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Abstract. The paper reviews various approaches to the problem of evaluation and numerical representation
of the magnetic field distributions produced within the magnetosphere by the main electric current systems
including internal Earth’s sources, the magnetopause surface current, the tail plasma sheet, the large-scale
systems of Birkeland current, the currents due to radiation belt particles, and the partial ring current circuit.
Some basic physical principles as well as mathematical background for development of magnetospheric
magnetic field models are discussed.

A special emphasis is placed on empirical modeling based on datasets created from large bodies of
spacecraft measurements. A review of model results on the average magnetospheric configurations and their
dependence on the geomagnetic disturbance level and the state of interplanetary medium is given.
Possibilities and perspectives for elaborating the ‘instantaneous’ models capable of evaluating ascurrent
distribution of magnetic field and force line configuration based on a synoptic monitoring the intensity of
the main magnetospheric electric current systems are also discussed. Some areas of practical use of
magnetospheric models are reviewed in short. Magnetospheric plasma and energetic particle measurements
are considered in the context of their use as an independent tool for testing and correcting the magnetic
field models.
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1. Introduction

Distribution of the magnetic field in the near-Earth space as well as its temporal
variations should be considered as one of the most important characteristics of our
environment. Although this idea has been properly realized only during recent decades,
the quantitative modeling of the geomagnetic field belongs, in fact, to probably the oldest
branch of the geophysical research. The first advance in this area was made still in the
last century by the pioneering investigations of Gauss (1839), who developed mathe-
matical foundations for analytical representation of the main geomagnetic field and
obtained numerical values of the coefficients using the data from the first ground-based
network of observatories.

There exist a conventional classification of models into two groups which are the
descriptive (or empirical) models and the physical ones (e.g., Stern, 1987b). The
descriptive models are based on sufficiently large amounts of observational data and
provide empirical analytic formulae, tables, and/or numerical algorithms which enable
a user to compute the field components at any point within the modeling region. In the
physical models the magnetic field distribution is found from the solutions of MHD or
kinetic equations formulated within a framework of some theoretical hypotheses and
simplifying assumptions. The experimental data are employed here to a more limited
extent, mainly for imposing proper boundary and/or initial conditions. Both approaches
have their own advantages and shortcomings. Empirical models by themselves cannot
yield a comprehensive understanding of physical processes involved in formation or
maintenance of the observed magnetic field structures. However, they are based on
measurements and thus provide the best agreement with the real average configurations.
Physical models are absolutely indispensable for clarifying the essence of phenomena;
they relate the observed evolutions in the magnetic field structure to the plasma dynamics
and sometimes can at least qualitatively predict the observed features. However, at the
present time they are still far from being adequate for practical purposes.

With the beginning of space exploration it became necessary to develop the quantita-
tive models valid up to large geocentric distances of the order of tens of Earth radii. In
these remote regions a significant or even prevailing contribution to the magnetic field
comes from the extraterrestrial current systems including the magnetopause currents as
well as the distributed currents carried by the magnetospheric plasma particles.
Modeling the magnetic field in this region runs into a number of serious problems. Since
a significant part of the magnetosphere is not current-free, it is no longer possible to
apply the scalar potential method in which it is enough to use the magnetic field data
taken only near the boundary surfaces. Rather, the vector measurements have to be done
throughout the whole modeling region, and the task becomes even more complex due
to the extreme variability of the magnetospheric configuration which exhibits diurnal and
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seasonal variations caused by the geodipole wobbling as well as irregular fluctuations
arising from substorms and other solar-wind-related phenomena. Additional slow
changes are associated with a long-term variations in the parameters of the interplanetary
medium caused by the 11-year solar cycle periodicity. A large variety of different
geophysical situations arising from a very complex dependence of the magnetospheric
state on the external factors leads to a considerable scatter in the observed field
magnitude. It means that purely empirical approach requires sufficiently large data-
bases. Partly for that reason, major surveys in sixties were directed towards develop-
ment of more or less sophisticated physical models (Akasofu and Chapman, 1961;
Mead and Beard, 1964; see also a review by Roederer, 1969).

In the later period large amounts of data from a number of spacecraft magnetic field
experiments were accumulated. This enabled Mead and Fairfield (1975) to develop the
first empirical magnetospheric model from which the average magnetic field line
configurations were obtained and the main changes in their structure accompanying the
increase of the disturbance level were revealed. During the last decade more elaborate
models of this kind were designed based on larger experimental datasets and a more
accurate approach to the magnetic field description, with a separate representation of
contributions coming from different electric current systems (Tsyganenko and Usmanov,
1982; Tsyganenko, 1987a, 1989a).

In this review an attempt to give a comparative analysis of existing methods and
results of the quantitative representation of the magnetospheric magnetic field is done.
It should be noted here that of a number of works devoted to this problem as yet only
a few models are brought to a level of really practical ones which take into account all
the main field sources, are based on sufficient amounts of data, and provide in an
available format the necessary expansions, coefficients and/or numerical codes. The
most papers on models consider, in fact, the effects from separate current systems. For
this reason, a considerable part of the present review deals just with methods of
modeling, rather than with a detailed comparison of the field line pictures given by
different authors.

The presentation is organized as follows. In Section 2.1 the modeling of the internal
source contribution to the magnetospheric field is considered briefly. Section 2.2 covers
in more detail the existing approaches to the quantitative treatment of the magnetopause
current effects. Section 2.3 is devoted to the intramagnetospheric sources including the
magnetotail current sheet, Birkeland current systems, the ring current and the partial
ring current. As a matter of fact, the rigorous division of the magnetospheric field sources
into the different types is hardly possible. Actually they constitute a unified inter-
connected system. The central tail plasma sheet current closes via the return circuit lying
on the magnetopause and thus superposes with Chapman-Ferraro currents, while in
the near nightside region it merges continuously into the ring current. On the other hand,
in many models a unified representation of different sources is employed by using for
them the same mathematical expressions. This brings some additional complications in
the presentation of material, so that the assumed division into topics is somewhere
rather arbitrary.
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Section 3 deals with the analysis of the magnetic field and electric current structures
obtained in the recent versions of empirical models. In particular, Section 3.1 describes
the results of calculations pertaining to the model magnetospheric configurations in
dependence on the level of geomagnetic disturbance and the geodipole axis orientation,
and presents a comparison of the model magnetic field distributions with those obtained
from independent spacecraft measurements. In Section 3.2 some effects of the inter-
planetary medium discerned in empirical models as well as their interpretation in terms
of the magnetohydrostatic treatment are considered. In Section 3.3 and 3.4 a discussion
of diurnal and seasonal variations in the location of conjugate points and polar cusps
is presented.

Measurements of the charged particle fluxes can serve as an abundant source of
additional information on the structure of the magnetosphere. These data can be
employed as a testing tool for controlling the adequacy of the magnetic field models:
on the other hand, as shown in Section 4, there exist promising possibilities for using
the measurements of energetic particle fluxes at low-altitude polar-orbiting satellites for
a synoptic correction of the average field models and real-time monitoring of the current
field line configuration in the near nightside magnetosphere.

The following material was selected with understanding that the problem of the
magnetospheric field modeling roots not only in physics, but also has a complicated
computational aspect. By this reason I did not care too much to save the page space
at the expense of formulae, and the questions ‘How to calculate?’ were paid by no less
attention than the ones ‘How to explain?. For the same reason it was considered
appropriate to supply the paper by Appendix containing a short description of methods
for calculating the parameters of model magnetospheres based on spacecraft datasets.

A particular emphasis, in relation to the author’s own works in this area, is made on
the descriptive models. The magnetohydrostatic approach is considered in a compara-
tively lesser detail; the corresponding studies are discussed mainly in the context of the
empirical modeling results. Interested readers may refer to the recent reviews by Voigt
(1986) and Schindler and Birn (1986) for more comprehensive presentation and more
exhaustive references. Beside the static models, these reviews consider also non-
stationary phenomena restricted to slow quasistatic processes which can be addressed
in the framework of an adiabatic treatment. Faster changes of the magnetic field and
plasma configurations characteristic of the substorm explosive phase constitute a next
wide class of problems reviewed recently in several papers (e.g., Pellinen and Heikkila,
1984; Pudovkin and Semenov, 1985).

Outside the scope of the present work remains also a series of papers on the numerical
MHD modeling of the magnetosphere (e.g., Ogino et al., 1986). This approach rapidly
develops now and has the most promising future perspective.
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2. The Sources of the Magnetospheric Magnetic Field and Methods for
Quantitative Modeling Their Contributions

The net magnetic field in the magnetosphere is a sum of two terms
B=B,+B,, (1)

where B, and B, are the fields produced by the intra- and extra-terrestrial electric current
systems, respectively. The latter term B, receives contributions from (i) the Chap-
man-Ferraro surface current flowing at the magnetopause, (ii) the magnetotail current
system, (iii) the ring current, (iv) the field-aligned currents, and (v) the ionospheric
currents. At the Earth’s surface and at ionospheric heights the magnitude of the second
term B, in (1) is small in comparison with B, : even during a strong disturbance B, does
not exceed a few percent of B,. In quiet conditions a significant contribution to B,
comes in this region from ionospheric sources. At higher latitudes the field-aligned
currents are also of importance due to convergence of the current streamlines towards
the Earth. The net magnetic effect of the ionospheric and Birkeland current in the
high-latitude regions varies usually from tens to hundreds of nanotesla and can rise
above a thousand nanotesla during magnetospheric disturbances. Nevertheless, at small
geocentric distances the geomagnetic force line configuration is governed by the internal
field B, which is tied to the rotating Earth and can be represented in the geographic or
the dipole geomagnetic coordinate systems by the well-known expansions of the scalar
potential in spherical harmonics.

On moving away from the Earth’s surface the internal field rapidly decreases as kK ~°,
so that at R ~ 8-10 R the terms B, and B, become of the same order of magnitude,
while at still larger distances the external field dominates. At the same time, the relative
amplitude of the magnetic field fluctuations grows up considerably, since the sources
of the external field B, are closely related to highly variable solar wind state both by
means of the ‘directly-driven’ mechanisms (Akasofu, 1981) and through the ‘storage-
release’ process (e.g., Baker er al., 1985). From this stems one of the main difficulties
in the empirical modeling of the magnetosphere. The experimental datasets used for
determination of the model parameters contain a relatively intense ‘noise’, which im-
poses severe limitations on the amount and quality of the available information. The
largest amplitudes of the irregular variations related to disturbances are observed in the
near low-latitude nightside magnetosphere in the vicinity of the inner tail current sheet
and the outer ring current region. The magnitudes of the current density can change here
by more than an order of magnitude and the corresponding excursions of the magnetic
field vector may exceed a hundred nanotesla. In the magnetotail lobes the relative
magnetic field changes are not so dramatic: at Xggn S — 10 Ry the total B can rise
typically twice as large as its average value, in response to enhanced solar wind pressure
and/or accumulation of the tail-lobe magnetic flux due to effects of southward IMF. At
the dayside the overall magnetic field distribution depends mainly on the solar wind ram
pressure which defines the magnitude of the magnetopause current ; in quiet conditions
its contribution to B is on the order of the first tens of nanotesla. Typical variations



80 NIKOLAI A. TSYGANENKO

of the dayside magnetic field caused by fluctuations in the solar wind dynamical pressure
can be as large as several tens of nanotesla and only very rarely they exceed a hundred
nanotesla.

The present paper deals mainly with the models of the magnetic field from external
sources. We begin, however, with a short survey of the internal field modeling and some
considerations relevant to its use in the magnetospheric research

2.1. MAGNETIC FIELD FROM INTERNAL SOURCES

Sources of the main geomagnetic field lie inside the Earth, so that the field B, is curl-free
at R > 1 R, and can thus be represented as

B= -VV. 2

Since the magnetic field is divergenceless, this leads to Laplace’s equation for the
potential ¥ and hence to the possibility of expanding it in the spherical harmonic series

V(R,0,))=Rp Y (Rg/Ry'*' Y (g cosmA+h"sinml) P (cos6),
m=0

n=1

()

where R, = 6371.2 km is the average Earth’s radius, spherical coordinates (R, 6, 1)
usually refer to the geographical system and P are the associated Schmidt-normalized
Legendre functions (e.g., Cain et al., 1967). From Equations (2) and (3) the magnetic
field components read

N n
Bp= Y (n+1)(Rg/RY"*2 Y (g7 cosml + h sinmA)P (cos@),
n=1 m=0
N n
By= - Y (Rg/R)"*? Y. (grcosml+ h] sinmA)OP)/00, 4)
n=1 m=0
N n
B, =(sinf)~' Y (Rg/R)*** Y (grsinmi — hJ cosmA)P) (cosb).
n=1 m=0

The coefficients g/ and 4. for a given epoch are determined by a least-squares fitting
of the model to the databases obtained from the ground, marine, air, and satellite
measurements. Including the experimental material for different years makes it possible
to evaluate the secular changes of coefficients. At present it is assumed (Peddie, 1982;
Barraclough, 1987) that the main geomagnetic field for the interval 1945-1985 to be
computed from (4) using the appropriate epoch models, with linear interpolation of the
coefficients for the intervening dates. The models for the past epochs including 1980.0
constitute the Definitive Models (DGRF), while the 1985.0 coefficients together with
a forecast model of the secular variation between 1985.0 and 1990.0 is defined as a
Provisional Reference Model (PGRF), so that for the last period

gr () = gr(t) + gr’ln(t - 1), (5)
() = B (o) + hy (e - 1),
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where 1, = 1985.0. The tables of DGRF and PGRF coefficients are given by
Barraclough (1987) (see also IAGA News No. 26, December 1987) for N = 10.

Due to the rapid decrease of the relative magnitude of higher-order terms in (3) and
(4) with altitude, a considerable saving of computer time can be obtained by a proper
choice of the maximal order of spherical harmonics N in (4) for a given radial distance
R. For example, at the spherical surface with R = 3 R the maximal deviation of the
vector B(® (computed from (4) with N = 6) from its ‘precise’ value B{'® (i.e., obtained
by using the full set of available model coefficients) does not exceed AB® ~ 0.1 nT. In
most applications there is no reason in setting the permissible error value to be less than
a few tenths (or even units) of nanotesla. Based on the maximal error values, one can
estimate the necessary length N of the expansions (4) as function of the geocentric
distance. Figure 1 shows the corresponding plots of N against R for four values of 4B.
If one assumes 4B = 1 nT, then a simple estimate holds for N as

N=[1+9/R], (6)

where the square brackets denote the maximal integer of the quantity inside.
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Fig. 1. Marginal values of N in the truncated expansions (4) ensuring a required accuracy 4B of the
computed internal field vector, plotted against the geocentric distance R for four values of 4B.
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In some practical problems including the field line tracing from the Earth’s surface
into the magnetosphere or in the opposite direction one can use the corrected geo-
magnetic coordinates of the ground points (Hakura, 1965; Gustafsson, 1970;
Tsyganenko, 1979; Allen ez al., 1982) instead of the dipolar geomagnetic ones. A
principal simplification introduced by this substitution consists in that a purely dipolar
approximation with N = 1 in (4) can be employed in this case for the main geomagnetic
field instead of using the full expansions with the non-dipolar terms. This question,
however, should be considered in a bit more detail. The corrected geomagnetic
coordinates are known to account for the influence of the higher-order terms in (4) upon
the location of footpoints of the magnetic field lines coming from given points of the
dipolar equatorial plane. The corresponding calculations in the above-cited works did
not take into account the extraterrestrial field sources. Since the relative position of the
internal and external current systems depends on universal time and season, it is clear
that including the term B will result in diurnal and seasonal variations of the corrected
coordinate values. It seems intuitively that the variations should be rather small because
the influence of the non-dipolar harmonics is significant only at relatively low altitudes,
where the internal field is much larger than the external one. It can thus be supposed
that the main contribution to the expected diurnal/seasonal variations of the corrected
coordinates comes from those external current systems which provide the largest
disturbances within the ‘sphere of influence’ of the higher-order terms in B,. Evidently,
among the main extraterrestrial magnetic field sources Birkeland current systems meet
this criterion to the most extent.

A quantitative investigation of this equation was first carried out by Izhovkina (1979)
who used the POGO (8/71) internal field model (Langel, 1974) together with the Olson
and Pfitzer (1974) and Mead and Fairfield (1975) models for the external field. A general
result was that taking into account the external sources leads to only an insignificant
variation in the corrected coordinate values, so that the corresponding shifts of the field
line footpoints do not exceed a few tens of kilometres. However, the external field
models used in that study do not incorporate properly the contribution from the
field-aligned currents. This motivated us to do a more comprehensive analysis using an
explicit model for the magnetic field of Birkeland current system (Tsyganenko, 1988).
An outline of the model will be given later on (Subsection 2.3.2, Figures 25-27). Net
currents in the large-scale circuits I and II (Iijima and Potemra, 1976) were specified
so that the transverse disturbance AB | at ionospheric level calculated from the model
in the polar cap region and at auroral latitudes (between the upward and downward
current sheets) be about ~300nT and ~600nT, respectively. The corrected
geomagnetic coordinates were computed by means of a straightforward procedure (e.g.,
Sergeev and Tsyganenko, 1980). Namely, a field line was traced from a given point (6, A)
of the Earth’s surface, taking into account both the higher-order terms in the internal
field expansion (4) and the external field B including the contribution from Birkeland
currents. The tracing was terminated either on intercepting the sphere with R = 10 R,
where the relative contribution from the higher-order harmonics is negligibly small, or
on reaching the farthermost point of the field line (in case of a low-latitude footpoints).
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After that the reverse tracing was done from the termination point, with the only
difference in that N = 1 was taken now in (4), i.e., all the higher-order terms were
excluded from the internal field. The geomagnetic coordinates of the ‘landing point’
(6,, 1.) were taken, by definition, as the corrected ones for the initial point (6, ).

The computations showed that in all cases considered the external sources including
Birkeland currents do not exert any significant influence on the values of the corrected
geomagnetic coordinates. The largest changes due to ‘switching on’ the external current
systems, as anticipated, are observed at auroral latitudes. However, even in this region
the differences do not exceed 0.3°—0.4° of latitude, in case of the most disturbed version
of the external field model. At other latitudes typical variations of the corrected
coordinates are on the order of 0.1° or less.

2.2. CONTRIBITION FROM THE MAGNETOPAUSE CURRENTS

The magnetopause itself is a relatively thin current sheet separating the well-ordered
magnetic field of terrestrial origin from the magnetosheath region containing a disturbed
magnetized stream of the solar wind. The current flowing within the magnetopause layer
sustains local and global balance between the net external pressure of the magnetosheath
plasma and the electrodynamical stresses which can be represented equivalently in
terms of the interior magnetic pressure. On the other hand, the magnetopause currents
ensure the almost complete confinement of the net intramagnetospheric field within the
cavity.

One of the first attempts to develop a physical concept of the fundamental mechanisms
of the interaction of the solar plasma with the geomagnetic field was done by Chapman
and Ferraro (1931). Long before the discovery of the solar wind they were able to
envisage the main effects of the interplanetary plasma impinging on the boundary of the
geomagnetic field and to estimate quantitatively the distortion of the initially dipolar
vacuum configuration. Later on their approach was developed in a number of works
based on a numerical treatment of the pressure balance equation (Beard and Jenkins,
1962; Midgley and Davis, 1962, 1963; Mead and Beard, 1964; Mead, 1964; Midgley,
1964 Olson, 1969; Choe et al., 1973; Choe and Beard, 1974; Halderson et al., 1975).
Many of these works had been discussed in literature during the past decades (e.g.,
Akasofu and Chapman, 1972; Isaev and Pudovkin, 1972; Sergeev and Tsyganenko,
1980); for this reason only a brief outline of this first method will be given below.

One of results of those studies is the fact that the shape of the self-consistent model
magnetopause does not depend significantly on the dynamical pressure of the solar
wind; the only parameter incorporating this dependence in a very simple form is the
characteristic scale distance from the geodipole to the subsolar point. On the other hand,
a considerable body of experimental evidence on the magnetopause location has been
obtained since the beginning of the space age. These studies provided a foundation for
the development of an alternative approach in which the magnetospheric boundary is
considered as a surface of a given shape specified by means of an appropriate function
incorporating a parametric dependence on the solar wind pressure. The magnetic field
from the boundary currents is computed from the condition of complete or partial
shielding of the contribution of the intramagnetospheric sources outside the cavity.
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Models of this kind were developed in the works by Alekseev ans Shabansky (1972),
Alekseev (1978), Voigt (1972, 1981), Tsyganenko (1976, 1981, 1989c), Stern (1985),
Schulz and McNab (1987). We shall consider them in more detail in Subsection 2.2.2.

Along with these approaches, there exists a third one based on a formal adjustment of
appropriate fictitious magnetic field sources or fitting relatively simple analytic ex-
pressions which yield a reasonable distribution of the magnetic field within the
modeling region. These are the image dipole models (Taylor and Hones, 1965;
Antonova '

and Shabansky, 1968; Willis and Pratt, 1972). In fact, the model of Mead and Fairfield
(1975) as well as the expansions representing the boundary current contribution in the
models of Tsyganenko and Usmanov (1982) and Tsyganenko (1987, 1989a) should also
be referred to this type. Strictly speaking, this approach is relevant mostly to the problem
of quantitative approximation of a model field and is capable of providing reasonable
results only on a basis of fitting the formal parameters to the experimental data. The
image source models, as a rule, yield satisfactory results only within a rather limited
region. Another serious shortcoming is their inability to simulate properly the geodipole
tilt effects. At the present time the models of that kind are only rarely used for practical
purposes.

2.2.1. Models with a Self-Consistent Magnetopause

Models of this type are based on a solution of the problem of calculating the shape of
the boundary between a non-magnetized stream of non-interacting particles and a
confined vacuum magnetic field configuration containing a dipole source at the origin,
first obtained in a direct way by Mead and Beard (1964). They supposed that at any
point of the boundary (Figure 2) a local balance is maintained between the dynamical
ram pressure of the stream and the magnetic pressure inside the cavity. Assuming a
specular reflection of particles at the boundary

2amv?*cos’y = (B-B)/8x, @)

where y is the angle between the stream direction and the local normal e,. The net
magnetic B at a point closely adjacent to the boundary on the inside can be expanded
as

B=B,+B.,=B,+B,+B_, (8)

where B, is the geodipole contribution and the sum B, + B, = B represents the field
of the magnetopause currents. The reason for dividing B into two terms is that its main
part B, corresponding to the contribution from the nearest adjacent area of the boundary
can be easily evaluated as

B,=(2n/c)I xe,, %)
where J denotes the local surface current density. The small correction term B, in (8)

arises due to inhomogeneities of the current density and the surface curvature effect.
Since on traversing the infinitely thin boundary the term B, merely changes its sign, B,
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Fig. 2. Schematic illustration of the self-consistent magnetopause problem in the approach of Mead and
Beard (1964).

and B, remain by the same values, and the total field B falls to zero, we have
B,=-B,+B,, (10)
which being substituted in (8) yields
B=2(B,+B,). an

Neglecting the correction term B, it possible to find from (7) and (11) a first-approxima-
tion boundary surface with the subsolar point located at distance R, = (MZ2/4 nnmv?)"/¢
from the dipole. This enables evaluation of the term B, by integrating over the newly
determined surface with the current density J obtained from (9) and (10) and setting
B, = 0 in the integrand as

Bc=i J [e, x B, +B)] x (R-R") as . (12)
2 IR-R'|’

S—A4s

where a small area AS containing the singular point R’ = R is excluded from the
integration surface. Using the computed B, distribution, the procedure of constructing
the surface and calculating B, from (12) is repeated in the next approximation. The
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iterations converge very rapidly and 4-5 cycles are enough for reaching the self-
consistent solution.

