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Abstract—A simple polynomial expansion for the components of the magnetic field from the mag-
netospheric surface currents is derived, based on a solution of the boundary problem for a tilted magnetic
dipole field confined within an axially symmetric oblong ellipsoidal cavity. The ellipsoidal representation
of the magnetospheric boundary is in excellent agreement with its observed shape up to tailward distances
of 30 40R;. The obtained representation of the boundary field can be easily adjusted to arbitrary values

of the solar wind ram pressure by means of a simp
performed, using the fact that the paraboloidal surfa

one by a special choice of its parameters.

1. INTRODUCTION

The problem of shielding the geodipole field by the
currents flowing at the boundary of the magneto-
spheric cavity was studied by many authors, includ-
ing the first classical works by Chapman and Ferraro
(1930, 1931). Some of them solved the problem
self-consistently (Mead and Beard, 1964; Choe et al.,
1973 Olson, 1969), that is, not only the boundary
shielding field, but also the shape of the boundary
itself was found, satisfying at any point the condition
of the balance between the solar wind ram pressure
and electrodynamic stresses in the magnetopause cur-
rent layer, represented equivalently in terms of the
interior magnetic pressure. In an alternative approach
developed by Alekseev and Shabansky (1972), Voigt
(1972) and Tsyganenko (1976), the magnetopause is
treated as a surface with a given shape providing
reasonable agreement with the observed one, and the
boundary magnetic field distribution is computed
from the requirement of complete or partial (Voigt,
1981) shielding of intra-magnetospheric sources out-
side the cavity.

The models designed for practical calculations
should also meet the requirements of (i) a relative
simplicity of mathematical representation of the mag-
netic field components as well as (i) a sufficiently
extended region of validity of the model. Besides that,
it is necessary that (iii) the model be capable of taking
into account in a simple way changes in the solar
wind momentum flux leading to variations of the
magnetospheric dimensions.

In the well-known model by Mead (1964) gener-
alized later by Choe et al. (1973) to the case of non-
zero dipole tilt angle [corrected by Halderson et al.

le scaling. A comparison with a paraboloid model is
ce can be obtained as a limiting case of the ellipsoidal

(1975)] the boundary ficld is approximated by a
spherical harmonic expansion containing positive
powers of the radial geocentric distance r. Unfor-
tunately, such a series yields satisfactory results only
within a limited near-Earth region and becomes com-
pletely inappropriate for r 2 10R, due to a poor con-
vergence. This motivated Beard et al. (1982) to pro-
pose a separate representation of the boundary field
in the magnetotail by means of cylindrical harmonics.
However, these results have not been extended to the
case of tilted geodipole. Some difficulties arise also in
this approach in relation to the problem of matching
the solutions pertaining to two separate modeling
regions.

A comparatively simple representation of the
boundary current field is provided by a model with
the paraboloid shape of the magnetopause, first pro-
posed by Alekseev and Shabansky (1972) and con-
siderably developed in a recent paper by Stern (1985).
The paraboloid surface shows a good agreement with
the observed magnetopause at the dayside, but
expands too rapidly in the tailward region (a per-
turbation method for modification of the parabolic
harmonic expansion to the case of non-paraboloid
boundaries was proposed in this relation by Stern in
the above cited work). Besides that, the paraboloid
model requires computation of the ordinary (Jo,J})
and mofidifed (I,, I,) Bessel functions, which are not
always convenient in practice.

In the present work a similar problem is solved for
a cavity having the shape of an oblong ellipsoid of re-
volution. In the front magnetospheric region Xgsm
> —30R, the ellipsoid provides an excellent
approximation to the observed magnetopause. At
larger distances the ellipsoid surface tapers down and
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closes ; however, contributions from both the geodi-
pole and boundary sources do not exceed a few tenths
of nanotesla in this region, at least an order of mag-
nitude less than that from the tail current sheet.
Therefore, the ellipsoid model for the dipole shielding
field can actually be used up to its rear boundary,
which may be placed at distances of the order of lunar
orbit radius or even farther. The main advantage of
the model consists in that the obtained mathematical
representation appears to be rather simple and can be
reduced to the polynomials of the solar magneto-
spheric Cartesian coordinates, which are easily adjus-
table to a given value of the solar wind momentum
flux.

