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Abstract. A new method is developed for modeling the effects of the planetary dipole tilt
and of the interplanetary magnetic field (IMF) related twisting of the cross-tail current sheet.
The method extends the field deformation technique of Stern [1987] and makes it possible to -
easily represent a wide variety of warped magnetospheric configurations, starting from simple
models with an axially symmetric magnetopause and a planar tail current sheet. The proposed
transformations do not violate the condition V - B = 0 and allow one to retain a desired
distribution of the normal component of the total field at the magnetospheric boundary.
Furthermore, the method makes it possible to add flexibility to the model magnetopause,
so that the effects of the dipole tilt and of the IMF upon its shape can be reproduced. In
particular, the transformation with a radially dependent rotation of the X and Z axes, while
providing the desired tilt-related bending of the cross-tail current sheet, can also deform
the magnetopause and reproduce its tilt-related asymmetry, indicated by observations and
reported here for the first time. The deformation technique also allows algorithms that are
more compact and faster than the currently used ones. Because of the general nature of the
proposed approach it should be possible to extend it to the modeling of other (e.g., Jovian)

planetary magnetospheres.

1. Introduction

Analytical data-based models of the geomagnetic field are
widely accepted as a tool for reproducing the global con-
figuration of the magnetosphere under different solar wind
conditions. To replicate a wide variety of possible field ge-
ometries, one has to represent the contributions to the field
from the principal magnetospheric currents in flexible math-
ematical formats. Such flexibility can be provided in princi-
ple by increasing the number of terms in the expansions for
the magnetic field components. However, making the mod-
els more and more complex conflicts with the requirement
that they should also be mathematically compact to ensure
their computational efficiency. Reconciling these opposing
demands is quite a challenging task, since the shapes of the
cross-tail current sheet and of the magnetopause are affected
by the tilt of the planetary dipole and by the interplanetary
magnetic field, which breaks down the symmetry expected
with an untilted dipole and unmagnetized solar wind. As are-
sult one is faced with the problem of representing the fields
from warped and twisted current sheets, shielded within an
asymmetric magnetospheric boundary.

Previous efforts to build analytical magnetospheric field
models were only partially successful in solving these prob-
lems. Thus Voigt [1981] proposed a simple version of the
stretch transformation, which allowed him to reproduce the
observed tilt-related warping of the tail current sheet in the
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Y—-Z plane. Tsyganenko [1989, 1995] and Tsyganenko and
Peredo [1994] suggested a simple modification of the Z co-
ordinate in the expansion for the vector potential of the tail
current sheet, which made it possible to shift the maximum
of the electric current density away from the equatorial plane
and thus represent the warping of the sheet in two dimensions.

All the above models assumed an axially symmetric mag-
netopause with a fixed shape and position, ignoring its pos-
sible dependence on the dipole tilt. As will be shown in sec-
tion 3.1, that assumption is generally not true. Besides that,
no dependence of the tail current position on the IMF By, was
assumed in previous models, even though the related "twist-
ing" effect was predicted [Russell, 1972] and was found to be
quite significant even at relatively close geocentric distances
[Sibeck et al., 1985, 1986a; Tsyganenko, 1990; Tsyganenko
et al., 1998].

Another difficulty in modeling the warped/twisted cross-
tail current sheet is the need to keep the total field fully
shielded within the model magnetopause (or, in a more gen-
eral case, to keep under control the normal component B, on
the magnetopause) for any shape of the sheet. In that respect,
changing the value of the dipole tilt angle would require the
shielding field to be recalculated over and over again, result-
ing in unacceptably slow and cumbersome codes. Tsyga-
nenko [1995, 1996] handled that problem by adding a group
of tilt-dependent terms in the expansions for the shielding
field. However, the model field is a superposition of sev-
eral terms or "modules," representing contributions from the
dipole, cross-tail current, ring current, and region 1/2 Birke-
land currents. The tail field itself is given by two or three
submodules with different variation scale lengths in the X
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direction. Each of those modules has its own variation and
amplitude and hence requires a separate group of terms for
the shielding field. For that reason, taking into account the
dipole tilt by further extending the shielding field expansions
comes at asignificant price in terms of the computation speed.

All the above reasons motivated us to search for a simple
and general procedure for flexibly modifying model magnetic
fields. In a recent work, Tsyganenko [1997] proposed a sim-
ple model of the magnetic field from the substorm current
wedge, which took into account the warping of the current
system in response to the geodipole tilt. In that model a radi-
ally dependent rotation of coordinate axes around the Ygsum
direction was introduced, and it also required the components
of the vector potential of the deformed field to be known in
explicit form.

The goal of the present paper is to describe a universal
procedure for warping and twisting the tail current sheet,
a procedure that also allows one to control the shape of the
magnetopause, making it consistent with data and with re-
sults of MHD simulations. All the deformations developed
in this work are derived from a general method, based on
Euler potentials and first described by Stern [1987].

As will be discussed below in more detail, the method does
not require the Euler potentials to be known: it is only nec-
essary and sufficient to specify the components of the unde-
formed magnetic field and to devise an appropriate transfor-
mation of the coordinates. Another important feature of the
method is that the desired final configuration of the magnetic
field can be obtained in a stepwise manner by superposing
consecutive "partial" deformations, so that each of them is
carried out in its own coordinate system, best suited for that
specific transformation from the viewpoint of its symmetry
properties.

On the basis of the above considerations the paper is orga-
nized as follows. Section 2 describes the general deforma-
tion method, without going into the details of its particular
applications. Section 3 deals with the partial deformation
of the magnetosphere due to the tilt of the Earth’s dipole,
replicating the observed bending of the magnetotail and its
departure from the GSM equatorial plane, when viewed in
the X—-Z projection. It also presents observational evidence
for a north-south asymmetry of the magnetopause, associated
with the dipole tilt, and shows how the deformation method
accommodates that effect. Section 4 presents a group of par-
tial transformations, which yield (1) the tilt-related warping
of the cross-tail current in the GSM Y-Z plane, (2) variable
broadening of the current sheet toward its flanks, and (3) the
effect of the current sheet twisting in response to the IMF B,.
Section 5 summarizes the results of the present study.