The next problem is to develop a relatively simple analytical or numerical representa-
tion of B distribution which would be accurate enough and suitable for practical
purposes. Since the field B is curl-free, one of possibilities is to represent it as
By = — VU, where the potential U . can be approximated by a finite sum containing
spherical harmonic terms with positive powers of the radius R (Mead, 1964; Midgley,
1964)

N n

Ucr(R, 6, 0) =Ry ? Y (R/IRy)" Y. G,,.P7 (cosb)cosmep, (13)
n=1 m=0

where (R, 6, ) are the spherical solar-magnetic coordinates of the observation point and

R, is the first approximation subsolar point distance (in the paper by Mead (1964) it

was replaced by the self-consistent distance R, = 1.068 R,). Later on this approach was

extended by Olson (1969) to a more general case of a tilted geodipole.

The most advanced elaboration of this method was carried out in the works by Choe
et al. (1973), Choe and Beard (1974), Halderson ez al. (1975), and Beard et al. (1982)
which are considered below in a little more detail. Choe et al. (1973) made a revision
of the results of Mead and Beard (1964) for the case of perpendicular geodipole (i = 0)
and performed the calculation of the magnetopause shape for several non-zero tilt angles
as well. The revision was necessary because a significant part of the surface had been
found by Mead and Beard only by means of an interpolation. Besides that, as seen from
Equation (12), they circumvented the difficulty with the singular point simply by
excluding its vicinity from the integration, which also could lead to a certain error.
Instead of Equation (12) Choe er al. (1974) and Beard (1982) solved the equivalent one

B,+B R-R’
BCin [en X( d+ CF)] X( ) dS/ , (14)
4n R-R'[3

N

where the integration is performed over the whole surface; to avoid the troubles with
the singularity, an analytic representation of the integrand in a form of an expansion in
powers of (R — R’) was applied.

The obtained distributions of the boundary field inside the cavity were used for
determination of the coefficients of the spherical harmonic expansions (13) which were
represented as cubic polynomials of the geodipole tilt angle

3
G = T at.

Figure 3 shows a configuration of the magnetic field lines in the noon-midnight
meridian plane plotted for a corrected version of this model described by Halderson
et al. (1975). The picture corresponds to a nearly maximal value of the geodipole tilt
angle Y = 30°. The spherical harmonic expansions (13) provide a satisfactory represen-
tation of the boundary field in the near magnetosphere. In particular, even for large
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Fig. 3. Magnetic field configuration in the noon-mignight meridian plotted by using the model of

Halderson et al. (1975) for tilted geodipole. The observed convergence of the field lines into bundles beyond

~15 R, is a model artefact related to rapid divergence of the spherical harmonic expansion (13) at
R>R,.

the field lines threading the polar cusp regions show a rather good fit to the shape of
the model magnetopause. However, at larger distances (R > R,) the expansions diverge
and, as seen in Figure 3, the field lines exhibit an unrealistic behaviour, s that a different
representation is necessary in that region.

Beard et al. (1982) recalculated the coefficients of Halderson et al. (1975) using an
improved treatment of the singular point in the Biot—Savart integral (14). Two alternative
methods for representation of the field B, in the tail region (R > R,) were also
proposed in that work. The first one is based on expanding the potential U in a series
of cylindrical harmonics

Ucp =Y, Ap i),y (K;p) sinma e, (15)
where the variable z corresponds to the xggn coordinate, p is the distance from the

Sun—Earth axis, and « is the angle measured from the equatorial plane. From (15) the
magnetic field components follow as

Ber,, = - Z'Ki [zm‘ I (K:p) - Jm+1(Kip)j|Am,iSinmaeKiz’

i
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12
BCF.:l == Z Jm(Kip)Am,icosmaeKip’ " T (16)
Bep.= = Y KJ,(K;p)A,, ;sinmaeXi.

Although the real magnetosphere expands in the tailward direction, using of the
cylindrical harmonics in the expansions (15)—(16) is justified by that they yield a
divergenceless field with a proper distribution along the tail. Eight coefficients 4,, , (for
m =13 and 1<i<4) and the factors K, in the Bessel function arguments were
least-squares fitted to obtain the best agreement of the model field (16) in the tail region
with that derived by means of a direct integration over the self-consistent magnetopause.

20

-10

-20

~40 =30 -20 -10 0 10

Fig. 4. Magnetic field configuration in the noon—midnight meridian corresponding to the cylindrical

harmonic expansions (16) for the boundary field in the tail in conjunction with a spherical harmonic

representation at the dayside. The tail source contribution is given by the model of Beard (1979) (Beard
et al., 1982).

Figure 4 shows the noon—midnight meridional field line plot in the model by Beard ez al.
(1982), where the field B in the tail is provided by the expansions (16) in conjunction
with the spherical harmonic representation (13) for the near-magnetospheric region and
the Beard’s (1979) model for the contribution from the tail current system (see
Subsection 2.3.1). Expansions (13) and (15) replace each other on traversing the plane
Xgsm = — 1.5 Rg. The corresponding jumps in the field components are insignificant
in comparison with the total field magnitude, so that the kinks on the field lines are
scarcely discernible on the plots. An alternative expression for the tailward part of the
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B, was also tried in that work, which did not require evaluating the Bessel functions
and provided a good fitting to the boundary field.

This model, however, is seriously handicapped by being restricted to the case of zero
geodipole tilt. Another disadvantage stems from the separate representation of the field
in the two regions. Anticipating the material of Subsection 2.3.1, it should be noted that
such an approach is adopted in several works (e.g., Alekseev et al., 1975; Voigt, 1981;
Schulz and McNab, 1987) in attempt to avoid the troublesome problems arising due
to a drastic difference in the magnetic field structures of the dayside and nightside
magnetosphere. However, it by no means can be considered as a satisfactory way out,
since the boundary between the domaine of a quasi-dipolar and tail-like field is highly
variable, conventional, and vague. In any case, it cannot be approximated by a planar
surface because the near-Earth tail current sheet may well extend into the evening and
morning sectors. This region is of key importance in the aspect of the substorm physics,
and therefore it is desirable to have a unified model representation of the magnetic field
in the whole near magnetosphere.

As a closing remark, it should be reminded that so far we have dealed with the
boundary current shielding the geodipole only. Of the other large-scale magnetic field
sources only the ring current can be relatively easily incorporated into the framework
of the present approach, since it is the only extraterrestrial current system wholly closed
inside the magnetosphere. Taking into account that its characteristic radius is signi-
ficantly less than the subsolar point distance, it can be assumed that the necessary
changes in the expansions for B can be reduced to a scaling transformation equivalent
to an increase of the geodipole magnetic moment M by a value M pertaining to the
ring current. The corresponding scaling distance R, in (13) should be multiplied by a
factor y = (1 + Mgrc/M:)'2. In this approximation it is also rather easy to take into
account slow variations of the solar wind pressure which are not accompanied by an
additional injection of particles into the ring current. Indeed, as shown by Stern (1985),
during such an adiabatic compression or expansion of the magnetosphere the magnetic
moment of the ring current and hence the factor y remain constant.

A self-consistent treatment of shielding the tail current sheet as well as Birkeland
currents poses a much more complex problem. The main difficulties stem here from the
absence of a more or less clear physical concept for formation of these current systems
and their dependence on the solar wind state. We shall discuss this question in more
detail in Subsection 2.2.2.

2.2.2. Models with a Predetermined Magnetopause

A general approach in this case is as follows. The shape of the boundary surface S and
the distribution of the field from the intramagnetospheric sources B,,, are considered
as given functions of the coordinates which may also contain several parameters
including the geodipole tilt angle. Suppose also that at any point near the boundary the
condition ¥ x B,,, = 0 is satisfied. It means that the intramagnetospheric currents do
not approach the magnetopause, being completely closed inside the magnetosphere. In
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such a case the system of shielding boundary currents is also fully closed at the surface
and hence the corresponding magnetic field B, is irrotational and can thus be
represented inside the cavity as

Ber= = VUcr,
where the scalar potential U satisfies Laplace’s equation
AUpp =0, (17)

The normal component of the total field should be continuous at the boundary S and,
because of the complete shielding condition, it must be zero everywhere on S

(BIM + BCF)n I s~ 0 (18)

and, hence, we obtain Neumann’s boundary condition for the potential

OUp

on S

= By, - 19)

The problem (17)-(19) is linear and can thus be solved separately for every source
contributing to the field B,,,, with the subsequent summation of results. In particular,
this suggests the simplest way of obtaining the solution for the tilted dipole (Alekseev
and Shabansky, 1972). Since the tilted dipole can be represented as the superposition
of a parallel and a perpendicular ones

M = Msinye, + Mcosye, =M + M, (20)

the solution can be obtained as a linear combination of potentials corresponding to cases
Y = n/2 and Y = 0 with the weights equal to sin  and cos i, respectively, so that

Ucp=Ucp, siny + Ugp, cosy. 21)

Further details depend on a concrete choice of the boundary shape. In one of the first
papers devoted to this approach Alekseev and Shabansky (1972) proposed to describe
the magnetopause by a paraboloid of revolution having its focus just halfway between
the geodipole and the subsolar point. Later on this model was modified by the inclusion
of the tail current sheet (Alekseev er al., 1975) and recently Stern (1985) proposed a more
convenient method for representation of the geodipole and the ring current shielding
field by means of the parabolic harmonics. These results are considered below in more
detail.

2.2.2.1. Paraboloid Model. The paraboloid coordinates (A, i, ) can be related to the
Cartesian solar-magnetospheric ones (x, y, z) as follows

P=r+x-x9; p2>=r-x+x,; tang=z/y, 22)
where r = [(x — x,)* + y? + z2]"/2, the parameter x,, defining the location of the para-
boloid focus on the x-axis. The durfaces A = const. yield a family of paraboloids which
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are convex towards the Sun, so that one of them with A = A, can be taken as a model
magnetopause. The second family of the coordinate surfaces u = const. is orthogonal
to the first one. These are convex in the tailward direction and larger values of u
correspond to larger geocentric distances down the tail, as shown in Figure 5. The
azimuthal angle ¢ is measured from the positive y direction around the x-axis.
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Fig. 5. Paraboloid coordinates (2, p) in the x — z plane. Contours of constant 4> and u? are drawn at
intervals of five units (Stern, 1985).

The finite solutions of Laplace’s Equation (17) inside the paraboloid 1 = 4, can be
obtained by separating the variables in a form of the general expansion

[e o)

Ucr = } j J(Kp)a,,(K) L, (K1) dK, (23)

m=0

s {sinmqo
cosme

where the functions a,,(K) can be found from the boundary conditions (19) using an
inverse integral transform. It is just the approach that was adopted by Alekseev and
Shabansky (1972). Stern (1985) suggested an effective method for reducing the integrals
in (23) to finite sums. The basic idea is to impose an additional boundary condition

OUqp
04
in the far tail region. As a result, the initially continuous spectrum of eigenvalues K is

transformed into a discrete one and we obtain a sum corresponding to a set of roots
of the Bessel functions.

pu=A
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For the cases of parallel and perpendicular dipole the expansions have the form

Ucr, = 2. ondo(Kont) Io(Ko,2) (24)
n=1

Ucr, = ), a1, i (K, 1,(K,,A) sing, (25)
n=1

where K,, and K, satisfy the equations J,(KA4) = 0 and J,(KA4) = 0, respectively.
Figure 6 shows a magnetic field line plot for the case of an almost parallel (y = 80°)
dipole orientation. The tailward extension of the region of validity of the model is defined
by the value of 4 and by the number of terms in the sums (24)-(25).

Of essential importance for practical purposes is a possibility to make a simple
recalculation of the field B, for different values of the dynamical pressure of the solar
wind. In the paraboloid model the boundary is fully defined by the parameters 4, and
xo. Given new values of 4, and x,, the whole procedure of computing the set of
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Fig. 6. Field lines of a dipole confined within a paraboloid cavity. The configuration corresponds to a

hypothetical structure of the Uranian magnetospheres, which had been expected before 1986 (Stern,
1985).
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coefficients should be applied once again. However, this can be avoided by imposing
the condition of a self-similar contraction or expansion of the paraboloid cavity with
respect to the geodipole location, in line with the results of self-consistent calculations
(Subsection 2.2.1). In such a case the changes of the paraboloid dimensions are
controlled by the single similarity factor K = (p,/py)"/®, where p, and p,, are the ‘old’
and the ‘new’ values of the solar wind ram pressure. Then the ‘new’ expansion for the
boundary field potential can be easily obtained from the ‘old” one as (Stern, 1985)

Uer, oty @) = K 2Ucr, ,(AK™12, pK= 172, ). (26)

In addition to these results, we note that an alternative approach to the paraboloid
shielding problem was proposed by Pudovkin et al. (1971). In that work a potential of
the total field was sought inside the cavity, U = Ugg + U, so that B, + B = - VU,
in contrast with (17)-(19). The boundary conditions become much simpler in this case,
namely 0U/dn| ¢ = 0, but Laplace’s Equation (17) is replaced by Poisson’s one

AU = —-4mnp,,,

with a delta-like right-hand side p,, corresponding to the dipole source in the origin. The
problem was solved by an integral transform method yielding a parabolic harmonic
series which resemble (24)—(25).

As already noted in Subsection 2.2.1, the problem of shielding the other magneto-
spheric sources can be solved in a more or less simple way only for the ring current.
As a crude approximation, it is enough to make a proper modification of the Earth’s
magnetic moment as Mz — My = My + Mg with a subsequent recalculating of the
scale distance R,. A more sophisticated analysis is also possible on the basis of existing
analytic representations of the ring current field. One of such simple models described
by Tsyganenko and Usmanov (1982) (Subsection 2.3.3) was used by Stern (1985) for
incorporating the ring current effects in the paraboloid model. However, the correspond-
ing expressions (68)—(69) include a characteristic scale radius p, and thus the model ring
current magnetic field, in contrast with the dipolar one, is not self-similar. For this
reason the coefficients in the expansion for the boundary field potential should be
computed for several values of p,, in order to be able to take into account variations
of the solar wind pressure as well as changes of the ring current dimension by means
of a scaling procedure.

An empirical account of the tail plasma sheet current in the framework of a model
with a predetermined magnetopause meets with a difficulty stemming from that this
current system is not entirely confined inside the magnetosphere, but closes via the
magnetopause surface and thus the shielding current must include the closure circuit in
a self-consistent manner. First attempts to solve this problem were based on a separate
treatment of the contribution coming from the intramagnetospheric portion of the whole
tail current system approximated by a planar current sheet with a finite width in the
dawn-dusk direction (Alekseev and Shabansky, 1972; Voigt, 1972). The corresponding
expressions were incorporated in the term By, in (18) and then a boundary value
problem for the shielding field potential was solved. However, this approach appeared
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to be a misleading one, since the shielding surface current does not satisfy the continuity
condition, i.e., V - J - # 0 at the site of the magnetopause contact with the edges of the
equatorial current sheet. As aresult, wehave V x B, # 0 and, hence, the representation
B,y = ~ VU, cannot be applied.

Later on Alekseev et al. (1975) proposed the following correct solution to the problem
of a self-consistent tail current system in the paraboloid model. The interior of the
paraboloid cavity A = A, is divided by a surface p = i, into two domains I and II, as
shown in Figure 7 by a double shading. The domain II corresponds to the magnetotail

Fig. 7. [Illustrating geometry of the paraboloid model with a self-shielded closed current sheet, the latter
being shown by a single hatching. The region I (near magnetosphere) is separated from the tail region I1
by the surface u = p, shown by a double hatching (Alekseev et al., 1975).

and is divided into two halves by an infinitively thin equatorial current sheet (single
shading in Figure 7). On traversing the sheet the tangential field component reverses
abruptly, while the near magnetospheric region I is current-free. The total magnetic field
produced by the current sheet together with the closure system distributed throughout
the paraboloid surface is curl-free and can be sought as B = —~ VU inside the cavity. The
solutions of Laplace’s equation for the potential are derived separately in the regions
I and II in the form of Bessel function series satisfying the boundary condition B, = 0
at the magnetopause, while at the fictitious surface p = y, it is required that
B,| - ,, = Bysign(z). This condition specifies the magnitude of the tail lobe magnetic
field by means of the parameter B, whereas its jump across the equatorial plane defines
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the distribution of the current in the tail sheet chosen in that work to be proportional
to | x|~ V2. At this stage, however, there still remains a discontinuity in the tangential
field component at the surface y = p,; it can be removed by adding to the solution an
expansion which does not change the electric current distribution in the equatorial sheet.
The final expansions for the potential are as follows:

4 - 1) sin(n
U=t By ¥ SISO, e kn) @)
I=1 m=0 n
in the domain I, and
Uy = By po [sign(n — @) Inp] +
4 (- 1)y"sin(n
Pty oy GO kK, (28)
T I=1 m=0

in the domain Il (n = 2m + 1).

Magnetic field lines computed from (27)-(28) are wholly confined inside the para-
boloid and exhibit kinks on crossing the current sheet. The current streamlines in the
central sheet are almost coincident with the parabolic-shaped contours p = const. and
the closure current is distributed over the whole magnetopause including its dayside
part.

In his later work Alekseev (1978) modified the model by including the effects of the
geodipole tilting. In respect to the dipole shielding field it was achieved by taking a
superposition (21) of the potentials Ucr, and Ucy, , while the tail current response was
simulated by shifting the whole sheet perpendicularly to the equatorial plane. Figure 8
displays the magnetic field configuration obtained in the paraboloid model by Alekseev
(1978), the arrows indicating the average field directions measured onboard the HEOS-1
and -2 spacecraft near the midnight meridian plane (Hedgecock and Thomas, 1975).
In the lower part of the figure a model magnetic field line plot obtained from the same
HEOS dataset by Hedgecock and Thomas (1979) is shown.

An undoubtful advantage of this model is a conceptually rigorous approach to the
problem of derivation of a completely self-shielded tail-current system, while its most
serious shortcomings are related mainly to the adopted central current sheet representa-
tion. In fact, it has only two free parameters (B,and y, ) and is incapable of incorporating
very important effects including finite thickness of the sheet and its warping due to the
geodipole tilt, which will be discussed in Subsection 2.3.1.

2.2.2.2. Ellipsoid Model. The paraboloid model magnetopause shows satisfactory
agreement with the observed boundary only within a comparatively limited range of
geocentric distances with xggy 2 — 20 R At larger tailward distances it expands too
rapidly, so that some other approximations are necessary in that region. Stern (1985)
suggested a method which provides a modification of the coefficients of the paraboloid
model expansions (24)—(25) having generalized them to non-parabolic boundaries. The
method is based on an iterative calculation of the coefficients under assumption that
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Fig. 8. Magnetic field configuration in the paraboloid model (the upper half of the plot) in comparison

with that in the empirical model of Hedgecock and Thomas (1979) (below). The field lines are labeled by

values of footpoint Iatitude, and the arrows indicate the magnetic field directions observed by the HEOS
spacecraft near the noon-midnight meridian plane (Alekseev, 1978).

the equation yielding the actual shape of the boundary can be represented in the form
A=A+ 4A(u, @),

where the correction term AA(py, @) is relatively small, so that a linear perturbation
technique could be applied. However, both the purely paraboloid model and its extension
to non-parabolic boundaries require the evaluation of the ordinary (J,, /,) and modified
(I,, I,) Bessel functions, which is not always convenient in practical calculations.
There exist one more analytical representation for the magnetospheric boundary
leading to very simple expansions for the shielding field potentials, namely, the ellipsoid
model (Tsyganenko, 1989¢). In the front magnetospheric region xggy 2 — 30 Ry an
oblong ellipsoid of revolution provides excellent approximation to the observed
magnetopause. At larger distances the ellipsoid surface tapers down and closes. How-
ever, contributions from both the geodipole and the boundary sources do not exceed
a few tenths of nanotesla in this region, which is at least by an order of magnitude less
than that from the tail current sheet. Therefore, the ellipsoid model for the dipole
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shielding field can actually be used up to its rear boundary which may be placed at
distances of the order of lunar orbit radius or even farther.

The ellipsoidal coordinates for representing the magnetospheric domain can be
defined as follows (Korn and Korn, 1961)

o= (2a%) " V(2 + Js* - 4a%x' D)2,

1 = (2a?) "2 (s? - \/s* — 4a®x"*) " sign(x'), (29)
@ = tan”'(z/y),

where
x =x-x,+a, st=a’+x'?+y*+2z%.

Here a is the half-distance between the focuses of the ellipsoid, as shown in Figure 9.
In the same picture several contours of constant ¢ and 7 are shown. The interior of the
ellipsoidal cavity corresponds to the intervals 1< 6<g,, |7 <1, 0 <@ <2n The
magnetopause location is defined completely by specifying the values of the parameters
X¢, @, and a,. The subsolar point distance and the radius of the dawn-dusk crosssections

Fig. 9. Ellipsoid coordinates in the x — z plane. The ellipsoid with ¢ = g, = 1.17 represents the magneto-
pause having R, = 10 R, and R,, = 14.37 RE. A paraboloid with the same parameters R, and R, is shown
by the dotted line.
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are, respectively,
Ry=xy+a(e-1), Rp=[R(l-05%)(as, - RHI'>.

The inverse transformation from the ellipsoidal coordinates to Cartesian ones reads as
follows
x =xq—a(l - 07,

y=al(e? -1)(1 - 13)]"cos @, (30)
z =al[(e® = 1) (1 - 12)]"?sineg.

A search for appropriate values of the ellipsoid parameters gave: x, = 3.71 R,
a =37TR,, and ¢, = 1.17, which yield a good agreement with the average observed
magnetopause shape (Fairfield, 1971) up to tailward distances x ~ — 30 R,. These
values give R, = 10 R, and R, ~ 14.37 R. The maximal radius of the cavity (minor
semi-axis) equals R,, = a(6? — 1)'? ~ 22.47 at x = x, — a ~ — 33.3 R. The position
of the boundary corresponding to these values is shown in Figure 9 by the heavy solid
line.

A general solution to the boundary value problem leads in this case to the following
expansion for the potential U,

Uer= 2 X Pr(@P(1)(a,,cosmp +b,, sinmg), 31

n=1 m=0

where P7" are the associated Legendre functions of the first kind. Due to axial symmetry
of the shielding potential U, for the parallel dipole and a sinusoidal dependence on
¢ in the boundary condition for U, , the general expansion (31) can be reduced to
more simple ones

Uer, = 3 aonPu(0)Po(0).
n=1 (32)

Ucp, = sin ¢ Z alnPrlt(o.)Prlz(T) .
n=1
The coefficients here can be easily determined from the boundary conditions by means
of an inverse integral transform.

It can be shown that the corresponding expansions for the magnetic field components
truncated to the leading N terms can be reduced to polynomials of variables
t=01=(x"fa) and v = 6% + 12 = (x'? + y? + z2 + a?)/a?, that is to polynomials of
Cartesian coordinates. Their degree depends on the assumed length N of the truncated
expansions (32). Calculations show that for N = 10 the model yields good results up
to tailward distances 40—50 R ; explicit form of the polynomials as well as the tables
of their coefficients are given by Tsyganenko (1989c). Figure 10 shows the field line
plots obtained in the ellipsoid model for N = 10.