2. TRANSFORMATION TO ELLIPSOIDAL
COORDINATES

Consider a cavity having a shape of an oblong
ellipsoid of revolution (Fig. 1) with both its foci lying
at the X axis of the solar-magnetospheric coordinate
system (GSM) and spaced by the distance 2a. The
front focus is located at Xggm = X,. Let us introduce
the ellipsoidal coordinates (0,1, ¢) [see Chapter 6,
Table 6 of Korn and Korn (1961)], related to the
solar-magnetospheric ones (x,y,z) by the following
transformation

N. A. TSYGANENKO

1 [Sz+(54_4a2x/2)1,'2}|,2
[ s

a 2
l SZ_(S4_4a2x/2)l/‘2 1/2
e } sign (x')
@ =tan"' (z/y), (I

where X’ = x—xo+aand s = a’+ x> +y’+z°
The inverse transformation reads as follows:

x =x,—a(l—-o1)
y=a(e*=1)"2(1—1%)"?cos ¢
z=a(e’— 1" (1—1?)"2sin . )

Figure 1 shows contours of constant ¢ and 7 in the
plane y = 0. The interior of ellipsoidal cavity cor-
responds to the intervals of coordinates 1 < 6 < gy,
—1<1<1, 0< ¢ <2r The magnetopause shape
and location is defined completely by setting the values
of the parameters x,, a, and g,. The subsolar point
distance and the radius of the dawn—dusk cross-
section are, respectively,

rs = xo+a(ey—1)

1o = [rs(1— 05 H)(2ac, —rs)] 2 3)

FI1G. 1. CONTOURS OF CONSTANT ELLIPSOIDAL COORDINATES ¢ AND 7 IN THE GSM MIDDAY-MIDNIGHT
MERIDIAN PLANE.
The ellipsoid with ¢ = g, = 1.17 represents the magnetopause with the subsolar point at x = rg = 10Rg
and rp = 14.366R;. The front focus lies at x, = 3.71, and a = 37Rg. The dashed line corresponds to the
paraboloid with the same rs and rp,.




Chapman-Ferraro problem for ellipsoidal magnetopause

The points lying at the x axis are given by the fol-
lowing intervals of ellipsoidal coordinates: (i) 7 =1
and 1 <o<a0y, (i) —1<7<1 and o =1, (iii)
1= —1 and 1 <0 < g, which correspond to (i)
XoSx<rg, () x—2a<x<x, and (iii)
20xp—a)—rs < x < xy—2a.

The following relations also hold, which will be
used later on:

ot = X'la
6’ +12 = 1+ (x"2+p?)/a
(6*=1)"*(1 =17 = p/a, “

where p? = y?+z7.

A search for appropriate values of the ellipsoid
parameters gave the following ones: x, = 3.71Rg,
a =37Rg, and g, = 1.17, yielding a good agreement
with the average observed magnetopause shape (Fair-
field, 1971). Being substituted in (3), these values give
r¢ = 10Rg and rp, = 14.366 R;. The maximal radius
of the cavity (minor semiaxis) equals
alog—1'"*~2247R. at x = xo—a = —33.3R;.

Fy =

3. EXPANSIONS FOR THE POTENTIAL OF THE
MAGNETIC FIELD FROM THE BOUNDARY SOURCES

Following the standard formulation of the Chap-
man-Ferraro problem for a magnetospheric cavity of
a given shape (e.g. Alekseev and Shabansky, 1972)
and using the notations by Stern (1985), we arrive at
the Neumann’s boundary problem

Ayo, =0

An

Yo
=
do

a0,
do

= Fo, (1, 0). )]

o =a, =0,

Here y, and y, are the scalar potentials for the shield-
ing field from the magnetopause currents, which cor-
respond, respectively, to the parallel and perpen-
dicular orientation of the dipole of unit magnetic
moment. The functions F, and F, in the boundary
condition represent the normal components of the
dipole magnetic field at the boundary, obtained as the
negative derivatives of the dipole potentials y4, and
7q1- The final solution can be expressed in terms of
vo and y, as (Alekseev and Shabansky, 1972; Stern,
1985)

7 =g(yosiny +y, cosyy), (6)

where i is the tilt angle of the geodipole axis with
respect to the zggy one, and g is the Earth’s magnetic
moment. For the epoch 1980.0 the value of
g = —30574 nT x R} should be taken.

