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Modeling the inner magnetosphere: The asymmetric ring current
and Region 2 Birkeland currents revisited
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Abstract. A quantitative model is developed of the inner magnetospheric magnetic field,

combining the effects of the azimuthally asymmetric ring current with those of field-aligned
currents, due to azimuthal variation of the plasma pressure. The axisymmetric part of the

model ring current was derived from average observed radial profiles of the particle pressure
and anisotropy and was analytically represented by a vector potential, fitted by least squares
to one derived by the Biot-Savart integral. The contribution of the asymmetric part, including
the field of Birkeland currents, closed via the ionosphere, was represented as a divergenceless
combination of expansions for the components of the B vector, and was also fitted by least
squares to the corresponding Biot-Savart field. The total field-aligned current, associated with
the noon-midnight pressure asymmetry of the outer ring current, was found to be significantly
smaller than the total Region 2 current, observed at low altitudes. It is therefore concluded
that most of that current is generated in the near-Earth plasma sheet. The goal of this work
is a realistic and computationally efficient description of the asymmetric ring current, to be

included in an advanced model of the external geomagnetic field.

1. Introduction

The inner magnetosphere can be viewed as a focal region
of the near-Earth space, where the storm time radiation belts
of charged particles are formed, energized, and eventually
dissipated in the upper atmosphere. The ongoing rapid ex-
pansion of human activities into near-Earth space creates a
need for more accurate dynamical models of the inner magne-
tosphere, already emphasized in many studies [e.g., Nakabe
etal., 1997].

The principal external contribution to the inner geomag-
netic field comes from the ring current and from a system of
field-aligned currents, which closes the asymmetrical part of
the ring current via the ionosphere. Since the discovery of
the radiation belts in the late 1950s, the composition, energy
spectra, and spatial distribution of the ring current particles
were widely studied, using abundant experimental data and
increasingly sophisticated models (see reviews by Williams
[1983] and a more recent one by Daglis et al. [1999]). How-
ever, very few of those studies took the additional step of
calculating the electric currents and estimating the associated
magnetic field disturbance. In fact, no major progress was
seen in that direction after the first decade of active studies,
pioneered by Akasofu and Chapman [1961] and followed by
other modeling efforts [e.g., Hoffiman and Bracken, 1965,
1967, Sozou and Windle, 1969; Lackner, 1970; Sckopke,
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1972]. Lui et al. [1987] and Lui and Hamilton [1992] (here-
inafter referred to as LH92) obtained the equatorial volume
density of the ring current, based on data of AMPTE/CCE
spacecraft; however, no attempt was made to derive the as-
sociated magnetic field.

In terms of the modeling, the problem requires more than
just the numerical evaluation of the magnetic field by the Biot-
Savart integral. Most experimental and theoretical studies
require compact and flexible analytical models, valid within
a wide range of altitudes from the ionosphere to the distant
magnetosphere. Somewhat surprisingly, during almost four
decades of the magnetospheric studies, just a few models
of that kind were proposed, virtually all of them limited to
the case of an axially symmetric ring current. Kendall et al.
[1966] suggested using a flux function W, related to the az-
imuthal component of the vector potential As, and they pro-
vided tables of the first three coefficients in the expansions of
W in associate Legendre polynomials. Schield [1969] pub-
lished another tabular representation for the components of
the field of an axially symmetric ring current, covering the
interior of a sphere R = 13 Rg. That approach was further
developed by Sckopke [1972], and Voigt [1981] introduced
the Sckopke’s ring current into his model of the magneto-
sphere (neither ring current model was ever published).

A different, purely empirical method of modeling the ring
current was developed by Tsyganenko and Usmanov [1982].
In that approach, no assumptions were made about the spa-
tial and pitch angle distribution of the ring current particles.
Instead, a simple mathematical representation for the vec-
tor potential was proposed from the outset, and an attempt
was made to deduce the field and the current from the mag-
netometer data, rather than to calculate them from particle
measurements or models. That kind of model was also used
by Hilmer and Voigt [1995], who added a second inner cur-
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rent, to replicate the effect of the eastward diamagnetic cur-
rents due to the earthward decrease of the particle pressure
at close distances. Kosik [1989, 1998] suggested a simple
empirical approximation for the ring current, using poloidal
vector fields. In the most recent global magnetosphere model
[Tsyganenko, 1996] the axisymmetric part of the ring current
was represented by a spread-out current disk with a variable
thickness, based on simple analytical expansions for the vec-
tor potential by Tsyganenko and Peredo [1994].

Axially symmetric models, however, provide only a crude -

approximation of the actual ring current. Both observations
and numerical simulations reveal a significant asymmetry.
Lijima et al. [1990] found the nightside azimuthal currents
to exceed the dayside ones by a factor between 2 and 3, on
the basis of a statistical study of AMPTE/CCE data for pro-
longed disturbed periods. Using more than 3000 days of the
DE 1 magnetometer data, Nakabe et al. [1997] also found
pronounced noon-midnight and dawn-dusk asymmetries in
the inner magnetosphere, which remained appreciable even
under quiet geomagnetic conditions. A similar result was
obtained in LH92 and in our recent study [Tsyganenko et al.,
1999], based on Polar magnetometer measurements at low
latitudes.

The azimuthal asymmetry of the ring current necessarily
implies the existence of Birkeland currents, closing the di-
verging part of the azimuthal drift current via the ionosphere.
The excess of westward current on the nightside suggests
a field-aligned current having the sense of Region 2, that
1s, downward (upward) on the evening side (morning side).
This scenario was conjectured by lijima et al. [1990] from
their study of the equatorial field, and it was corroborated by
Nakabe et al. [1997].

Global modeling of the magnetic field of the asymmetric
ring current still remains an almost untouched area. To our
knowledge, the first consistent efforts to bridge the gap were
described by Tsyganenko [1993] (hereinafter referred to as
T93) and by Stern [1993]. In their works, the model ring and
field-aligned currents were not spread out in space but flowed
on an infinitely thin dipolar L shell. Although both models
yielded reasonable fields away from that partial ring current
shell, they left much room for improvement, because of the
unphysically narrow radial extent of the region, occupied by
the current.

In alater work by the same authors [Tsyganenko and Stern,
1996] the model partial ring current was spread out over a fi-
nite interval of radial distance; however, its spatial configu-
ration was not derived from any trapped plasma distribution
but was postulated empirically. In addition, the model field
was specified separately in three domains. In the low- and
high-latitude regions (outside of the spread-out current) it
was represented by sophisticated combinations of harmonic
functions, while inside the current layer each component of
the magnetic field was approximated by lengthy (80-term)
expansions. The partial ring current field of Tsyganenko and
Stern [1996] was used in a global data-based magnetosphere
model [Tsyganenko, 1996].