As in the case of the paraboloid model, it is no trouble to recalculate the magnetic
field components in case of self-similar changes of the ellipsoid dimensions by a single
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Fig. 10. Field lines of a dipole confined within the ellipsoidal cavity shown in Figure 9, calculated by using
the expansions (32) with N = 10 (Tsyganenko, 1989c¢).

factor K. All the coefficients acquire the factor K~ 2 and, therefore, the magnetic field
scales by K ~ 3 at any point with fixed values of the ellipsoidal coordinates (g, 7, ¢). Thus,
to obtain new values of B,, B,, B, at a fixed point (x, y, z) it is necessary to calculate
new values of the parameters a’ = aK and x' = x,K corresponding to the new
magnetopause location. After that we find new values of the variables t and v and, having
evaluated the polynomials for the field components, multiply the result by the factor
K3

The ellipsoid model allows a simple comparison with the paraboloid one, which can
be done very easily by taking

o, =(1-R%/2aR,))""? and x,=R,— R}3/4R,

with a sufficiently large value of a. In this case the front region of the ellipsoidal surface
(] x| < a) is asymptotically close to a paraboloid having the same values of R, and R,
(shown by the dotted line in Figure 9). A test calculation has shown that the difference
in the magnetic field components between these two models is small, so that both of
them can be applied in principle, although the ellipsoid one is more simple from the
computational point of view.
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2.2.2.3. A Composite Magnetopause Model of Voigt. Voigt (1972) suggested a model,
in which the magnetopause is simulated by a composite surface consisting of a semi-
infinite cylinder capped by a hemisphere at the dayside part, as sketched in Figure 11.
The geodipole is shifted towards the Sun with respect to the centre of the sphere, in order
to keep a proper relationship between the geocentric distance R, to the subsolar point
and the tail radius R ;.
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Fig. 11. Magnetopause shape assumed in the model of Voigt (1972, 1981).

A general approach to the problem is the same as for the above described models.
However, some mathematical complications arise due to the composite shape of the
surface. In the near magnetosphere (x = — b) the scalar potential U, is expanded in
a spherical harmonic series

(33)

1 R”
Uor= ¥ ~ ¥,(0.0)
n=1 H RT

where

Y, (0, 9) = alP,(cosO) + Y (aJcosme + b sinme) P (cosf).
m=1
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The coefficients a/” and b are found from the distribution of the normal component
of the field B,, throughout the whole sphere including the front magnetopause surface
and its complementary half inside the cavity shown in Figure 11 by the broken line. In
the tail region x < — b Laplace’s equation in the cylindrical coordinates (p, ¢, () is
solved, where { = — x — b. Note that the total potential U = U, + U is to be found
here, rather than the shielding one only. This makes possible to represent the solution
as a discrete series in cylindrical harmonics which correspond to a set of eigenvalues
& satisfying the equation J; (¢) = 0. The expansion reads as follows

IS
U,(p, 9, ()= —Mgcose Ez‘ Z a,J, (& p/Ry) exp(-&{/Ry) (34)
Ti=1

and satisfies the shielding boundary condition at the cylindrical surface

ap p=Rr
as well as the requirement of continuity of the total potential on the plane x = - b
Uilp, 9,0) = (Ug + Ucp) lc = -5 - (35)

The condition (35) uniquely defines the coefficients of the expansion (34). However,
there remains a discontinuity in the normal derivative of the potential at this planar
surface. This difficulty was overcome by means of an iterative fitting the coefficients of
the expansions (33) and (34), in which successive corrections of the boundary conditions
at the planar ‘partition’ and the internal hemisphere were done.

Later on Voigt (1981) proposed a generalized version of the model, in which the effect
of partial penetration of the interplanetary magnetic field into the magnetosphere was
incorporated (account of the tail-current system and the ring current in the model will
be discussed in Subsection 2.3.1). The main idea of this approach is to formally
postulate the existence of a small transverse component of the magnetic field at the
magnetopause, putting aside all the questions concerning the physics of the reconnec-
tion. Solution of the boundary problem in this formulation can be easily obtained from
that derived earlier for the case of an ideally shielded magnetosphere, provided the
normal component at the magnetopause is assumed to be proportional to the contribu-
tion from all the internal sources, the interconnection coefficient C; being taken to be
constant throughout the whole surface. The boundary condition (18) is replaced thus
by a more general relation

(BIM + BCF)n |s = CIBIM,, | s

Defining the boundary field to be found as B = — VU&, and using the assumed
constancy of the factor C,, we express the potential U, in terms of that corresponding
to the case of a complete shielding which is given by the expansions (33)-(34), so that

Ug‘F = (1 - C1) UCF-
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Introducing a similar constant Cg, which defines a fraction of the IMF penetrating into
the magnetosphere from the interplanetary space, we have finally the total field inside

Bim = BIM - (1 - CI)VUCF + CEBEM (36)
and in the outer space
B = Bea — (1- CE)VU(CEF)' + CIBIM’ (37)

where U is the potential of the magnetopause current system, which provides an ideal
shielding of the interplanetary field Bg,,, fully preventing it from penetrating into the
magnetosphere. In the case of a uniform By, addressed in the Voigt (1981) work the
corresponding potential is easily obtained in a compact form.

Figure 12 shows an example of the magnetospheric configuration obtained by Voigt
(1981) for an oblique orientation of the IMF, where the interconnection constants were
taken as C, = C = 0.1.
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Fig. 12.  Model magnetic field configurations in the noon—-midnight meridian for an oblique orientation of
the interplanetary magnetic field (Voigt, 1981).

2.2.2.4. Numerical Methods for Boundaries of More General Shape. The above described
works exhaust all existing models with a predetermined magnetopause in which, owing
to a special choice of the boundary shape, analytic representation of the potential U
is possible. In case of more complex boundaries, which do not allow to introduce a
convenient coordinate system for separating variables in Laplace’s equation, numerical
methods have to be applied. Mead and Beard (1964) were first to be faced with this
problem; as already outlined in Subsection 2.2.1, the essence of their method consists
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in dividing the shielding field near the boundary into a leading term B, and a small
correction one B, which allows to apply a successive iteration technique.

This approach with some modifications was used by Tsyganenko (1976, 1981) in
calculations of a shielding current system at the magnetopause defined by an analytical
function R = R (6, ¢, ¥) of spherical coordinates containing a parametric dependence
on the geodipole tilt angle. A concrete form of this function was specified by fitting
various model boundaries to the average magnetopause shape (Fairfield, 1971) as well
as comparing it with the self-consistent surfaces obtained by Choe et al. (1973). Instead
of Equation (12) an equivalent one was solved for the surface current density J(R)

JR) = (¢/27) [B,M +% J W ds’:| Xe,, (38)

S — A4S

where, in contrast with the Mead—Beard problem, the magnetic field of magnetosphoric
sources B,,, contains not only the geodipole contribution B, but also that from the
intramagnetospheric part of the tail-current system. The magnetopause current J (R)
obtained from (38) by means of an iterative procedure contains also the return current
system which closes the central current sheet via the magnetospheric boundary. This
result was evidenced a posteriori by a direct inspection of the obtained surface current
distributions and can be easily understood from simple considerations, although its
rigorous proof was not found. As a matter of fact, it can be verified for a simplest case
of a semi-infinite linear wire current adjoining perpendicularly a planar boundary. A
precise solution to this problem is given already by the first approximation which
neglects the integral term in (38). Bearing in mind the linearity of the predetermined
boundary problem, it is possible to generalize this result to the case of the current sheet
with an arbitrary distribution of the current density. The main advantage of this method
consists in its applicability to boundaries of arbitrary shape. However, since it provides
the electric current distribution in a numerical form, subsequent search for a sufficiently
simple analytic approximation for the corresponding magnetic field is necessary.
Schulz and McNab (1987) proposed one more method capable of modeling the
boundary field without explicit treatment of the Biot—Savart integrals and valid for
surfaces of rather general shape. The modeling region in their approach, just as in the
models of Voigt (1972, 1981), Alekseev et al. (1975), and Beard et al. (1982), is divided
into the near magnetospheric region S and the tail 7, as shown in Figure 13. The field
in the region S is assumed to be curl-free and can thus be represented by a scalar
potential expansion similar to (13), together with a dipole term. In the tail region T the
solution is constructed geometrically, starting from the requirement of continuity of the
normal component B,, at the boundary X between the regions S and 7 and postulating
the shape of the field lines so that they do not cross the neutral sheet and the
magnetopause M’. The coefficients of the potential expansion for the region S were
treated as free parameters of the model and their numerical values were found by
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Fig. 13. Magnetic field configuration in the noon-midnight meridian obtained from the variational
principle using the functional (39) with « = 0.5 (Schulz and McNab, 1987).

minimizing the variational quantity

a=aJ(n‘B)zdS+(1—a)f(n'B)zdS. (39)

The first term in (39) is the integral of the squared normal component of B over the
near part M of the model magnetopause multiplied by a weight factor « (0 < « < 1). The
second one contains the integral of the squared tangential field component over the
‘partition’ X. Thus, instead of the strict requirement of perfect shielding of the magneto-
spheric field sources, a compromise one is imposed in a form of the variational principle.
On the other hand, the above-mentioned difficulty with explicitly specifying the tail-
current sheet contribution is circumvented by introducing the condition of minimal (in
the sense of the mean squares) tangential field component at the surface X. Owing to
this requirement, an almost continuous transition from the quasi-dipolar configuration
to the tail-like one is obtained in the model, as shown in Figure 13.

The basic principle for constructing the tail magnetic configuration in this model has
much in common with the stretching method designed by Voigt (1981) and Stern (1987).
Anticipating its outline given in the next section, it is worth noting here that the
magnetotail structure obtained by the stretching method is fully determined by the field
distribution in the near magnetosphere, while in the present approach an interaction
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between the two domains is implied. Indeed, due to the presence of the second term
in (39) the near-magnetospheric field in the region S is also subjected to a modification,
in order to respond to a ‘capture’ of a portion of the magnetic flux into the tail lobes.
It should be noted also that an uncontrolled variation of B, over the partition surface
T leads to an enormous latitudinal spreading of the current density in the magnetotail,
in contrast to the observed comparatively thin current sheet with sharp boundaries.

2.3. MODELING THE CONTRIBUTION FROM THE INTRAMAGNETOSPHERIC
CURRENTS

The above described representations of the boundary magnetic field are based on a
conceptually clear physical model, which makes it possible to reduce to a minimum the
number of empirically specified quantities. At least for the near magnetosphere, the
effect of the Chapman—Ferraro currents can be evaluated more or less uniquely, once
the solar wind momentum flux is given.

The situation is much more difficult in respect of the other extraterrestrial current
systems because their existence is related to the penetration of the solar wind particles
and fields into the magnetosphere. In comparison with the fundamental effect of the
dipolar field confinement, these processes constitute a much more complex and intricate
combination of phenomena including the IMF-related events and substorms. It should
thus be realized that the development of a unified quantitative physical model based on
given input data on the solar wind state is quite a formidable problem which is unlikely
to be solved in the nearest future. A number of questions remains unanswered at present
on the level of a qualitative understanding of basic mechanisms for formation of the tail
plasma sheet, the field-aligned currents, and partly the ring current. For these reasons,
empirical or semi-empirical approaches to modeling these current systems are mainly
adopted in practical magnetispheric studies.

Fig. 14. A sketch of the Mead—Williams model tail current sheet.
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2.3.1. Magnetotail Current Sheet

One of the first models for the magnetotail current system was proposed by Williams
and Mead (1965), who simulated the stretched magnetic configuration at the nightside
by placing an infinitely thin current sheet in the equatorial plane. As shown in Figure 14,
the current sheet extends to infinity in the dawn-dusk direction, but has a finite width
along the tail with its near and other edges being located at distances R, and R, from
the geodipole, respectively. The current intensity J is assumed to be independent of x,
in which case the magnetic field components in the GSM coordinates are

+ R + R
BX=(BT/7z)[tan‘1 X 2 _tan~! xl],
z

B,=0, (40)

(x + R,)? + 22

B.=(B;/27)In ,
Bz (x + R+ 22

where the parameter B, = 2 nJ/c defines the tail field magnitude. The tail field represen-
tation given by (40) was superposed on the model by Mead (1964) for the boundary field
and provided a good basis for interpretation of data on the local time distribution of
trapped fluxes. Roederer (1969) gave an instructive example of using this model as a
tool for a quantitative synoptic patrol of the magnetospheric asymmetry based on data
from the geosynchronous magnetic field measurements. However, the model is rather
crude, contains unrealistic singularities and kinks of the magnetic field lines in the tail
equatorial plane, and hence can be used only within a limited near-Earth region.

In later works many attempts were made to develop an improved representation of
the tail magnetic field. Willis and Pratt (1972), Sugiura and Poros (1973), Olson and
Pfitzer (1974), and Tsyganenko (1975) incorporated finite thickness of the current sheet
and variation of the current density along the tail; they also took into account a finite
dimension of the tail current in the dawn-dusk direction by having replaced infinitely
long ‘wires’ with closed loops. A significant advance was made by Olson and Pfitzer
(1977) and Tsyganenko (1976, 1981), who included in their models a tilt-dependent
deformation of the tail current sheet. Figure 15 shows the ensemble of current loops
designed by Olson and Pfitzer (1977) for numerical calculations of the model magnetic
field. The current streamlines in this plot are symmetrical with respect to the equatorial
plane and correspond to zero dipole tilt. In case of a non-zero y the ring current loops
near the Earth rotate together with the dipolar equatorial plane, while at larger distances
the tilt effects are simulated by a displacement of the tail current in the z-direction. A
direct integration over the electric current systems similar to that shown in Figure 15
yielded magnetic field distributions which were then used for fitting coefficients of model
expansions (Olson and Pfitzer, 1977) or were incorporated in numerical interpolation
codes (Tsyganenko, 1976, 1981).

A more detailed description of these models and their comparative analysis can be
found in the review papers by Walker (1976, 1979). It should be stressed here, as a
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Fig. 15. ‘Wire’ model simulating the magnetotail and the ring current systems designed by Olson and
Pfitzer (after Walker, 1979).

general remark to all the earlier studies based on integration over a prescribed current
distributions (the so-called ‘wire models’), that the possibilities of this approach are
rather limited because it provides a solution of the direct problem. Since in spacecraft
experiments we measure the magnetic fields, rather than electric currents, a solution of
the inverse problem (that is a determination of the current system parameters on the
basis of magnetic field data) is actually of greatest interest.

Characteristic features inherent to the inverse problem approach determine the main
requirements imposed on mathematical representation of the model magnetic field. First
of them is a sufficient flexibility of the model defined by the number of independent free
parameters which can be least squares fitted to the experimental data. The point here
is that, as a rule, we have little a priori knowledge on the configuration of currents and,
hence, an over-simplification of the mathematical model can lead to a considerable loss
of information potentially present in the experimental datasets. On the other hand, a
comparatively high level of random noise in the datasets imposes an upper limit on the
reasonable number of the degrees of freedom, beyond which we are faced with
difficulties typical to ill-posed inverse problems. At last, it is also important that with
relatively large amounts of data and limited computer resources a necessary condition
for an inverse problem to be practically feasible is that the model be represented by
comparatively simple analytical expressions. In reality the current systems are spread-
out in space and the streamlines are curved and, hence, a direct evaluation of the
Biot—Savart integral cannot be performed analytically with the result in a form of
relatively compact formulas. This brings forth an additional task to develop methods
for representation of magnetic fields corresponding to distributed current systems of
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required geometry. (It is very much to the point noting here that David Stern did have
good reasons to begin his review (1987b) by stating that ‘Magnetospheric modeling is
the art...”). Some of existing approaches to this problem will be discussed below.

Perhaps the most simple model was proposed by Mead and Fairfield (1975), who
suggested to describe the contribution from all the extraterrestrial sources including the
distributed currents in the magnetospheric plasma and the magnetopause current by a
single set of analytical expressions containing the quadratic polynomials of solar-
magnetic coordinates and a linear dependence on the geodipole tilt angle

B, =a;z + ayxz + Ylas + a,x + asx? + agy® + a,z?),
B, =b,yz+ Y(byy + byxy), (41)

B, =c; +cx + c3x2 + 97 + ¢52 + Ylcgz + cyx2) .
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Due to the condition V-B =0, three additional constraints are imposed on the
coefficients

a, + by +2c5=0; a; + by, +c5=0; 2a5+ by +c;,=0. 42)

Thus, the model contains 14 free parameters, whose values were computed by a least
squares fitting of (41) to the experimental data obtained from the IMP spacecraft
measurements and sorted out into four subsets in accordance with the K -index values.
Figures 16(a) and 16(b) show the magnetic field line plots corresponding to two extremal
cases with respect to the disturbance level.

Putting aside a detailed discussion of the model field configurations and referring the
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«A Fig 16a-b. Magnetic field configurations in the noon-midnight meridian plotted by using the model of
Mead and Fairfield (1975) for nearly the largest value of the geodipole tilt y = 30°. (a) Superquiet model
for K, = 0,0*. (b) Superdisturbed model for K, > 3.
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reader to the original papers (Fairfield and Mead, 1975; see also a review by Walker,
1976), we note that the representation (41) does not reproduce the sheet-like structure
of the tail current. The volume current density obtained by taking the curl of the model
field grows linearly with the distance from z-axis and does not incorporate any
dependence on z (for i = 0). The corresponding current streamlines are ellipses
encircling the Earth in westward direction. The model is very simple and reflects only
the most general features of the real magnetosphere, due to a purely formal approach
to the choice of the modeling functions.

Another example of models of this kind is the one proposed by Kosik (1984), in which
the field distribution is represented by the sum of toroidal and poloidal terms

B=V x (F,R)+V xV x(F,R), (43)
where the scalar functions F, and F, are expanded in spherical harmonic series

F, =3 T,(R)P/" (cosb)(a,, cosmo + b, sinmg),
b (44)
Fy =) S(R)P (cos8)(c;, cosme + d,, sinmg) .
I,m

The model is able to represent a wide variety of magnetic field distributions by means
of a proper choice of the radial functions T, and S, and the coefficients a,,, — d,,, in
(44). Kosik (1984) gave two examples of specific magnetic field models: an axisymmetric
one simulating the effect of a ring current and a more sophisticated model taking into
account the noon-midnight asymmetry. The functions 7, and S, were chosen as
combinations of exponential and power terms and the coefficients were fitted so that
to obtain a close resemblance of the model distribution of the scalar quantity
AB = |B, + B| - |B,| with that deduced in the experimental study by Sugiura and
Poros (1973) and with the model results by Olson and Pfitzer (1974).

The representation (43) was discussed in a review paper by Stern (1976), who showed
in particular that the simplest polynomial approximation (41) of the Mead-Fairfield
model can be easily obtained from the sum of poloidal and toroidal fields by a proper
choice of the scalar functions. A very serious drawback of the method stems from the
formal approach to postulating the functional forms (44) whose terms have no clear
physical interpretation. In particular, the operation of double differentiation in (43) leads
to very complex and uncontrolled relationships between the details of behaviour of the
function F, and the resultant current density distribution obtained by applying one more
differential operation to the field (43). The situation becomes even more complicated
in taking into account the effects of the geodipole tilt, because formal modifications
inserted in the model functions, again, have no conceptually clear interpretation in terms
of the current streamline geometry.

Beard (1979) developed a model of the tail-current system, which is accurate enough
in simulating its main geometrical features. The basic method is as follows. First, a
numerical integration was performed over a ‘wire’ model of the planar current sheet
closed via a semi-circular loop lying on a cylindrical magnetopause surface (Siscoe,
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1966). As aresult of the integration, a distribution of 4, and A, components of the vector
potential was found in several tail cross sections, on having assumed initially the current
sheet to be infinitely thin, with a power dependence of the current density upon the
tailward distance x, namely, J ~ x ~°? (Behannon, 1968, 1970). The results were used
for constructing a polynomial representation for 4, and A, versus y and z, with a
subsequent determination of the best fit factor f(x) approximating the variation of the
potential along the x-axis. Some modification of the z-dependence was also incorporat-
ed, to take into account the finite thickness of the current sheet. The resultant magnetic
field components calculated as V x A were shown to have the required distribution in
three dimensions and were expressed by means of sufficiently simple analytic formulae.
The model is capable of varying the total intensity of the field as well as its tailward
gradient, current sheet thickness, and its inner edge location. An approximate account
of the dipole tilt effects is possible also by introducing a displacement of the whole
system in the z-direction, like in some other models (e.g., Alekseev and Shabansky,
1972; Tsyganenko and Usmanov, 1982; Tsyganenko, 1987).

The largest deviations of this model from the real average field should be expected
near the inner edge of the current sheet. A typically observed feature in this region is
a gradual transition from the dawn-dusk plasma sheet current to the ring current
distribution which also tends to concentrate near the equatorial plane into a disc-like
structure (Sugiura, 1972). This fact is manifested in a comparatively large values of B,
measured outside the plasma sheet in dawn and dusk sectors (Speiser and Ness, 1967;
Fairfield et al., 1987). However, the central current sheet in the Beard’s model contains
initially the y-component of the current only, and the subsequent modifications of the
vector potential do not change the situation, since they do not violate the assumption
A, = 0 and, hence, j, = 0, as before.

Tsyganenko and Usmanov (1982) developed a simple model of the current sheet of
finite thickness, having started from a simplest representation for an infinitely long
spread-out current element. This allowed to circumvent the difficulty with singularities
inherent to infinitely thin wires. More explicitly, instead of the double integration over
a two-dimensional continuum of wires providing each a contribution

2dJ
==,

cp

dB

the ordinary integration over a one-dimensional distribution of a spread-out current
elements yielding each

2dJp

dB=——¢
c(p®> + D?)

@

was performed, as shown in Figure 17. The magnetic field from the separate element
grows linearly with the distance from its axis for p < D and decreases as ~p~ ! in the
limit p > D, which corresponds to approximately constant volume current density near
the centre of the filament and to an almost vacuum field at large distances. The main
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AB ~ P/D
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Fig. 17. A schematic view of a spread-out model current filament and a ‘diffuse’ current sheet with a
spatially-varying current density, proposed by Tsyganenko and Usmanov (1982).

part of the current is contained within p < D, while at p > D the current density rapidly
goes to zero. To obtain the current sheet, it is enough to construct a continuous
distribution of such spreadout current elements along the X-axis, as shown in Figure 17.
Specifying the current distribution along the tail axis by means of the function

J(x) = (¢/2m) Br(x),

we obtain the components of the field produced by the sheet as

z d dx’
B (x,z) = — J B (x’ R
n { )(x’—x)2+22+D2
) (45)
1 d , (x' — x)dx’
BZ(X,Z)=— J BT(x) > > 5
n (x=x')y+z2+D

where the limits x,, and x define the locations of its inner and outer edges, respectively.
A choice of the function B,(x) is defined by the extension of the modeling region.
Tsyganenko and Usmanov (1982) employed spacecraft data obtained within a relatively
limited range of distance R < 20 R,. For this reason, the function B in that model was
approximated by the linear dependence

B (x) =By + 4B(x — xp5)/S . (46)
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Later on a more extended dataset was generated containing also the measurements
taken in the distant tail region —70 R S xgsm S — 15 R Since the magnetic field
gradient in the near tail is much larger than at lunar distances, the linear approximation
(46) is too crude for modeling the entire cislunar tail current distribution. From these
considerations, in the later version of the model (Tsyganenko, 1987) a more flexible
representation for B,(x) was chosen as

Br(x) = By + By [(x = x,) + By (x — x5)°, (47)

which includes three linear and two nonlinear parameters.

The major convenience of this approach consists in that integrating the distributions
(46)—(47) in (45) yields relatively simple and flexible analytic expressions which do not
contain any singularities or discontinuities and include a parametric dependence on
several quantities having a clear physical meaning.