The Laplace’s equation in (5) reads in ellipsoidal
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coordinates as (Korn and Korn, 1961)
0 5 dy 0 N
2.2 a2
6°—1 Sy 0.

T dp
Its general solution can be obtained by separating the

variables in a standard way, with the result in a form
of expansion :

7= 2 PHOP(t)(@. cosmp+b,,sinme)
n=1m=0
0

containing the associate Legendre functions of the
first kind.
The dipole potentials have the form

a0 = X/R? and VdI:Z/R3s

from which the right-hand sides of the boundary con-
ditions in (5) follow as
Fo = (a/R*){t—3(x,—a+ao,7)
x[aco+1(xo—@]/R?} = fo®)  (8)
Fy = (a/R*)[(65— 1)1 —=1)]"*{a,/(65—1)
— Ba/R?)acy+1(x, —a)]}
xsing = fi(r)sing  (9)
where
R? = x*+y*+z° = a*(ci+17)
+2a{xy—a)o T+ x¢(xy—2a).
As is seen from (8), the boundary condition for
7o does not contain any ¢-dependence due to axial
symmetry of the shielding field for the x-aligned
dipole. The function F, for the z-aligned dipole orien-
tation depends on ¢ only through the factor sin ¢.
By this reason, the expansion (7) is reduced in these
particular cases to a more simple form, containing the

summation over # only. Truncating this infinite series
to the leading N terms, we obtain

VO = z aONPII(O-)PH(T) (10)

n=

N
yi= ) auP.(0)P(1)sin@.

n=1

(1D

Using the boundary conditions (8) and (9) and

orthogonality of the Legendre functions, the
coefficients in (10) and (11) can be found as
1
ap, = (n+ é)/P;(Uo)J I.fo(f)Pn(T) dr = (12)
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ay, = (n+ 3)/[n(n+1)P, (0,)]
XJI fi@P(m)dr. (13)

Note also that, since ¢ > 1, the associate functions
P)(0) should be calculated as P}(0) = \/o>— 1P, (0)
(Abramowitz and Stegun, 1964).

The first 20 coeflicients computed trom (12) and
(13) for the above specified values of the ellipsoid
parameters are listed in Table 1.

4. THE MAGNETIC FIELD COMPONENTS

Calculating the minus gradient of the potential
yields the magnetic field vectors b, ;, corresponding to
the parallel and perpendicular dipoles of unit strength

N

bo: = —=Vye.lo,7,90) = — Ogg'Va
- 6;:‘1 Vi— 6;2)” Vo.
Using (1) and (2) then gives in components
by, = — a‘(;lt;z“) I:r(az— 1) a;g,
+o(l—19) %—] (14)

ot Jo

_l@*=na—)" (T o, avo,.>

L T o B -

y cos @ N 1 070.1
sing)  al(a?—=D(1—1H)]"? d¢

sin @
X {—cosq)}' (15)

Inserting the truncated expansions (10) and (11) in
(14) and (15) gives the final expressions for calculating
the magnetic field components. However, since (14)
and (15) contain indeterminacies at the ellipsoid foci
(6 =1 and t = £ 1), an additional treatment at the
level of separate expansion terms is necessary, in order
to make the expressions manageable for practical
calculations.

Let us consider first the x-component for the case
of parallel dipole shielding. Substituting in (14) the
terms of the expansion (10) and eliminating the
derivatives of the Legendre functions by means of
known relationships (Abramowitz and Stegun, 1964)
we obtain

1 N
0 = m"gl %n"{GPn(U)
xP,_ (1) =P, (1)P,_(0)}. (16)

It can easily be shown that for any n the expression
in curly brackets may be written as

(0* #1%) Ax (1,0)(0T)".

bx

Here Ay (1,v) is a polynomial of two variables, ¢ =
o%? = (x'/a)? and v = 62 +1* = (a’+p>+x?)/a’, of
degree K, = [(n—1)/2], where the square brackets
denote the biggest integer of the inside quantity and
the power /, equals 0 for odd and 1 for even values of
n. As a result of summation, (16) can be reduced to
the form

b., = Ry, (t,0,X") = R (t,0) + (x'[a)Ri (t,v)  (17)
where R{; and R{? are polynomials of ¢ and v, and
of degree M, = [(N—1)/2}.