2. General Method

The purpose of this section is to outline a general method
of deforming magnetic fields, based on Euler potentials, and
to extend the Cartesian transformation, proposed by Stern
[1987, equation (45)], to arbitrary orthogonal coordinates.

Consider a magnetic field B = B(f, g, #), where the coor-
dinates (f, g, h) refer to any orthogonal system (e.g., Carte-
sian, cylindrical, or spherical.) Suppose that the field is
represented by a pair of Euler potentials, « and B:
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B(f’gvh) =

The gradients on the right-hand side of (1) can be explicitly
written [e.g., Stern, 1987, equation (12)] as
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where {er,eg, e;} and {Hy, Hy, Hp} are unit vectors and
scale factors, respectively, corresponding to the coordinates
{f. g h}

From (1)—(2) the components of the undistorted field (1)
read as

By = (230

HgHy\dg oh  0g oh

1 dau df 9B d

Bp=— [ —— — — —
g Hth(ah of ok af) ®

B — 1 (ﬁ(_xgi)_ﬂ_ %aa)

" T H;H \of og  of ag

Let us define a deformation of the original field by replacing
the "old" coordinates (f, g, k) in the Euler potentials in (1)
with distorted "new" ones (&, 1, {), respectively, so that the
deformed magnetic field

B'(f,8,h) = Va, n,¢8)x VBE, 0, ¢) 4)

where the new coordinates £ = £(f, g, h), n = n(f, g, h),
and ¢ = ¢(f, g, h) are known functions of the old ones.

The components of the "new" (deformed) field (4) in the
"old" orthonormal basis {ef, eg, €4} can be obtained by ex-
panding all the partial derivatives in (3) according to the chain
differentiation rule, e.g.,

oo Baaé 3a8n %a;
af 8t af ' anof ' dcaf

and so on. For each of the three components of B’ this ex-
pansion results in 18 terms, of which six cancel each other
and the remaining 12 can be regrouped, so that the modified
field assumes a compact form

B = TB* 5)
where the asterisk indicates that the field B* is obtained
by replacing, in each component By, Bg, and By of the

undeformed field B, the original coordinates { f, g, h} with

{(f, 8. h), n(f, & h), £ (f. g, h)}, butkeeping the same unit
vectors as in (2). The elements of the matrix T read as follows
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where, again, the asterisks by the scaling factors indicate that
they should be calculated at the mapped location {£, 7, ¢},
instead of the original one {f, g, h}. As was the case for the
cartesian transformation of Stern [1987], the general defor-
mation (5)—(6) still retains a very important advantage of the
former one: the components of the deformed field are lin-
ear combinations of those pertaining to the undeformed field,
in which the variables (f, g, #) are replaced by (&, n, ¢),
and hence we do not need to know the Euler potentials. It
is also worth noting that, by construction, the deformed field
remains divergence-free.

In the following sections, several particnlar implemen-
tations of the general procedure (5)—(6) will be developed,
aimed at reproducing the large-scale distortion of the mag-
netosphere due to the effects of the IMF and of the dipole tilt
angle.

3. Deformations in the X-Z Plane Related
to the Dipole Tilt

This section concentrates on a deformation, yielding the
observed gradual deflection of the magnetotail away from the
equatorial plane of the tilted planetary dipole. The principal
idea behind the choice of an appropriate coordinate transfor-
mation is that at close geocentric distance the magnetic con-
figuration is rigidly tied to the geodipole and sways back and
forth around the Ygsp axis, while at larger distances it forms
the magnetospheric tail, which gradually aligns itself parallel
to the solar wind flow, inclined at an angle W with respect to
the dipolar equatorial plane. The coordinate transformation
should therefore provide a gradual transition between these
two regimes at geocentric distances of ~ 10 Rg, where the
dipole field magnitude becomes comparable with the field in
the near-tail lobes.

A simple way to quantitatively represent this effect is to
start from a magnetospheric model with an untilted dipole
(and hence with a planar tail current sheet) and, following
the procedure (5)—(6), introduce a deformation of Cartesian
coordinates in which any point (X, Y, Z) is mapped to "quasi-
solar magnetic" coordinates (X*, Y*, Z*) with a radially-
dependent tilt angle W* [Tsyganenko and Stern, 1996; Tsy-
ganenko, 1997], so that

X* = X cos ¥*(r)
Y*=Y
Z* = XsinW*(r) + Z cos ¥*(r)

— Zsin¥*(r)
)

23,553

In the limit r — O the angle ¥* should become equal to
the geodipole tilt angle W, so that near Earth the coordinates
(X*, Y*, Z*) tend to the standard solar magnetic ones, while
at large distances they asymptotically tend to the solar mag-
netospheric coordinates. An additional requirement should
also be met at large distances, namely,

rsinW* &~ Ry sin @

for r> Ry, ®)

where Ry is the "hinging distance," defining the amplitude
of the tilt-induced oscillation of the tail current sheet around
its average position.

Equation (8) implies that the hinging distance Ry daes not
depend on r and hence the tilt-related motion of the current
sheet does not disappear in the deep tail. This assumption
is supported by results of a recent statistical study of the
cross-tail current, based on an extensive set of Geotail data
[Tsyganenko et al., 1998].

The above constraints upon the radial behavior of W* sug-
gest defining it by

sin¥* = Q(r)sin ¥ , ©)
where Q(0) =1 and Q(r) = Ry /r forr — oo. A very
simple choice for the function Q(r), satisfying both condi-

tions, is
)T
Ry ’

The function Q@ in (10) still contains a free parameter e,
whose value can be specified on the basis of the following
simple considerations.