Another attempt to model the partial ring current was made
by Peroomian et al. [1998], who used a "wire" approxima-
tion. In that work the partial ring current was regarded as a
way to close the observed Region 2 Birkeland system at the
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equator. Here, in contrast, we treat the field-aligned currents
in an opposite perspective, i.e., as the closure currents for the
partial ring current, obtained from the observed asymmetry
of the equatorial pressure.

In the present work we revisit the approach developed in
T93, aiming at a more realistic and mathematically simpler
model of the asymmetric ring current. We start by defining
a model of the ring current particle distribution in a dipolar
magnetic field, from which the associated electric currents are
then derived. Unlike in T93, the ring current in the present
model covers a wide interval of the L parameter and has
arealistic radial profile of trapped particle pressure and pitch
angle anisotropy, based on the results of LH92 obtained from
the data of AMPTE/CCE.

We also assumed the simplest form of the local time vari-
ation of the particle pressure, consisting of a constant term
and one proportional to the cosine of the solar magnetic lon-
gitude. AsinT93, this allowed us to separate the total electric
current and magnetic field into two parts, corresponding to an
axisymmetric ring current and a "quadrupole" part, in which
the local time variation of all related quantities also obeys
the simplest sine (or cosine) dependence. This reduces the
dimensionality of the problem from 3 to 2, so that it suffices
to calculate and analytically approximate the fields in only
one meridional plane.

Following the above outline, the paper is organized as fol-
lows. Section 2 formulates the problem and describes the
numerical procedure of the magnetic field calculation. Sec-
tion 2.1 treats the symmetrical part of the ring current, based
on particle characteristics obtained in LH92 and describes
an analytical approximation for the corresponding magnetic
field. Section 2.2 addresses the field of the partial ring cur-
rent, responsible for the azimuthal asymmetry, and presents
analytical approximations for its symmetric and quadrupole
parts. Section 3 discusses the results and their possible ex-
tensions in the future models.

2. Asymmetric Ring Current: Spatial
Configuration and Calculation of the
Global Magnetic Field

To obtain the spatial distribution of the electric current, we
need first to define the transverse and field-aligned pressures
p1 and p as functions of the position r. The volume cur-
rent density is then derived from p (r) and py(r), assuming
a purely dipolar magnetic field. In other words, we neglect
the distortion produced by external field sources, including
the ring current itself. This assumption will be further dis-
cussed in section 3.

The adopted spatial distribution of p; and pj is based on
the following observational facts, established in LH92: (1) In
the inner magnetosphere, roughly between ~ 2 and ~ 5 Rg,
the quiet time ring current is virtually axisymmetric, while
beyond that region a significant noon-midnight asymmetry
exists, rapidly increasing with growing distance. (2) The
transverse pressure p | is significantly larger than the parallel
one p| in the innermost ring current; however, the anisotropy
rapidly decreases with the distance, so that for r > 6 one may
assume p| = p.
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In view of these observations we construct a model which
superposes a fully symmetrical ring current (SRC), with the
radial profiles of p and pj based on those from LH92, and
a partial ring current (PRC), whose current density peaks at
a larger distance on the nightside. Section 2.1 concentrates
on the SRC, while the PRC model will be treated in section
2.2.

2.1. Modeling the Symmetrical Ring Current

Figure 1 shows the radial variation of the transverse pres-
sure pJ . in the equatorial plane, where the observed values
correspond to the quiet time profile of LH92 (their Figure 7;
note also that we use a linear scale for the pressure, in contrast
to the logarithmic one in LH92). A model approximation was
obtained as a least squares fit to the observed values, using
the following function of the equatorial radial distance r,:

p cos? Tlm ~Te exp| — fm — Te ’
" 2ty —n Ary

'y <re <rm,

1 2 (T Tm —Te rm=re\* (1)
—_m e 1 m_ e
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0 Yo < FlLOrFe >172,

where py, is the peak pressure and ry, is the distance at which
it occurs. The model profile (equation (1)) describes a steep
earthward falloff of p . on the inner side of the SRC and
a more gradual decrease on the outer side. The cosine fac-
tors in (1) ensure a smooth transition to zero pressure at the
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Figure 1. Radial profile of the transverse pressure p | . in the
equatorial plane. The observed values (crosses) were taken
from LH92, while the best fit model approximation (solid
line) is given by equation (1), representing only the axisym-
metric part of the ring current (this is why the outermost part
of the model profile deviates from the experimental points).
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Figure 2. Radial profile of the equatorial pressure anisotropy
parameter A, defined by equation (2). The observed values
(crosses) were taken from LH92, and the best fit approxima-
tion (equation (3)) is shown by a solid line.
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inner and outer boundaries of the SRC, assumed to be at
equatorial distances r; = 1.6 Rg and rp = 8.0 REg, respec-
tively. The best fit values for the variable parameters in (1)
are pym = 20.494nPa, r,, = 2.8391, Ar; = 0.7081, and
Ary = 0.6937.

Note that the model profile of p , gradually deviates from
the measured values for r, > 5 Rg, and unlike the observed
pressure, it falls off to zero at the outer boundary. This is
because the model profile (equation (1)) only represents the
axisymmetric part of the ring current, while the measured
values give the total pressure. The remaining difference be-
tween them is contributed by the PRC and by the inner part
of the tail plasma sheet; that component will be addressed
separately in section 2.2.

The parallel pressure py, in the equatorial plane can be
obtained from the transverse one given by (1), provided the
anisotropy parameter

Ple
Pile

A(re) = -1 2)

is known. This parameter was derived from the AMPTE/CCE
data in LH92, and Lui et al. [1994] also gave an analytical
approximation for A(r, ) by a fifth-order polynomial of 7,.. In
this work we used the observed values of A(r,) from LH92;
however, instead of fitting them to a polynomial, we assumed
a simpler exponential approximation,

A(re) = a+ bexp(—r./c) , 3
with the following best fit values of the parameters: a =
0.1561, b = 8.632, and ¢ = 1.7212. The observed values
and the model profile of A(r, ) are shown in Figure 2.
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Having thus defined the equatorial pressures p . and pje,
one can derive the pressure distribution everywhere in space,
once a background magnetic field model is specified and cer-
tain assumptions are made with regard to the pitch angle dis-
tribution function. As already mentioned, in this work we
assume a purely dipolar background field, and we calculate
the currents in the "low-beta" approximation; that is, we ne-
glect the field of the ring current itself.