Quite similarly, using (4), all other components are
derived as

by, = (z/@)Sy, = (z/a){S4, (1, v) + (¥ /) S0 (1,0)}
(18)

TABLE 1. COEFFICIENTS FOR THE LEADING TWENTY TERMS IN THE EXPANSIONS (10) aND (11)
FOR THE PARALLEL (a,,) AND PERPENDICULAR (d),) DIPOLE SHIELDING POTENTIAL INSIDE THE
ELLIPSOID WITH X, = 3.71, a = 37, AND 64 = 1.17

n Ao Ain n [ i
1 4.160E-3 2.997E-3 11 —9.895E-7 —8.831E-9
2 3.486E-3 8.793E-4 12 —3.533E4 —2.635E-9
3 2.089E-3 2.579E-4 13 —1.007E-7 —6.368E-10
4 9.911E-4 7.043E-5 14 —2.000E-8 —1.086E-10
5 3.829E-4 1.739E-5 15 —2.873E-10 —1.354E-12
6 1.175E-4 3.677E-6 16 2.223E-9 9.175E-12
7 2.461E-5 5.599E-7 17 1.412E-9 5.147E-12
8 —1.152E-8 —1.988E-10 18 6.096E-10 1.976E-12
9 —3.373E-6 —4.559E-8 19 2.096E-10 6.084E-13
10 —2.206E-6 —2.398E-8 20 5.765E-11 [.507E-13
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b = {00 (T 0+ AT 0] (19

b, = (yzja){Ui) (t,v) + (x'[a)U3Z (1,0)} (20)
b. = (2/a){US(L,v) + (X [@) UR, (1, v)}
— {20+ @)V (o). (1)

Coefficients of the polynomials R, S, 7, U, V' in
(17)-(21) include a combination of the coefficients aq,
or a,, from Table 1 and those of Legendre functions
their concrete values depend on the length N of trun-
cated expansions (10) and (11) for the potentials and
will be given in the next section.

After the components of b are found from (17)—
(21), the full vector B can be obtained as a linear
combination of b, and b, with the weight factors
gsiny and gcosi, in quite a similar way, as for the
potential in (6).

In addition, it is worth noting that the same poly-
nomial representation (17)—(21) for the field com-
ponents could be obtained in a slightly shorter and
straightforward way, if the truncated expansions for
the potentials (10) and (11) were reduced to the poly-
nomials in Cartesian coordinates similar to R—V ones
in (17)—(21), subsequently taking derivatives of x, y,
and z.

5. NUMERICAL RESULTS

To elucidate the question on the optimal length
of the truncated expansions providing an adequate
accuracy of the shielding field representation, the
values of the derivatives dy, /00 were computed in
several boundary points for different numbers of terms
in the expansions. In the case of an ideally accurate
perfect shielding these values should equal the deriva-
tives of the dipole potentials dyq /0o evaluated at the
same locations. Table 2, similar in its structure to that
in the paper by Stern (1985) for the paraboloid model,
represents the results of comparison of the derivatives
for ten values of x coordinate within the range
—70 < x < 6R; and for three different expansion
lengths, N =20, 10 and 6. In the first case with
N = 20, the boundary normal component of the
dipole field is shielded by the magnetopause sources
within the accuracy of 1-2%, the best results being
observed for the front magnetopause region with
x 2 —30R;, where the discrepancies do not exceed
0.2%. Figure 2 shows the magnetic field lines of the
tilted geodipole completely shielded by the boundary
field, calculated by means of a direct numerical differ-
entiation of the potential (10) and (11) with ¥ = 20.