These models, however, have a fundamental drawback which stems from the absence
of the B -component and corresponds, in fact, to the rectilinear geometry of the initial
current elements. In the near tail region this evokes the same difficulties as those inherent
to the Beard’s model. In an attempt to account for a limited dawn-dusk extension of
the magnetosphere and a curvilinear shape of the current streamlines in the near tail,
Tsyganenko and Usmanov (1982) and Tsyganenko (1987) multiplied both components
(45) of the magnetic field by an even function f{ y) which falls off to zero for y - + oo
with a scale length Ay ~ 15 R;. This modification does not violate the VB = 0 con-
dition and changes the current flow line geometry in such a way that it acquires a
resemblance with the observed one. However, the condition B, = 0 remains unchanged,
which does not allow to extend the sheet-like structure in the dawn and dusk sectors.

Apart from this deficiency, there exist one more difficulty related to the deformation
of the current sheet due to the tilting of the geodipole axis. Statistical studies of the
average shape and position of the tail neutral sheet (Russell and Brody, 1967, Fairfield,
1980; Gosling et al., 1986; Dandouras, 1988) as well as theoretical considerations
(Voigt, 1984) inferred the existence of a two-dimensional warping of the sheet roughly
proportional to the dipole tilt angle y. Near the midnight meridian plane the warping
results in a gradual departure of the neutral sheet from the dipole equatorial plane
towards that parallel to the solar wind stream. This is accompanied by a bending of the
sheet in the YZ projection in such a way that, for > 0, it is raised above the GSM
equatorial plane near the midnight meridian, but descends below this plane near the tail
flanks, the displacements being the reverse for < 0. In a recent work of Dandouras
(1988) this effect has been studied extensively in the region —20 Ry S xgsm S — 7 Rg
using the ISEE-1 spacecraft data. The detailed investigation has shown that, in fact, the
warped neutral sheet crosses the GSM equatorial plane in a close proximity to the
magnetopause.

In the above discussed models only a gross simulation of the tilt-related effects was
done by assuming a purely translational shift of the whole planar current sheet in the
zasm direction by 4z = R, sin , with the parameter R, defining the ‘hinging distance’.
Apparently, the largest discrepancies due to inaccuracy of this assumption should be
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expected to arise in the pre-dawn and post-dusk sectors near the flanks of the tail. As
a consequence, a significant overestimate of the sheet thickness as well as an under-
estimate of the current magnitude can be present in these models.

In view of these considerations, it was decided to abandon the representation
(45)-(47) in favour of a quite different approach based on a modification of appropriate
vector potential. As a starting point for this work (Tsyganenko, 1989a), a simple model
of an infinitely thin equatorial current disc giving a proper radial distribution of B, was
developed. Due to axial symmetry, we introduce a cylindrical coordinate system (p, @, z)
co-axial with the dipole and assume the vector potential to have only one component
A = {0, 4, 0}. The absence of currents in the whole space outside the equatorial plane
leads to equation V x ¥ X A = 0 whose solution is obtained by separating the variables
as

oC

A(p, z) = J C(K)e X121 J(Kp)KV? dK . (48)

The boundary condition can be defined by specifying the radial distribution of
B, = B,(p) in the equatorial plane. Inverting the corresponding integral by means of
Bessel transform, one obtains the weight function

KC(K) = J p'?B.(p) (Kp)'?Jo(Kp)dp. (49)

The simplest explicit solution can be derived by choosing the distribution B, (p) as

B.(p)~(a®+p)~ 2.

Being inserted in (49), this yields the function C(K) which, on substitution in (48),
determines the explicit solution for the vector potential in the whole space as

AV(p, )~ p~ (@ + [2])* + p?]' = (a + [z])} . (50)

Taking derivatives of (50) with respect to the parameter a, one obtains a set of
independent solutions corresponding to a progressively larger rates of decrease of B,
and the current density by p— oo. For our purpose it is enough to take the first and the
second derivatives, which yield

1)
A<2>(p,z)=‘7’; ~pf1{1 at |z } 1)
a

L+ [z

and
@

A(p, 2) = ‘Ma ~pla+ |zI) + 0712 (52)

The next step is to modify the obtained vector potentials. As can be easily verified,
replacing | z| by (z% + D?)Y/2 in (50)—(52) converts the infinitely thin current discs into
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spread-out ones with a characteristic half-thickness scale D which can be assumed to
vary in two dimensions throughout the equatorial plane. Replacing then z by
z' =z - z.(x, y, ), we incorporate the effects of warping the current sheet. Its shape
is defined by the function z, which contains the dipole tilt angle as a parameter. At last,
to take into account the day—night asymmetry of the tail current and its finite dimension
in the dawn-dusk direction, an appropriate truncation factor W(x, y) can be introduced.

These modifications, however, are based on formal considerations, rather than on the
direct problem solution derived from an explicitly specified current system of given
geometry. Hence, a verification of the obtained current distribution by computing
j=1(c/4m)V x ¥V x A is necessary. Figure 18 shows a view of the current streamline

-

Fig. 18. Three-dimensional view of the current flow line pattern in the equatorial plane plotted by using
the model of Tsyganenko (1989a) for ¥ = 0.

geometry obtained in the equatorial plane for y = 0. A clearly seen continuous transition
from the tail-current sheet to the ring current is a consequence of the adopted
mathematical model, in which both sources are represented by the sum of modified
vector potentials (50)—-(52) having a similar structure. Figure 19 (Tsyganenko, 1989a)
displays a family of the contours of constant j, in the noon—midnight meridian plane
of the model magnetosphere with the geodipole tilt angle close to its maximal value. The
plot clearly demonstrates the expected warping of the tail current sheet near
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Xgsm ~ — 10 R.. Figure 20 shows a family of the current streamlines crossing the
midnight meridian plane at xggp = — 15 R, in projection onto a plane perpendicular
to the x-axis. The pattern corresponds to nearly the same value of yy = 35°; the neutral
sheet configuration according to Dandouras’ (1988) results is shown by crosses for
comparison. A good correspondence of the model with the observed geometrical
properties of the neutral sheet is evident from these plots.
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Xgem = - 15 Rg
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xxx - Dandouras (1988)
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Fig. 20. Current streamlines crossing the midnight meridian at Xgy = — 15 R shown in the Y - Z

projection. The plot demonstrates the effect of the current sheet flexing due to the geodipole tilt in the model

of Tsyganenko (1989a). The upper and lower streamlines indicate roughly the half of the maximum current

density. The crosses mark the average observed neutral sheet position as deduced by Dandouras (1988)
from the ISEE-1 spacecraft data.

If the tailward extension of the modeling region exceeds 10-15 R, an account of the
closure currents flowing at the high-latitude magnetopause is necessary, because other-
wise it is impossible to obtain correct distribution of both B, and B, components along
the tail.

A completely different approach to modeling the stretched magnetic fields typical for
the tail region was suggested by Voigt (1981). Instead of specifying more or less
sophisticated current distributions in an explicit form, a formal transformation of the
initial vacuum magnetic field components leading to tail-like configurations was
proposed in that work. A solution for the dipolar field confined within a composite
cavity shown in Figure 11 was chosen as the initial field configuration subjected to the
stretching.
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Fig. 21. Field line configuration in the model of Voigt (1981). The tail magnetic structure is obtained by
means of a stretch transformation (53) applied to the vacuum field confined within the cylindrical tail
boundary. The dipole tilt effects (i = — 35°) are shown in the bottom plot (see also Figure 22).
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Denote the total field (the dipolar one plus the boundary current contribution) in the
tail region as B, (x, y, z) = VU. The proposed transformation consists in replacing it by
a ‘stretched’ one, B’, with components

B (x,,2) = B,.(A(x = Xo) + X0, »,2)
B},v(-xvys Z) = )'Buy(/l(x - XO) + Xo» Vs Z) ’ (53)
Bi(x,,2) = AB,.(A(x = Xo) + X0, 1 2),

where 1 is the transformation parameter taking the values in the interval 0 < 2 < 1. The
upper limit A = 1 corresponds to the identity transformation, while 4 = 0 provides the
maximal stretching with vanishing transverse components of B’ and éB,/0x = 0. One
can easily verify that the transformation (53) does not violate the V- B = 0 condition.
It is essential to note that, due to the matching conditions imposed at the plane x = x,,
the vacuum field B, and, hence, the stretched field in the tail are related to the dayside
magnetic field distribution defined by the magnetopause position which, in turn, depends
upon the solar wind pressure and the geodipole tilt angle. As can be seen from Figure 21,
the model provides a good agreement of the field line structure with the observed one,
at least visually. At the first glance, this is a formal consequence of the adopted method
of the tail field reversal region is controlled by the distribution of B, near the plane
x = x, which, in its turn, is defined mainly by the geodipole tilt. However, the most
notable feature of the Voigt’s (1981) model concerns the transverse structure of the
magnetotail field. Figure 22 displays the current streamlines computed in the tail cross-
section at xggpy = — 35 R for ¢y = 0 and i = 35°. It can be seen that the current sheet
thickness is minimal near the midnight meridian. The most interesting effect here is the
flexing of the current sheet for i # 0. The obtained configuration is in excellent accord
with the above discussed experimental and model results (see Figure 20).

In his later paper Voigt (1984) gave an interpretation of these results on the basis of
magnetohydrostatic approach. Namely, a class of magnetic field models for the tail
region has been considered, which allows to represent the components in the following
separable form

=
|

L = (a/ag) Q2 (p) cos @ f>(2),
o= —(2/ag)Q(p)/psing f5(z), (54)
. = Q(p)cos o fi(2),

where, in accordance with the assumed cylindrical magnetopause shape, the z-axis is
directed antisunward (e, = —eygsn)- Representation (54) has the property that for
o = o, the field becomes curl-free; besides that, for any « we have (Vv x B)- B = 0, that
is no field-aligned currents are present in the model. Substitution of (54) in the equation
¥-B = 0 leads to an eigenvalue problem whose solution can be written down as an
expansion in eigenfunctions containing the exponential factors

f2(2) = exp( = &/ o/% 2), (55)

™
o
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Fig. 22. Current streamlines at X;qv = — 35 R, shown in the Y — Z projection for = 0 (fop) and
Y = 35° (bottom) in the model of Voigt (1981). Like in Figure 19, the upper and lower streamlines indicate
the half of the maximal current density.

with & satisfying the equation J| (£;) = 0. The constant « can be chosen arbitrarily in
the range 0 < o < @, so that in case « = 0 the field lines are aligned parallel to the z-axis
éB_/0z = 0, while by « = o, the vacuum field is obtained, with a maximal rate of tailward
decrease. From a formal point of view, this corresponds exactly to the stretching
transformation (53) which, however, is now easily tractable in terms of magnetohydro-
static theory. This can be ascertained by a proper choice of the isotropic pressure
distribution satisfying the stress balance equation at least in the direction transverse to
the tail axis.
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As indicated by Voigt’s results, the model (54) is compatible in this sense with a simple
pressure functions parameterized by the same constant « and eigenvalues &,. It can be,
therefore, concluded that the observed transverse warping of the tail-current empirically
simulated in the model by Tsyganenko (1989a), as shown in Figure 10, and inherent to
the Voigt’s (1981) model as an implication of the stretching method (Figure 22) reflects
a tendency of the real plasma sheet to remain in the state of magnetohydrostatic
equilibrium with the lobe magnetic field.

On the other hand, the simplifying assumptions incorporated in the model of Voigt
(1981, 1984) for the sake of mathematical tractability define also its main shortcomings.
Thus, the tail magnetic field model implies zero component of the electric current density
along the x5y axis. As already noted, this leads to inadequacies in modeling the near
tail magnetic field structure. It should also be emphasized that the transformation (53)
cannot model properly thin current sheets and does not contain an independent
parameter for the sheet thickness. It is clear that a characteristic scale thickness of the
current distribution corresponding to the stretched field is defined by the variation of
the B -component in the z;y direction at the ‘seam’ plane x = x,,. Assuming the field
to be approximately dipolar in this region, it is easy to assess that the variation scale
is of the order of x,, that is several Earth radii. At the same time, even statistically
averaged observed values of the current sheet thickness in this region can be quite small
(Hedgecock and Thomas, 1975; McComas et gl., 1986) and reach even smaller values
of several tenths of R during disturbed periods (Lin and Barfield, 1984; Kaufmann,
1987). Besides that, the observed outer boundary of the plasma sheet is, as a rule, well
pronounced and contains typically a layer of intense field-aligned currents (Ohtani ez a/.,
1988). A quantitative simulation of all these features in a single model can be performed
as yet in the framework of empirical approach only.

The above discussed question on consistency of the model magnetic field configura-
tions with the particle pressure distribution in the plasma sheet was studied in detail by
several authors (Fuchs and Voigt, 1979; Voigt and Wolf, 1985; Hilmer and Voigt, 1987;
Birn et al., 1977; Birn, 1987). All these works are based on assumption of isotropic
particle distribution, which allows to consider the pressure to be constant along the field
lines. This largely simplifies mathematical treatment of quasi-static configurations, since
in three-dimensional case the isotropic pressure can be considered as a function of two
Euler potentials, p = p(«, f) with B = Va x V8, while in two-dimensional models the
equilibrium problem can be addressed in the framework of the Grad—Shafranov theory.
In Section 3.2 this approach will be considered in relation to the question of interplane-
tary magnetic field effects in the observed and model magnetospheric structures. The
reader is referred also to reviews by Voigt (1986), Schindler (1974, 1979), and Schindler
and Birn (1986), for a more comprehensive treatment of the magnetohydrostatic models.

The formal method of stretch transformation introduced by Voigt (1981) for simulating
the tail field was significantly generalized and developed by Stern (1987a). The main
principle of the method is to find a transformation of an initial magnetic configuration,
which provides a required final one and does not violate the V: B = 0 condition. One
of the simplest examples is the following one-dimensional Cartesian stretch. In this case
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Cartesian components of the initial B = B(x, y, z) are replaced by
B, = B.(f(x), y,2)= B¥(x,3,2),
B, = f'(x)B,(f(x), y, 2) = f"(x) B} (x, y, 2) , (56)
B, = f'(x)B.(f(x), y,2) = f'(x) B} (x, y, 2) .

The transformed field B’ is also divergence free. By taking f(x) = x we obtain the
identity transformation, while f(x) = const. yields B, = B, = 0 and 0B_/0x = 0, i.e.,
maximal stretching leading to a two-dimensional final configuration. To model the
observed nightside magnetospheric structure, we have to define f(x) as a smooth
function with a following asymptotic behaviour: f(x) ~ x for x » x, and f(x) ~ x, for
x <€ x,, where the coordinate x, marks the transition from the quasi-dipolar to the
tail-like geometry. Figure 23 shows the dipole field confined within the ellipsoidal cavity
and modified in the nightside sector in accordance with the transformation (56). The
stretch function f{(x) in this example is similar to that used by Stern (1987a) for the
paraboloid model (see Table 1 and Figure 3 in the paper by Stern). Its plot is shown
in the bottom of Figure 23. The modification (53) of the vacuum field proposed by Voigt
(1981) is actually a limiting case of (56) corresponding to an abrupt transition at x = x,
from f,(x) = xto f,(x) = A(x - xy) + x,, as shown by the broken line. According to
(56), the transversal field components acquire a small factor f'(x) in the stretching
region, which is clearly seen in Figure 23. The nightside field lines at x < — 5 assume
a rectilinear shape being parallel to the x-axis and the ellipsoidal magnetopause turns
into a cylinder. A more realistic tail geometry with a gradual flaring of the magnetopause
and diverging field lines can be obtained using a more general stretch applied to the
ellipsoidal coordinate 7. Stern (1987a,b) gave a comprehensive description of the
mathematical formalism necessary for extending the stretch transformation method to
more general cases. In particular, the transformation in cylindrical and spherical
coordinates were considered, which allow both radial and angular stretch. The first one
corresponds to a poloidal deformation pertaining to the Earth’s ring current or to the
Jovian current disc, while the second one opens a possibility of empirical modeling solar
magnetic configurations associated with the warped heliospheric current sheet or the
‘spiked helmet’ structures.

A further generalization of the method can be obtained by introducing a dependence
of the stretch function on all the spatial coordinates. Thus, the function f(x)in (56) can
be replaced by f(x, y, z). Then, using the same notations

B=e (BY-/,B}~-f.B})+e f.Bf+e [ B}

Moreover, a simultaneous stretch in all three coordinates can be done in principle. The
corresponding transformation is derived in a more cumbersome way and can be found
in the original work (Stern, 1987a).

In view of a wide variety of possible initial configurations together with a number of
relatively simple stretch transformations which can be superposed and combined in
various sequence, this method should be considered as a very effective and promising
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Fig. 23. Magnetic field lines in the ellipsoid model (Figure 10) subjected to the stretch transformation
with the function f(x) taken from the work of Stern (1987). The stretch function is plotted in the bottom
on the same scale along the X-axis, the broken line corresponding to the Voigt’s transformation (33).
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Fig. 24. A family of contours j, = constant in the noon-midnight meridian plane corresponding to the
stretched ellipsoid model field with the untilted dipole. The isolines are labeled in units 10~ 1° A m 2.

tool for empirical modeling of magnetic fields in space. The only difficulty consists in
a lack of control over the structure of currents associated with the deformed magnetic
field, which was noted above in connection with Voigt’s model. Figure 24 displays the
distribution of the dawn-dusk component of the current density in the midnight meridian
plane, corresponding to the stretched quasi-dipolar configuration shown in Figure 23.
In spite of the fact that there is a visual correspondence between the model picture of
the magnetic field lines and that implied by observations, the model currents in Figure 24
are seen to be distributed over the whole magnetotail domain. The region with positive
values of j, is approximately 8 Ry thick. Outside this layer the current is directed
oppositely, i.e., from dusk to dawn, and its density decreases rather slowly away from
the equatorial plane. A computation of the model current streamline geometry shows
that a relatively intense current sheet does not extend in the dawn-dusk direction farther
than 5-7 R from the y = 0 plane, due to its rapid closure via the lobe regions. A portion
of the westward current near the inner edge of the central sheet closes through a narrow
eastward current band located at x ~ — 6 R and playing the role of a shielding source
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which cancels the contribution from the tail current in the front magnetospheric region
x> —5 R with vacuum magnetic field. Thus, the obtained structure of the model tail
current differs significantly from the generally accepted one.

2.3.2. Large-Scale Field-Aligned Current Systems

For more than two decades after the experimental discovery of the field-aligned currents
(Zmuda et al., 1966; Zmuda and Armstrong, 1974; lijima and Potemra, 1976), they
remain to be the object of primary interest in the magnetospheric physics, owing to their
outstanding role in the processes of the energy transfer from-the solar wind to the
ionosphere. A lack of understanding still exists as to what physical mechanisms are
responsible for generation of the field-aligned currents (see the reviews by Roederer,
1977; Sato and Iijima, 1979; Troshichev, 1982; and Stern, 1983). Here again, we meet
with both urgent and difficult task of an adequate account of these sources in quantitative
magnetospheric models.

The importance of the latter problem stems from the estimate of the total electric
current flowing in the main magnetospheric circuits. Indeed, the total Chapman—Ferraro
current flowing at the dayside magnetopause between the polar cusps is of the order of
~5 x 10° A. Nearly the same value can be obtained for the net tail current within the
near-Earth region —20 < xggm $ — 5 Rg. As for Birkeland current, according to
evaluation by Bythrow and Potemra (1983) its total magnitude can also be typically a
few million ampéres. For extremal conditions this estimate may well be extrapolated to
~ 107 A. Therefore, a considerable influence of Birkeland currents upon the overall
magnetospheric structure must be expected.

One of the main difficulties in quantitative modeling the magnetic field from Birkeland
current systems lies in characteristic features of their geometry and in the absence of
a definite scale length. In the remote magnetospheric regions adjacent to the boundary
layer Birkeland currents should be distributed over a vast volume with a spatial scale
size of tens of R, while at ionospheric heights their latitudinal and longitudinal trans-
verse dimensions do not exceed a few hundreds and thousands of kilometres, respec-
tively.

Besides that, there exist uncertainties in defining the configuration of model field-
aligned currents at large geocentric distances, since no definite physical model for their
sources is available as yet. However, owing to the expansion of the magnetic field line
tubes with distance, the relative magnitude of the contribution from Birkeland currents
falls off, while their spatial variation becomes large enough. Therefore, it can be expected
that in the outer magnetosphere it is possible to simulate the magnetic effects by
including relatively simple terms in the expressions for the total field components. Thus,
Tsyganenko and Usmanov (1984) have shown that the averaged effects of Birkeland
currents are discernible even in a rather simple empirical model.

In that work a local modeling of the dayside magnetic field was done based on the
polynomial representation of the field from all the external sources. The corresponding
expressions were similar to those used by Mead and Fairfield (1975), except that we
added the cubic terms and used sin i instead of . The coefficients were least squares
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fitted to the IMP and HEOS spacecraft data taken within the dayside sector of
solar magnetic longitudes |Ag,,| < 60°. Several sets of coefficients were found cor-
responding to a sequence of intervals of K- and 4E-indices as well as for two opposite
polarities of B_- and B -components of the IMF.

A study of the obtained model magnetic structure showed that, in agreement with
other works (Mead and Fairfield, 1975; Tsyganenko and Usmanov, 1982; Tsyganenko,
1987, 1989a), the increase of the activity is associated with the equatorward shift of the
polar cusps and the Earthward displacement of the subsolar magnetopause. We also
studied a configuration of the electric current system responsible for the re-distribution
of the magnetic field. The components of V X B and the corresponding current stream-
lines were computed from the model field distribution. It was found that the dayside
current forms a large-scale vortical structure, in which the lines descend from the
high-latitude magnetopause towards the Earth in the dawn sector, cross the midday
meridian plane and ascend again towards the distant polar cusp region. Such a pattern
can be interpreted as the high-latitude circuit of the large-scale system I of Birkeland
currents, though strongly distorted and smoothed out due to spatial and temporal
averaging inevitable in the model representation.

Tsyganenko and Usmanov (1984) also pointed out an interesting effect pertaining to
the structure of the polar cusps in dependence on the geomagnetic disturbance indices.
It was found that the increase of the disturbance level is associated with a progressively
larger degree of longitudinal stretching of ad hoc defined contours delineating the polar
cusp boundary in the ionosphere. The boundaries were obtained by mapping along the
model field lines the constant total B contours encircling the neutral points from the
magnetopause vicinity up to the ionospheric height. In a sense, they can be interpreted
as the isolines of precipitating flux of the polar cusp particles. This finding is in
agreement with the observed expansion of the dayside polar cusps in the zonal direction
deduced from auroral data (Zaitseva and Pudovkin, 1976).

The same inferences can be drawn from the results of Pudovkin er al. (1986), who
studied some geometrical effects inherent to the field line mapping in the vicinity of the
polar cusp using an idealized planar model of the dayside magnetopause. A non-zero
normal component of the IMF penetrating across the boundary as well as a twisting
action of the field-aligned currents were taken into account. The main joint effect of
these two factors was shown to result in a strong distortion of a rectangular grid mapped
from the magnetopause to the ionosphere along the near-cusp field lines.

Tsyganenko (1988) developed a model representing the magnetic field of the field-
aligned current system in the quasi-dipolar region and capable of simulating its real
sheet-like structure. A direct approach, that is an integration over the prescribed current
distribution, is quite useless in this case, since the volume integrals over curved current
flow lines cannot be reduced to manageable quadratures. That difficulty was side-
stepped in the work by a special choice of the vector potential. Basic considerations
follow from the general representation (43) for the magnetic field vector as the sum of
toroidal and poloidal components (see also Backus, 1986). The toroidal term can be
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rewritten as
B,=Vx A, =Vx(RF)=VF, xR.