With regard to the particle pitch angle distribution, two
kinds of the distribution function allow a simple and straight-
forward calculation of the pressure variation along field lines.
The first one, suggested by Parker [1957] and used in a ring
current model by Akasofu and Chapman [1961], represents
the dependence on the pitch angle © via a factor sinff*1®. In
this case both p and p vary with the magnetic field strength
B along the field lines as B~#/2, and hence the anisotropy
factor A is constant along the magnetic field, remaining equal
to B/2. In the case of a purely dipolar field the ratio

g sin® 6
B 1+ 3cos26

(where 6 is the dipole colatitude) determines the pressure
variation along a field line as

C))

pL(re)
Ae) - py = :

“am+1 ©

PL = ple(re) S

where r, = r/ sin? 6 is the equatorial radius of the field line.

A second type of distribution allowing a simple derivation
of the pressures is the bi-Maxwellian function, discussed in
detail by Cowley [1978] and used by Spence et al. [1987].
In that case,

pL=prer)G,  py = plerVG , (6)

where, using (4),

G= ! 7 -
[+ AGe)(1 - 5)]

@)
'Relations (1)—(7), combined with the well-known formula

. C Pi—PL
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J B2 X ( pL+ P ec) 3)

c

Parker’s

Bi-Maxwellian
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where e./p. is the field line curvature, complete the set of
equations necessary for calculating the electric current at any
location.

Figure 3 shows distributions of the volume current den-
sity in a meridional plane, calculated with Parker’s and bi-
Maxwellian distribution functions, based on the same equa-
torial profile of p, . and anisotropy function A(r,), adopted
from LH92. For comparison, the right panel shows the result,
obtained with the same radial pressure profile but assuming
fully isotropic pitch angle distribution. The total westward
current in the outer part of the ring current varied between

0.75 MA for the bi-Maxwellian case and 0.85 MA for the
isotropic case, while the inner eastward current was found
equal to 0.023 MA for the anisotropic cases and tripled up
to 0.069 MA in the isotropic case. Note that these results
correspond to a quiet time ring current, based on the data of
LH92.

As it should be, in the isotropic case the particle pressure
and hence the transverse electric current extend far along the
field lines, while for the actually observed anisotropy they re-
main concentrated relatively close to the equator. As shown
by Sckopke [1972], in the self-consistent model the field of
the ring current itself would weaken the total equatorial field
and hence confine the near-equatorial current to an even nar-
rower layer. So, using a realistic radial profile of the parti-
cle pressure, peaked relatively close to Earth and gradually
decreasing outward, and taking into account the observed
anisotropy, results in a remarkably near-equatorial disk-like
ring current, extending deep into the inner magnetosphere.
This is exactly what Sugiura [1972] obtained from the data
on the distribution of the scalar difference AB = B — BIGRF,
and he pointed out that his observation contradicted models
of the ring current used at that time. This also supports our
choice of the disk-like model ring current by Tsyganenko and
Peredo [1994] used in the T96 model.

Once the current density is assumed, we can proceed to the
calculation of the vector potential, given by the Biot-Savart
integral,

. «
A— 1 1j()dv ©)

c) r—=r1"

In a cylindrical coordinate system {p, ¢, z}, the potential
(equation(9)) of the axially symmetric ring current has only
one nonzero component, Ag. In principle, owing to the ax-
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Figure 3. Distribution of the volume current density j in model ring currents for three choices of the pitch

angle distribution .function: (left) Parker’s function ~ sinfftl @, (middle) bi-Maxwellian one, and (right)
isotropic distribution. The lines of equal intensity of j are labeled in nanoamperes per square meter.
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Figure 4.  Distribution of the azimuthal component Ay
of the vector potential, corresponding to the proﬁles of the
quiet time particle pressure and the pressure anisotropy in the
axially symmetrical part of the model ring current, given in
Figures 1 and 2, and to the bi-Maxwellian particle dlstr}butlon
function (equations (6) and (7)). This vector potentlgl was
obtained as the Biot-Savart integral (equation (9)) with the
electric current given by equation (8) (Figure 3, middle). The
lines of equal Ay are labeled in units of n'T-RE.

ial symmetry, one can perform the integration in only two
dimensions, representing the entire ring current by a set of
circular loops, as was done, for example, by Akasofu and
Chapman [1961]. However, in preparation for the computa-
tion of the partial ring current model, where (unlike here) the
Biot-Savart integral cannot be reduced to two dimensions,
we preferred to carry out the integration in three dimensions,
so that the same algorithm could be used later for the partial
ring current model (described in section 2.2).

The entire volume occupied by the ring current was di-
vided into 50 layers bounded by 51 dipolar L shells and cor-
responding to 50 equal intervals of the footpoint colatitude.
Each layer was divided by meridional cuts into a number of
sectors, so that the cross sections of the resulting field line
tubes were, on the average, as close as possible to squares. Fi-
nally, each field line tube was divided into volume elements,
choosing their dimensions along B, so that their shapes were
as close as possible to cubes. The total number of volume
elements in the numerical integration was N = 1, 166, 499.
Special care was taken of the singularities of the integrand
byreplacing |r — r'| — /|r — ¥'|2 + D2, with D = AV!/3,
i.e., not allowing it to become smaller than the linear size of
the volume element.

Figure 4 shows the distribution in a meridian plane of the
potential Ay, derived from the LH92 quiet time particle pres-
sure profile; Figure 5 presents the corresponding plots for the
field components B, and B;, numerically computed from the
potential in Figure 4. As already stressed in section 1, amajor
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challenge was to find a convenient analytical approximation
for that field; a simple solution was found and is given below.

The idea was to start from a crude and very simple model,
representing the ring current by a pair of spread-out current
loops [Tsyganenko, 1998a], and then to deform the coordi-
nates, adjusting the deformation parameters and the ampli-
tudes of the current loops to fit the actual distribution of the
vector potential. The initial undeformed potential was de-
fined as

2 2
0 (I — k7 /2)K (ki) — E(k;)
Afp) = E ai;

ot . a0

i=1
where
K2 = 4pip
i+ e+ 2+ D}

and where K and E are complete elliptical integrals of the
second and first kind. This initial model has six variable
parameters, including two amplitude coefficients a; and a5,
the loop radii p; and p;, and their spatial spreads D} and D,.