For shorter expansions the discrepancies are larger,

TABLE 2. BOUNDARY VALUES OF 7,/80 AND 87 ,/00 AS OBTAINED BY SUMMATION OVER FIRST N TERMS OF EXPANSIONS (10) AND (11) FOR THE SHIELDING POTENTIALS, IN COMPARISON

WITH THE CORRESPONDING VALUES FOR PARALLEL (d,) AND PERPENDICULAR (d,) DIPOLES, AT DIFFERENT LOCAL X

oy /0o

0yol0a

N=10

N=20

—0yq1/00

N=20 N=10

/0o

Ty
—0%4q0

5.309E-2
2.178E-2
2.562E-3
9.410E-7
1.462E-3
6.491E-4
—1.244E-3
—8.550E-4

5.503E-2
1.941E-2
3.909E-3
1.412E-3
—3.469E-4
—5.577E-5

5.658E-2
1.901E-2

4.301E-3

5.659E-2
1.901E-2

4.301E-3

2.225E-2
—1.232E-2
—8.604E-3
—2.377E-3
—1.367E-3
—2.236E-3
—1.369E-3

2.217E-2
—1.247E-2
—6.806E-3
—3.937E-3
—2.241E-3
—7917E-4
—9.855E-4
—3.870E-4
—2.397E-4

2.220E-2
—1.167E-2
—7.323E-3
—3.776E-3
—2.037E-3
—1.167E-3
—7.086E-4
—4.516E-4
—2.972E-4
—2.010E-4

2.220E-2
~1.167E-2
-7.325E-3
—3.776E-3
—2.035E-3
—1.169E-3
—7.094E-4
—4.501E-4
—2.955E-4
—1.992E-4

5.7
—3.0
—11.6
—20.3
—29.0
—37.6

0.9

0.7

8.877E-4

6.551E-5
—1.239E4
—1.468E-4
—1.201E-4
—8.182E-5
—4.276E-5

8.901E-4

6.473E-5
—1.253E-4
—1.451E-4
—1.192E-4
—8.266E-5
—4.150E-5

0.5
0.3
0.1
—-0.1

1.207E-5
—9.128E-4

1.060E-4
—4.925E-4
2.977E-4
—4.676E-4

5.281E-4
1.572E-5
—1.298E-3

—46.3
—54.9
—63.6
—72.3

-0.3
-0.5
—-0.7
-0.9

1.487E-5
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FiG. 2. MAGNETIC FIELD LINE CONFIGURATION OBTAINED FOR THE TILTED DIPOLE FIELD (i = 30”) CONFINED
WITHIN THE ELLIPSOIDAL CAVITY OF FIG. 1.
The boundary current field was computed from (10) and (11) with N =20, by means of numerical
computation of the —Vy components. Field lines start from Earth’s Northern Hemisphere at latitudes 2°
apart, beginning from 60°.

the most significant deviations arising in the rear part
of the ellipsoidal boundary, so that the region of
satisfactory field representation shrinks towards the
subsolar magnetospheric domain. Nevertheless, even
relatively short sums yield sufficiently good results
within distances R < R, which can be seen from Figs
3 and 4 showing the field line configurations obtained
from the polynomial representation (17)—(21) with
N =10 and 6, respectively. In these two cases the
polynomials R, S, T. U, V have the degree M,, =4
and M =2. Tables 3 and 4 give the values of
cocfficients for these polynomials along with the
explicit form of the corresponding terms.

6. SCALING AND COMPARISON WITH THE
PARABOLOID MODEL

Variations of the solar wind dynamical ram pres-
sure P, = nmV’ cause the changes in the location of
the magnetospheric boundary. An important feature
is that the geocentric distance to any point of the
magnetopause with constant angular coordinates (as

viewed from the dipole location) changes in approxi-
mately the same proportion. In other words, the mag-
netopause shrinks and expands nearly self-similarly
with respect to the origin. This was first shown by
Mead and Beard (1964) and stems, in fact, from the
self-similarity of the dipole field.

Therefore, to take into account a change in the solar
wind ram pressure from a “standard” value Py, up to
a currently observed one P4, we have to multiply the
parameters a and x, by a {actor K and to retain the
parameter ¢, by the same value. As can be seen from
(3), the characteristic distances rg and rp, also change
by the factor K after the scaling. All the coefficients,
as follows from (12) and (13), acquire the factor K —*
and, -therefore, the magnetic field components scale
by K~* at any point with a fixed value of (0,1, @).
The last scaling factor holds also for the dipole field
components at points with constant coordinates
(0,7, @) and hence the same is true for the total field.
At the magnetopause, where ¢ = g, the points with
T = constant correspond to the constant angles of
incidence of the solar wind, for any value of Py, and
thus the scaling procedure becomes consistent with
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F1G. 3. MAGNETIC FIELD LINE CONFIGURATION SIMILAR TO THAT SHOWN IN FIG. 2, COMPUTED USING THE
POLYNOMIAL REPRESENTATION OF THE SHIELDING FIELD COMPONENTS (17)—(21) wiTH N = 10.
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FiG. 4. SIMILAR TO FI1G. 3, WITH N = 6.
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TABLE 3. COEFFICIENTS OF THE POLYNOMIALS R, S, T, U, V IN (17)-(21) FOrR N = 10.
The corresponding terms are given in the first column, where = (07)’=(x'/a)’, v=06"+1"=
(@ +x"24+y*+z%)/a>, & = x’/a. Blank positions correspond to zero coefficients