The corresponding toroidal magnetic field lines are thus orthogonal to R at any point
and, hence, lie on spherical surfaces R = const. The field produced by Birkeland
currents has similar structure at relatively small distances and the disturbance vectors
are approximately perpendicular to the dipolar field lines. Therefore, it is natural to
represent the corresponding vector potential in a similar form. The only difference is that
instead of R we have to substitute the dipole magnetic field vector B, so that

A =B, F(R). (57)

Since V X B, = 0 the magnetic field from Birkeland currents defined by (57) can also
be represented as B = VF x B,. Explicit relations for the components of the potential
(57) in spherical solar-magnetic coordinate system (R, 0, 1) read as follows

Ag =2cosff(R), Ay=sinff(R), A;=0, (58)

where f(R) corresponds to the products of F(R) with a common factor from the two
components of B,. The function f(R) is sought then in the form

S(R) = CR7sinAcos8B(L) (59)

where Cis a constant defining the net current in the circuit and the factor sin 4 provides
the simplest longitudinal dependence of the field-aligned current magnitude, with the
maxima of | j, | being located at dawn and dusk meridians. The factor cos #is introduced
in (59) from symmetry considerations, in order for A, and 4, to be even and odd
functions of latitude, respectively. The last factor §(L) defines the latitudinal structure
of the field-aligned current and is chosen as a function of the L-parameter, since
Birkeland current density must have a sharp maximum throughout the whole field line
corresponding to the shell with L = L;. The function (L) and the exponent y are
specified from the following considerations. The high-latitude portion of the shell L = L,
near the Earth can be approximately considered as a cylindrical surface crossing the
ionosphere along the circular boundary of the polar cap of radius
po = Rz sinB, = R/L}? Then it is easy to find the vector potential corresponding to
a given sinusoidal distribution of Birkeland current density at the cylindrical surface,
assuming the latter to be infinitely extended in both directions along the z-axis. This
assumption can be motivated by equivalence of the contribution from the lower part of
the cylinder (i.e., lying under the ionosphere) to that from the ionospheric closure current
in case of a uniform conductivity of the planar model ionosphere. Magnetic field of this
current system is uniform and directed along the Sun—Earth line above the polar cap,
while outside the cylinder the field has a configuration corresponding to a two-
dimensional dipole. Hence, the vector potential can be represented in the cylindrical
coordinates (p, 4, z) as A = (0,0, 4,) where

4= {Bop sin 4, P=<pq, (60)

Bopip 'sind, p=p,.
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The factor B, defines the magnitude of the disturbance in the polar cap, so that B, > 0
yields a sunward field vector, which corresponds to downward current in the dawn
sector and upward one in the dusk. Since at high latitudes A4, ~ A, substituting
p=Rsin®= R*>L~-Y2in (60) gives

L=, Lzl
AR~{L° ’ 0> (61)

L2 L<L,.

Thus, to obtain a ‘curtain-like’ structure of j, with maximum at L = L, it is necessary
to specify the function B(L) in (59) in accordance with (61). A simple analytical
approximation for f(L) with the required properties reads

BL) = L'2a(L) + LyL="2[1 - a(L)], (62)
where
1 L-L,
W=7 {1 TIC L+ ALZ]”Z} | ©

In contrast with the potential (61), the function (62) has finite derivatives at L = L,,, the
parameter AL defining a characteristic thickness of the field-aligned current sheet. The
exponent y in (59) can be evaluated from the following. In case of a strictly radial
geometry of the field-aligned currents the amplitude of the transversal disturbance AB
would be proportional to R ~ !, which corresponds to y = 0. In reality, the currents flow
along nearly dipolar field lines and hence 4B should decrease more rapidly with distance,
so y> 0. In the final version of the model value y = 0.3 was assumed, based on an
a posteriori inspection of numerical results.

Magnetic field and current distributions obtained from the vector potential (58) yield
reasonable results in the high-latitude region. However, at low latitudes this representa-
tion meets with some problems related to the geometry of the closing currents, which
concentrate near the origin in the model instead of being distributed somewhere in the
distant magnetosphere as required by physical considerations. For that reason, the
vector potential was modified by adding a correction term providing an improvement
of the current streamline configuration.

Figure 25 shows a three-dimensional view of the model current streamlines cor-
responding to the northern half of the large-scale system I of Birkeland currents. The
joint contribution from the I and II systems can be described by a superposition of two
model distributions with properly defined values of the parameters C, L,, and AL, which
is illustrated in Figure 26. The plot displays the dawn-dusk profile of the transverse
magnetic disturbance from the model system of Birkeland currents and the correspond-
ing distribution of the radial component of the current density. The plots are computed
for the geocentric distance R = 1.1 R corresponding to the heights of the TRIAD and
MAGSAT spacecraft orbit. As is readily apparent from the Figure, the profile of 4B,
shows a resemblance with plots given in experimental studies (e.g., Zanetti et al., 1983).
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Fig. 25. A perspective view of the current streamlines in the model of the large-scale Birkeland current
system (Tsyganenko, 1988). Only those streamlines corresponding to the northern half of the system I are
shown.
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Fig. 26. Profile of the transverse disturbance of the geomagnetic field produced by the large-scale model
Birkeland current system at height H = 0.1 Ry versus distance X from the pole measured along the
dawn-dusk meridian. The broken line displays the corresponding distribution of the radial component of
the current density.
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In Figure 27 the corresponding configuration of the electric current streamlines in the
dawn meridian plane is shown. The upper (downward) and the lower (upward) bundles
of lines correspond to the systems I and II, respectively. This figure reveals one of
drawnbacks of the model. As can be seen, a portion of the polarward current does not
follow the dipolar magnetic field lines, but deviates towards the larger L values. It should

~ 10

10 0
Y, R,

Fig. 27. Configuration of the model Birkeland current streamlines in the first quadrant of the dawn-dusk

meridian plane (Tsyganenko, 1988). Beyond R ~ 10 R, the streamlines of the high-latitude system I turn

back and approach the Earth as the system II streamline bundle; this is merely a model artefact (see
text).

also be noted that the system II bundle does not close through the equatorial magneto-
sphere, but turns towards higher latitudes at R ~ 10-15 R and then returns back to
the Earth merged into the system I bundle.

Being designed in one of the first attempts to represent the magnetic field of Birkeland
current systems, the outlined model is rather crude. Nonetheless, in the quasi-dipolar
region R < 5-7 Ry it provides a sufficiently good results and can be used for a
quantitative evaluation of the influence exerted by Birkeland currents upon the
magnetospheric structure and field line mapping.

2.3.3. Ring Current and Partial Ring Current Systems

The first studies of the ring current magnetospheric effects date to early sixties, when
after the discovery of the radiation belts a question on their role in geomagnetic
disturbances was raised (Akasofu and Chapman, 1961). Those estimates were based
on assuming an equatorial profile of the energy density of trapped particles &(r,),
specifying their pitch-angle distribution function, and adopting a dipolar background
magnetic field configuration. This allowed to compute a local electric current density
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as a function of coordinates, using the well-known relation given by the adiabatic theory
(Parker, 1957)

j= é B x {vpl + ”";72’” (B, V)B}. (64)
Integration over the current distribution yields the magnetic field of the model ring
current in the linear approximation. Being added to the undisturbed background field,
it provides the basis for the next iterations leading eventually to a self-consistent
solution.

Later on a significant development of those calculations was done in a number of
works using new data on energy spectra and spatial distribution of the trapped particles
(e.g., Hoffman and Bracken, 1965, 1967; Schield, 1969). Hoffman and Cahill (1968)
made an attempt to solve an inverse problem of refining the energy density profiles based
on spacecraft magnetic measurements. Kendall et al. (1966) proposed a significantly
improved method for calculating the magnetic field of the ring current and its model
representation. Namely, instead of a cumbersome procedure of a direct Biot—Savart
integration aimed at derivation of B.- and B,~components, they introduced a flux
function Y(R, 0) = 4,,(R, O)R sin 6, where 4, is the azimuthal component of the vector
potential. In any axisymmetrical magnetic field configuration the function  conservs
its values along a field line. Representing i/ as an expansion in the associate Legendre
functions

Y(R,0) = Y A, (R)PL(cosf)sind (65)
n=1

allows to reduce the task to a simple one-dimensional boundary problem for a few first
functions A4,,(R). This approach was used by Sozou and Windle (1969a, b, 1970), who
carried out a detailed study of nonlinear effects and their dependence on the total energy
of the ring current particles. Figure 28 displays the pattern of contours of constant
electric current density in the self-consistent model radiation belt with a total energy of
particles W = 4.4 x 10?? ergs corresponding to the magnetic field depression in the
centre of the ring current belt AB & — 110 nT. The upper half of the plot shows the result
obtained in the linear approximation and the lower part gives the self-consistent distribu-
tion. The inner eastward current as well as more intense outer westward one are clearly
seen.

The most comprehensive study in this aspect was done by Sckopke (1972), who
presented an extensive analysis of such questions as the role of the pitch-angle
anisotropy, the influence of non-dipolar terms in the background magnetic field model,
and the difference between the linear and the self-consistent solutions. In particular, a
modification of the well-known Dessler-Parker-Sckopke relation has been obtained
which takes into account the homogeneous part of the external shielding field BY):

M, Brc(0) » 2Wyi, + Wikiog + 2MpcBCE, (66)

mag
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Fig. 28. Contours of constant azimuthal electric current density in the model ring current (Sozou and
Windle, 1969b). The upper half (A) of the plot displays a linear approximation result and the lower one (B)
corresponds to a self-consistent solution. The isolines are labeled in units 2.8 x 107 "°Am™~2

where M, and M- are the magnetic moments of the Earth and the ring current, Bx(0)
is the magnetic field produced by the ring current at the origin, W,;, and Wy, are,
respectively, the kinetic energy of the trapped particles and the magnetic energy of the
ring current field contained within a spherical model magnetopause corresponding to
the homogeneous shielding field B} Equation (66) shows that, apart from the direct
contribution of the magnetopause currents to the observed Dst value, there exist an
indirect effect related to the ring current. Assessing Mz /Mg ~ 0.2 we find the last term
in (66) to give a positive (northward) contribution to Br(0) of about 0.4B}, which
amounts to a significant value of ~ 8 nT for B), = 20 nT.

Sckopke (1972) established also that practically in all cases the linear approximation
solutions do not differ significantly from the self-consistent ones. An important detail
has been also pointed out in this aspect concerning Equation (66). Namely, the self-
consistent values of Bg(0) were found to be always a little smaller than the linearly
computed ones, in apparent contradiction to a widely accepted view based on a
superficial account of the term Wk,  in (66). Actually, in going from linear to self-
consistent solution the appearance of the positive term W, in the right-hand side of
(66) is accompanied by a significant decrease in W, due to a corresponding re-
structuring of the magnetic field leading thus to a negative net change of Br.(0).

Effects of the plasma pressure anisotropy were taken into account in many models
of the ring current. However, all of them assume only very special kind of the distribution
function incorporating the pitch-angle dependence in the factor (sin 9=+ ! (Parker,
1957), which allows to calculate in a simple way the pressures and the current density
along the field line tube. Moreover, in all the models a single value of & was ascribed
to the whole ring current. Sckopke (1972) made an extensive quantitative study of
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dependence of the model ring current parameters on «. A general conclusion is that the
integral quantities Wy;,, Rgc(0), Mg, and W,,,./2W,;, show a distinct decrease with
growing «, which has an obvious explanation based on the fact that larger values of «
correspond to a more rapid decrease of plasma density away from the equatorial plane
and hence to smaller total amounts of trapped particles with lesser magnetic effect.
The ring current models of this kind were used by Voigt (1981), who incorporated
them into his magnetospheric magnetic field model with independent physical para-
meters. Radial profiles of the equatorial energy density were fitted to those obtained by

Frank (1967) from the measurements of the outer radiation belt protons. Figure 29
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ring current field

Fig. 29. Profiles of the transverse component of the model ring current field in the equatorial plane plotted
versus radial distance, for four values of the ring current intensity (Voigt, 1981).

shows the plots of radial distribution of the model ring current magnetic field Bg(R)
in the equatorial plane for four values of Bg-(0). Larger ring current intensities are
manifested in a more depressed field within distances R < 6 Ry, the most dramatic
changes being observed at R ~ 3—4 R between the zones of the outer westward and
the inner eastward current. This is accompanied by an earthward shift of the depression
peak. At larger distances the disturbance becomes positive and then decreases as R =3
in the current-free region.

A further analysis of those models is hindered by that neither Voigt (1981) nor
Sckopke (1972) published numerical values of their ring current parameters and the
corresponding model expansions. One of a few exceptions in this sense is given by the
paper of Kendall ez al. (1966) (see also a book by Akasofu and Chapman, 1972), who
provided the tables of functions 4, (R) and their derivatives entering the expansions
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similar to (65). An alternative description of the ring current field was given by Schield
(1969), who tabulated directly the Bg- and B,-components.

However, all these results were obtained many years ago from the then sparse data
on particles and correspond mainly to quiet conditions. A rapid advance of experimental
technique has led recently to a radical revision of earlier concepts of the ring current
composition and sources as well as to a significant refinement of data on energetic
spectra, pitch-angle and spatial distributions (see a review by Williams, 1987, and
references therein). However, in spite of a remarkable number of papers on radiation
belts, they are related mainly to dynamics of energetic particle injection, drift, and losses.
Calculations of the electric current distribution were done lately only in a few works,
which concentrated primarily on analyzing separate events (e.g., Lui et al., 1987). This
reflects to a large degree a significantly more complex structure of the observed ring
current in comparison with the idealized axially symmetric models. In fact, existing
experimental data speak in favour of a continuous merging of the tail current sheet with
the ring current at the nightside (e.g., Speiser and Ness, 1967; Fairfield et al., 1987).
Sugiura (1972) and Sugiura and Poros (1973) based on measurements of the scalar
quantity 4B = |B, + B;| — |B,| called in question the results of theoretical modeling
the ring current similar to those shown in Figure 28 and proposed instead a concept of
a single westward equatorial current sheet at the nightside, which approaches the Earth
up to very close distances.

In this context it is worth showing in Figure 30 the results of Lui et al. (1987) obtained
from the AMPTE/CCE spacecraft measurements. The four panels display the radial
profiles of the electric current density calculated from (64), where the net pressures p,
and p, were derived from the ion flux measurements in the range of energies from
25 keV to 1 MeV and the dipolar magnetic field was assumed. Solid curves correspond
to different stages of a storm, while a broken line yields a pre-storm current density
profile. As can be seen from the curves, the transition between the eastward and
westward current occurred in all cases at R ~ 3—4 R. It should be emphasized that all
the current distributions were obtained for the early evening MLT hours and can thus
be substantially different from those pertaining to the midnight sector.

The above approach implies an a priori predetermined background magnetic field
model as well as a given distribution of the plasma energy density and, hence, is of little
value in empirical modeling based on magnetic measurements. The latter requires a
compromise between a relative simplicity and flexibility of mathematical representation.
One of such simple models was suggested by Tsyganenko and Usmanov (1982). The
model is axially symmetric and can be represented in the solar magnetic cylindrical
coordinates (p, ¢, z) by a vector potential A = (0, 4, 0), where

A, = Cp(p* + 22 +4p3) 2. 67

The only difference of (67) from a purely dipolar vector potential is the additional term
4pZ which eliminates the singularity at the origin. At large distances the potential (67)
yields a nearly current-free dipolar field, while at R = (p? + z2)'/? < 2p, it provides a
ring-like continuous current distribution with a characteristic radius of the order of p.
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From (67) the field components can be obtained as

12 ’ '
B =B pz

—_— (68)
P Y (pfz +2'2 + 4)52

and

22— 2+ 8

B. = 4B, ’2 2 52 °
(P2+z2°+4)

z (69)
where B, corresponds to the magnitude of the field depression at the origin and the
coordinates p and z are expressed in dimensionless units so that p’ = p/p, and z’ = z/p,.
Figure 31 shows the meridional cut of the model ring current as a family of contours

Z2/ 0,

2/
Y

W

L

0 f PI=P/90 2

Fig. 31. Contours of constant current density in the meridional cross-section (upper half only) of the model
ring current. The isolines are labeled in arbitrary units (Tsyganenko and Usmanov, 1982).

of constant j labeled in arbitrary units. The maximal current density is located at
p = 0.8p,, whereas the magnitude of the field depression increases monotonically
towards the Earth. The model is very simple and allows to describe the gross observed
features of the ring current by a proper fitting of only two parameters, p, and B,. As
shown by Stern (1985), this representation is convenient for taking into account the ring
current effects in modeling the field from the magnetopause currents (see Sub-
section 2.2.2.1).

One of basic shortcomings of that model consists in its inability to vary the scale
thickness of the current distribution in the north~south direction as well as its complete
axial symmetry. In reality, there exists a pronounced day—night asymmetry of the ring
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current, so that the nightside current intensities dominate by a factor of 2 or 3 (Iijima
et al., 1989). During strongly disturbed periods this asymmetry seems to become even
larger. Roelof (1987) presented a convincing evidence of extremely strong asymmetry
of the storm-time ring current, based on the newly developed technique of energetic-
neutral-atom (ENA) imaging the radiation belt ion population. Measurements of ENA
fluxes made from the ISEE-1 spacecraft during a storm with Dst = — 240 nT indicated
a drastic midnight-noon asymmetry in differential trapped ion intensity, with a
corresponding ratio amounting to 20:1 in the region 3 < L < 5.

The next important feature that also exhibits a distinct dependence on the
geomagnetic activity is the dawn-dusk asymmetry of the magnetosphere. This effect was
found still long ago in the ground based magnetometer data (e.g., Kamide and
Fukushima, 1971) as well as from the spacecraft measurements (Langel and Sweeney,
1971) and should be considered now as a firmly established fact that also needs to be
adequately simulated in future models.

Usmanov and Tsyganenko (1984) made a quantitative study of the dawn-dusk
asymmetry of the magnetosphere on the basis of the merged IMP-HEOS-ATS space-
craft dataset and a model of the partial ring current. The work was primarily aimed at
a derivation of the gross large-scale magnetic effects of this current system at moderate

Fig. 32.  Schematic view of the partial ring current system used by Usmanov and Tsyganenko (1984) for
constructing approximate model expansions, which provide a spread-out distribution of the current density
and a smoothly varying magnetic field.
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geocentric distances of R ~ 3-7 R, rather than at a detailed simulation of its structure
including Birkeland and ionospheric currents. A schematical ‘wire circuit’ consisting of
five circular segments (Figure 32) was adopted as a starting point for constructing the
partial ring current model. Contribution from each segment to the net vector potential
was represented by an integral with its subsequent reduction to approximate expansions.
Combining them in accordance with the geometry of the current system shown in
Figure 32 led to a final numerical model incorporating four parameters, which are the
total current in the circuit 7, the radius of the equatorial current p,,, its angular half-width
¢, and the angle 6 defining the azimuthal position of the whole system, as shown in
Figure 32. Due to the assumed approximate representation, the model magnetic field
corresponds to a continuously spreadout current distribution, in contrast with the initial
thin wire model shown in the figure.

The partial ring current model was incorporated as additional source in the model
of Tsyganenko and Usmanov (1982) and then was least squares fitted to datasets sorted
out in the K, and AE intervals. The results are shown in Figure 33, where the obtained
dependence of 6 and E,, = 2¢l/cp, on the disturbance indices is shown. The latter
quantity B, is proportional to the net current / and gives the field produced by the
partial ring current at the origin (B,, > 0 corresponds to negative B_, i.e., to a more
depressed field near the Earth). Every value of the K, index (or the AE interval) in the
plots corresponds to a dataset comprising about ~ 1000 vector averages. A clear
tendency of B,, to increase with the activity indices is seen. However, the angular
position & does not show any ordered dependence on K, ; nevertheless, such a depen-
dence is discernible in the lower plot, so that the system seems to rotate from the
postnoon to the premidnight sector with growing 4 F-index, though in general the effect
is not very large.

The outlined study is one of the first attempts to tackle the asymmetry problem.
Successful advance in this direction will depend largely on the proper choice of the
current system geometry. The circuit shown in Figure 32 corresponds actually to only
one of several theoretically possible hypotheses. An alternative variant for explaining
the observed asymmetry proposed by Crooker and Siscoe (1981) (see also Harel e al.,
1981) is based solely on an integral effect of the field-aligned currents with prevailing
inflow in the noon sector and corresponding outflow at night local time hours. Next,
it is necessary to significantly extend the existing experimental databases, because the
asymmetry effects are manifested most distinctly during disturbed periods whose
statistical weight in datasets falls off rapidly with growing K, or AE. At last, more
adequate procedures for sorting out the data should be developed, based on a more
accurate account of physical conditions. Thus, the asymmetry effects are the most
distinct just after the particle injection events (Mcllwain, 1974; see also Williams, 1987,
and references therein) and hence compiling the datasets in the K, -index intervals is
scarcely able to yield a good result.



QUANTITATIVE MODELS OF THE MAGNETOSPHERIC MAGNETIC FIELD 139

Beg N -~ o Be¢ &
- —x & 140-
&0 - i
~ 120

60 + _
B 100

40 + -
- !”-

20 " 4
B 6071

I 1 1 1 1 ! 1 1 1 1 1 1 1

—

|
O 0% 1- {1 f+ 2- 2 2% 3- 3 3+ 4- 4 4+ 5- KP

Beg , nT
120
- &0 —
100 -
———
60
— 30 ]
— :1_ E—
40 - = —————
. 60
= —
~20 .
401
1 1 | 1 i 1

0 200 300 400 S0 690 700 /45 T

—— - Beg ——

Fig. 33a—b. Parameters B,, and 6 of the model partial ring current plotted versus geomagnetic activity

indices. The first parameter defines the net current magnitude and the second one defines the angular

position of the system shown in the previous figure (Usmanov and Tsyganenko, 1984). (a) Dependence on
the K -index. (b) Dependence on the 4E-index.

3. Magnetospheric Structure as Inferred from Quantitative Models

In contrast with case studies of separate events, the empirical modeling based on large
bodies of data is capable of deriving a global structure of the magnetosphere. As already
noted, a weak point of this approach consists in mixing the data pertaining to different
geophysical situations within a single ‘noisy’ set; this imposes serious limitations on the
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amount of information which could be deduced from them. Nonetheless, some results
obtained in a series of recent papers reveal hopeful prospects in view of a continuous
accumulation of new data, development of more realistic models, and a rapid progress
of computer capabilities. A brief survey of those results is given below.

3.1. MODEL DISTRIBUTIONS OF THE MAGNETIC FIELD AND ELECTRIC CURRENT IN
DEPENDENCE ON THE DISTURBANCE LEVEL

Figures 34—37 show the noon-midnight magnetospheric magnetic field configurations
plotted for three intervals of the K, -index by using the newest version of the empirical
model of Tsyganenko (1989a, referred to henceforth a T89). The merged spacecraft
dataset used as the experimental base for the model contains 36682 field vector averages,
being as yet the largest body of data ever used in such studies. The dataset includes
(i) 12616 points used by Mead and Fairfield (1975) and corresponding to measurements
on board the IMP-D, F, G, and I spacecraft during 1966—-1972 in the distance range
4-17 R, (ii) 6248 points generated from data of HEOS-1 and -2 spacecraft taken in
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Fig. 34. Magnetic field configuration in the noon-midnight meridian plotted by using the model of
Tsyganenko (1989a) for very quiet conditions with K, = 0,07 . Field lines start from Earth at latitudes 2°
apart, beginning from 60°.
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Fig. 35. Same as Figure 34, except for K, =37,3,37.

the high-latitude magnetosphere at distances 6-35 R during 1969-1972 (Hedgecock
and Thomas, 1975), (iii) 11 150 points provided by six IMP spacecraft in the cislunar
tail, and (iv) 6675 points from IMP-H and -J data in the middle tail region
(R ~ 25-45 R,;) taken in 1973-1980. .

