density along the Sun-Earth line. The regions of small
negative current at the edges are due to residual inaccuracy
of the analytical approximation.

disturbance field increases outward, reaches the minimum of
~ —40nT at Xgsm ~ —5.5RE, makes a large excursion to
positive values on crossing the partial ring current distributed
withinr ~ 5—9Rg, and gradually decays tailward. The cor-
responding electric current density, as expected, is smoothly
distributed over a relatively large range of distances, as spec-
ified by the initial profile (14) assumed in the Biot-Savart
calculations. Inaccuracies of the fitting expansions (21) give
rise to unphysical oscillatory features near the boundaries
of the partial ring current. However, their amplitudes are
relatively small with respect to strong westward azimuthal
currents due to the symmetrical ring current and the tail cur-
rent sheet (not shown here), so that no major distortions of
the magnetic configuration should be expected.

5. Summary

In this work we devised quantitative analytical models for
the large-scale systems of Birkeland currents. The geometry
of electric current flow lines and spatial distribution of the
current density were specified by using Euler potentials, in
agreement with existing data and physical constraints. The
model’s region of validity extends from ionospheric altitudes
to the distant magnetosphere. The model includes a depen-
dence of the current flow geometry on the Earth’s dipole tilt
and provides a smooth, spread-out distribution of the electric
currents and magnetic field. The model is intended for inclu-
sion in a global data-based quantitative representation of the
external magnetospheric field, parametrized by the observed
parameters of the solar wind and geophysical activity indices.
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