Since the geometry of the ring current is closely related
to the configuration of the background magnetic field, it was
not too surprising that a relatively simple deformation of the
dipolar orthogonal coordinates,

, (1n

yielded an accurate approximation. Given a point {p, z} in
space, we derived {«, y} and then deformed o to

3 N2
a/=a[]+2p,~exp [— (r r,) —cicoszé]}.(IZ)
P Ar;

After that, transforming {«’', y } back to deformed cylindrical
coordinates {o’, 7'} (the transformation itself is described in
the next paragraph), and using the latter coordinates instead
of {p, z}in (10), yielded a very accurate approximation to the
exact vector potential (equation (9)). A least squares fitting
of the parameters, entering in (10) and (12), was performed
by using a simplex minimization code over the region p <
15 Rg, 0 < z < 15 Rg, excluding the Earth’s interior (,o2 +
)2 < 1 Rg. In total, the model (equations (10)—(12))
has 18 variable parameters, whose best fit values are given
in Table 1. The quality of approximating the exact vector
potential by (10)—(12) can be gauged by the ratio o of the
rms deviation Ay to the rms potential (Aé)l/ 2. its best-fit
value was 0=0.5%.

The inverse transformation from the dipolar coordinates
(equation (11)) to standard spherical or cylindrical ones is
not quite obvious, but it is completely analytical. It was
described in our earlier work (T93, Appendix A), and for the
sake of completeness it is reproduced in brief below. For any
a and y, define

2

64 , ot o 173
f—ﬁy+7,Q—Qﬁ+7),

g=+/c2+4ly|*3;

13)
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Figure 5.

Distribution of the magnetic field components B, and B; produced by the axisymmetrical

model ring current, corresponding to the numerically computed vector potential in Figure 4. The lines of

equal B, and B; are labeled in nanotesla.

then the spherical coordinates are readily obtained from
4

T V-t Jogto’

The components of the magnetic field in either the spheri-
cal or the cylindrical coordinate system can be easily derived
from (10)-(13) by applying the curl operation, either ana-
lytically or numerically. Figure 6 displays the model field

cosf = yr2 . (14

components B, and B, in cylindrical coordinates; compar-
ing them visually with the similar plots for the exact solution
in Figure 5 does not reveal any significant difference. The
close agreement between the model and the original Biot-
Savart field appears even more striking in Figure 7, where the
initial electric current distribution (Figure 3, middle) is com-
pared to the one derived as ¢/4wV x V X A from the model
vector potential (equations (10)—(13)). In spite of applying
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Figure 6. Equal intensity plots for B, and B, obtained from the analytical approximation (equations
(10)—(12)) for the model vector potential. Compare with Figure 5.
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Figure 7. Distribution of the volume density of the elec-
tric current, computed from the analytical model (equations
(10)—(12)) of the vector potential for the axisymmetrical part
of the ring current. Compare to the original electric current
distribution (Figure 3, middle), used in the Biot-Savart inte-
gral (equation (9)).
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twice the curl operation (which often produces large discrep-
ancies between the initially assumed and model currents), in
this case the model current distribution closely resembles the
one we have started with.

2.2. Modeling the Partial Ring Current and Associated
Birkeland Currents

The PRC model is based on the following observations
and assumptions. First, we again assume a purely dipolar
background magnetic field.

Second, as mentioned in section 2.1, we adopt the finding
of LH92, that the noon-midnight asymmetry of the ring cur-
rent becomes significant beyond equatorial distances ~ 5 Rg
and rapidly increases outward. A larger particle energy den-
sity on the nightside implies an azimuthal variation of the
westward drift current and hence its redirection into the Re-
gion 2 Birkeland current.

Third, at sufficiently large tailward distances the particle
population of the ring current gradually merges with that of
the tail plasma sheet. Beyond a distance of R = 7 — 8 Rg
on the nightside, the equatorial current flow lines no longer
encircle Earth but reach the magnetopause and close there,
which corresponds to the transition from the ring current to
the cross-tail current system. This boundary can be taken as
a rough estimate of the outward limit of the PRC (although
the poleward part of the Region 2 currents is partially fed by
the diverging cross-tail current as well).

Fourth, as shown in LH92, the pressure anisotropy be-
comes rather small beyond ~ 5 —6 Rg, making it reasonable
to assume that the PRC plasma is isotropic. That assumption
allows one to specify the pressure p as a function of only two
variables, o and the solar magnetic longitude ¢.

Fifth, we assume that the local time variation of pressure
is rather smooth and can be approximated by a simple cosine
modulation factor, as specified in section 2.2.2. This greatly
simplifies the problem, since, as shown in T93 (Appendix B),
any individual Fourier term with cos m¢ or sinm¢ in the ex-
pansion for the pressure p(«, ¢) gives rise to only one term
of the same order in a similar expansion for the magnetic
field components. For that reason, it suffices to model either

27,745

spherical or cylindrical components of B in only one merid-
ional plane, since their values at any other local time can be
easily obtained by multiplying by cos m¢ or sin me.

2.2.1. Components of the electric current density. As
in the earlier case of the SRC, we again start by specifying the
volume electric current density, which is the sum of the drift
current jg4, the magnetization current j,,, and the Birkeland
current jg. Owing to the assumption that the background
magnetic field By is purely dipolar, all three components of
the current are expressed in a simple analytical form. The
drift part of the current reads

. 2cep(,

Ja = L(O;—QBO x VBy =

BO

_ 6esin6(1 + cos>)R? p(a, ¢)

M(1 + 3cos? )2 €

(15)

where ¢, M, and ey are the speed of light, Earth’s dipole
moment, and the unit azimuthal vector, respectively. The
magnetization current is

2
. D cr ap
jm=cVx|—-——B = - =
" ( B? °> M(1+3cos29){a¢e’

P 2
—2cot9—pe9+ 8_p1+3cos 6
a¢g do r

6 1 + cos26
P 3cos20 | ¥

and the Birkeland current, obtained by integrating the diver-
gence of the drift current (equation (15)) along the field line,
reads (T93)

(16)

i 6cV1+ 3005291( 5) ap By a7
p=——"7—F—1I(cos0)——,
M o2sin6 d¢ Bo
where
1 27 99 117
Iy = — (2L 2 s s
) 243(7" sVt

256x
— ). 18
13x + 1+3x2> 18)

Note that (17) and (18) provide an exact solution for the
Birkeland current, driven by the divergence of the drift current
in the case of nearly isotropic plasma, trapped in a purely
dipolar magnetic field. Another simplifying assumption we
made so far was the low-beta approximation, that is, the own
field of the PRC was neglected.

2.2.2. Pressure and electric current distribution in the
PRC model. Following the assumptions made in the be-
ginning of section 2.2, the isotropic pressure was specified
as a simple bell-shaped function of the parameter o and the
longitude ¢ (¢ = O at noon):

To—a«
pocos2 [—2- o 0] (€1 + €2 cos @)

lo — ool < Aa
0 e — gl > Aa .