The total field from external sources is represented in this model by a sum of several
terms. The first group of terms correspond to the contribution from the tail current
system and the ring current. The intramagnetospheric part of this system forms a single
spread-out current sheet incorporating a non-uniform distribution of the current density,
spatial variation of the characteristic thickness in two dimensions, and the tilt-dependent
warping described in more detail in Subsection 2.3.1 (Figures 18-20).

The central current sheet is complemented by two additional ones spaced by
R, = 30 R, from the equatorial plane and simulating the effects of the closure currents.

The second group of terms represents the contribution from the rest part of the
magnetospheric sources, mainly from the magnetopause shielding current. These terms
are defined as formal expansions similar to those suggested earlier by Tsyganenko and
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Fig. 36. Same as Figure 34, except for K, > 5",

Usmanov (1982) and Tsyganenko (1987), (henceforth TU82 and T87, respectively)
B, = e¥*[a,zcosy + (a, + a;y* + a,z?) siny],
B, = e¥*[asyz cosy + (ag + a;y* + agz®)y siny], (70)
B, = e¥*[(ag + a0y + a;,2°) cos Y + (ay; + ay39° + ay42%)z siny],

satisfying proper conditions of symmetry in y, z, and y. The equation V' B = 0 yields
four additional constraint relations decreasing the number of independent parameters
to ten coefficients a,—a,, and one nonlinear parameter 4x. As a matter of fact (see
Subsection 2.3.2), the expansions (70) describe not only the Chapman-Ferraro field,
but also that from the field-aligned currents, though significantly averaged and smeared
out due to unsuitable form of the model functions.

In total the model contains 24 free parameters, whose values were least squares fitted
to six datasets corresponding to six intervals of the K -index. A procedure for search
of the model parameters is based on an iterative Newton—LeCam—Marquardt algorithm
which minimizes the r.m.s. difference between the dataset and the model and is capable
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Fig. 37. Same as Figure 33, except for y = 30°.

of evaluating errors in the determined parameter values. A brief description of this
technique is given in Appendix.

The most essential results evident in Figures 34—37 and noted also in earlier modeling
studies are as follows. The increase of the disturbance level is accompanied by a
decrease of the subsolar point distance, a ‘peeling off” the dayside magnetic field lines
with a decrease of the polar cusp latitudes, and a deepening of the magnetic field
depression in the near nightside region manifested in a larger stretch of the field lines
crossing the equatorial plane at R < 10-15 R. It should be noted that this model
provides the largest deformation of the nightside field lines, in comparison with all earlier
versions. This result is quite clear, since the main improvements pertain just to the near
nightside magnetotail region, as already discussed in Subsection 2.3.1. Spatial distribu-
tion of the net external field in the model can be visualized in Figure 38 showing contours
of equal B, values in the equatorial plane for K, = 0,0, K,=37,3,3%,and K, 2 5".
The main tendency is a significant deepening of the near-Earth depression with growing
K, the minima of B, being located near xgsy & — 2.5 Ry in all three cases. It should
be understood, of course, that actual positions of B, minima can be somewhat different
from those obtained in the model. A relatively low density of the experimental data
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Fig. 38. Three families of the equal intensity contours of the external model field in the GSM equatorial
plane for untilted geodipole corresponding to three levels of disturbance (Tsyganenko, 1989a).

points in the near equatorial magnetosphere and a complete absence of dataat R < 4 R,
intrinsic in the datasets does not allow to resolve finer details. Nevertheless, the obtained
minimal values of B, are in a satisfactory agreement with recent measurements made
at closer distance. Figure 39 shows the plots of radial distribution of the ‘scalar anomaly’

= |Bmeasureal = |B;| in the near-equatorial nightside magnetosphere derived from
the AMPTE/CCE measurements (Fairfield er al., 1987). As can be seen from the figure,
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Fig. 39. Average values of AB = |B,casureal — |B; |, where B . ...q 18 the total observed field and B, is

the internal field, as a function of radial distance in the midnight nearequatorial region for different K,

intervals. The solid and broken lines correspond to the AMPTE/CCE measurements and the results of
Sugiura and Poros (1973), respectively (Fairfield et al., 1987).

the depression increases towards the Earth reaching ~ —80nT at R S3 R, for
K, > 37", which may be compared with B, = —87nT at R = 4 R, obtained from the
model for K, =47,4,4".

Another tendency also clearly seen both in Figure 38 and in the tail field line
configurations in Figures 34-37 is that the decrease in B, occurs predominantly within
the near tail domain with xggn 2 — 12 Rg. At larger distances a slight increase of B,
with K, is evident, manifested in an earthward shift of the B, = 0 contour. This feature
had been also noted in the T87 model as well as in a direct inspection of the averages
calculated from the experimental B, values inside the plasma sheet. A similar effect is
clearly seen in the 4B profiles derived from AMPTE data (Figure 39). Hence, there are
good reasons to conclude that this is scarcely a modeling artefact but rather a
manifestation of a real average increase of the tail magnetic flux connection through the
distant neutral sheet during disturbed periods.

It can also be seen from Figure 38 that minimal equatorial values of B, at a given tail
cross section are attained near the midnight meridian, so that at
- 60 S xgsm S — 20 R the total model B, increases towards tail flanks by 2—-5 nT, in
agreement with the statistical results by Fairfield (1986). It is worth emphasizing here
that a care should be taken in what concerns the B, values given by empirical models
in the low-latitude tail region with xggy $ — 10 Rg. The point is that small values of
the net B, in the near-plasma sheet are given by the difference of relatively large
quantities corresponding to the oppositely directed contributions from the geodipole and
the external currents, and hence the B, distribution is extremely sensitive to the details
of the electric current pattern in the tail. In the present case it is unlikely to obtain a
detailed resolution of the current structure, since the main part of the tail field measure-
ments correspond to the lobe region and the data are also relatively sparse in the range
-20 < xgsm = — 10 R (see Figure 1 of Tsyganenko, 1987). For these reasons the
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average observed B, values in the tail may differ from those given by the model by
~1-3nT. It should also be noted that individual values of B, in the original datasets
show a strong scatter, partly related to the above mentioned imperfection of the
K ,-index.

Of significant interest is to make an independent test of the model using the data from
geosynchronous spacecraft measurements which were not included in the modeling
dataset. Figure 40 shows plots of the B, component of the external field near the

_30_
B ,nT

Z
_40_

-50-

-60 -

- 720 4

Fig. 40. Plots of the B, component of the external magnetic field near the midnight point of the

geosynchronous orbit (Xggm & — 6.6 Re) versus K. Open circles and triangles correspond to the models

T89 and T87, respectively. Solid circles, dashed line, and dashed-dotted line represent the average values

obtained from the ATS-1, AMPTE-CCE, and OGO-3,-5 spacecraft data, respectively (Tsyganenko,
1989a).

midnight point of the synchronous orbit (R = 6.6 R;) versus K -index. The open circles
represent the B, values computed by using the present model and the triangles
correspond to the ‘truncated’ version of the T87 model. The solid circles give the average
B_values measured on board the ATS-1 satellite in 1967 (a total of 232 hourly averages),
the vertical bars showing the r.m.s. deviation for each point. As can be visualized in the
plots, the present model yields a significantly more depressed field than the T87 one,
but the ATS-1results are still lower by ~ 10 nT. Itis yet unclear, whether this discrepancy
is due to an imperfection of the model or to a bias in the ATS data, but it should be
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born in mind that the ATS H-component values were initially corrected by
AH = —20nT, with a purpose to eliminate a positive shift mentioned by principal
investigators (Coleman and McPherron, 1976). The adopted value of AH was evaluated
on the basis of experimental data and model calculations of the location of the isotropic
precipitation boundary due to a non-adiabatic scattering of particles in the near
magnetotail (Sergeev et al., 1983; see Section 4 below) and may well be in error of
~10nT.

Dashed and dashed-dotted lines in Figure 40 represent the results of the
AMPTE/CCE (Fairfield et al., 1987) and OGO-3 and -5 (Sugiura and Poros, 1973)
measurements at xggnm & — 6.6 Ry, respectively. For small K, values the present model
shows a good agreement with the data, while for K, > 3* it yields a somewhat more
depressed B, than that observed by the spacecraft.

TABLE 1

Some characteristics and parameters of the T89 model for six intervals of the K -index. The notation is as

follows: N is the number of data points in the set; B is the r.m.s. external field; A is the r.m.s. residual field

given by (A4); ¢,,c,, and ¢ are the coefficients defining the contribution from the intramagnetospheric

current sheet and corresponding to three terms derived from potentials (50)-(52); ag is the scale radius

of the ring current and y is a quantity defining its noon—-midnight asymmetry; D is the nightside current
sheet thickness (Tsyganenko, 1989a)

K,=0,0* K,=1",L,1* K,=27,2,2* K,=37,3,3" K,=4",4,4" K,25"

N 3975 9977 9848 7309 3723 1850

B 15.49 19.06 21.71 25.48 28.58 32.88
A 6.51 8.52 9.75 1135 12.41 15.12
¢ -98.72 ~35.64 ~77.45 -70.12 - 1625 - 1284
¢, —10014 - 12800 -14588 -16125 - 15806 - 16184

cs  —10237 - 13543 - 16299 -19630 ~27534 - 36435
e 8.16 8.12 6.28 6.27 6.20 5.83
Yre -0.388 093 4.18 5.39 5.07 6.47
D 2.08 1.66 1.54 0.94 0.77 033

One of the most surprising results concerns the characteristic half-thickness of the
tail current sheet. In the earlier models TU82 and T87 a quasi-two-dimensional
representation of the current sheet was used (see formula (45) in Subsection 2.3.1) and
the corresponding parameter D did not show any ordered changes with the increase of
the K -index, being equal to about ~ 2-3 R;. However, in the latest T89 version using
the improved tail-current model an unexpected monotonic decrease of the current
sheet half-thickness was revealed. As can be seen from Table I, the corresponding
parameter D falls from D~ 2.1at K, = 0,0" to D ~ 0.3 at K, 2 5. Since the density
of the experimental points is relatively small in the vicinity of the current sheet and the
latter exhibits a disordered flapping motion as well as substorm-related contractions and
expansions, it seems very unlikely that the monotonic decrease of D be revealed from
a highly ordered pattern of B, reversals hidden in the ‘noisy’ datasets. Much more likely,
the main contribution to this effect is made by a considerable decrease of the B_-com-
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Fig.41.  Comparison of the inclination angles measured by the GOES-2 spacecraft (Lin and Barfield, 1984)

with those predicted by three models for different local times. Three panels, from bottom to top, correspond

to progressively larger K, values. The upper histograms in each panel show the average local time distribu-

tions of the inclination angle measured by GOES-2. Dotted, broken, and smooth solid lines correspond to
Mead and Fairfleld (1975), T87, and T89 models, respectively (Tsyganenko, 1989a).

ponent in the inner nightside magnetosphere with growing K, since lesser values of D
provide a more depressed B, in the model magnetic field.

It could be concluded from the last statement that the obtained values of D should
be considered with care, since they seem to be model-dependent and, hence, may
overestimate the effect of the current sheet thinning with growing disturbance level. The
most striking thing, however, is that the given values may be, on the contrary, somewhat
larger than the real ones. This conclusion is substantiated by Figure 41, which displays
the annual mean values of the magnetic field inclination angle measured on board the
geosynchronous spacecraft GOES-2 plotted versus the local time for three intervals of
the K,,-index. The upper histograms in all three panels show the experimental results
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(Lin and Barfield, 1984). Smooth solid lines give the T89 model results, broken lines
correspond to the earlier model version T87, and the dotted lines in the upper and lower
panels yield the dependence obtained by using the model of Mead and Fairfield (1975).
As can be seen in the Figure, the best results are provided by the T89 model. However,
there still remain some discrepancies in that all the model plots lie below the experimental
histograms. Since the GOES-2 spacecraft location is northward from the dipole equa-
torial plane, larger inclination angles at the nightside correspond to a more tail-like field
structures. Therefore, the discrepancies observed in Figure 41 indicate that in reality the
ratio | B, /B, | for the total field components is even larger than that given by the models.
In other words, actual average values of the current sheet thickness can be even smaller
than it follows from Table I, or else we have to admit even larger depression of B..

Note that these conclusions refer to the averaged field distributions. In fact, they imply
that appearance of the tail-like configurations at R ~ 6-7 R, in the nightside sector
becomes much more probable during disturbed periods. This question has been
addressed in detail by Kaufmann (1987) in respect to the problem of physical
mechanisms responsible for the re-structuring of the near-tail magnetic configuration
observed during a substorm growth phase. Based on a wire-model simulation, he
showed that an extremely intense thin current sheet develops at R ~ 7-8 R; by the end
of the growth phase. Tsyganenko (1989b) studied the role of the adiabatic processes in
formation of anisotropic plasma distributions necessary for the existence of quasi-static
thin current sheets in this region. B

We have already raised the question on the account of the dawn-dusk asymmetries
in models. Figure 41 provides one more evidence in this connection, which is clearly
seen in the upper panel and confirms the earlier observations of a significantly larger
inflation of the magnetosphere at the dusk side (Langel and Sweeney, 1971).

The next interesting feature of the electric current distribution revealed from the model
calculations is a dramatic increase of the noon-midnight asymmetry of the ring current
with growing disturbance level. Table I contains the values of the parameter yg defining
the difference between the dayside and the nightside estimates of the characteristicds
half-thickness of the ring current. This parameter is small and negative for K, = 0,07,
but grows rapidly with K, attaining ygc- = 6.5 for K,>5". Thus, the effect of
concentrating into a thin and intense sheet at the nightside is accompanied by a
significant spreading and weakening of the ring current in the daytime sector. This is
clearly visible in Figure 19 and agrees with the results by Sugiura (1972) and Roelof
(1987) (see Subsection 2.3.3).

A characteristic common feature observed both in T87 and T89 models is a monotonic
increase of the magnitude of the current in all the extraterrestrial systems with the
K,-index. As is apparent from Table I, the most pronounced changes occur in the near
nightside region; this can be seen from that of the three coefficients c,, ¢,, and cs, the
last one defining the ring current magnitude shows the most dramatic increase yielding
a sharp peak of the current density at xggp ~ — (6-10) R.

A degree of the magnetic field line stretching at the nightside can be clearly presented
by plotting the Earth intersection latitudes @ against the corresponding equatorial




150 NIKOLAI A. TSYGANENKO

i | ___.—'-'DIPIOLE ' '
70° ’

I i, Kp=0,0"

===~ Kp<2 }AMPTE/CCE

- ///KP >3* _ §

L Kp=3,3,3"
65°

i KPz 5
60°—
55°-

Il i 1 1 Il 1 ! 1 1 t 1 Il 1

3 4 5 6 7 8 9 10 11 12 13 14 Re

Fig. 42. The Earth intersection latitude ®of a field line plotted against its equatorial crossing point distance

R in the midnight medidian plane, for zero dipole tilt. The plots are given for three variants of the T89 model

(solid lines). The broken lines display the result of Fairfield er al. (1987) for two K, intervals. The dotted
line corresponds to the purely dipolar field.

crossing distance R. Figure 42 shows three such curves computed by using the T89
model (solid lines) for three K, levels together with two plots obtained by means of
equating the magnetic fluxes calculated from the AMPTE/CCE data (Fairfield et al.,
1987). As can be seen from the plots, there is a good agreement between the results
obtained by the different methods and from different data, provided the disturbance
level is not very high. The model curve for K, > 5~ lies significantly lower, indicating
a very strong stretching (see Figure 36). It should be reminded once again that this is
an average picture. In individual events of intense substorms an instantaneous
deformation of the field structure before the break-up onset can be much stronger
(Kaufmann, 1987).

The model magnetic field configuration for different longitudinal sectors is illustrated
in Figures 43(a) and 43(b) showing the results of mapping the grid of solar magnetic
coordinates from the high-latitude part of the Earth surface into the equatorial plane for
two extreme ranges of K, by using the T89 model. The next two plots (Figures 44(a)
and 44(b)) show the results of a similar mapping into the cross-section of the magnetotail
located at xggpy = — 20 Ry Figures 34-37 and 43-44 provide a sufficiently detailed
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Fig. 43a-b. T89 model magnetic field lines starting from the Earth’s surface at circles of constant

geomagnetic latitude (beginning from 64°, two degrees apart) at different hours of local time, projected onto

the X ~ ¥ plane in GSM coordinates. Heavy solid lines in the equatorial plane correspond to constant

latitudes of the field line footpoints. (a) The most quiet variant with K, = 0,07 ; (b) the most disturbed
variant with K, 2 5°.

description of the model field structure and can be used for mapping various magneto-

spheric features and boundaries to ionospheric level or vice versa (Stern and Alekseev,
1988).
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Fig. 44a-b. Geomagnetic latitude—local time grid (two degrees by one hour MLT) mapped from the

Earth’s surface onto the magnetotail cross-section plane Xggv = — 20 R by using the T89 model with
Y=0:(a)K,=0,0"; (b)K,=5".
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3.2. MODELING THE INFLUENCE OF THE INTERPLANETARY MEDIUM STATE

Having supplied the modeling database by a complementary information on the inter-
planetary medium parameters it is possible to study the average effects of the solar wind
state in the structure of the model magnetospheric field. From a theoretical point of view,
a basic difficulty consists in that the physical mechanisms of the magnetospheric
reaction to the external influence are very complex. On one hand, there exist significant
inertia effects manifested in a temporal delay in the response of the magnetosphere to
changes in the solar wind. Moreover, this response is believed to have an integral
character related to the processes of a gradual storing and an explosive dissipation of
energy, so that the current state of the whole system largely depends on its prehistory.
On the other hand, there exist a considerable evidence that the directly-driven mode is
also very important. Also there are effects that can be interpreted as an indication of
a differential mode of response, in which the rate of change of an external factor plays
a dominant role (Rostoker et al., 1988). In this connection, it is no wonder that sorting
out the data in the Kp-index intervals, in spite of all its drawbacks, can lead to a
significantly better ordering of results. Indeed, the ground-based indices reflect to a
certain degree the actual state of the magnetosphere, while the simultaneously measured
solar wind parameters in many cases can determine no more than a general tendency
of its change.

From a practical point of view, studying the effects of the solar wind in the framework
of the statistical modeling is largely hindered at present by comparatively restricted
amounts of available magnetospheric data, as well as by numerous gaps in the inter-
planetary medium databases. Thus, only &~ 55%, and ~46%, of the data points used
in generating the T87 and the T89 model coefficients are supplied by the corresponding
information on the IMF components and the solar wind velocity, respectively. For these
reasons, only the most fundamental effects can be resolved as yet in the models based
on the existing datasets. Figure 45 shows two magnetospheric configurations computed
for two T87 model variants corresponding to the northward (a) and southward (b)
orientations of the IMF. In both cases additional restrictions |BI™MF| <3 nT and
| BIMF | > 4 nT were imposed, in order to rule out B,-related effects and to stress the
difference between the two cases considered. Even a cursory inspection of the two plots
reveals a conspicuous re-distribution of the magnetic flux between the dayside sector
and tail lobes. In the case with BIMF > 4 nT (a) the last closed line at the dayside has
the footpoint latitude @, &~ 79.5°, while in the second case (b) with BI™MF < — 4 nT the
‘peeling-off” the dayside magnetic flux results in an equatorward displacement of the
polar cusps to ¢, & 73.5°. As noted in Subsection 2.3.2, the most likely source of the
field re-structuring is Birkeland current system. Additional contribution to this effect can
be provided by the ring current intensification during strong storms. A quantitative study
of this question was done by Stern (1985), who showed that the corresponding change
in ¢, does not exceed several tenths of degree, provided the magnetic moment My of
the model ring current is assumed to be constant. Larger equatorward shift of the cusps
can be obtained by assuming constancy of the ring current radius and varying its
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Fig. 45a—b. Magnetic field line configurations of the T87 model obtained from two datasets corresponding
to two opposite polarities of the IMF north-south components: (a) B > 4 nT, (b) BM™MF < —40T. In
both cases | BIMF| < 3 nT (Tsyganenko, 1987a).
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intensity. According to Stern (1985), this yields a 3-4° decrease in ¢, for an order-of-
magnitude increase in B, (see Equations (68)-(69)) from —20nT to - 200 nT. How-
ever, the latter value yields Mz~ ~ 2 M, which is quite an unrealistic value. Here again,
the obtained cusp displacements are significantly lower than the observed ones. Accord-
ing to Meng (1982), a typical equatorward jump of the cusps can be as large as ten
degrees of latitude at ionospheric heights, while in some individual events record
displacements up to geomagnetic latitudes of ~ 62° were also detected. The next strong
argument is that the development of an intense ring current is observed, as a rule,
significantly later than the equatorward displacement of the cusps, the latter being well
correlated with the 4E-index and BIMF, rather than with Dsz. In this relation, Stern
(1985) considered the effect of a partial ‘transparency’ of the magnetopause with respect
to the incident magnetic flux by using a simple modification of the paraboloid model
in the spirit of Voigt’s (1981) approach described in Subsection 2.2.2.3. According to
this study, a 25%, transparency yields a 4-5° decrease in ¢,.

Tsyganenko (1988) quantitatively studied the contribution of the field-aligned currents
to the observed effects of the polar cusp displacement using the explicit model described
in Subsection 2.3.2. That representation was incorporated in the T87 model and the
field line tracing was done assuming the net current magnitudes in the systems I and
Il sheetstobeJ, = 2 x 10 A andJ, = 10° A, respectively. The ‘switching on’ Birkeland
current circuits resulted in a shift of the model cusps from ¢, & 78.5° to ~76.0°. A
four-fold increase of the total current in both systems (which is quite realistic for strongly
disturbed conditions, see Bythrow er al., 1983) yielded ¢, ~ 70°. Bearing in mind that
in reality the peaks of the system I current density are localized closer to the midday
meridian than they are in the model, the real magnitude of this effect is sure to be
considerably larger. Therefore, the dramatic equatorward shifts of the polar cusps
reported by Meng (1982) may well be attributed to the effects of Birkeland current
intensification.