In the region where B is quasi-dipolar (which approxi-
mately holds for r < Rp) the tilt-related distortion of the
initial north-south symmetry of the field can be attributed, in
a crude approximation, to a nonzero contribution from an ex-
ternal field in the direction perpendicular to the dipole axis
and proportional to sin ¥. In comparison with the dipole
field, which rapidly varies with radial distance, the external
field is much smoother and hence can be approximated in
the vicinity of the dipole by a uniform perturbation vector
AB, which in the case W % 0 has a component along the
solar magnetic X axis. Using these assumptions, one can
easily show that the resultant deflection of distorted dipolar
field lines away from unperturbed ones grows with geocentric
distance as ~r?, at both high and low dipole latitudes.

On the other hand the tilt-induced deflection of the dipole
field lines approximately equals r(W* — W), and hence W* —
¥ ~ r3. Combined with (9) and (10), this 1mmed1ately
yields € = 3, and hence (9) takes the form

o0 =[1+ (10)

Ry sin W

sin W* =
(R} +r3)1/3

mn

Figure 1 shows the result of applying the radially-dependent
tilt deformation (7) with W*defined by (11), Ry = 7 Rg, and
W = 30°, to the initially untilted field, given by a data-based
model [Tsyganenko, 1996]. As canbe seen from the plots, the
deformation method provides at least a "visually reasonable"
configuration. However, two important comments should be
made, as discussed in the following sections 3.1 and 3.2.
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Figure 1. Illustration of the effect of the radially dependent rotation, showing the tilt-related deformation
of the entire model magnetosphere. (left) The untilted model magnetosphere; (right) the same field
configuration modified by the transformation (6)—(10) with ¥ = 30°, Ry = 7 Rg. The field lines are
plotted with 2° intervals of the foot point latitude, starting from 60°. Note the lack of tilt angle dependence
of the polar cusp field lines mapping into the vicinity of the dayside neutral points.

3.1. Tilt-Related Deformation of the Magnetopause

The deformation (7) affects not only the shape of the tail
current sheet but the entire magnetosphere, including the
magnetopause, which shifts along the Z axis in the same
direction and with the same amplitude as the cross-tail cur-
rent sheet, as can be seen in Figure 1. To what extent does
this purely mathematical effect reflect an actual tilt-related
deformation of the magnetopause ?

An indirect piece of evidence in favor of the existence
of a tilt-related motion of the magnetopause in the tail was
given by Tsyganenko et al. [1998], who found from Geotail
data that even in the far tail (X ~ —100 Rg) the cross-tail
current sheet oscillates in the Z direction with the same am-
plitude as that in the near tail. At the same time the warping
of the sheet’s cross section in the Y—Z plane gradually dis-
appears with growing tailward distance. On the basis of the
requirement of pressure balance between tail lobes with equal
magnetic fluxes, one has to conclude that the northern and
southern lobes should also have equal cross-sectional areas.
The only way to satisfy this requirement is to admit that the
tail magnetopause moves in the Z direction in concert with
the tilt-induced motion of the central cross-tail current sheet.

To verify that conjecture, we made a statistical study of
the position of the tailward magnetopause, based on direct
observations of the boundary in the range of distances —40 <
X < =20 Rg. The data were taken from the set of Sibeck
et al. [1991] and divided into five bins of the dipole tilt
angle: —35° < ¥ < -20°, -20° < ¥ < —10°, —-10° <
¥ < 10° 10° < ¥ < 20° and 20° < ¥ < 35° For
each data subset a best fit ellipse was found, representing the
average shape of the magnetopause in the tail cross section.

Figure 2 shows the result of the fitting for three bins of W,
corresponding to large negative, small, and large positive tilt
angles. A distinct shift of the boun- dary in the positive Z
direction with increasing tilt angle can be clearly seen in the
plots: forthe three intervals of W, specified above, the centers
of the best fit ellipses were found at Z = —3.3 &+ 0.4 R,
Z = —-01=+04Rg,and Z = 2.3 £ 1.3 Rg, respectively.
In fitting the ellipses to the crossing data their size, position,
and eccentricity were considered as free parameters, while
the scatter in the observed positions of the boundary with
respect to the elliptical cross sections was assumed to obey
the normal distribution law.

On the basis of those assumptions we calculated uncertain-
ties of each of the variable parameters. Centers of the best
fit ellipses are shown in each panel by a rectangle with di-
mensions equal to the estimated uncertainties of the center’s
position along Y and Z axes. In the cases of strongly neg-
ative and relatively small tilt angles (left and middle panel)
the centers were found with a greater confidence, owing to
larger number of data points, so that the typical uncertainty
in both dimensions is about 0.4 Rg . In the right panel, corre-
sponding to strongly positive tilt angles, the number of data
points is much smaller, and the uncertainty risesup to 1.3 Rg;
however, as can be seen from the plot, the upward shift still
remains siginificant. The eccentricity of the ellipses is rela-
tively small in the left and middle panels, while in the right
panel the best fit boundary is more elongated in the Y direc-
tion. However, because of the lack of data the uncertainty of
the eccentricity is much higher in this case (~77%), so that
the obtained variation of the magnetopause shape is, most
probably, insignificant. Table 1 displays the parameters of
ellipses, corresponding to all five bins of W, including two
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Figure 2. Effect of the Earth’s dipole tilt upon the position of the magnetotail boundary along the Z axis
in the distance range —40 < X < —20 Rg. The observed crossings of the magnetopause [Sibeck et al.,
1991], binned into three intervals of the dipole tilt, are shown by dots. The elliptical best fit positions of
the boundary cross section are shown by dashed lines in each panel. The rectangles, indicated by arrows,
correspond to the calculated location of the center of the ellipses, approximating the average shape of
the boundary. The size of the rectangles indicates the uncertainty of the center’s position. Note a clear
dependence of the boundary position on the dipole tilt angle.

intermediate intervals, not shown in Figure 2. Note that,
contrary to what one would expect, the shift for the interval
10° < ¥ < 20° was found to be negative. However, because
there were fewer data points for positive tilt angles, the cor-
responding uncertainty of AZ is significantly larger in that
case, so that the obtained anomalous negative value of the
shift is unlikely to be real.