Here the parameters g and A« give the position of the max-
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imum of the pressure and the spread of the PRC across the
dipolar L shells, respectively. These parameters, in turn, are
defined by the equatorial (e) and polar (p) colatitudes of the
PRC boundaries at the ionospheric level, assumed in this par-
ticular model as 6, = 62° and 6, = 70°. Accordingly,

e + op 0e — Op
a)=———>+, Aa= , (20
0 2 2
where a. , = sin? Be.p. The local time variation of the

pressure function (equation (19)) is contained in the factor
€] 4+ €2cos .

Setting €y = 1 and €2 = 0 and substituting (19) into
(15)—(17) yields the axisymmetric part of the PRC (a purely
azimuthal current with jg = 0). In the opposite case, €} = 0
and €2 = 1, we obtain a quadrupole current system, con-
sisting of the field-aligned currents, having the sense of the
Region 2, and their distant azimuthal closure currents at low
latitudes, flowing in opposite directions in the day and night
sectors near the equator. Adding together these two current
systems yields the desired model PRC, in which the axisym-
metric and quadrupole currents cancel each other on the day-
side and double the net current on the nightside at low lati-
tudes, so that all Birkeland currents are fed by the nightside
drift current (see Figure 1 in T93). Figure 8 shows a plot
of the pressure distribution in the midnight meridional cross
section of the model PRC, confined between the L shells with
the equatorial radii 4.54 and 8.55 Rg (corresponding to the
adopted values of §, = 62° and 6, = 70°). Figure 9 dis-
plays the pattern of the azimuthal electric current density in
the same meridional plane.

Note again that the pressure profile in Figure 8 represents
only the PRC and does not include the contribution from the
plasma sheet particles. This is why the assumed p(«, ¢)
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Figure 8. Equatorial radial profile of the isotropic pressure
in the model partial ring current. Owing to the assumed
isotropy, the pressure is constant along the dipolar field lines,
and its local time variation is contained in the factor ¢, +
€ COS ¢.
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Figure 9. Distribution of the azimuthal component of the
volume current density j in the model partial ring current
(PRC), obtained from equations (15), (16), and (19) in the
midnight meridian plane. The lines of equal intensity of j
are labeled in' nanoamperes per square meter.

falls to zero at the outer boundary of the PRC; in actuality,
the PRC particle population smoothly merges with that of
the plasma sheet, so that the total pressure decreases signif-
icantly slower. This also implies that the actual area of the
generation of the Region 2 currents extends to larger dis-
tances on the nightside than we have assumed in this model.
In this regard, it is interesting to evaluate the total magnitude
of the model field-aligned current. This can be done using the
continuity of the total current, by integrating the azimuthal
current flowing across the midnight meridian plane. Since
the azimuthal component of the PRC is zero at noon, all the
azimuthal current flowing on the nightside should close via
the ionosphere. For the above assumed values of the model
parameters the total azimuthal current on the nightside (in-
cluding both axisymmetric and quadrupole parts) was found
equal to 0.7 MA. Owing to the north-south symmetry, this
current is equally divided into Birkeland currents, flowing
into the northern and southern ionospheres, so that the net
downward current in each hemisphere is 0.35 MA. Since we
assumed pg = InPa both for the symmetrical and for the
quadrupole parts of the model PRC, the total noon-midnight
pressure variationis Ap = Pmidn — Pnoon = 2 nPa, and hence
the net downward field-aligned current per Ap = 1nPa is
0.175 MA. According to lijima et al. [1978], during rela-
tively quiet periods the total Region 2 field-aligned current
at low altitudes amounts to at least ~ 1 MA, which requires
the noon-midnight pressure asymmetry Ap ~6 nPa in our
model. This is much larger than Ap ~ 1nPa, following
from the quiet time data of LH92 (and confirmed in another
study by De Michelis et al. [1999]). It is unlikely that the
discrepancy can be attributed to the assumption of a purely
dipolar field; to make this point clearer, let us make another
order-of-magnitude estimate.

As said above, in the model PRC the total downward field-
aligned current / per each hemisphere is equal to the total
azimuthal current in the axisymmetrical part of the PRC. This
current can be independently evaluated using the formula
of Dessler-Parker-Sckopke and assuming that all the current
flows in a thin circular loop of a radius R:

W 2ml

M~ ¢R’
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where W is the total energy of particles in the axisymmetrical
part of the PRC and M is the Earth’s magnetic moment. The
average energy density w can then be estimated by dividing
W by the volume V of the model PRC, and to obtain its noon-
midnight variation, one needs just to double the result, in
order to take into account the contribution of the quadrupole
term: Aw = 2w. Finally, the pressure asymmetry is Ap =
(2/3)Aw. This results in a simple formula,

: bi
Ap =2.04- 10" — ,
P RV

where the pressure asymmetry Ap is in nanopascals, the total
Birkeland current / is in mega-amperes, and the radius R and
the volume V of the PRC are in Rg and Ri-, respectively. In
ourmodel, V 500 R} and R ~6 Rg. Assuming [ = I MA,
we obtain Ap ~6.8 nPa, which is fairly close to the previous
estimate.

As was shown by Sckopke [1972], taking into account the
nonlinear effects of the ring current field does not result in
a significant modification of the total energy stored in the
ring current and hence in its net magnetic effect. In par-
ticular, a correction term W, in the Dessler-Parker-Sckopke
relation, representing the magnetic energy of the ring current
itself, becomes largely offset by a significant decrease of the
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kinetic energy term W due to a spatial restructuring of the
magnetic field. Therefore we are forced to conclude that, at
least during quiet conditions, the field-aligned current, asso-
ciated with the noon-midnight asymmetry of the ring current,
represents a relatively small part of the total Region 2 cur-
rent, and hence most of that current actually comes from the
near-Earth plasma sheet.

It is interesting to visualize a three-dimensional (3-D) con-
figuration of the PRC, which in our case, in contrast to that
in T93, extends over a significant interval of the radial dis-
tance. Figure 10 shows 3-D views of four families of flow
lines of the total electric current, crossing the midnight merid-
ian plane along four dipolar field lines with equatorial radii
R, =17.5,7.0,6.5,and 6.0 Rg. Among the current flow lines
the ones whose midnight crossing points lie on the outermost
L shell usually reach the ionosphere as Birkeland currents.
However, for smaller values of R,, the current lines at low
latitudes do not reach the ionosphere but close at smaller
distances. This is owing to the effect of the magnetization
current, which flows across the magnetic field and encircles
the region of the largest particle pressure, resulting in a ra-
dial component of j in the dawn and dusk sectors and in an
eastward current in the inner region on the nightside. This is
especially clearly seen in the bottom right panel of Figure 10

To Sun

Figure 10. Views of electric current flow lines in the model partial ring current (PRC). The lines of j in
each of the four panels cross the midnight meridian plane at points lying on the same dipolar field lines,
whose equatorial radii R, are labeled near each plot. Owing to the local time variation of the pressure,

the current flow lines encircle the region of the peak pressure at midnight, owing to the magnetization
component of j.
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for R, = 6.0. (In a similar way, flow lines of the magnetiza-
tion current encircle the funnels of high plasma pressure in
the polar cusps.)