Turning now to effects of the azimuthal IMF component, it should be noted once
again that, due to a limited size of the datasets and noise effects, only principal
phenomena are discernible. Tsyganenko and Usmanov (1984) studied B}™"-related
effects in the dayside magnetospheric field modeled by cubic polynomial expansions
including terms asymmetric with respect to the Y54, coordinate. Two sets were created
from the original IMP-HEOS data pool by sorting out the points lying in the daytime
sector of solar magnemtic longitudes with | Ag,,| < 60° and by dividing them into two
parts corresponding to B)MF > 0 and B;M" < 0. Each of the two final datasets gave a
set of model coefficients which were then used for tracing the field lines and determina-
tion of the dayside neutral point positions. A background tracing to the ionospheric level
yielded values of the longitudinal shift A4, of the model polar cusp footpoints, with the
following results: 44, = 7.38° for B{MF >0 and 44, = -4.32 for B, <0 (the cor-
responding latitudes ¢, being equal to 78.54° and 78.74°, respectively). The obtained
signs of A4, agree with those expected from a simple qualitative analysis of the recon-
nection geometry (Cowley, 1973). Similar results were also reported in a recent work
by Crooker et al. (1987).
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As concerns the nightside region, a local modeling of the average tail configurations
was carried out by Tsyganenko (1987b) using the same spacecraft database restricted
in this case to points lying in the distance range - 70 Rz < Xgsp S — 10 R, and
containing 20778 B vector averages. Since only the tail region was considered, the
magnetic field was represented in a simple separable divergence-free form

B, = a(x)B(»)y'(z,),
B, = Po'(x)y'(z,), (71)
c= —ad' () [P+ BW]y(z),

where o, B, and y are functions of the solar-magnetospheric coordinates having
necessary behaviour and symmetry properties. Thus, the function y(z,) was adopted in
the form

o]
I

Wz) = @2+ D)2~ D,

where D is a characteristic half-thickness scale of the current sheet and
z, =z — Ry siny is the z-coordinate measured from the neutral sheet plane which
moves about the GSM equatorial plane in response to the geodipole tilting. The
functions a(x) and B(y) were chosen as

B(»)=1-by*> and a(x)=a,+a;x ' +ax~2.

-10 -20 -30 -40 -50
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Putting aside all other details, let us turn to results. Figure 46(a) shows distributions
of the net B,.-component (including the dipole field) along the line y = 0, z = 10 R, for
Y = 0. Curves 1-3 correspond to three intervals of the K -index and show a monotonic
increase of the field magnitude with K, throughout the whole modeling region. Curves
4 and 5 correspond to small (p,<80x 10" '°dynescm~2) and large
(ps= 250 x 10~ '* dynes cm ™ ?) ram pressure of the solar wind computed using King’s
(1977) data on the bulk velocity and density of protons as p, = nm,v* (for
v=400kms 'andn=6cm™3 p,= 160 x 10~ !° dynes cm ~ 2). To reduce a possible
influence of the reconnection effects, an additional constraint B!M¥ > 0 was imposed
in that case. As can be seen, the curve 5 lies by 5-9 nT higher than the curve 4, so that

10 T T T T T T T T T T

XGSM > RE

< A Fig 46a-b. Distribution of two components of the net magnetic field (including geodipole) along the tail

as deduced from a local modeling based on the IMP-HEOS dataset. Solid lines 1, 2, and 3 correspond to

K,=0,0", K,=37,3,3", and K,25", respectively. Broken lines 4 and 5 are for small

(P, <80 x 10~ '° dynes cm ~2) and large (P, > 250 x 10~ '* dynes cm ~2) solar wind ram pressures, re-

spectively. Dotted lines are for two polarities of the azimuthal component of the interplanetary electric field

EMF =y, BIMFc, so that the lines 6 and 7 correspond to EJMF < —2mVm~'and EMMF > +2mVm~',

respectively. (a) Bygsnm along the line Z gy = 10 Rg and Yggm = 0. (b) Brgsm along the Xqp, axis
(Tsyganenko, 1987b).
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at x = —10 R and at x = - 70 R the model tail lobe field changes by factors of 1.2
and 1.5, respectively. Taking into account that the corresponding average values of p,
over the two datasets are 58 x 10~ ' and 406 x 10~ '° dynes cm =2, i.e., differ by a
factor of 7, the obtained response of the tail field seems to be somewhat underestimated.
In this relation it is worth mentioning a result by Caan et al. (1973) based also on a
statistical analysis of the satellite data and having related the tail lobe magnetic pressure
with p, by means of a regression formula

B*/87 — B%,/87 = (- 830 + 280) + (0.16 + 0.03)p,,

where both pressures are given in units eVcm™3 and the reference field B,, is
represented by the model of Olson and Pfitzer (1974). At x = — 15R £ this relation
yields a nearly twofold increase of the lobe magnetic field for the above given values of
Py What is the reason for the disagreement remains yet unclear, so that a more complete
study is necessary.

Figure 46(b) shows in the similar format the distributions of the transversal component
of the net model field along the Xy axis. Almost in the whole range of distances the
B.-component profiles raise upward with growing K -index. This is consistent with the
above discussed results of the ‘global’ modeling, in which a decrease of B, with K, was
found only at rather close distances with Xqy, 2 — 10-15 R..

Using that model, Tsyganenko (1987b) was able to resolve some effects related to the
influence of the azimuthal component of the IMF upon the tail structure. Cowley (1981)
pointed out a possibility of a twisting of the tail plasma sheet due to asymmetric
reconnection geometry for BiMF s 0 resulting in the violation of the stress balance. The
expected rotation of the sheet must be clockwise (as viewed from the tail to the Earth)
for BSMF > 0 and counterclockwise for BIMY < 0 (Figure 47(a)). This hypothesis was
verified on the basis of the same dataset for two ranges of Xy, —70 <X < - 35 R,
and - 35 <X < -25 R;. In each region the tail field was modeled by functions similar
to (71). However, in this case the coordinates y and z as well as the components B, and
B, were transformed assuming a rotation of the sheet plane by an unknown angle A¢p
about the X5y, axis combined with a displacement of the sheet by Ay in the dawndusk
direction. The quantities A and Ay were treated as additional nonlinear free parameters
to be determined from the spacecraft datasets. Two subsets were created corresponding
to B;MF < —4nT and B{MF > 4 nT, for each of the two intervals of Xy, The results
are displayed in Figure 47(b), where the broken lines mark the position of the current
sheet central plane in projection onto the tail cross-section. It is clearly seen that the
rotation of the current sheet of expected sign is indeed present in the modeling results.
The observed twisting is not strong, so that the rotation angles with respect to the GSM
equatorial plane do not exceed ~ 12°; nevertheless, they are resolved with a relatively
small errors. Also the effect clearly increases with distance, in agreement with the
expected qualitative picture sketched in Figure 47(a) and confirmed by observations by
Sibeck et al. (1985).

One more IMF-related effect is a partial penetration of BMF component inside the
magnetosphere (e.g., Nagai, 1987, and references therein). Lui (1983) and Sergeev
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Fig. 47. Effect of the tail plasma sheet twisting indices by the IMF B -component: (a) a sketch from Cowley
(1981), (b) rotation of the central plane of the tail current sheet obtained in a model study using the
IMP-HEOS spacecraft datasets, for two intervals of the tailward distance (Tsyganenko, 1987b).
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(1987) based on IMP-6 and ISEE-1 data, respectively, made statistical analyses of this
phenomenon for the middle region of the magnetotail within R < 30 R. It was shown
that about ~60%, of the BIM" is observed inside the plasma sheet, while in the lobes
the penetration efficiency is much lower. Tsyganenko (1987b) made a modeling study
of this effect using the IMP-HEOS database. The model expression for B, in (71) was
complemented by the additional term

4B, =B, + B,x" ' + (By + Byx 1) [(z2 + L?)"? - L] (72)

containing four coefficients B,—B, and one nonlinear parameter L defining the scale
length of the penetrating field distribution in the z-direction. Computations were done
for two data subsets corresponding to BIMF = 4 nT and B,™" < — 4 nT. Table II gives
the values of 4B, induced by the IMF inside the tailat X = - 20R and atX = —40 R,
in the centre of the plasma sheet (z, = 0) and in the lobe region (z, = 10 R.). In all cases
considered the effect of penetration is clearly seen. Note also that in three cases of the
four the values of AB,, are significantly higher in the plasma sheet than in the lobe region,
in line with the results of Lui (1983) and Sergeev (1987).

TABLE II

Values of the B,-component pervading in the magnetotail from the solar wind, as deduced
from the local modeling study based on spacecraft data. X- and Z-coordinates correspond to
the GSM system (Tsyganenko, 1987b)

BIMF X=-20 X=-40

Z=0 zZ=10 Z=0 Z=10
< -4nT ~20 - Ind -13 -03
> +4nT 20 0.4 0.3 0.7

Hilmer and Voigt (1987) and Voigt and Hilmer (1987) developed a magnetohydrostatic
model of the plasma sheet, in which the observed enhancement of B, in the central
plasma sheet is an intrinsic feature of a two-dimensional self-consistent configuration
satisfying the equation of the stress balance

1
- jxB=Vp (73)
c
together with Maxwell equations
V x B = (4n/c)j, V-B=0.
By introducing the flux function A(x, z), the field components read
B .= —0A4/oz, B, =1(4), B, =04/0x .

Here B, is chosen as an arbitrary function of 4, which ensures the isotropic pressure
ptobeindependent of y. In such a case (73) takes the form of nonlinear Grad—Shafranov
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equation

d
A4 + — [4np + 31(4)*] =0,
d4 :
which under assumptions
1
p(A) = P K?4* and I(4)* = «*A* + B}, (74)
T

and with properly defined boundary conditions has simple solutions providing a
physically reasonable quantitative representation of the observed structure of the plasma
sheet. In particular, for non-zero values of the constant parameters o and B, the
self-consistent B, varies with z in such a manner that | B, | attains its maximal value in
the centre of the sheet, while in the lobes it approaches its background value | B, |. The
parameter « defines the proportion, in which the background B, is enhanced within the
plasma sheet and thus determines the intensity of the field-aligned currents flowing
parallel to the tail axis and changing their direction with the sign of z. From a formal
point of view, the field-aligned currents arise in this model as an implication of the
pressure balance requirement. However, as stressed by Hilmer and Voigt (1987), this
approach per se provides no explanation of how these currents are related to the IMF
and what is the physical reason for the observed pervading of BIMF in the tail. Some
hypothetical mechanisms relevant to the problem as well as general limitations of the
magnetohydrostatic models are also discussed by Hilmer and Voigt (1987).

In this connection a work by Voigt and Wolf (1985) should also be noted, in which
they addressed an interesting aspect of the problem of polar cusp position. In their
simple two-dimensional model magnetosphere (Figure 48} a dipolar field is confined
within a rectangular semi-infinite cavity and is in the hydrostatic equilibrium with
isotropic plasma distributed in the A-space in accordance with the same quadratic law
(74) leading to the linear Grad—Shafranov equation. In this case the B -component is
absent and the right-hand side of the equation contains a singular term defining the
two-dimensional dipole source

i .
44 + K*4 = - M, o 3(x)o(y) . (75)

The solution of (75) satisfying Chapman-Ferraro boundary condition can be obtained
as the expansion in eigenfunctions

A(x,z) = —(Mp/2) i cos(a,,z) [sign(x)F,(x) - F,(x — 2b)],

n=1

where 2, = (n;2) (2n — 1) and
F,(x) =exp(-|4,X]),  F,(x)=cos(4,X),
for K?<o? and K2>o?

with 2, = (|2 - K2|)!/2.
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Fig. 48. Two-dimensional model configurations of the magnetic field corresponding to equilibrium solu-

tions of linear Grad—Shafranov equation (75) for three values of the parameter K defining the pressure of

the magnetospheric plasma, from vacuum case of K = 0 in the top to the critical configuration with K = o,

with the largest stretching of the tail field lines and the lowest dayside cusp latitude in the bottom (Voigt
and Wolf, 1985).
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For K = 0 this yields the vacuum field shown in the top of Figure 48, while the case
K > 0 corresponds to non-zero currents flowing inside the cavity and inflating the
nightside magnetic field. The assumed form (74) of the pressure function implies that
the current j, = K*4 flows also at the dayside. However, owing to asymmetry in the
boundary conditions, the net dayside current is much smaller than that at the nightside,
provided K < «,. This results in the increase of the tail lobe magnetic flux and
equatorward shift of the polar cusps. For K = «, the configuration reaches the state with
the maximal tail stretching and minimal polar cusp latitude, much resembling the
pre-break-up configuration of the real magnetosphere. A further increase of the plasma
pressure with K > a, leads to a tearing of the tail current, which breaks into a filamentary
structure corresponding to the oscillatory solutions of (75). The total tail current drops
and the cusps retreat poleward.

The work by Voigt and Wolf (1985) sheds some light on the result by Wu (1983), who
carried out a resistive MHD simulation of the magnetosphere formation and obtained
an unexpected sweeping of the dayside neutral points towards the tail magnetopause
region. Based on the above outlined theory, Voigt and Wolf (1985) suggested that Wu’s
phenomenon is but an artefact of his code implying much too high numerical diffusion
and hence too large plasma pressure on the cusp field lines.

3.3. USING THE MODELS IN CALCULATIONS OF THE CONJUGATE POINTS

Calculation of the conjugate point positions is one of traditional applications of
magnetospheric models. For low-latitude points of the Earth’s surface the calculations
can be done without taking into account the external current systems, since in that case
the field lines do not leave the ‘sphere of influence’ of the internal sources. In practice
one can use the conjugate point maps (e.g., Barish and Wiley, 1970) or the tables of the
corrected geomagnetic coordinates (Gustafsson, 1970; Tsyganenko, 1979; Allen et al.,
1982).

The field lines with the footpoint geomagnetic latitudes larger than ~ 60° are
significantly influenced by external sources. Therefore, due to asymmetric position of
the sources with respect to the geodipole during periods with sufficiently large tilt angles,
a significant variation of the conjugate point location can occur. The amplitude of the
shift increases with latitude, which can be seen from the plots in Figure 49 showing the
latitudinal (a) and longitudinal (b) displacement of the southern conjugate point caused
by the geodipole tilt ¥ = 30° (solid lines) and ¢ = —30° (broken lines), versus MLT
of the northern conjugate point. The families of the plots correspond to several values
of the geomagnetic latitude of the northern point and are obtained by using the most
quiet (K, = 0,07 ) variant of the T89 model. The next pair of plots (Figure 50) gives in
the same format the results obtained for the most disturbed conditions with K, > 57.
The curves terminating apart of the noon or midnight sides of the panels correspond
to high-latitude field lines. In the noon sector these are the tail lobe field lines lying
polarward of the cusp, whereas near midgnight these are the lines which close across
the current sheet beyond distances R = 25 Rp; the latter lines may be termed as
‘quasi-unclosed’ ones.
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The plots displayed in Figures 49 and 50 exhibit a qualitative resemblance with those
obtained in earlier works (e.g., Tsyganenko, 1976). Their most essential features are
summarized as follows. (i) For i > 0 the latitudinal shift is positive at the nightside and
negative at the dayside, i.e., southern conjugate points shift poleward during the night -
MLT hours and equatorward during the daytime. For y < 0 the sign of this effect is the
reverse, which can be seen from that the solid and broken curves are approximately
symmetric with respect to horizontal axis. (i) The absolute values of the latitudinal shifts
reach their maxima at noon and midnight. However, the nightside shifts do not exceed
~1°, while at the dayside they are significantly larger, especially for the lines adjacent
to polar cusps. (iii)) The longitudinal shifts, as implied by symmetry, are zero at the
midday-midnight meridian and reach the maximum during pre-dawn and post-dusk
hours, where they can be as high as 44 ~ 10° for the auroral zone field lines. (iv) In going
from the most quiet to the most disturbed conditions, the shifts A¢ and 44 corresponding
to the same pair of conjugate points increase by a factor of 2 to 3.

The shifts of conjugate points for intermediate values of the tilt angle can also be
evaluated from the given plots with a good accuracy, taking into account that the
quantities A and A2 depend almost linearly on . Note that the internal field in these
calculations was considered to be purely dipolar and hence, in accordance with the
material of Section 2.1, the variables ¢ and A in Figures 49 and 50 should be treated
in practical applications as the corrected solar magnetic coordinates. As already noted,
this can result in an error of the order of 0.1°-0.3°. If a better accuracy is needed or
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a detailed study of the diurnal and seasonal motion of conjugate points is to be done
for a concrete ground-based station, then it can be more convenient to carry out a direct
tracing of the field lines by using an appropriate software (e.g., Tsyganenko et al., 1987).
An example of such a computation is shown in Figure 51, where two contours represent
diurnal traces of the point conjugate to the Antarctic observatory Syowa Base
(0gEo = —69.00, Ageo = 39.58) for the vernal equinox (solid circles) and the summer
solstice (open circles). The curves are obtained using the moderately disturbed
(K, =3",3,3") variant of the T89 model. Such calculations were done earlier by
Barish and Roederer (1969) and Kosik (1978). Their results are in a qualitative agree-
ment with those shown in Figure 51; quantitative discrepancies are due mainly to
limitations inherent to the then available models used by those authors. Ono (1987) used
in his study the TU82 model and obtained loop-like traces, which are very close to the
above displayed ones.
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Fig. 49a—b. Families of plots yielding the values of the latitudinal and longtudinal shifts of conjugate points

in southern hemisphere for the tilted geodipole (y = + 30°) with respect to their positions in the symmetrical

case (Y = 0), versus MLT. The solid and broken lines are for ¢ = 30° and y = —30°, respectively; the

curves are labeled by corresponding values of the northern footpoint geomagnetic latitude. The plots are

computed by using the T89 external field model for K, = 0,0 7. (a) Latitudinal shifts 4¢; (b) longitudinal
shifts 44
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Again, it should be realized that the curves in Figures 49-51 provide but averaged
shifts of the conjugate points. Their real positions, together with the whole magneto-
spheric configuration, depend on the instantaneous state of external current systems
which is extremely variable even under quiet conditions.

3.4. EFFECTS OF THE GEODIPOLE TILT IN LOCATION OF POLAR CUSPS AS
DEDUCED FROM MODELS AND OBSERVATIONS

We have seen from Figures 49(a) and 50(a) that in approaching the noon meridian and
in going to higher latitudes the latitudinal shift of conjugate point increases, reaching
1-2 deg by ¢ ~ 70-72°. Tracing the lines from footpoints located at still higher latitudes
makes it possible to investigate the dependence of the latitude ¢, of the last closed
dayside field line on the K -index and the dipole tilt angle. Figure 52 shows the plots
of ¢ versus tilt angle y for six variants of the T89 model. Each plot is based on only
three values of ¢, corresponding to ¥ = + 30° and ¢ = 0°, since in the test computa-
tions the dependence was shown to be rather smooth. As can be seen from the figure,
the boundary latitude ¢, decreases almost monotonically with K, for all tilt angles, so
that the difference between the extremal variants is about 5—-6°. The latitudes ¢, depend
almost linearly on i and increase by ~ 4° for i ranging from —30° to +30°. A similar
dependence was reported by Burch (1972), who analysed the data on fluxes of the
electrons with energies ~ 0.7 keV. A short review of relevant results and a detailed study

MLT, hours
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of the polar cusp position based on data from the DMSP F7 spacecraft is done in a
recent work by Newell and Meng (1988). In this work, however, no separation of data
in accordance with the state of the magnetosphere or the solar wind was made and,
therefore, the results should be regarded as average over the whole period. They are
shown in Figure 52 by open circles connected by a broken line. The average slope of
this dependence is in a satisfactory agreement with that of model plots. However,
absolute values of latitudes given by Newell and Meng (1988) yield the best correspon-
dence with the model plots for 3 < K, < 4, whereas the average K, value over long
periods equals 2, so that one should expect the experimental curve to lie by 1-2 deg
higher. Apparent reason for that discrepancy is that the open circles in Figure 52,
according to Newell and Meng (1988), mark the position of the equatorward boundary
of the cusp defined from the characteristic particle fluxes and energies and lying thus
at lower latitudes than the separatrix between the dayside and the tail field lines.
Figure 53 displays the corresponding plots of ¢, versus y for the Mead—Fairfield
(1975) model. On the whole, the same behaviour is revealed in the model plots, as in
Figure 52. However, owing to a somewhat different way of defining the K -index
intervals, the plots are grouped in pairs. Besides that, significantly different slopes for

A/, deg

4 A Fig. 50a-b. Same as Figure 49, except for K, > 5".
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Fig. 51. Diurnal paths of the point conjugate to the Antarctic observatory Syowa Base for vernal equinox

(solid circles) and summer solstice (open circles) computed by using the T89 model for K, = 37,3,3*. The

points are labeled by the values of UT hours and the cross marks the location of the Iceland Observatory
Leirvogur.

¥ < 0 and ¢ > 0 are conspicuous in all four plots. A more detailed study showed that
this is due to the penetration of a narrow field line bundle from the cusp region outside
the magnetosphere for  # 0 which is visible in Figure 16. This drawback is more or
less inherent to all the models, in which no special measures are taken to minimize the
magnetic flux escaping across the magnetopause. The T89 model does not represent an
exception in this sense, which can be seen in Figure 52. Indeed, the plots for
K,=17,1,1" and for K, > 5~ yield a significantly lesser slope for y > 0 than other
ones; as the line tracing has shown, just in the two cases the effect of the magnetic flux
‘leakage’ appears to be the most pronounced.

4. Indirect Methods for Testing the Field Models Using the Magnetospheric
Plasma Measurements

A vast amount of experimental data on spatial, pitch-angle, and energy distribution of
the magnetospheric plasma particles is an abundant source of information which can
supplement the magnetic measurements in testing and refining the field models. The
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Fig. 52. Latitude of the northern footpoint of the last closed dayside field line ¢, plotted against the

geodipole tilt angle , for six variants of the T89 model (solid circles). Open circles display the average

positon of the equatorial boundary of the polar cusp as deduced by Newell and Meng (1988) from particle
measurements.

magnetosphere is mostly in a state of quasi-static equilibrium which is violated only
during periods of the explosive activity. The steady-state configurations imply an
approximate balance between the mechanical stresses due to plasma pressure gradients
and/or anisotropies and Ampére’s force. This provides a possibility for testing empirical
models using the information on plasma characteristics partly available from experi-
ments and complemented by some theoretical principles. On the other hand, much
knowledge on the magnetic field structure can be provided by the data on the energetic
particles which make a negligible contribution to the net plasma pressure and can serve
as a remote testing probe due to their low sensitivity to electric fields.

Walker and Southwood (1982) tested four of then available models having assumed
the isotropy of the plasma pressure in the modeling region. The latter hypothesis can
be substantiated by results of Stiles et al. (1978), who evaluated from their measure-
ments the quiet plasma sheet anisotropies and showed the ratios p, /p | to be close to
unity. In this case the stress balance equation reduces to (73) and, therefore,

IYxIxB)=0. (76)

Numerical calculations of the left-hand side of (76) by using the models of Olson and
Pfitzer (1977), Hedgecock and Thomas (1979), Tsyganenko (1976, 1979), and the tail
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Fig. 53.  Plots similar to those in Figure 52 obtained by using the model of Mead and Fairfield (1975).

field model of Beard (1979) showed that none of them satisfy the criterion of stress
balance.

Spence et al. (1987) considered a more general problem. They suggested a method
which enables one to determine a distribution of the anisotropic plasma confined within
the given model magnetic field and consistent with the generalized stress balance
condition

v-f)=(1/c)J><B=(4i>(V><B)xB, (77)
T

where
IS=PJ_i+(PU -p.)B"?BB (78)

is the pressure tensor. The right-hand side of (77) is fully defined by the field model and
the problem is to find an appropriate distribution of p, and p . In general, there exist
an infinite set of solutions so that the task becomes feasible only on specifying a
concerete form of the particle distribution function. Spence et al. (1987) have chosen
bi-Maxwellian distribution which, combined with Liouville’s theorem and with the
conservation of the particle energy and magnetic moment, leads to a simple dependence
of p, and p, on the magnetic field intensity along a given field line tube. Under these
assumptions, the problem has a family of solutions parametrized by values of the
perpendicular pressure p, at a given point of the equatorial plane. This ‘inversion’
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method was applied by Spence et al. (1987) for testing the TU82 model. It was shown
that with reasonable initial values of p | at X5qn = — 6.5 R the reconstructed pressure
distributions appeared to be practically isotropic in the whole modeling region
(- 12 £ Xgsm < — 6.5 Ry), in accordance with the results of Stiles et al. (1978). Thus,
the principal contribution to the plasma sheet current comes from the isotropic part of
the pressure tensor (78) entering the gradient term in Equation (77). As shown by
Spence et al. (1987), the magnitude of this pressure gradient consistent with the TU82
model magnetic field agrees well with the AMPTE/CCE particle measurements.