To specify more accurately the location of the magne-
topause as a function of the dipole tilt, another study was
done, based on the entire set of crossing data for all available
tilt angles. In this approach the shift of the center of the best
fit circle from the GSM equatorial plane was represented as
a continuous function of the tilt angle: Rg") sin ¥, i.e., in the
same way as the position of the tail current sheet in first simple
"hinging" models [e.g., Murayama, 1966]. The correspond-
ing "magnetopause hinging distance" Rg") was determined
by using a least squares fitting, based on all boundary cross-
ings. It was found equal to Rg") = 5.66 Rg, somewhat less
than a typical Ry ~ 8 R for the central tail current sheet,
a result that appears quite reasonable. Indeed, the magne-

topause is located, in general, at larger geocentric distances
than is the inner edge of the tail current, and it is more di-
rectly exposed to the solar wind, which makes its shape less
sensitive to the dipole tilt.

Using the data from high-latitude, high-apogee spacecraft,
such as HEOS and Hawkeye 1, one can in principle deduce
tilt-related effects on the shape of the magnetopause for other
intervals of X, which would make it possible to devise more
elaborate deformations. The simplest way of adding more
flexibility to the deformation (7)—(11) is to make the hinging
distance Ry a function of position. For example, we can take
Ry in the form

Z . z?

Ry =RH0+RH1—;-Sln\I’+RH2r—2 (12)
Assuming the coefficient Rys < 0 yields the desired weaker
response of the tailward magnetopause to the dipole tilt, as
compared with that of the central current sheet. The sec-
ond term in the right-hand side of (12) provides a north-
south asymmetry of the deformation: assuming Rg; > 0

Table 1. Parameters of Ellipses Approximating the Shape of the Tail Boundary by (Y — AY)?*+(1—€)(Z—AZ)*—R? =0,

for Five Consecutive Bins of the Earth’s Dipole Tilt Angle

=35 < ¥ < -20° —20° < ¥ < —10° —-10° < ¥ < 10° 10° < ¥ < 20° 20° < W < 35°
N 85 75 101 36 26
o 1.87 2.85 2.59 3.18 3.65
R 23.31+0.4 22.1£0.7 21.7£0.4 20.5%0.8 23.7£1.9
AY —-12+03 —1.8+0.5 —-04x04 1.0£0.7 07+1.6
AZ —-33+04 -1.0£0.5 —-0.1£04 —-0.6£1.5 23+14
€ 0.0 £0.06 0.16 +0.08 0.20 £ 0.05 0.46 4 0.08 —-05+04

The first two rows display the numbers of data points in each bin, N, and the residual rms deviation, o, of the observed crossings
from the best fit elliptical cross section. The results correspond to —40 Rg < Xgspy < —20Rg.
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Figure 3. Same as Figure 1 (right) but obtained with t.he
spatially dependent hinging distance Ry, given by (11) with
Ruo = 8, Ry1 = 2, Rygp = —6, and ¥ = 30°. NOFe
a decrease in the asymmetry of the model magnetopause in
comparison with that for the simpler deformation in Figure 1.

leads to a smaller deformation of the southern (northern)
magnetopause for ¥ > 0 (¥ < 0). Such an asymme-
try was reported by Eastman et al. [1997] on the basis of
a detailed study of high-latitude magnetopause crossings by
Hawkeye 1. Figure 3 shows a tilted magnetospheric configu-
ration, similar to that in Figure 1 but obtained with a variable
hinging distance, given by (12) with Rygg = 8, Ry; = 2,
Ryy = —6, and W = 30°. With this choice of parameters
the hinging distance peaks at low latitudes, so that the ampli-
tude of the tilt-related oscillations is maximal at the location
of the plasma sheet but becomes significantly smaller near
the magnetopause, in agreement with the smaller value of

Rg")z 5.66, obtained for the magnetopause at X ~ —30 Rg
(Figure 2).

3.2. Tilt Deformation and the Position of Model Polar
Cusps

In this section we discuss another subtle problem inherent
in the deformation technique, which concerns the magnetic
field mapping between the ionosphere and magnetosphere.
The problem originates in an intrinsic property of the de-
formation method, its conservation of the topology of the
magnetic lines. More specifically, it means that for any con-
tinuous transformation of the old coordinates {f, g, #} into
the new ones {&, n, ¢}, any individual field line will undergo
a limited deformation, provided the Euler potentials are con-
tinuous and well-behaved functions of position.

With regard to the transformation (7), the topology con-
servation means that any individual line is subject to a lim-
ited amount of distortion, proportional to the tilt angle of
the planetary dipole. In particular, the field lines passing
through the null points of the magnetic field on the dayside
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magnetopause will change their shape with W, but since we
required ¥* & W at low altitudes, the conservation of the Eu-
ler potentials along the lines will result in the independence
of their foot point magnetic latitude on W. In terms of the
magnetospheric geometry the above property means that the
deformed model polar cusps will map to the same latitude
in the ionosphere for all dipole tilt angles, as can be verified
by a closer inspection of Figure 1. This conclusion disagrees
both with observations and with data-based models: accord-
ing to Newell and Meng [1989], the observed latitudinal shift
of the polar cusps due to the dipole tilt reaches 3° —4° for the
maximal tilt angle of W = 35°, which is close to the values
given by models [Tsyganenko, 1990]. .

Apparently, there is no simple way to circumvent that dif-
ficulty, as long as a single deformation of the total field is to
represent all tilt-associated effects. A compromise solution
is to apply the deformation technique to all external sources
while retaining a tilt-dependent scalar potential for shielding
the planetary dipole field, taking into account the tilt-related
variation of the magnetopause shape. Shielding the dipole
by a potential field does reproduce most of the tilt-related
shift of the polar cusp foot points [e.g., Stern, 1985]. More
details on the derivation of the shielding field for the Earth’s
dipole within a tilt-dependent magnetopause are given in the
appendix. '

4. Transformations Affecting the
Magnetospheric Structure
in the Tail’s Cross Section

This section describes specific transformations represent-
ing the effects of the geodipole tilt and of the azimuthal com-
ponent of the IMF upon the shape of the Y—Z cross sections
of the magnetotail current sheet. As was already found in
early observations [e.g., Russell and Brody, 1967, Fairfield,
1980], seasonal and diurnal oscillations of the Earth’s dipole
tilt angle result in a periodic warping of the cross-tail current
sheet. That effect was extensively studied and modeled in
many later works, including our most recent effort [Tsyga-
nenko et al., 1998, and references therein], which covered the
largest range of tailward distances and revealed the depen-
dence of the cross-tail current deformation on position along
the Sun-Earth line.