2.2.3. Magnetic field of the model PRC. The next step
is to calculate the magnetic field of the PRC by taking the
Biot-Savart integral over the above defined current distribu-
tion and then devising a suitable analytical approximation for
it. Because of the different structure of the axially symmet-
ric and quadrupole components of the PRC, it is convenient
to derive them separately, using two different methods. The
axisymmetric part is modeled in exactly the same way as the
SRC field in section 2.1, that is, by the azimuthal compo-
nent Ay of a vector potential of a pair of spread-out current
loops, modified by a best fit deformation of the dipolar coor-
dinates o and y, which makes the analytically approximated
Ay as close as possible to that obtained from the Biot-Savart
integral.

Modeling of the quadrupole part of the PRC seems less
straightforward, because it lacks the axial symmetry, and
hence at least two components of the vector potential are
needed. Fortunately, the cosine dependence of the pressure
on the azimuthal angle ¢ again proves very helpful. Namely,
as shown in T93 (Appendix B), in this case all three spherical
components of B assume a simple form:

B, (r,0,¢) =b,(r,0)cos ¢,
By(r, 0, ¢) = bg(r,6)cos ¢,
By(r, 6, ¢) = by(r,0)sin¢ ,

3y

with the azimuthal dependence represented by the factors
sin¢ and cos ¢. Substituting the field components of (21)
into the equation V - B = 0 in spherical coordinates allows
one to express the azimuthal component By via B, and By as
sinf 0

By=—| ——

¢ [ r or

(rzbr) + % (sin 6 bg)} sing . (22)
In other words, zero divergence can be assured without having
to resort to the vector potential, and it suffices to numerically
calculate and find analytical approximations for b, and by in
only one meridional plane (e.g., for ¢ = 0) and then to obtain
from (21) and (22) B,, By, and By in the entire space.

The Biot-Savart integration procedure adopted for the PRC
was essentially the same as the one for the SRC, described in
section 2. The only noteworthy difference regards the Birke-
land current closure in the ionosphere, a question discussed
in more detail in section 2.2.3.2.

2.2.3.1. Axisymmetric part of the PRC and its ana-
lytical approximation: Figure 11 shows the numerically
calculated distribution of the azimuthal component Ay of
the vector potential for the axisymmetrical component of the
PRC, obtained from (15)—(19) with€; = 1 and €3 = 0. The
peak value p,, of the pressure in (19) was assumed equal to 1
nPa. This parameter controls the overall strength of the PRC
and hence the degree of the asymmetry of the entire ring
current, which depends on the state of the magnetosphere
and should be derived from data. Therefore the assumed
pm = 1nPais just an arbitrary reference value, correspond-
ing to a model PRC of unit strength.
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P, Rg

Figure 11. Distribution of the numerically computed az-
imuthal component Ay of the vector potential, corresponding
to the axially symmetrical component of the model PRC. The
lines of equal Ay are labeled in units nT-RE.

The finally adopted representation for the magnetic field
of the axisymmetric part of the PRC employs a two-term vec-
tor potential, mathematically identical to that given by (10)
for the model SRC (not duplicated here), with the deformed
coordinates p and z. The choice of the deformation, how-
ever, was not as simple as for the SRC model, described in
section 2.1. Because of the assumed isotropic pressure, the
azimuthal currents extend much farther away from the equa-
tor than in the SRC model (compare Figure 9 with the middle
panel of Figure 3), which results in a more complex pattern
of Ay (compare Figures 11 and 4).

This made necessary a more sophisticated analytical ap-
proximation. In particular, instead of the coordinates r and
6 used in the deformation (equation (11)), it proved more
efficient to use the undeformed dipolar coordinates « and y,
since the PRC particle distribution is relatively narrow in the
radial direction and rather extended along the dipolar field
lines. Also, to achieve a decently accurate approximation,
it was found necessary to deform both « and y coordinates
(while in the case of the SRC it sufficed to deform only «)
and include more expansion terms. The finally adopted de-
formation reads as follows:

pres[ ()]
1+ (=) T
+i Pn(er — i)™

"= 1+ (aA—azz,,)Z}ﬂzn—z[l N (A);n)z]ﬂzn_l ]

a’=ai1+
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Figure 12. Comparison of the magnetic fields, obtained from the numerically computed axially symmetric
vector potential (left), with those derived from the model approximation (equations (10), (23), and (24))
(right). These plots correspond to the B, component of the field, and the lines of equal intensity are labeled

in nanotesla.
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The total number of the parameters here is 34, including 6
parameters of the current loops (ay, az, p1, p2, Dy, and D;)
entering in (10) and 28 deformation parameters in (23) and
(24). Their best fit values are given in Table 1; the correspond-
ing rms error was found as low as o = 0.3%. Figures 12 and
13 compare the distributions of the magnetic field compo-
nents B, and B, (in cylindrical coordinates), computed by

14 -
i B, (model)
12f .

LI L S B B B T T

14

Figure 13. Same as Figure 12 but for the B, component.
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the Biot-Savart integral, with those obtained from the model.
As expected from the highly accurate fitting of the vector
potential, the two magnetic fields are also very similar.

2.2.3.2. The quadrupole part of the PRC and its an-
alytical approximation: In contrast to the axisymmetric
ring currents (SRC and the first component of the PRC) the
Biot-Savart integral for the quadrupole part includes con-
tributions from the field-aligned currents, which should be
properly closed at ionospheric altitudes. The actual geom-
etry of the closure depends on the distribution of the iono-
spheric conductivity, but, owing to the relatively small scale
of the ionospheric currents, the details of that closure have
an appreciable effect only within a few thousand kilometers
above the ionosphere, in regions where the Earth’s main field
exceeds that of the Birkeland currents by at least a factor of
100. For the purposes of the global magnetospheric model-
ing, a simple approximation for the closure current is quite
sufficient, based on a uniform ionospheric conductivity and
on the assumption of the symmetry of the Birkeland currents
withrespect to the equatorial, noon-midnight, and dawn-dusk
meridian planes.