Term R S T U v

t 3.9169E-3 1.0993E-2 —9.1937E-3 —9.0000E-4
e —7.3115E-3 —1.8107E-2 1.5143E-2 1.4824E-3
02 4.2182E-3 9.0553E-3 —7.5713E-3 —7.4118E-4
w? —7.6694E-4 —1.3928E-3 1.1648E-3 1.1403E-4
v* 2.1304E-5 3.1655E-5 —2.6473E-5 —2.5915E-6
£ 3.6565E-3 1.2392E-2 —1.0364E-2 —2.9674E-3 —4.2611E-4
v —3.4522E-3 —1.1513E-2 9.6284E-3 2.9647E-3 2.6361E-4
w? 6.3945E-4 2.3803E-3 —1.9906E-3 —6.8416E-4 —9.6960E-6
v —6.1025E-6 —6.0020E-5 5.0194E-5 2.0732E-5 —1.9445E-6
£ —1.6378E-3 1.0736E-3 —1.0768E-3 —35.2721E-4 8.6294E-4
w 1.7692E-3 3.4214E-4 —1.6681E-4 3.8784E-5 —5.7961E-4
v? —1.8424E-4 —7.5884E-5 5.4938E-5 1.1667E-5 3.9734E-5
t —1.9431E-3 —2.0250E-3 1.4549E-3 1.1592E-3 6.7481E-4
v 4.0205E-4 3.4430E-4 —2.4703E-4 —1.5893E-4 —1.0318E-4
1 —2.7848E-4 —3.3760E-4 2.2929E-4 2.0635E-4 9.8400E-5
e 1.0215E-2 —2.1098E-3
t3vé —2.1632E-2 3.9975E-3
13 1.5143E-2 —2.4691E-3
w3 —3.8827E-3 5.4868E-4
vt 2.6473E-4 —3.1655E-5
e 1.6171E-2 4.2353E-3 —3.4817E-3 —7.9951E-3 —2.6370E-3
& —2.1462E-2 —5.9294E-3 4.8743E-3 9.8763E-3 3.0334E-3
1w 7.6378E-3 2.2805E-3 —1.8747E-3 —3.2921E-3 —9.1346E-4
v3¢ —6.1333E-4 —2.0732E-4 1.7043E-4 2.5324E-4 6.0020E-5
12E 5.1436E-3 2.0294E-3 —1.7415E-3 —6.0668E-3 —1.2864E-4
wé —2.3205E-3 ~1.0156E-3 9.0142E-4 3.6538E-3 —2.1522E-4
v —2.8465E-5 3.1059E-5 —3.6615E-5 —3.6012E-4 7.5884E-5
1 —2.0511E-3 —2.2926E-3 1.6708E-3 4.3045E-4 9.0454E-4
vé 1.2079E-3 1.0003E-3 —7.3697E-4 —3.0354E-4 —3.4430E-4
¢ —9.5264E-4 —1.1433E-3 8.0411E-4 6.8860E-4 3.3760E-4