In addition to the above, the magnetospheric tail is also
twisted by the IMF, as was first conjectured by Russell [1972]
and theoretically studied by Cowley {1981]. The first ob-
servational evidence for that effect came from ISEE 3 data
taken in the deep tail [Sibeck et al., 1985, 1986a). Tsyga-
nenko [1990] found clear signatures of such twisting from
a statistical analysis of data taken at closer distances within
X ~ —65 Rg. In the most recent work, based on Geotail and
ISEE 1/2 data [Tsyganenko et al., 1998], we found that the
twisting can be quite conspicuous even as close to Earth as
—20 < X < —10, with a gra- dual increase of the twisting
angle tailward. The numerical estimates of the twisting an-
gle for different bins of the X coordinate make it possible to
derive a quantitative relation between the twisting angle, the
By, component of the IMF, and tailward distance X. Here we
will describe the method without giving a concrete model; for
this reason we do not specify the dependence of the twisting
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angle on X but merely assume that it is a known function of
position in the tail.

For the sake of generality one can even introduce a depen-
dence of the twisting angle on p = (Y2+Z2)!/2, This allows
one to model a more complex twisting of the current sheet,
in which its cross section becomes S shaped. It is likely that
such a deformation can develop in the tail, as was demon-
strated by Kaymaz et al. [1995], Tsyganenko et al. [1998],
and White et al. [1998] on the basis of data of IMP 8 and
Geotail, and by MHD simulations, respectively.

4.1. Twist/Warp Transformation of the Tail Field

A natural way to introduce the twisting of the model tail
current sheet, as well as its tilt-related warping in the Y-Z
plane, is to represent the magnetic field in a cylindrical co-
ordinate system (p, ¢, X), coaxial with the tail axis, and
to apply an appropriate deformation of the azimuthal coor-
dinate ¢, based on the above general equations (see also
problem 14 in Appendix A of Stern [1994.]) More specif-
ically, assuming that the general coordinates (f, g, k) in
(5)—(6) are cylindrical coordinates (p, ¢, X), coaxial with
the Sun-Earth line, let us replace the azimuthal coordinate
¢ by a modified coordinate Fy(p, ¢, X). From (5)—(6) one
obtains the components of the distorted magnetic field as

dFy
! *
Bo=Pr%g
aFy dFy
/ *
B, = B = e By 3 + 515, | a3
aFy
By = By —,

where the asterisks are used to denote "mapped" components,
i.e., B;’¢_X = By ¢.x(0, Fo, X). .
One can see that taking Fo(p, ¢, X) in the form

Fs Gy _Pocosé

0=¢+ G( )p4+L4(X)
can provide the desired deformation of the current sheet. The
second term on the right-hand side of (14) is responsible for
the tilt-related warping of the sheet in the Y—Z plane and
has a form equivalent to that assumed by Tsyganenko [1989,
1995, 1996], also used in the recent study of Tsyganenko
et al. [1998]. That term is proportional to the sine of the
geodipole tilt angle ¥ and includes an amplitude coefficient
G(X), whose magnitude gradually decreases with growing
tailward distance. The scale distance L (X) controls the spa-
tial extent of the warping across the tail and can be assumed
to be equal to the tail’s radius at a given position on the tail
axis.

Note that warping the current sheet by modifying the angle
¢, as given by (13)—(14), introduces a tilt-related variation of
the near-tail lobe field, consistent both with data and with
the expected effect of the electric current redistribution. In-
deed, for ¥ > 0 (northern summer conditions) the electric
current flow lines in the near tail become convex/concave
when viewed from the northern/southern lobe. As a result of
the geometrical factor in the Biot-Savart formula, that effect
should result in a larger magnetic field on the concave (south-

sin W — ¢t(,0, X, By) (14)
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ern) side of the current sheet (because of the symmetry, the
effect reverses its sign for ¥ < 0). This is exactly what one
formally obtains from the last equation in (13), taking into
account that the derivative of the second term of (13) by ¢ is
positive for —w < ¢ < 0 (in the southern lobe) and negative
for 0 < ¢ < m (in the northern lobe). This effect should be
more pronounced closer to Earth as a result of the growing
contribution from the dipole, which increases the total B, in
the southern lobe but decreases it in the northern lobe (again,
for W < O the effect reverses its sign). In fact, this asym-
metry of the dipole’s contribution to the field in the lobes is
partially responsible for the warping of the plasma sheet: the
excessive magnetic pressure on one of its sides deforms the
sheet and thereby restores the pressure balance.

To check the consistency with observations of the north-
south asymmetry of the deformation (13)—(14), we compiled
a set of tail lobe field data from the large set of magne-
tometer data of Fairfield et al. [1994]. The data were se-
lected by imposing the following restrictions. First, data
chosen for the study were only from relatively quiet peri-
ods (0 < K, < 4-), with the solar wind ram pressure
within the interval 1 < P; < 4nPa. The set was further
reduced by selecting measurements made within near-tail
lobes close to the midnight meridian and was divided into
two subsets. The first subset had the data points in the
range —12 < Xgsm < —10Rg, |Yosm| < 4Rg, and
6 < |Zgsm — Zs| < 12 Rg, where a simple formula
Zs = 8sinW¥ was used for estimating the position of the
center of the current sheet as a function of the tilt angle.
The second subset had data from a more distant region with
—14 < Xgsm < —12Rg, and in that case the intervals
of Y and Z were slightly expanded: |Ygsm| < 5 Rg, and
5 < |Zgsm — Zs| < 15 Rg. The numbers of data records
in the two sets were 140 and 237, respectively. As we noted
above, the tilt angle effect upon the southern lobe field should
be opposite to that in the northern lobe. We nevertheless can
combine the data taken in both lobes by converting south-
ern lobe data points into "equivalent" northern ones, using
the property of symmetry of the magnetosphere in the north-
south direction [e.g., Mead and Fairfield, 1975}