In this scenario, for any field-aligned current Aj, flowing
into the ionosphere over a small area of the ionosphere, there
exists an equal current, flowing out of the ionosphere in the
antipodal point. Owing to the uniform conductivity, the clo-
sure currents for this pair of elementary Birkeland currents
will flow along the meridians, connecting the inflow and out-
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the Biot-Savart integral. To have the best fit field faithfully
represent the highly structured patterns required somewhat
sophisticated expansions. To approximate the sharp "ridges"
and kink-like features, conspicuous in the vicinity of the field-
aligned currents, it was found helpful to use the functions

2 d
Tfsf’ Hh=file, fz =,£

(o, ap, A) =
bj 0, Aa) o

(25)

where
St =V(e+a0)?+ Aa?, S_=+(a—ap)?+ Ad?,

which allowed us to obtain accurate and economical approx-
imations for both b, and by. Before writing down the field
components, note that owing to the symmetry, b, = 0 at the
polar axis (§ = 0) and in the equatorial plane (8 = 7/2);
therefore it is convenient to incorporate this behavior from
the outset by using an auxiliary variable b}, defined through
b, = b} sinf cos6.

After having explored many possible approximations, the
following simple and accurate expansions for b} and bg were
chosen:
an kT,," (o, oy, Acty)

b= Y i

n

(an—1 + azy cos? 6)

3

2 4
flow areas, and their integral magnetic effect above the iono- + Z Z %4m+n+2
sphere will be equivalent to that of the straight segment of the e @ — O3> n 1 2
electric current, connecting the inflow and outflow points and + ( A3 ) ( + Ayi)
passing through the Earth’s center. This method of closing
the Birkeland current was used in the present work. 3 ant14 cos? 20 aig f3(a, ae, Aag) 2%
Figure 14 shows the plots of the quadrupole B, and By 4+l r—r\2 (26)
components in the noon meridian plane (¢ = 0), obtained by n=l I+ ( Ar )
e B L e
14+ — 71
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Figure 14. Distribution of B, and By components of the quadrupole part of the model PRC in the noon
meridian plane, obtained by numerical evaluation of the Biot-Savart integral.



Table 1. Parameters of the Ring Current in Equations (10)—(12), (23) and (24), (26) and (27)
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RC (symmetric): o'

PRC (symmetric): o and y’®

PRC (quadrupole): b}¢

PRC (quadrupole): by ¢

Parameter Value Parameter Value Parameter Value Parameter Value

aj -563.372 ai -801.120 aj -21.26663 ai 12.74640
ap 425.089 a 125.825 a 32.24527 a -7.516394
Ja 4.15059 1 6.56049 as -6.062894 as -5.476234
02 3.33450 02 3.82721 ay 7.515661 as 3.212705
D, 2.26615 Dy 1.93071 as 233.7341 as -59.10926
D, 3.07907 D, 0.77900 ag -227.1196 ag 46.62198
D1 0.0260243 Pi 0.305831 a7 8.483234 a7 -.0164428
r 8.93779 o] 0.181714 ag 16.80643 ag 11234229
Arn 3.32793 Aoy 0.125753 ag -24.63534 ag -.08579199
] 4.96679 B 3.42261 ap 9.0671206 a 01321367
D2 0.0912583 Ay 0.0474294 an -1.052687 a .8970494
) 6.24303 D2 -4.80046 ap -12.08385 apn 9.136186
Ary 1.750146 oy -0.0284564 aps 18.61970 an -38.19301
o) 5.71796 Aoy 0.218811 au -12.71686 as 21.73776
3 0.061067 B 2.54594 as 47017.36 ais -410.0783
r 2.07991 Ay 0.00813273 ae -50646.71 aie -69.90833
Ar3 0.682855 B3 0.358682 apy 7746.058 ayy -848.8543
c3 0.000000 D3 103.160 ag 1.531069 7] 1.243288
o3 -0.00764731 T 2.318824 o] 2071721
Aas 0.104649 o) 1417519 Aoy 05030555
Ba 2.95886 Ay .006388013 d; 7.471332
Ays 0.01172314 di 5.3039345 Bi 3.180534
Bs 0.438287 Bi 4.213397 123 1.376744
90 0.0113491 (9 7955534 1% 1568504
q1 14.5134 o .1401143 Aoy .02092911
o4 0.264710 Aoy .02306094 By 1.985148
Aay 0.0709123 dy 3.462235 T3 31571399
Ay 0.0151296 B2 2.5687430 03 1.056300
Q@ 6.86132 03 3.477426 a3 .1701395
o5 0.167740 T3 1.922155 Aas 11019870
Aas 0.0443365 o3 1485233 ds 6.293741
Ays 0.0555374 Aoz .02319676 B3 5.671824
Bs 0.766560 ds 7.830224 oy 1280772
B7 0.727785 B3 8.492933 Ady .02189061
oy 1295222 Ay .01040696
Aay .01753009 as 1648266
Ay, .01125504 Ads .04701593
os 1811846 Ayy 01526400
Aas .04841237 c1 3.589407
Ay .01981805 (o) 1.833514
cy 6.557802 c3 4.841667
() 6.348576 dp 1.0¢
c3 5.744437 o] 0.0®
o 2265213 0y 0.0°

Aag .1301957

Ar .5654023

[ea] 0.0e

[op] 0.0°

r 1.2¢

aParameters for axisymmetric ring current (RC) from equations (10)—(12).
bParameters for axisymmetric part of the partial RC (PRC) from equations (23) and (24).

cParameters for quadrupole part of the PRC from equation (26).
dParameters for quadrupole part of the PRC from equation (27).

¢Fixed parameter
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where k, = 1forn=1,2and k, = 3 forn = 3;

3

bg=)

n=1

T,
o fy" (o, Aay)

2
_1+ az,cos 8
(r/dn)ﬂ" +j,, (a2n 1 2n )

4
a
+f3(y’0’ Ayl)z n+6 2 n
n=1 [1+(Ot—a4) ]
Aoy
An+10
27" 2
1+(91;~_5)] 1+ )
l: AO[S ( A]/i
2n— 29

14 COS
+ Z A

and where j, = 1 forn = 1,3 and j, = Oforn = 2. The
best fit values of the parameters entering in (26) and (27) are
given in Table 1.

It should be noted that even though from a formal view-
point there is no need to numerically calculate and separately
approximate the azimuthal component by, the problem is
actually not that simple. Because of the derivatives in the
right-hand side of (22), even small inaccuracies in the ap-
proximations for b, and bg result in relatively large deviations
of by from the exact solution. To minimize this effect, the
derivation of the parameters in (26) and (27) was performed
in two steps.