TABLE 4. THIS TABLE IS SIMILAR TO TABLE 3, BUT CONTAINS THE COEFFICIENTS FOR SHORTER EXPANSIONS,
CORRESPONDING TO N = 6

Term R S T U vV

I —1.7827E-3 —2.3728E-3 1.8053E-3 7.2868E-4
w 1.5280E-3 1.5818E-3 —1.2035E-3 —4.8579E-4
v? —1.5280E-4 —1.1299E-4 8.5967E-5 3.4699E-5
t —1.7557E-3 —2.2147E-3 1.6136E-3 9.7158E-4 6.4654E-4
v 3.8151E-4 3.5255E-4 —2.5394E-4 —1.3880E-4 —1.0155E-4
1 —2.7585E-4 —3.3808E-4 2.2969E-4 2.0310E-4 9.8335E-5
e —2.1664E-3 7.4572E-4
wé 2.4071E-3 —6.7793E-4
0¥ —5.1580E-4 1.1299E-4
14 —2.9538E-3 —1.9432E-3 1.4262E-3 1.3559E-3 9.7328E-4
vé 1.3596E-3 8.3278E-4 —6.1122E-4 —4.5195E-4 —3.5255E-4
14 —9.6725E-4 - 1.0900E-3 7.6301E-4 7.0511E-4 3.3808E-4

the pressure balance condition, if we assume K =
(Pa, /P

The model allows a comparison with the paraboloid
model by means of a spccial choice of the ellipsoid
parameters. Namely, we have to specify x,, a, and
g, in such a way, that the dependence of the
magnetopause radius on x

P~ (1_72)1/2 = {l ——[(xfx(,+a)/ao()]2}l :

pertaining to the ellipsoid, converts into a parabolic
dependence

P~ (=xfrs)"”

in the limit of @ — o0, and

x| « a.
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TABLE 5. VALUES OF B,- AND B.-COMPONENTS OF THE SHIELDING FIELD FROM
BOUNDARY CURRENTS FOR SEVERAL POINTS IN THE Y = 0 PLANE.
Each pair of values gives, respectively, B, and B. in nanoteslas. Upper values are
for the ellipsoidal model and the lower ones (in brackets) are for the paraboloid
one with the same rg = 10Rg, and rp, = 14.366R¢. This table corresponds to the
perpendicular orientation of the geodipole ( = 0)

z 10 0 20 —30R,
0 0.0 442 0.0 195 0.0 3.0 00 12
(0.0 422) 0.0 18.9) 0.0 2.5 0.0 1.0)

5 9.0 18.1 1.3 28 0.5 1.2
(9.5 17.6) (12 2.3) 04 09)

10Re 17.1 13.5 24 2.1 1.0 09
(182 12.3) @1 17 (0.8 0.7)

This can be achieved by setting
oo = (1—rd/2ars) ">
and
Xo = rs—rp4rs

with a sufficiently large value of a.

For carrying out a test computation I took
a = 1000Rg, x, = 4.8407R, and ¢, = 1.0052, which
gave the same values of rg = 10 and r, = 14.366, as
for the original “reference” ellipsoid with a = 37,
xo = 3.71, and ¢, = 1.17. Up to tailward distances of
x ~ —100Rg the corresponding surface is very close
to a paraboloidal one (shown in Fig. 1 by a dashed
line). The only difficulty here lies in that the con-
vergence of the expansions (10) and (11) deteriorates
by ¢, — 1, which complicates numerical computation
of the potentials and magnetic fields. To obtain a
satisfactory close agreement between Jy,,/0c and
— 0740./00 at the ““parabolic” boundary up to tailward
distances x ~ —30Rg, it appeared necessary to take
into account N = 100 leading terms in (10) and (11).

Table 5 gives the values of B.- and B.-components
of the boundary field (perpendicular geodipole orien-
tation) in the midday-midnight meridian plane, for
both ellipsoidal and nearly paraboloidal shielding sur-
faces. In the first case the B.-component values are
slightly larger, due to a somewhat tighter confinement
of the dipole by the ellipsoidal boundary. In general,
the difference is relatively small. In the tailward region
both ellipsoidal and paraboloidal shielding field
values do not exceed several tenths of a nanotesla. In
fact, this allows one to use the obtained representation
of the dipole-shielding field up to the rear boundary
of the ellipsoid, since small discrepancies arising due
to inadequate shape of the model magnetopause are
much less than the field from the tail current sheet in
this region. At larger tailward distances the expan-

sions (10) and (11) and (17)—(21) diverge and hence
become inappropriate.

Finally, a similar representation can in principle be
obtained for the boundary field shielding any intra-
magnetospheric current system. The only restriction
here is that the current circuit be completely closed
inside the magnetosphere, in order to ensure validity
of the scalar potential method.
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