B(X,Y,-Z,¥V)=B(X,Y,Z,-V¥) (15)

According to (15), the data from the southern lobe can be
converted into the northern ones by changing the signs of
both Z and W. ‘

Figure 4 shows the plots of the measured northern lobe
field strength against the dipole tilt angle. A clear trend
for stronger/weaker fields in the northern lobe for nega-
tive/positive tilt angles can be seen in both panels, in agree-
ment with the asymmetry provided by the deformation (13)-
(14). For the first interval, —12 < Xgsy < —10 Rj;, alinear
fit to the data points yields a variation of the northern lobe
field between 32.4 and 58.8 nT as the geodipole tilt angle
changes from 4+35° to —35°. As expected, the tilt effect
upon the lobe field becomes weaker at larger geocentric dis-
tances: for ~14 < X¢gsm < —12 RE the linear fit was found
to vary within a narrower interval, between 32.4 and 43.2 nT,
for the same range of W.

To compare the above statistical result with the predic-
tion of the model, the transformations (7) and (11)-(14)
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Figure 4. Observed strength of the total field in the northern lobe of the near magnetotail for two intervals
of Xgsum, plotted against the Earth’s dipole tilt angle. The measured values of B were taken from the
magnetosphere modeling set of Fairfield et al. [1994]. Data from the southern lobe were also used with
the opposite sign of the tilt angle, as explained in the text. Note a clear trend for a decrease of B as the
dipole tilt varies from its minimal (~ —35°) to maximal (~ +35°) value. The four dashed lines in each
panel indicate the tilt dependence of a model field calculated at four locations within the X—Z bins covered

by the data.

were applied to the data-based model [Tsyganenko, 1996]
with zero tilt, parameterized by average solar wind condi-
tions with P = 3nPa, Dst = —10nT, IMF B, = 0, and
B, = —1nT. The parameters entering in the tilt transforma-
tion (7), (11)—(12) were specified as Rgo = 8.3, Ry = 0,
and Ry, = —5.2, while the warping parameters in (14)
were set at G = 50 and L = 20, corresponding to the
values found by Tsyganenko et al. [1998] for the nearest
bin —15 < Xgsm < —10Rg. Since the positions of the
individual data points in Figure 4 are distributed within a rel-
atively wide range of {X, Y, Z}, the tilt angle dependence of
the model field was calculated at four positions in the mid-
night meridian plane (for each of two X ¢ sp bins in Figure 4),
located close to the boundaries of the sampling regions. The
corresponding variation of the model field with the tilt angle
is shown in each panel of Figure 4 by dashed lines.

As can be seen from the plots, in both cases the observed
and the model fields decrease as the tilt angle increases from
negative to positive values. However, while at larger dis-
tances (—14 < X < —12; right panel) the average slope
of the model field is close to that of the data-based linear
fit (thick solid line), in the nearest bin (—12 < X < —10;
left panel) the model effect is weaker than the observed one.
An obvious explanation is that, because the geocentric dis-
tances are closer, the actual warping amplitude for the in-
terval ~12 < X < —10 is significantly larger than that for
—14 < X < —12, while we assumed the same warping
parameters in (14) for both cases. The observed relation be-
tween the tilt angle and the asymmetry of the near tail lobe
field implies an interesting possibility to find the variation
of the parameters of the warping function (14) along the tail,

provided we have sufficiently dense coverage of the tail lobes
by the data. This task extends beyond the scope of the present
paper and is therefore relegated to future studies. _

The last term in (14), ¢;, is the angle of the current sheet
twisting with respect to the equatorial plane. It can be ap-
proximated by a simple analytical function, close to zero near
Earth and gradually increasing with distance to some asymp-
totic value in the deep tail. The rate of the current sheet
rotation and the asymptotic value of ¢; should depend on
the values of the IMF By and B, components. An appropriate
model for ¢; can be devised, based either on data [Tsyga-
nenko et al., 1998] or on results of MHD si- mulations; that
task was not pursued in the present work.

Note also that assuming G = 0 in (14) (i.e., ignoring
the tilt-related effects) and substituting the resultant deriva-
tives in (13), one can obtain after some algebra the Cartesian
components of the twisted field as

By = B}
. d a
By = Bj cos ¢ — B; sin¢p; — Z(B;% + B;‘ai;(’) (16)
* o1 * *a *3
B, = B} sing; + B} cos¢,+Y(Bpai;+Bx5?X1)

which are identical to those given by equation (8) of Tsyga-
nenko et al. [1998], obtained in that paper by introducing
an appropriate correction of the azimuthal component By,
which restored the condition V- B = 0. Here we arrived
at the same result by using the general deformation proce-
dure. Figures 5 and 6 illustrate the effect of applying to the
model of Tsyganenko [1996] the transformation (13)—(14)
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Figure 5. Illustration of the effect of warping of the model tail current sheet in the Y—Z plane, obtained by
applying the deformation of the azimuthal angle ¢ = tan~!(Z/Y), as defined by (13)—(14). (left) A strong
warping in the near tail at —15 < X < —10 Rg; (right) a weaker warping in the middle tail at —40 <
X < —30 Rg. The tilt angle in both cases equals 35°. The brightness of the shading and the equal
intensity lines correspond to the volume electric current density, normalized by its maximal values at the

same Ygsp positions.

without the twisting term (¢; = 0.) The plots in the two
panels of Figure 5 show the distribution of the volume elec-
tric current density in the tail cross sections at two different
locations, obtained for the maximal value of the dipole tilt
angle & = 35°. In the left plot the values of the warping
parameters were G = 50 and L = 20, corresponding to the
values obtained by Tsyganenko et al. [1998] from Geotail
data for —15 < X < —10 Rg, while the right panel shows
the current sheet at larger distances, —40 < X < —30 Rp,
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with G = 35 and L = 25. In both plots the brightness of
the shading and the lines of equal intensity reflect the values
of the electric current density j, normalized to its maximal
value at a given Ygsp. As aresult of the adopted normaliza-
tion the lines of equal intensity approximately correspond to
the electric current flow lines.