There exist one more aspect of the problem of compatibility of the magnetic field
models with the plasma distribution, which concerns the question on the possibility of
a stationary plasma convection in the tail. Several authors (Tsyganenko, 1975b;
Kropotkin, 1977; Yamamoto and Tamao, 1978; Tsyganenko, 1982b) considered the
evolution of particle distributions caused by the Earthward convection of the plasma
from the far tail region where its injection from the mantle under the action of the
large-scale electric field (Pilipp and Morfill, 1978) was assumed. It was shown that the
observed earthward gradient of the plasma temperature and density can be explained
by a combined effect of particle energization due to the transverse magnetic drift in the
dawn-dusk electric field and the corresponding decrease of the volume of convecting
magnetic field line tubes. Assuming the conservation of the first two adiabatic invariants
(which imposes both upper and lower limits on the particle energy) one can interpret
this process in terms of the betatron and Fermi acceleration. In the opposite case of a
nonadiabatic motion the particles can be considered to be effectively pitch-angle
scattered; in this situation the isotropic pressure can be evaluated from the model by
calculating the changes of the field line tube volume, in accordance with the polytropic
law p¥V* = const., where ¥ = | ds/B(s). Calculations showed (Tsyganenko, 1982b) that
the two different approaches yield essentially the same quantitative result in what
concerns the electric current distribution consistent with the obtained pressure aniso-
tropies and gradients. However, this current distribution provides somewhat larger
Earthward gradient of the lobe magnetic field, in comparison with that in the original
background model. This inconsistency can be attributed to the neglect of particle losses
through the sides of the plasma sheet in the simplified quasi-two-dimensional analysis.
Such a possibility was qualitatively discussed by Tsyganenko (1982b), and Kivelson and
Spence (1987) carried out a quantitative study of the effect. However, Erickson and
Wolf (1980) and Erickson (1984), based on two-dimensional model calculations, put
forward a more pessimistic hypothesis of a fundamental nature of the above-mentioned
inconsistency between the convection models and the steady-state balance condition.
According to this view, the stationary convection is impossible in principle and
dynamical disturbances of the whole configuration represent an intrinsic feature of the
nightside magnetosphere (see also Schindler and Birn, 1986).

This point of view seems to be a somewhat extremist one and is open to question.
Figure 54 (Kivelson and Spence, 1987) shows the plots of the plasma sheet pressure as
function of the tailward distance derived from the adiabatic law, wherein the drift losses
were also taken into account. The corresponding volumes of field line tubes were
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Fig. 54. Plasma sheet pressure versus tailward distance in adiabatic convection models. Thin solid line

corresponds to the case of two-dimensional adiabatic compression evaluated by using the T87 model

without taking into account particle losses. Introducing the effect of drift losses throughout the plasma sheet

flanks leads to a significant decrease of the near-tail pressure gradient (the broken, dasheddotted, and dotted

lines). Heavy solid line shows the pressure variation along the tail consistent with the average lobe magnetic
field measured by Mihalov et al. (1968) (after Kivelson and Spence, 1988).

computed using the T87 model. The solid line having the largest slope at small distances
gives the profile for a purely two-dimensional convection, i.e., corresponds to the
limiting case of Erickson and Wolf (1980). Broken, dotted, and dashed-dotted lines are
plotted for four realistic values of the parameter T = gER/k T, which defines the efficiency
of losses by specifying the ratio of the cross-tail potential 2ER to the initial thermal
energy of particles. It is clear from this result that taking into account the effect of drift
losses inserts a significant correction in the pressure profiles and hence is capable of
settling the above controversy.

A strong argument in favour of the possibility of the stationary convection in the tail
is advanced by its direct observations reported recently by Sergeev and Lennartsson
(1988). Having used a set of the ground-based observations, the solar wind data, and
measurements on board the ISEE-1 spacecraft, they were able to find four cases of a
very prolonged (up to 10 hours) stable convection in the plasma sheet, which took place
during a period with a negative BIMF component and in the almost complete absence
of the ground substorm activity. The observed stationary convection was shown to have
several interesting features which shed light on the above mentioned difficulties of the
two-dimensional theory. Namely, the convection was shown to be essentially non-
uniform across the tail, with the formation of a ‘convection jet’ in the central tail region
where both the B, -component of the magnetic field and the convection electric field E,
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significantly (by a factor of 2-3) exceed the average values. It was also found that the
convection streamlines tend to decline in the dawn-dusk direction on approaching the
Earth. This effect can be considered as a manifestation of three-dimensional pattern of
the convection, which can remove the inconsistencies inherent to two-dimensional
models. It should be noted that an intrinsic feature of this concept is the system of
field-aligned currents flowing Earthward in the dawn boundary plasma sheet and
tailward at the dusk side. They induce the non-uniformity of B, and E, in the tail
cross-section and bring the magnetospheric convection pattern in correspondence with
that observed at ionospheric heights (Heelis and Hanson, 1980).

In proceeding to the works on energetic particles, it should be noted that still in early
studies (e.g., Williams and Mead, 1965; see also a review paper and a book by Roederer,
1969, 1970) many important questions related to this component were addressed which
are the quasi-trapping regions, the drift shell splitting, the non-adiabatic pitch-angle
scattering (Taylor and Hastie, 1971), etc. Many authors (Sibeck eral, 1987, and
references therein) studied the pitch-angle distributions in the near magnetosphere.
Their results indicate that at least under quiet conditions the main observed features
show a good agreement with the drift theory in conjunction with a realistic magnetic field
model. A considerable progress was achieved also in studies of the solar particle access
to the Earth’s inner magnetosphere and the polar caps by means of a numerical tracing
their paths in model magnetospheres (see reviews by Morfill and Scholer, 1973 ; Morfill,
1975; Scholer, 1975; and Schulz, 1980).

West et al. (1978a, b) gave a convincing example of great possibilities of using data
on the pitch angle distributions for monitoring the instantaneous magnetic configuration
in the near tail. It is assumed in this method that particles with energies larger than a
critical value corresponding to the breakdown of adiabaticity exhibit a strong pitch-angle
scattering on traversing the tail current sheet (Wagner et al., 1979; Gray and Lee, 1982),
leading to a fully 1sotropic velocity distribution at these energies. The latter hypothesis
is intuitively evident; its quantitative substantiation was given in papers by Tsyganenko
(1982a), Wright (1985), and Basu and Rowlands (1986). The principal result is that for
the values of the dimensionless parameter K = R_/p, lesser than ~ 8 (Alfvén and
Filthammar, 1963) the amplitude of the pitch-angle scattering of a particle entering the
current sheet increases abruptly, so that the pitch angle distribution in the field line tube
becomes fully isotropic not later than in a few bounce periods. Assuming the curvature
radius R_of the field line to be minimal in the centre of the sheet and rewriting the particle
gyroradius p, in terms of its velocity, mass, electric charge, and the local magnetic field,
we obtain the condition of the adiabaticity breakdown (Sergeev et al., 1983)

K =G~ '[B2)(3B,/dz)] ~ 8, (79)

where G = muc/q is the rigidity of the particles and the square bracketed factor depends
solely on the magnetic field model assumed. Thus, having measured the pitch angle
distributions within a sufficiently wide range of rigidities along the spacecraft orbit, one
can probe the magnetotail structure over a considerable range of distances. Energetic
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particles serve in this case as global tracers providing information which is supplementary
to local magnetic measurements.

Figure 55 reproduced from the work by West et al. (1978) shows three configurations
of the magnetic field in the near tail derived from a simple model, whose coefficients
were fitted to the data obtained along the inbound orbit segments onboard the OGO-5
spacecraft on August 2, 4, and 25 in 1968. Simultaneous measurements of the electron

Fig. 55. Model magnetic field configurations obtained from data taken during three inbound passes of the

0GO-5 spacecraft. All the three cases correspond to quiet conditions. Broken curves in the bottom panel

display the Olson and Pfitzer (1974) model magnetic field lines. The crosses indicate the point of transition
from isotropic to butterfly pitch-angle distributions of 79 keV electrons (West et al., 1978b).
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pitch angle distributions made from the same spacecraft indicated the position of the
non-adiabatic scattering boundaries, which showed a close agreement with the results
of trajectory computations made by using the model. An important feature noticed by
West et al. (1978) is a surprising variability of the quiet nightside magnetosphere. All the
three configurations in Figure 55 correspond to the K,-index in the range between 0*
and 1, however, a considerable difference in the degree of the field line stretching is
obvious from the plots, which gives one more example of that the use of the K -index
as the input model parameter is but a temporary and a palliative way out. It is also worth
noting that even the most dipole-like configuration shown in the lower panel is
significantly more stretched than it is predicted by the model of Olson and Pfitzer (1974)
(broken lines) or by that of Mead and Fairfield (1975); this brings an additional evidence
in favour of the results given by the T89 model (see Section 3.1).

Studies in this direction were developed in later works. Sergeev and Tsyganenko
(1982), based on model calculations of the position of the non-adiabatic scattering
boundaries of energetic particles in the near tail region, proposed a revised concept of
the stable trapping boundaries. Indeed, in the light of the above results it should be
admitted that the structure of the geomagnetic field defines not only the drift shell
geometry including the boundaries between the open and the closed ones, but also the
regions corresponding to a rapid loss of particles due to their non-adiabatic scattering
in the ionospheric and drift loss cones. Therefore, the location of the boundary of the
stable trapping region depends not only on the magnetic field configuration and the
particle pitch angle, as is commonly assumed (Roederer, 1970), but also on the particle
mass and energy.

A detailed study of the location of the isotropic precipitation boundary for 150 and
220 keV protons at ionospheric heights was done by Sergeev et al. (1983) using the data
from the low-altitude polar orbiting spacecraft ESRO-1A corresponding to a prolonged
quiet period. The magnetic field data taken by the geosynchronous satellite ATS-1 just
near the non-adiabatic scattering region in the midnight sector were also available for
the same period. That data in conjunction with the TU82 magnetic field model made
it possible to compare the observed values A, of the boundary latitude as well as those
calculated from the model by means of (79) with the corresponding values of B, &~ H , 1
in the scattering region. Figure 56 shows the results of this comparison. It is clearly seen
that both groups of points reveal the same slope in dependence of A, on H g, but are
separated by =20 nT along the horizontal axis. The most likely reason for this
discrepancy is the above mentioned bias in the measured H-component (see
Section 3.1). It is interesting to note that almost the same value AH = —22 nT of the
correction to be added to the measured H,+g was obtained by Usmanov (1984) by
means of minimizing the r.m.s. difference between the model fields inferred from the
ATS-1 and the IMP-HEOS datasets.

The analysis by Sergeev et al. (1983) was based on particle data corresponding, in
fact, to a single value of energy and considered the effect of changes in the magnetic field
near X;4m — 6.6 R, only. Popielawska et al. (1985) employed the data by Imhof et al.
(1977) on the measured latitudes A, for a wide range of the particle rigidities G and
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Fig. 56. Geomagnetic latitude of the isotropic precipitation boundary of 140 keV protons at ionospheric

level as function of the total equatorial value of B, ~ H,rg in the midnight sector of the geosynchronous

orbit. The solid circles correspond to measurements onboard the ESRO-1A and the ATS-1 spacecraft, while

the open circles labeled by the K, values are obtained from calculations by using the criterion (79) in
conjunction with the TU82 model (Sergeev et al., 1983).

compared the observed dependence of their threshold values G; on the L-parameter of
the corresponding shells with those obtained in model calculations. It was found that
within the range 4.5 < L < 6.0 the model values of G, fall off with L much more slowly
than the measured ones. Therefore, if one assumes the view that the non-adiabatic
scattering in the nightside current sheet is a dominant mechanism for the precipitation
of energetic particles, then it should be admitted that the model requires a significant
modification (but see Imhof, 1988). In particular, introducing a spatial variation of the
sheet thickness can eliminate the disagreement. The model T89 described in Sub-
section 2.3.1 may serve as a good starting point for future works in this direction.

The above results confirm the fact of a high sensitivity of the pitch-angle and spatial
distributions of energetic particle fluxes to the details of the magnetic field and electric
current structure in the near magnetosphere. Sergeev and Malkov (1988) proposed on
that basis a method for refining the model B, distribution in the nightside equatorial
plane, with a perspective to obtain a more reliable procedure of mapping the magnetic
field lines. The method is based on using the relation (79) for the threshold rigidity
combined with the equation

B®R,dAdy" = B® dx dy®, (80)

which indicates the constancy of the magnetic flux in the field line tube of a rectangular
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cross-section with dimensions R dA by dy®” at ionospheric level and dx by dy® in
the equatorial plane. The relation (80) yields a differential equation for the equatorial
distance x = x(A) which contains implicitly the function B,(x) to be found. The second
equation in the system is given by (79) where the rigidity dependence G = G(A) is taken
from spacecraft measurements and the functions 6B, /0z and dy®/dy‘® are specified by
a field model. Having applied this method to the data of Imhof et al. (1977), Sergeev
and Malkov (1988) were able to obtain several profiles of B, versus X5gy,, of which
three examples are given in Figure 57. In each of the profiles a local minimum of B, is
clearly visible at Xgqm ~ — 5-6 R, the feature being absent in the initial TU82 model
chosen for evaluating the functions dy®/dy® and @B, /0z.
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Fig. 57. Nightside equatorial profiles of the external B_-component obtained from the data of Imhof et a/.

(1977) and TU82 magnetic field model by solving numerically Equations (79)-(80). The profiles correspond

to three passes of the spacecraft, the dashed lines showing the initial model distributions. Squares, circles,

and triangles represent the refined profiles corresponding to different K, conditions (K, = 2, 3, and 4,
respectively (Sergeev and Malkov, 1988)).

5. Concluding Remarks

Significant advances have been made in development of magnetospheric magnetic field
models in the last decades. Effective approaches to modeling the contributions from all
the main magnetospheric current systems were proposed. In particular, powerful
methods for simulating the observed structure of the nightside current sheet have been
developed taking into account a spread-out nature of the latter, a spatial nonuniformity
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of the current density distribution, and the tilt-related flexing effects. Using that model
representations in conjunction with large amounts of spacecraft data provided refined
and elaborate quantitative description of the average observed field configurations, in
spite of serious problems caused by an extremely variable nature of the magnetosphere
manifesting itself in ‘noisy’ datasets. Provided modeling expansions are sufficiently
flexible, this approach allows to extract much information from the data including some
comparatively fine effects related to the orientation of the interplanetary magnetic field.

On the other hand, a significant progress in understanding of the role of the
magnetospheric plasma in the maintenance of the observed magnetic field structure has
been achieved owing to recent theoretical works based on a magnetohydrostatic
approach. Promising results were also obtained indicating great possibilities of using
energetic particle measurements for a real-time diagnosis of the magnetospheric
configurations and in refining the average field models.

In proceeding with the future perspectives, one of the most urgent practical problems
is the development of algorithms being able to reconstruct instantaneous magnetospheric
configurations on the basis of a synoptic ground-based and satellite control of the most
important parameters of the ‘dynamical’ model. One of the first steps in this direction
was described by Olson and Pfitzer (1982). Since the contributions from the main
sources of the external field are relatively independent of each other, it is necessary to
ensure a reliable separate determination of their intensities. Given a limited number of
spacecraft, this imposes exacting demands to the choice of their orbit parameters. More
specifically, it is clear that the best resolution of the separate source intensities could
be expected if each of the spacecraft would be located within the region of a predominant
influence of only one current system, so that the contributions from all others be
relatively small. In this case the information matrix (see Appendix) is close to a diagonal
one and the corresponding parameters are resolved with the best reliability. Thus, to
obtain the maximum information on Birkeland current system, measurements taken by
a polar orbiting low-altitude spacecraft should be included in the algorithm inputs, since
the contribution from other currents is comparatively small in that region.
Geosynchronous measurements at two or three points combined with the data from a
spacecraft of the AMPTE/CCE type could give the main information on the ring current
and the near-Earth tail current sheet. A more global monitoring of the integral tail
current magnitude could be done from spacecraft with a highly elliptical orbits crossing
the lobe region. Of principal importance is a continuous patrol of the solar wind state.
The ground-based data could also provide a significant information. At last, as follows
from the results reviewed in Section 4, low-altitude observations of energetic particles
could also provide important supplementary data.
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Appendix. Determination of Empirical Model Parameters from the Spacecraft
Datasets*

Al. INITIAL PROCESSING

Two of the four datasets used comprised the IMP and HEOS near-magnetosphere data
and did not require much processing. Two other ones containing measurements in the
tail region had to be reduced in order to exclude data taken outside the magnetosphere.
After that the field of internal sources was subtracted from all the measured field vectors
and the obtained external field components and the corresponding spatial coordinates
were transformed to the solar magnetic system. Every average field vector was tagged
by the corresponding values of the dipole tilt angle, the ground disturbance indices, and
the solar wind parameters (King, 1977). All this information comprised the merged
database whose elements will be termed hereinafter as data points.

A2. FORMALIZATION OF THE EXPERIMENTAL INFORMATION AND METHOD FOR
COMPUTING THE MODEL PARAMETERS

Mathematical formulation of the method for constructing the quantitative magneto-
spheric models is based on a general statistical inverse problem approach whose
applications to the geophysics were developed in the works by Goltzman (1971, 1981).
Following this approach, let us represent the observed field vector B, as

By=fc(p)+ng, K=1,...,N, (A1)

where K enumerates the dataset points from 1 to ¥, f is the modeling vector function
which depends on the vector p of the model parameters, and ng is the random residual
vector.

The vectors n, with K =1,..., N can be considered as a random set with a
corresponding sampling probability function P(n,, ..., n,) which is assumed to be
represented by the normal distribution with a dispersion

P(n,,...,ny) = 2ra?) 32 ﬁ exp|:— 51— ni]. (A2)

0.2

The next step is to construct the ‘response function’, i.e., the conditional probability
distribution Py(p) corresponding to a given experimental dataset {B}. Using Bayes’

* This Appendix is based on materials of the thesis by Dr A. V. Usmanov (1984), with his kind permission.
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formula (e.g., Korn and Korn, 1961)

1
P =—— P(p)P,(B),
s(p) P(B) (p)P,(B)
where P(p) is the a priori probability of the random parameter vector p, P(B) is the
absolute probability of the set{B} (in fact, P(B) = 1, since the set is already obtained),
and P,(B) is the conditional probability of {B} for a given p. The latter function can
be found from (A1) and the postulated normal law (A2) and, hence,

Pa(p) = (2ma?) =22 exp[— 5 Y Be- K)z] P(p). (A3)

This function defines the statistical weight of possible values of the vector p to be found,
for a given experimental set{B}. According to the maximum likelihood criterion, the
solution is given by the vector p* which maximizes (A3), i.e., the most probable one.
Under the assumptions (A2) and P(p) = constant (no a priori information on p* values),
this criterion coincides with that of the least-squares method, in which a minimum of
the function

Alp) = KZ_‘,I [Bx - 1 (p)]? (A4)

is to be found. .

If all the components of p enter the model functions linearly (i.e., as coefficients), the
task is solved by means of a standard least squares technique. In the more complex case
with nonlinear parameters an iterative procedure is employed. The first step is to define
the coefficients, while the nonlinear parameters are fixed at initial tentative values. After
that the nonlinear parameters are re-evaluated with the coefficients being fixed at
previously found values. This completes the first iteration and the whole sequence of
calculations is repeated again, until the obtained decrease of A becomes sufficiently
small.

The corrections to the nonlinear parameters at each step are found by means of
Newton-LeCam—-Marquardt method whose essence consists in the following. Let us
expand the function A(p) in Taylor series retaining three leading terms (Newton’s
method):

S S S 2
AMp)= ™)+ ¥ o4 Aps(")*‘% D 0°4 4pD Ap®

s=1 0pslp=p® s=1 5721 0P, Opyrlp=p®

]

(A5)
where 4p = p. - p”. To find the minimum of the function A(p) from (A5), we have
to solve the system of linear equations

i) _

0, s=1,...,8,
0p;
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which can be rewritten in the matrix form as
D-14p® = d, (A6)

where

L)

_ _ 94p)
. apx ap:' p=p? ’

d .
aps pP= P(i)

)

Solution of the system yields the corrections to be found. However, evaluating the
second derivatives of the function A(p) is often too much cumbersome. LeCam (1960)
proposed to replace the matrix D~ in (A6) by its statistical average over all random
experimental samples. In accordance with (A2) and (A4), this leads to the average
matrix E ! with elements

N
paoL s O O (A7)
0> k=1 0p; 0Opylp=p®
The right-hand side vector d in (A6) has the components
1 X |of
d, = - Z [—K (Bx — K):| (A8)
g” K=1 0 p=p®

£

Thus, we arrive at Newton-LeCam method which consists in solving the system
E~14p"¥ = d instead of (A6).

To obtain more rapid convergence of the iteration process, we apply the following
procedure suggested by Marquardt (1963). If the correction Ap obtained at ith iteration
does not lead to further decrease of A(p?), then the diagonal elements of the matrix E-!
are increased by an appropriate quantity v. As a rule, the procedure significantly
improves the convergence near the minimum point.

A3. ESTIMATION OF ERRORS OF MODEL PARAMETER VALUES

Of key importance in this aspect is the information content in the experimental datasets,
which defines the reliability and the accuracy of the obtained values of model parameters
and depends on the distribution of data points in the space (x, y, z, ¥). Its quantitative
measure is the dispersion of the parameter values. Another important quantity
characterizing both the dataset and the model is the correlation between parameters.
A high correlation means that variations of both parameters cause similar changes in
the model field; in such a case it is difficult to effectively resolve the two parameters
separately, i.e., their errors are relatively large.

Since the estimate p of the model parameters corresponding to a given data sample
can also be considered as a random vector, it is possible to introduce its own probability
distribution and then to apply the formalism of the maximum likelihood method, which
implies in particular that the obtained estimates of the parameters are the optimal ones.
The latter means that (i) in the limit of N — co they coincide with real values, (ii) their
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distribution obeys the normal law, and (iii) they have minimal dispersions (Cramer,
1975). Therefore, the random vector p can be fully defined by its average value p and
the covariance matrix K. The corresponding inverse matrix K ~ ! is called the information
matrix (Pugachev, 1968) and has the elements

K-t o _ 0% In Py(p)
" aps aps’ ,

where the upper horizontal bar denotes averaging over various sample datasets {B}.
Using (A3),

PRI W Y

AR 2

. (A9)
62 k=1 0p, Op,

Comparing (A9) with (A7) shows that the information matrix is similar in its structure
to .~ 1. Notice, however, that the matrix K- lisof larger size than E 1 since the latter
is constructed of derivatives with respect to the nonlinear parameters only.

It can be seen from (A9) that the elements of K and K ~ ! matrices do not depend on
values B, of the measured magnetic field. Rather, they are defined by the number of
data points and by their spatial distribution as well as by the ‘noise’ level 6. The
diagonal elements of the information matrix K;' are the so-called Fisher’s informants
yielding a quantitative measure of the information contained in the dataset with respect
to the sth model parameter p,. The diagonal elements K, of the covariance matrix define
the parameter dispersions sought, while the non-diagonal elements of the correlation
matrix

__ K

(Ko Koo)'

S5’

quantify the interrelations between the parameters.
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