First of all, a separate fitting was made of b, and by to the
corresponding exact distributions, obtained from the Biot-
Savart integral. The obtained values of the parameters were
then used as starting guesses for the next round of iterations,
in which all three components, b,, bg, and by, were fitted
jointly, to minimize the sum of their individual merit func-

4

2

n=1

27
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tions o = 0, +0p +04. This correction resulted in a dramatic
increase of the accuracy of by, at the expense of some increase
in the values of o, and 0y: The relative rms error og/ (b2 y1/2
fell from = 10 to & 2.9%, while the rms errors for b, and by
rose from = 0.8 to ~ 1.5%.

Figure 15 shows the model plots of b, and by in the same
format as their exact distributions in Figure 14. Figure 16
compares three plots for bg: The one on the left shows the
exact result from the Biot-Savart integral, the middle plot
shows the distribution obtained from (22) using the individual
fits for b, and bg, and the ploton the right shows by, corrected
by the joint refitting of all three components.

3. Discussion and Concluding Comments

In this study a quantitative model was devised for the
magnetic field of a realistic ring current, based on the ob-
served quiet time distributions of the particle pressure and
its anisotropy. The model reproduced the observed local
time asymmetry of the outer ring current, significant already
at r > 5 Rg and increasing with growing radial distance.
The azimuthally asymmetric distribution of particle pressure
gives rise to field-aligned currents having the sense of the
Region 2; their magnetic field was also evaluated and was an-
alytically represented in a single global model. The obtained
approximations are rapidly derived by available desktop com-
puters and are intended to be used in advanced data-based
models of the inner magnetosphere, an important component
of any space weather specification model.

Our several simplifying assumptions leave significant room
for improvement of the model. First, in the calculation of the
electric current density we used a purely dipolar background
field, while the actual field can be significantly stretched on
the nightside by the magnetic effects of both the ring current

UL L AL L L AL 'I'T'ili' LR L L LA AL IR L B j
14 B(model) ]
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Figure 15. Distribution of B, and By components, similar to those in Figure 14 but obtained from the
analytical approximation (equations (26) and (27)).




TSYGANENKO: ASYMMETRIC RING CURRENT MODEL 27,753
- B, (B.-S.) Jub B, (model) %[ B, (model; joint fit) \‘4
12F {12}k 4 12f h
101 4 10 -4 10F 4

p.R;

p,R; PR,

Figure 16. Distribution of the azimuthal component By of the quadrppqlq part of the model PRC, (left)
obtained by the Biot-Savart integral, (middle) derived from (22) using individual fits of equations (26) and
(27) for b, and by, and (right) after a joint fit of all three components.

itself and the cross-tail current. This effect, observed even
as close as the synchronous orbit [Kaufmann, 1987], pro-
duces an even stronger concentration of the current near the
equatorial plane than the one obtained using the dipolar field.
A straightforward modification of the above calculations us-
ing a more realistic background field would run into serious
problems, caused by the breakdown of the axial symmetry
of that field. In that case, expanding the axially asymmet-
ric pressure function into the Fourier series in ¢ would no
longer result in the separation of the azimuthal dependence
and hence would force us to abandon the "quasi-2-D" ap-
proach and to resort to the full-scale 3D modeling. A much
simpler way to incorporate the nondipolar geometry would be
to apply appropriate deformations of the coordinates [Stern,
1987; Tsyganenko, 1998b], keeping in mind that the natural
coordinates for the ring current are the dipolar ones, « and y,
which allow simple transformations to spherical/cylindrical
coordinates and back, as specified in (13) and (14). The de-
formation technique also proves very helpful for representing
the effects of the Earth’s dipole tilt on the geometry of dis-
tant field sources, including the outer ring current and the
inner cross-tail current on the nightside. Possible uses of the
deformation method for further modifications of the model
ring current go beyond the scope of this paper and will be
addressed in a separate publication.

Atlow altitudes the total magnetic effect of the ring current
should also include the induction field, produced by currents
flowing inside the Earth, and the shielding field of the mag-
netopause currents. The first current system is important
in modeling time-dependent ring current fields at and near
the Earth’s surface. It prevents the full penetration of the
ring current disturbance field inside Earth and results in an
enhancement of the negative H component at low latitudes.
The second current flows on the magnetopause and confines
the total field of the ring current within the magnetospheric
boundary. Both effects can be easily taken into account, using
the fact that by contrast to the field of the ring current itself,
both the induction and shielding fields are curl-free inside
the magnetosphere and can be represented there by a scalar
potential.

Using the observed values of the noon-midnight asymme-
try of the ring current particle pressure, an estimate was made
of the contribution of the partial ring current to the Region 2
system of Birkeland currents. At least for quiet conditions,
that contribution was found not to exceed ~ 20% of the total
Region 2 current, observed at low altitudes. This suggests the
near-Earth plasma sheet as the main source of that current.

Of special importance is the modeling of the storm time
ring current, distinguished by a dramatic increase in the en-
ergy density due to the injection of new particles and the ener-
gization of the previously existing population. The geometry
of the storm time ring current is also different: Its peak shifts
earthward, and it develops a strong dawn-dusk asymmetry
with more depressed field on the duskside. These effects
can, in principle, be replicated by a deformation of the model
field; the simplest approach would be a spatial scaling of the
ring current, combined with an appropriate modulation of its
overall strength and a rotation of the PRC peak toward earlier
local times.

The above subject is related to the more general and im-
portant problem of gauging principal physical processes that
control the ring current: the injection of new energetic parti-
cles into the trapping region and their eventual loss. Since the
ring current resides close to the Earth, where both the geo-
magnetic field and its gradient are quite large, the timescales
involved range from several minutes to tens of hours. For
that reason, not only the current solar wind conditions but
also their earlier history are important. The problem of pre-
dicting the ring current state has been addressed in the past by
means of numerical simulations [e.g., Harel et al., 1981; Fok
et al., 1999] or by using an empirical approach, devised by
Burton et al. [1975] and further developed by Valdivia et al.
[1996] for a short-term forecast of the Dst index. These is-
sues, however, extend beyond the scope of the present paper.
Our goal here was to devise amathematical framework, repre-
senting the global spatial structure of the magnetic field of the
asymmetric ring current and of the associated field-aligned
currents, without considering time-dependent processes. We
also note that although the numerical fits were made here for
only one pressure/anisotropy profile, obtained in LH92 for
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quiet conditions, the above described method can, in princi-
ple, be used for a variety of particle distributions, observed
at different periods.
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