Figure 6 shows in the same format the model electric cur-
rent density for an untilted dipole, but with a nonzero twisting
term. In the left panel a simple rotation of initially flat cur-
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Figure 6. Illustration of the twisting effect of the IMF By, as replicated by the transformation (13)—(14)
of the model field with G = 0. (left) A purely rotational deformation; (right) a differential rotation with
the angle ¢, depending on p, which results in a distorted cross section of the current sheet. Note that the
above distributions are not based on a specific data, but only demonstrate the flexibility of the mathematical

model.
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rent sheet by ¢, = 30° was applied, while in the right panel
a dependence of ¢; on p was also introduced, resulting in a
distortion of the sheet similar to that found by Kaymaz et al.
[1995]. Note however, that the twisted electric current pat-
terns shown in Figure 6 are not based on any specific data: the
only purpose of these plots is to demonstrate the flexibility
of the method in replicating possible IMF-induced deforma-
tions of the tail current sheet.

4.2. Using Deformations for Controlling the Thickness
of the Cross-Tail Current Sheet

The deformed distribution of the tail field and current, ob-
tained by using the transformation (13)-(14), can be further
modified, adding more flexibility with regard to the variation
of the current sheet thickness across the tail. In principle,
the current sheet thickness can be controlled easily by an ap-
propriate modification of the vector potential of the tail field
[e.g., Tsyganenko and Peredo, 1994]. In this respect one
might wonder why was it necessary to devise another defor-
mation instead of using the seemingly simpler way. The an-
swer, again, is that any recalibration of the existing cross-tail
field terms would require a lengthy and cumbersome recal-
culation of the corresponding shielding fields. In contrast,
the method of deformations allows one to easily modify the
electric current distribution and, at the same time, keeps the
total field fully confined within the magnetopause.

To modify the rate of the current sheet flaring toward its
flanks, it suffices to locally change the rate of the variation
with ¢ of the "mapped" azimuthal angle Fp in (13)-(14),
so that it would decrease in the vicinity of the current sheet
and slightly increase in the tail lobes. Also, the distortion
magnitude should gradually decrease toward the tail’s center,
so that the field and current in the middle of the tail would
remain unchanged. These conditions can be met with the
following transformation of the angle Fy:

ZGSM, R,

-10 0 10 20
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p .
SOV sSin 2F()

F=F—u
p*+ Ry

where the parameter u controls the degree of additional flar-
ing of the current sheet over the scale distance Rt of the
order of the tail’s radius. However, as a close inspection of
the resultant electric current distributionsrevealed, the purely
sinusoidal deformation of the azimuthal angle provided in-
sufficient modification of the current sheet. At the same time
it gave rise to broadly distributed unphysical currents, ex-
tending deep into the tail lobes. Much better results were
obtained with a slightly more complicated function with an
additional parameter v,

2

— 2 sin@F) + vsin2Fy)
RT

F=Fy—u
p*+

a7

where 0 < v < 1. Positive values of the parameter u result
in a slower variation of F in the vicinity of Fy = 0 and
Fo = m, providing a broadening of the current sheet, while
for negative u the effect reverses, resulting in a thinner sheet.
Figure 7 illustrates how the modification (17) of the angle
F affects the geometry of the tail current: it yields a more
rapid expansion of the sheet toward the flanks for # > 0 and
an opposite effect for u < 0.

5. Summary and Concluding Remarks

In this paper we have demonstrated several uses of the
deformation method in modeling the large-scale magneto-
spheric configuration. The method offers a simple way to
replicate the distortion of the magnetospheric magnetic field
and of the associated electric current due to seasonal and di-
urnal wobbling of the Earth’s dipole, as well as the twisting
of the tail current sheet caused by the azimuthal component
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Figure 7. Illustration of the effect of the transformation (16) of the angle ¢, allowing one to change the
rate of the current sheet expansion toward the tail flanks. (left) ¥ = —0.25 and v = 0.8 result in a slower
expansion of the sheet; (right) u = 0.08 with the same v = 0.8 yield a much thicker current sheet near

the tail’s flanks.
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of the IMF. An interesting side effect of the tail "bending"
transformation is the concurrent deformation of the magne-
topause: despite its being a purely geometrical corollary of
the radially dependent rotation (7) it replicates the actually
observed tilt-related motion of the magnetopause and, by an
appropriate modification of parameters, can be brought into
quantitative agreement with data. Various kinds of defor-
mations can be superposed on one another, offering a re-
markable flexibility and allowing one to model realistic mag-
netospheric configurations without violating the condition
V - B = 0. Since we no longer need to separately introduce
the tilt effects in the shielding fields for each source of the
external field, using a single deformation allows one to dras-
tically simplify the model codes and hence accelerate its per-
formance. The deformation method offers an effective way
of keeping under control the normal component of the mag-
netic field on the magnetopause, regardless of the distortions
of magnetospheric currents caused by the dipole tilt and by
the IMF.

It is worth noting here another effect of the IMF upon the
tail that can also be treated by imposing a simple deforma-
tion. This is the flattening of the tail cross section due to the
anisotropy of the external magnetic pressure, first predicted
by Michel and Dessler [1970]. The effect was extensively
discussed by Sibeck et al. [1986b] and confirmed by both
MHD models and deep-tail data of Geotail [e.g., Frank et al.,
1995]. A straightforward way of replicating the flattening is
to scale the Cartesian coordinates Y’ and Z’, orthogonal to the
tail axis and rotated by the IMF clock angle around that axis.
The magnitude of the scaling factors for both axes should
be made a slowly growing function of the tailward distance,
so that the flattening would gradually increase down the tail.
A more detailed treatment of this effect extends beyond the
scope of the present work and hence is not further pursued.

With regard to deficiencies of the method, two basic facts
should be pointed out. The first one is the inability of the
deformation technique to change the topology of the field
lines. In the case of the bending deformation of the total
magnetospheric field, discussed in section 3, that resulted
in a lack of dependence of the polar cusp latitude upon the
dipole tilt angle. A compromise solution to that problem
has been outlined in the Appendix, in which we abandon the
deformation of the Earth’s internal field and treat it separately
in amore standard way; i.e., we combine the tilted dipole field
with an extended tilt-dependent expansion for the shielding
field, taking into account the tilt-related deformation of the
magnetopause.

Another limitation of the method is related to the need of
keeping under control the artificial electric currents induced
by the deformations. This imposes some restrictions on the
choice of coordinate transformation and makes it necessary
to check final distributions of the electric current density. In
most cases, only smooth and gradual distortions of coordi-
nates are acceptable.

Besides the terrestrial magnetosphere modeling, the de-
formation method can be successfully used in representing
the magnetic fields of other planets. In particular, the twist-
ing/warping effect is quite pronounced in the Jovian magne-
tosphere, because of the fast rotation of the planet. Khurana
[1997] successfully used Euler potentials for modeling the re-
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sulting complex shape of the Jovian current disk. As we noted
above, the described approach does not need any knowledge
of Euler potentials. Combined with the variety of existing
methods for modeling magnetic fields of disk-like current
sheets, it can boost further progress in modeling planetary
magnetospheres.

Appendix: Shielding of the Dipole Field Within
a Boundary With Tilt-Dependent Shape

We are using here the least squares shielding approach
[Schulz and McNab, 1987; Tsyganenko, 1995] for confining
the dipole field within a magnetopause with a predetermined
shape. However, in previous models [e.g., Tsyganenko, 1989,
1995, 1996] derivation of the shielding field for the dipole
was greatly simplified as a result of two assumptions. First,
the axial symmetry of the boundary, combined with a simple
dependence of the normal component of the dipole field on
the azimuthal angle, allowed us to reduce the dimensionality
of expansions for the scalar potential of the shielding field,
retaining only two coordinates instead of three. Second, the
assumed independence of the boundary shape on the tilt angle
W made it possible to represent the solution for an arbitrary
W as a linear combination of the shielding fields for ¥ = 0
and ¥ = mr/2.

In the present formulation, both assumptions are no longer
valid: for W # O the magnetopause becomes axially asym-
metric, and the degree of that asymmmetry changes with the
tilt angle. However, as we show below, a relatively simple
extension of the previously used method still allows us to
obtain an accurate solution.

Initially, we tried to extend the original expansions in cylin-
drical harmonics by adding more degrees of freedom with
respect to the azimuthal angle, a step made necessary by the
breakdown of the axial symmetry. However, much better re-
sults were obtained by replacing cylindrical harmonics with
the cartesian "box" potentials, used by Tsyganenko [1995]
for representing the shielding field for the cross-tail current
sheet,

uMz

al 11
E (aik + bjx cos W) exp[(—z— + —2)X]
1 k=1 pi T

Y Z
X €c0s — sin —
Di Tk

i Mz

c,k sin ¥ 4 djj sin 3W) exp[(% + %)X]
4q;

Z
X COS — COS —

A2
qi Sk (A2)

The potentials (A1) and (A2) correspond to two types of
symmetry of the field with respect to the Z coordinate. Their
coefficients ajk, bik, Cik, dix and the scale length parame-
ters pi, rx, qi, sy were fitted by least squares to minimize
the rms residual (B,%) over a set of 2232 points, evenly dis-
tributed both in geometrical space (i.e., on the boundary, up to
X ~ —80 Rg down the tail) and in the space of the tilt angle
—35° < ¥ < 35°. The shape of the model magnetopause for
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Figure 8. Lines of the dipolar magnetic field, shielded within the tilt-dependent magnetopause. (left) Un-
tilted configuration (W = 0); (right) a tilted dipole with ¥ = 30°.

W = 0 was chosen identical to that used in the existing ver-
sion of the magnetospheric field model [Tsyganenko, 1995,
1996], that is, an axially symmetric hemi-ellipsoid in the cis-
lunar region, smoothly continued by a cylinder tailward from
X &~ 65 Rg. For nonzero tilt angles, both the positions of
the boundary points and corresponding unit normals are af-
fected by the deformation and hence were recalculated from
(H-(12).

We also found that a significant increase in the accuracy
of the shielding is achieved with the same number of terms
in the expansion, by introducing a rotation of the potential
fields (A1) and (A2). More specifically, instead of the sum
of shielding fields By(r) = —VU; and By(r) = —VU,,
corresponding to the potentials (A1) and (A2), we used

B =Ry 1By (Ryr) + R 1By (Ryr) (A3)
where R; = ﬁl(yl) and flz = ﬁz(yg) are the matrices of
rotation around the Ygsp axis. The angles of the rotation,
v1 and y,, were assumed to be proportional to the dipole tilt
angle: y1 = K1V and y» = k¥, where the coefficients «;
and k7 were determined by least squares together with other
free parameters. For W = O the shape of the model magne-
topause was defined similarly to that in the existing magne-
tospheric model [Tsyganenko, 1995, 1996], i.e., as an axially
symmetrical hemi-ellipsoid, continued by a cylinder in the
far tail. In the case W # 0 the tilt-induced distortion of the
magnetopause was taken into account, using the transforma-
tion (7)—(12) for calculating shifted positions of the boundary
points and modified unit normal vectors.

Fitting the above expansions (A1)—-(A3) with N = 3 re-
sulted in the overall rms resudual normal field of 0.4% of
the maximal B, for the unshielded dipole field. That partic-
ular version of the shielding field model contained in total
18 coefficients and 14 nonlinear parameters. Figure 8 shows

the lines of the shielded dipole field for two values of the tilt
angle.
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